471
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Advances in the Functional Nucleic Acid Biosensors for Detection of Lead Ions

, , , , &
Pages 309-325 | Published online: 25 Jul 2021

References

  • Sun, Z.; Cao, H.; Zhang, X.; Lin, X.; Zheng, W.; Cao, G.; Sun, Y.; Zhang, Y. Spent Lead-Acid Battery Recycling in China—A Review and Sustainable Analyses on Mass Flow of Lead. Waste Manag. 2017, 64, 190–201. DOI: 10.1016/j.wasman.2017.03.007.
  • Singh, K.; Singh, S.; Dhaliwal, A. S.; Singh, G. Gamma Radiation Shielding Analysis of Lead-Flyash Concretes. Appl. Radiat. Isot. 2015, 95, 174–179. DOI: 10.1016/j.apradiso.2014.10.022.
  • Zhang, F.; Bai, Y.; Zhu, B.; Zhu, W.; Ye, M. Group and Insidious Tetraethyl Lead Poisoning Occurred in Industry of Plastic Weaving: A Case Report. J. Thorac. Dis. 2016, 8, E325–E329. DOI: 10.21037/jtd.2016.03.68.
  • Gioia, S. M. C. L.; Babinski, M.; Weiss, D. J.; Spiro, B.; Kerr, A. A. F. S.; Veríssimo, T. G.; Ruiz, I.; Prates, J. C. M. An Isotopic Study of Atmospheric Lead in a Megacity after Phasing out of Leaded Gasoline. Atmos. Environ. 2017, 149, 70–83. DOI: 10.1016/j.atmosenv.2016.10.049.
  • Yang, J.; Li, X.; Xiong, Z.; Wang, M.; Liu, Q. Environmental Pollution Effect Analysis of Lead Compounds in China Based on Life Cycle. IJERPH 2020, 17, 2184. DOI: 10.3390/ijerph17072184.
  • Levallois, P.; Barn, P.; Valcke, M.; Gauvin, D.; Kosatsky, T. Public Health Consequences of Lead in Drinking Water. Curr. Environ. Health Rep. 2018, 5, 255–262. DOI: 10.1007/s40572-018-0193-0.
  • de Souza, I. D.; de Andrade, A. S.; Dalmolin, R. J. S. Lead-Interacting Proteins and Their Implication in Lead Poisoning. Crit. Rev. Toxicol. 2018, 48, 375–386. DOI: 10.1080/10408444.2018.1429387.
  • Ommati, M. M.; Jamshidzadeh, A.; Heidari, R.; Sun, Z.; Zamiri, M. J.; Khodaei, F.; Mousapour, S.; Ahmadi, F.; Javanmard, N.; Shirazi Yeganeh, B. Carnosine and Histidine Supplementation Blunt Lead-Induced Reproductive Toxicity through Antioxidative and Mitochondria-Dependent Mechanisms. Biol. Trace Elem. Res. 2019, 187, 151–162. DOI: 10.1007/s12011-018-1358-2.
  • Ordemann, J. M.; Austin, R. N. Lead Neurotoxicity: Exploring the Potential Impact of Lead Substitution in Zinc-Finger Proteins on Mental Health. Metallomics 2016, 8, 579–588. DOI: 10.1039/c5mt00300h.
  • He, L.; Chen, Z.; Dai, B.; Li, G.; Zhu, G. Low-Level Lead Exposure and Cardiovascular Disease: The Roles of Telomere Shortening and Lipid Disturbance. J. Toxicol. Sci. 2018, 43, 623–630. DOI: 10.2131/jts.43.623.
  • Li, Y.; Qin, J.; Wei, X.; Li, C.; Wang, J.; Jiang, M.; Liang, X.; Xia, T.; Zhang, Z. The Risk Factors of Child Lead Poisoning in China: A Meta-Analysis. IJERPH 2016, 13, 296. DOI: 10.3390/ijerph13030296.
  • Wang, J.; El-Fahmawi, A.; Yan, C.; Liu, J. Childhood Lead Poisoning from Domestic Products in China: A Case Study with Implications for Practice, Education, and Policy. Public Health Nurs. 2019, 36, 806–812. DOI: 10.1111/phn.12652.
  • Reuben, A.; Elliott, M. L.; Abraham, W. C.; Broadbent, J.; Houts, R. M.; Ireland, D.; Knodt, A. R.; Poulton, R.; Ramrakha, S.; Hariri, A. R.; et al. Association of Childhood Lead Exposure with Mri Measurements of Structural Brain Integrity in Midlife. JAMA, J. Am. Med. Assoc. 2020, 324, 1970–1979. DOI: 10.1001/jama.2020.19998.
  • Shen, G.; Zhang, H.; Xiang, J.; Yang, F.; Wu, S.; Wang, W.; Du, N.; Zhang, J.; Sun, T.; Tang, Y. Direct Detection of Potassium and Lead (II) Ions Based on Assembly-Disassembly of a Chiral Cyanine Dye /TBA complex. Talanta 2019, 201, 490–495. DOI: 10.1016/j.talanta.2019.04.032.
  • Li, J.; Yim, D.; Jang, W.-D.; Yoon, J. Yoon Recent Progress in the Design and Applications of Fluorescence Probes Containing Crown Ethers. Chem. Soc. Rev. 2017, 46, 2437–2458. DOI: 10.1039/c6cs00619a.
  • Un, H. I.; Huang, C. B.; Huang, J.; Huang, C.; Jia, T.; Xu, L. A Naphthalimide-Based Fluorescence "Turn-on" Probe for the Detection of Pb(2+) in Aqueous Solution and Living Cells. Chem. Asian J. 2014, 9, 3397–3402. DOI: 10.1002/asia.201402946.
  • Sunnapu, O.; Kotla, N. G.; Maddiboyina, B.; Singaravadivel, S.; Sivaraman, G. A Rhodamine Based “Turn-on” Fluorescent Probe for Pb(II) and Live Cell Imaging. RSC Adv. 2016, 6, 656–660. DOI: 10.1039/C5RA20482H.
  • Zhou, Y.; Tian, X. L.; Li, Y. S.; Zhang, Y. Y.; Yang, L.; Zhang, J. H.; Wang, X. R.; Lu, S. Y.; Ren, H. L.; Liu, Z. S. A Versatile and Highly Sensitive Probe for Hg(II), Pb(II) and Cd(II) Detection Individually and Totally in Water Samples. Biosens. Bioelectron. 2011, 30, 310–314. DOI: 10.1016/j.bios.2011.08.034.
  • Liu, B.; Chen, J.; Wei, Q.; Zhang, B.; Zhang, L.; Tang, D. Target-Regulated Proximity Hybridization with Three-Way DNA Junction for in Situ Enhanced Electronic Detection of Marine Biotoxin Based on Isothermal Cycling Signal Amplification Strategy. Biosens. Bioelectron. 2015, 69, 241–248. DOI: 10.1016/j.bios.2015.02.040.
  • Bodulev, O. L.; Sakharov, I. Y. Isothermal Nucleic Acid Amplification Techniques and Their Use in Bioanalysis. Biochemistry 2020, 85, 147–166. DOI: 10.1134/S0006297920020030.
  • Mayboroda, O.; Katakis, I.; O’Sullivan, C. K. Multiplexed Isothermal Nucleic Acid Amplification. Anal. Biochem. 2018, 545, 20–30. DOI: 10.1016/j.ab.2018.01.005.
  • Qiu, Z.; Shu, J.; Jin, G.; Xu, M.; Wei, Q.; Chen, G.; Tang, D. Invertase-Labeling Gold-Dendrimer for in Situ Amplified Detection Mercury(II) with Glucometer Readout and Thymine-Hg(2+)-Thymine Coordination Chemistry. Biosens. Bioelectron. 2016, 77, 681–686. DOI: 10.1016/j.bios.2015.10.044.
  • Qiu, Z.; Tang, D.; Shu, J.; Chen, G.; Tang, D. Enzyme-Triggered Formation of Enzyme-Tyramine Concatamers on Nanogold-Functionalized Dendrimer for Impedimetric Detection of Hg(II) with Sensitivity Enhancement. Biosens. Bioelectron. 2016, 75, 108–115. DOI: 10.1016/j.bios.2015.08.026.
  • Lu, Y. New Transition-Metal-Dependent DNAzymes as Efficient Endonucleases and as Selective Metal Biosensors. Chem. Eur. J. 2003, 34, 4589–4596. DOI: 10.1002/chin.200303275.
  • Zhang, J. RNA-Cleaving DNAzymes: Old Catalysts with New Tricks for Intracellular and in Vivo Applications. Catalysts 2018, 8, 550. DOI: 10.3390/catal8110550.
  • Liu, M.; Chang, D.; Li, Y. Discovery and Biosensing Applications of Diverse RNA-Cleaving DNAzymes. Acc. Chem. Res. 2017, 50, 2273–2283. DOI: 10.1021/acs.accounts.7b00262.
  • Tomkinson, A. E.; Naila, T.; Khattri Bhandari, S. Altered DNA Ligase Activity in Human Disease. Mutagenesis 2020, 35, 51–60. DOI: 10.1093/mutage/gez026.
  • Kosman, J.; Juskowiak, B. Bioanalytical Application of Peroxidase-Mimicking DNAzymes: Status and Challenges. Adv. Biochem. Eng. Biotechnol. 2020, 170, 59–84. DOI: 10.1007/10_2017_7.
  • Cao, D.; Yu, W.; Xu, J.; Wang, F.; Jiang, Y.; Sheng, Y.; Sun, Y.; Zhang, J.; Jiang, D. Characterization of a DNA-Hydrolyzing DNAzyme for Generation of Pcr Strands of Unequal Length. Biochimie 2020, 179, 181–189. DOI: 10.1016/j.biochi.2020.10.001.
  • Guo, Y.; Chen, Q.; Qi, Y.; Xie, Y.; Qian, H.; Yao, W.; Pei, R. Label-Free Ratiometric DNA Detection Using Two Kinds of Interaction-Responsive Emission Dyes. Biosens. Bioelectron. 2017, 87, 320–324. DOI: 10.1016/j.bios.2016.08.041.
  • Liu, H.; Ma, C.; Wang, J.; Chen, H.; Wang, K. Label-Free Colorimetric Assay for T4 Polynucleotide Kinase/Phosphatase Activity and Its Inhibitors Based on G-Quadruplex/Hemin DNAzyme. Anal. Biochem. 2017, 517, 18–21. DOI: 10.1016/j.ab.2016.10.022.
  • Zhang, X. F.; Li, N.; Ling, Y.; Tang, L.; Li, N. B.; Luo, H. Q. Linked Bridge Hybridizing-Induced Split G-Quadruplex DNA Machine and Its Application to Uracil-DNA Glycosylase Detection. Sens. Actuators B 2018, 255, 2589–2594. DOI: 10.1016/j.snb.2017.09.065.
  • Wang, J.; Wang, Y.; Liu, S.; Wang, H.; Zhang, X.; Song, X.; Huang, J. Base Excision Repair Initiated Rolling Circle Amplification-Based Fluorescent Assay for Screening Uracil-DNA Glycosylase Activity Using Endo IV-Assisted Cleavage of AP Probes. Analyst 2018, 143, 3951–3958. DOI: 10.1039/c8an00716k.
  • Meng, X.; Zhang, K.; Dai, W.; Cao, Y.; Yang, F.; Dong, H.; Zhang, X. Multiplex Microrna Imaging in Living Cells Using DNA-Capped-Au Assembled Hydrogels. Chem. Sci. 2018, 9, 7419–7425. DOI: 10.1039/c8sc02858c.
  • Zhou, W.; Saran, R.; Liu, J. Metal Sensing by DNA. Chem. Rev. 2017, 117, 8272–8325. DOI: 10.1021/acs.chemrev.7b00063.
  • Khoshbin, Z.; Housaindokht, M. R.; Verdian, A.; Bozorgmehr, M. R. Simultaneous Detection and Determination of Mercury (II) and Lead (II) Ions through the Achievement of Novel Functional Nucleic Acid-Based Biosensors. Biosens. Bioelectron. 2018, 116, 130–147. DOI: 10.1016/j.bios.2018.05.051.
  • Lan, T.; Furuya, K.; Lu, Y. A Highly Selective Lead Sensor Based on a Classic Lead Dnazyme. Chem Commun. (Camb) 2010, 46, 3896–3898. DOI: 10.1039/b926910j.
  • Biffi, G.; Tannahill, D.; Mccafferty, J.; Balasubramanian, S. Quantitative Visualization of DNA G-Quadruplex Structures in Human Cells. Nat. Chem. 2013, 5, 182–186. DOI: 10.1038/NCHEM.1548.
  • Dhamodharan, V.; Pradeepkumar, P. I. Specific Recognition of Promoter G-Quadruplex Dnas by Small Molecule Ligands and Light-up Probes. ACS Chem. Biol. 2019, 14, 2102–2114. DOI: 10.1021/acschembio.9b00475.
  • Yüce, M.; Ullah, N.; Budak, H. Trends in Aptamer Selection Methods and Applications. Analyst 2015, 140, 5379–5399. DOI: 10.1039/c5an00954e.
  • Gao, Z.; Xu, M.; Lu, M.; Chen, G.; Tang, D. Urchin-Like (Gold Core)@(Platinum Shell) Nanohybrids: A Highly Efficient Peroxidase-Mimetic System for in Situ Amplified Colorimetric Immunoassay. Biosens. Bioelectron. 2015, 70, 194–201. DOI: 10.1016/j.bios.2015.03.039.
  • Gao, Z.; Tang, D.; Tang, D.; Niessner, R.; Knopp, D. Target-Induced Nanocatalyst Deactivation Facilitated by Core@Shell Nanostructures for Signal-Amplified Headspace-Colorimetric Assay of Dissolved Hydrogen Sulfide. Anal. Chem. 2015, 87, 10153–10160. DOI: 10.1021/acs.analchem.5b03008.
  • Gao, Z.; Qiu, Z.; Lu, M.; Shu, J.; Tang, D. Hybridization Chain Reaction-Based Colorimetric Aptasensor of Adenosine 5'-Triphosphate on Unmodified Gold Nanoparticles and Two Label-Free Hairpin Probes. Biosens. Bioelectron. 2017, 89, 1006–1012. DOI: 10.1016/j.bios.2016.10.043.
  • Gao, Z.; Deng, K.; Wang, X. D.; Miro, M.; Tang, D. High-Resolution Colorimetric Assay for Rapid Visual Readout of Phosphatase Activity Based on Gold/Silver Core/Shell Nanorod. ACS Appl. Mater. Interfaces 2014, 6, 18243–18250. DOI: 10.1021/am505342r.
  • Kim, Y.; Ahmad Raston, N. H.; Bock Gu, M. Aptamer-Based Nanobiosensors. Biosens. Bioelectron. 2016, 76, 2–19. DOI: 10.1016/j.bios.2015.06.040.
  • Liu, J.; Lu, Y. A Colorimetric Lead Biosensor Using DNAzyme-Directed Assembly of Gold Nanoparticles. J. Am. Chem. Soc. 2003, 125, 6642–6643. DOI: 10.1021/ja034775u.
  • Liu, J.; Lu, Y. Accelerated Color Change of Gold Nanoparticles Assembled by Dnazymes for Simple and Fast Colorimetric Pb2+ Detection. J. Am. Chem. Soc. 2004, 126, 12298–12305. DOI: 10.1021/ja046628h.
  • Li, C.; Wei, L.; Liu, X.; Lei, L.; Li, G. Ultrasensitive Detection of Lead Ion Based on Target Induced Assembly of DNAzyme Modified Gold Nanoparticle and Graphene Oxide. Anal. Chim. Acta 2014, 831, 60–64. DOI: 10.1016/j.aca.2014.05.001.
  • Rong, M.; Li, J.; Hu, J.; Chen, A.; Wu, W.; Lyu, J. A Highly Sensitive and Colorimetric Biosensor Based on Magnetic Nano-Dnazyme for Detection of Lead (II) Ion in Real Water Samples. J. Chem. Technol. Biotechnol. 2018, 93, 3254–3263. DOI: 10.1002/jctb.5684.
  • Vijitvarasan, P.; Oaew, S.; Surareungchai, W. Paper-Based Scanometric Assay for Lead Ion Detection Using DNAzyme. Anal. Chim. Acta 2015, 896, 152–158. DOI: 10.1016/j.aca.2015.09.011.
  • Du, Z.-H.; Li, X.-Y.; Tian, J.-J.; Zhang, Y.-Z.; Tian, H.-T.; Xu, W.-T. Progress on Detection of Metals Ions by Functional Nucleic Acids Biosensor. Chin. J. Anal. Chem. 2018, 46, 995–1004. DOI: 10.1016/S1872-2040(18)61094-1.
  • Memon, A. G.; Zhou, X.; Xing, Y.; Wang, R.; Liu, L.; Khan, M.; He, M. Label-Free Colorimetric Nanosensor with Improved Sensitivity for Pb2+ in Water by Using a Truncated 8-17 DNAzyme. Front. Environ. Sci. Eng. 2019, 13, 13. DOI: 10.1007/s11783-019-1094-7.
  • Li, J.; Lu, Y. A Highly Sensitive and Selective Catalytic DNA Biosensor for Lead Ions. J. Am. Chem. Soc. 2000, 122, 10466–10467. DOI: 10.1021/ja0021316.
  • Shomali, Z.; Kompany-Zareh, M.; Omidikia, N. Fluorescence Based Investigation of Temperature-Dependent Pb2+-Specific 8-17E DNAzyme Catalytic Sensor. J. Fluoresc. 2019, 29, 335–342. DOI: 10.1007/s10895-019-02346-8.
  • Liu, J.; Lu, Y. Improving Fluorescent DNAzyme Biosensors by Combining Inter- and Intramolecular Quenchers. Anal. Chem. 2003, 75, 6666–6672. DOI: 10.1021/ac034924r.
  • Guo, Y.; Li, J.; Zhang, X.; Tang, Y. A Sensitive Biosensor with a DNAzyme for Lead(II) Detection Based on Fluorescence Turn-On. Analyst 2015, 140, 4642–4647. DOI: 10.1039/c5an00677e.
  • Chen, M.; Hassan, M.; Li, H.; Chen, Q. Fluorometric Determination of Lead(II) by Using Aptamer-Functionalized Upconversion Nanoparticles and Magnetite-Modified Gold Nanoparticles. Mikrochim. Acta 2020, 187, 85. DOI: 10.1007/s00604-019-4030-4.
  • Ravikumar, A.; Panneerselvam, P.; Radhakrishnan, K.; Morad, N.; Anuradha, C. D.; Sivanesan, S. Dnazyme Based Amplified Biosensor on Ultrasensitive Fluorescence Detection of Pb (II) Ions from Aqueous System. J. Fluoresc. 2017, 27, 2101–2109. DOI: 10.1007/s10895-017-2149-4.
  • Zhao, Q.; Tao, J.; Uppal, J. S.; Peng, H.; Wang, H.; Le, X. C. Nucleic Acid Aptamers Improving Fluorescence Anisotropy and Fluorescence Polarization Assays for Small Molecules. TrAC Trends Anal. Chem. 2019, 110, 401–409. DOI: 10.1016/j.trac.2018.11.018.
  • Zhang, D.; Fu, R.; Zhao, Q.; Rong, H.; Wang, H. Nanoparticles-Free Fluorescence Anisotropy Amplification Assay for Detection of RNA Nucleotide-Cleaving DNAzyme Activity. Anal. Chem. 2015, 87, 4903–4909. DOI: 10.1021/acs.analchem.5b00479.
  • Xu, Y.; Zhang, W.; Huang, X.; Shi, J.; Zou, X.; Li, Y.; Cui, X.; Haroon, E. T.; Li, Z. A Self-Assembled L-Cysteine and Electrodeposited Gold Nanoparticles-Reduced Graphene Oxide Modified Electrode for Adsorptive Stripping Determination of Copper. Electroanalysis 2018, 30, 194–203. DOI: 10.1002/elan.201700637.
  • Yang, X.; Xu, J.; Tang, X.; Liu, H.; Tian, D. A Novel Electrochemical DNAzyme Sensor for the Amplified Detection of Pb2+ Ions. Chem Commun. (Camb) 2010, 46, 3107–3109. DOI: 10.1039/c002137g.
  • Zhang, H.; Jiang, B.; Xiang, Y.; Su, J.; Chai, Y.; Yuan, R. DNAzyme-Based Highly Sensitive Electronic Detection of Lead via Quantum Dot-Assembled Amplification Labels. Biosens. Bioelectron. 2011, 28, 135–138. DOI: 10.1016/j.bios.2011.07.009.
  • Zhang, B.; Lu, L.; Hu, Q.; Huang, F.; Lin, Z. Zno Nanoflower-Based Photoelectrochemical DNAzyme Sensor for the Detection of Pb2+. Biosens. Bioelectron. 2014, 56, 243–249. DOI: 10.1016/j.bios.2014.01.026.
  • Wu, H.; Wang, S.; Li, S. F. Y.; Bao, Q.; Xu, Q. A Label-Free Lead(II) Ion Sensor Based on Surface Plasmon Resonance and DNAzyme-Gold Nanoparticle Conjugates. Anal. Bioanal. Chem. 2020, 412, 7525–7533. DOI: 10.1007/s00216-020-02887-z.
  • Muzyka, K.; Saqib, M.; Liu, Z.; Zhang, W.; Xu, G. Progress and Challenges in Electrochemiluminescent Aptasensors. Biosens. Bioelectron. 2017, 92, 241–258. DOI: 10.1016/j.bios.2017.01.015.
  • Wu, Y. F.; Cai, Z. M.; Wu, G. H.; Rong, M. C.; Jiang, Y. Q.; Yang, C. J.; Chen, X. A Novel Signal-on DNAzyme-Based Electrochemiluminescence, Sensor for Pb2+. Sens. Actuators B 2014, 191, 60–66. DOI: 10.1016/j.snb.2013.09.050.
  • Tang, D.; Xia, B.; Tang, Y.; Zhang, J.; Zhou, Q. Metal-Ion-Induced DNAzyme on Magnetic Beads for Detection of Lead(II) by Using Rolling Circle Amplification, Glucose Oxidase, and Readout of Ph Changes. Mikrochim. Acta 2019, 186, 318. DOI: 10.1007/s00604-019-3454-1.
  • Kim, R.; Youn, Y. S.; Kang, M.; Kim, E. Platform- and Label-Free Detection of Lead Ions in Environmental and Laboratory Samples Using G-Quadraplex Probes by Circular Dichroism Spectroscopy. Sci. Rep. 2020, 10, 20461. DOI: 10.1038/s41598-020-77449-5.
  • Li, T.; Wang, E.; Dong, S. Lead(II)-Induced Allosteric G-Quadruplex DNAzyme as a Colorimetric and Chemiluminescence Sensor for Highly Sensitive and Selective Pb2+ Detection. Anal. Chem. 2010, 82, 1515–1520. DOI: 10.1021/ac902638v.
  • Chen, J.; Zhang, Y.; Cheng, M.; Mergny, J. L.; Lin, Q.; Zhou, J.; Ju, H. Highly Active G-Quadruplex/Hemin DNAzyme for Sensitive Colorimetric Determination of Lead(II). Mikrochim. Acta 2019, 186, 786. DOI: 10.1007/s00604-019-3950-3.
  • Chen, H.; Sun, H.; Zhang, X.; Sun, X.; Shi, Y.; Tang, Y. A Supramolecular Probe for Colorimetric Detection of Pb2+ Based on Recognition of G-Quadruplex. RSC Adv. 2015, 5, 1730–1734. DOI: 10.1039/C4RA11395K.
  • Sun, H.; Yu, L.; Chen, H.; Xiang, J.; Zhang, X.; Shi, Y.; Yang, Q.; Guan, A.; Li, Q.; Tang, Y. A Colorimetric Lead (II) Ions Sensor Based on Selective Recognition of G-Quadruplexes by a Clip-Like Cyanine Dye. Talanta 2015, 136, 210–214. DOI: 10.1016/j.talanta.2015.01.027.
  • Wang, D.; Ge, C.; Lv, K.; Zou, Q.; Liu, Q.; Liu, L.; Yang, Q.; Bao, S. A Simple Lateral Flow Biosensor for Rapid Detection of Lead(II) Ions Based on G-Quadruplex Structure-Switching. Chem. Commun. (Camb) 2018, 54, 13718–13721. DOI: 10.1039/c8cc06810k.
  • Yang, D.; Shi, L.; Zhao, Z.; Fu, Y.; Sun, H.; Li, Q.; Tang, Y.; Zhang, X. A Lead (II) Ion Sensor Based on Selective Recognition of G-Quadruplex for Ethyl-Substitutive Thioflavin T. ChemistrySelect 2019, 4, 10787–10791. DOI: 10.1002/slct.201902277.
  • Yu, Z.; Zhou, W.; Han, J.; Li, Y.; Fan, L.; Li, X. Na+-Induced Conformational Change of Pb2+-Stabilized G-Quadruplex and Its Influence on Pb2+ Detection. Anal. Chem. 2016, 88, 9375–9380. DOI: 10.1021/acs.analchem.6b02466.
  • Jacobi, Z. E.; Li, L.; Liu, J. Visual Detection of Lead(II) Using a Label-Free DNA-Based Sensor and Its Immobilization within a Monolithic Hydrogel. Analyst 2012, 137, 704–709. DOI: 10.1039/c2an15754c.
  • Chung, C. H.; Kim, J. H.; Jung, J.; Chung, B. H. Nuclease-Resistant DNA Aptamer on Gold Nanoparticles for the Simultaneous Detection of Pb2+ and Hg2+ in Human Serum. Biosens. Bioelectron. 2013, 41, 827–832. DOI: 10.1016/j.bios.2012.10.026.
  • Zhang, D.; Yin, L.; Meng, Z.; Yu, A.; Guo, L.; Wang, H. A Sensitive Fluorescence Anisotropy Method for Detection of Lead (II) Ion by a G-Quadruplex-Inducible DNA Aptamer. Anal. Chim. Acta 2014, 812, 161–167. DOI: 10.1016/j.aca.2013.12.029.
  • Khoshbin, Z.; Housaindokht, M. R.; Izadyar, M.; Verdian, A.; Bozorgmehr, M. R. A Simple Paper-Based Aptasensor for Ultrasensitive Detection of Lead (II) Ion. Anal. Chim. Acta 2019, 1071, 70–77. DOI: 10.1016/j.aca.2019.04.049.
  • Shu, J.; Tang, D. Recent Advances in Photoelectrochemical Sensing: From Engineered Photoactive Materials to Sensing Devices and Detection Modes. Anal. Chem. 2020, 92, 363–377. DOI: 10.1021/acs.analchem.9b04199.
  • Zhou, Q.; Tang, D. Recent Advances in Photoelectrochemical Biosensors for Analysis of Mycotoxins in Food. TrAC Trends Anal. Chem. 2020, 124, 115814. DOI: 10.1016/j.trac.2020.115814.
  • Lin, Z.; Chen, Y.; Li, X.; Fang, W. Pb2+ Induced DNA Conformational Switch from Hairpin to G-Quadruplex: Electrochemical Detection of Pb2+. Analyst 2011, 136, 2367–2372. DOI: 10.1039/c1an15080d.
  • Li, F.; Yang, L.; Chen, M.; Qian, Y.; Tang, B. A Novel and Versatile Sensing Platform Based on Hrp-Mimicking DNAzyme-Catalyzed Template-Guided Deposition of Polyaniline. Biosens. Bioelectron. 2013, 41, 903–906. DOI: 10.1016/j.bios.2012.09.048.
  • Hai, H.; Yang, F.; Li, J. Electrochemiluminescence Sensor Using Quantum Dots Based on a G-Quadruplex Aptamer for the Detection of Pb2+. RSC Adv. 2013, 3, 13144–13148. DOI: 10.1039/c3ra41616j.
  • Hai, H.; Yang, F.; Li, J. Highly Sensitive Electrochemiluminescence “Turn-on” Aptamer Sensor for Lead(II) Ion Based on the Formation of a G-Quadruplex on a Graphene and Gold Nanoparticles Modified Electrode. Microchim. Acta 2014, 181, 893–901. DOI: 10.1007/s00604-014-1177-x.
  • Xiong, C.; Liang, W.; Wang, H.; Zheng, Y.; Zhuo, Y.; Chai, Y.; Yuan, R. In Situ Electro-Polymerization of Nitrogen Doped Carbon Dots and Their Application in an Electrochemiluminescence Biosensor for the Detection of Intracellular Lead Ions. Chem Commun. (Camb) 2016, 52, 5589–5592. DOI: 10.1039/c6cc01078d.
  • Müller, S.; Laxmi-Reddy, K.; Jena, P. V.; Baptiste, B.; Dong, Z.; Godde, F.; Ha, T.; Rodriguez, R.; Balasubramanian, S.; Huc, I. Huc, I. Targeting DNA G-Quadruplexes with Helical Small Molecules. Chembiochem 2014, 15, 2563–2570. DOI: 10.1002/cbic.201402439.
  • Punnoose, J. A.; Yue, M.; Li, Y.; Mai, S.; Mandal, S.; Nagasawa, K.; Mao, H. Adaptive and Specific Recognition of Telomeric G-Quadruplexes via Polyvalency Induced Unstacking of Binding Units. J. Am. Chem. Soc. 2017, 139, 7476–7484. DOI: 10.1021/jacs.7b00607.
  • Wang, M. Q.; Gao, J. J.; Yu, Q. Q.; Liu, H. B. An Amphiphilic Bodipy-Based Selective Probe for Parallel G4 DNA Targeting via Disaggregation-Induced Emission. New J. Chem. 2020, 44, 13557–13564. DOI: 10.1039/D0NJ02887H.
  • Cai, W.; Xie, S.; Zhang, J.; Tang, D.; Tang, Y. Immobilized-Free Miniaturized Electrochemical Sensing System for Pb2+ Detection Based on Dual Pb2+-DNAzyme Assistant Feedback Amplification Strategy. Biosens. Bioelectron. 2018, 117, 312–318. DOI: 10.1016/j.bios.2018.06.020.
  • Kong, D. M.; Ma, Y. E.; Wu, J.; Shen, H. X. Discrimination of G-Quadruplexes from Duplex and Single-Stranded Dnas with Fluorescence and Energy-Transfer Fluorescence Spectra of Crystal Violet. Chemistry 2009, 15, 901–909. DOI: 10.1002/chem.200801441.
  • Scaglioni, L.; Mondelli, R.; Artali, R.; Sirtori, F. R.; Mazzini, S. Nemorubicin and Doxorubicin Bind the G-Quadruplex Sequences of the Human Telomeres and of the C-Myc Promoter Element Pu22. Biochim. Biophys. Acta 2016, 1860, 1129–1138. DOI: 10.1016/j.bbagen.2016.02.011.
  • Yang, C.; Bie, J.; Zhang, X.; Yan, C.; Li, H.; Zhang, M.; Su, R.; Zhang, X.; Sun, C. A Label-Free Aptasensor for the Detection of Tetracycline Based on the Luminescence of Sybr Green I. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 202, 382–388. DOI: 10.1016/j.saa.2018.05.075.
  • Ebrahimi, M.; Raoof, J. B.; Ojani, R. Design of a Novel Electrochemical Biosensor Based on Intramolecular G-Quadruplex DNA for Selective Determination of Lead(II) Ions. Anal. Bioanal. Chem. 2017, 409, 4729–4739. DOI: 10.1007/s00216-017-0416-5.
  • Xu, S.; Chen, X.; Peng, G.; Jiang, L.; Huang, H. An Electrochemical Biosensor for the Detection of Pb2+ Based on G-Quadruplex DNA and Gold Nanoparticles. Anal. Bioanal. Chem. 2018, 410, 5879–5887. DOI: 10.1007/s00216-018-1204-6.
  • Zhao, Y.; Zhang, Q.; Wang, W.; Jin, Y. Input-Dependent Induction of G-Quadruplex Formation for Detection of Lead (II) by Fluorescent Ion Logic Gate. Biosens. Bioelectron. 2013, 43, 231–236. DOI: 10.1016/j.bios.2012.12.004.
  • Taghdisi, S. M.; Danesh, N. M.; Lavaee, P.; Emrani, A. S.; Ramezani, M.; Abnous, K. A Novel Colorimetric Triple-Helix Molecular Switch Aptasensor Based on Peroxidase-Like Activity of Gold Nanoparticles for Ultrasensitive Detection of Lead(II). RSC Adv. 2015, 5, 43508–43514. DOI: 10.1039/C5RA06326D.
  • Taghdisi, S. M.; Danesh, N. M.; Lavaee, P.; Ramezani, M.; Abnous, K. An Electrochemical Aptasensor Based on Gold Nanoparticles, Thionine and Hairpin Structure of Complementary Strand of Aptamer for Ultrasensitive Detection of Lead. Sens. Actuators B 2016, 234, 462–469. DOI: 10.1016/j.snb.2016.05.017.
  • Wen, Y.; Wang, L.; Li, L.; Xu, L.; Liu, G. A Sensitive and Label-Free Pb(II) Fluorescence Sensor Based on a DNAzyme Controlled G-Quadruplex/Thioflavin T Conformation. Sensors 2016, 16, 2155–2163. DOI: 10.3390/s16122155.
  • Zhou, Q.; Lin, Y.; Lin, Y.; Wei, Q.; Chen, G.; Tang, D. Highly Sensitive Electrochemical Sensing Platform for Lead Ion Based on Synergetic Catalysis of DNAzyme and Au-Pd Porous Bimetallic Nanostructures. Biosens. Bioelectron. 2016, 78, 236–243. DOI: 10.1016/j.bios.2015.11.055.
  • Fu, T.; Ren, S.; Gong, L.; Meng, H.; Cui, L.; Kong, R. M.; Zhang, X. B.; Tan, W. A Label-Free DNAzyme Fluorescence Biosensor for Amplified Detection of Pb(2+)-Based on Cleavage-Induced G-Quadruplex Formation. Talanta 2016, 147, 302–306. DOI: 10.1016/j.talanta.2015.10.004.
  • Yun, W.; Du, X.; Liao, J.; Sang, G.; Chen, L.; Li, N.; Yang, L. Three-Way DNA Junction Based Platform for ultra-Sensitive Fluorometric Detection of Multiple Metal Ions as Exemplified for Cu(II), Mg(II) and Pb(II). Mikrochim. Acta. 2018, 185, 306. DOI: 10.1007/s00604-018-2836-0.
  • Wang, F.; Dai, J.; Shi, H.; Luo, X.; Xiao, L.; Zhou, C.; Guo, Y.; Xiao, D. A Rapid and Colorimetric Biosensor Based on GR-5 DNAzyme and Self-Replicating Catalyzed Hairpin Assembly for Lead Detection. Anal. Methods 2020, 12, 2215–2220. DOI: 10.1039/d0ay00091d.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.