345
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

The Power of Carbon Nanotubes on Sensitive Drug Determination Methods

, ORCID Icon, ORCID Icon, ORCID Icon, , , , , & show all
Pages 374-383 | Published online: 01 Aug 2021

References

  • Maiti, D.; Tong, X.; Mou, X.; Yang, K. Carbon-Based Nanomaterials for Biomedical Applications: A Recent Study. Front. Pharmacol. 2018, 9, 1401–1416. DOI: 10.3389/fphar.2018.01401.
  • Li, K.; Liu, W.; Ni, Y.; Li, D.; Lin, D.; Su, Z.; Wei, G. Technical Synthesis and Biomedical Applications of Graphene Quantum Dots. J. Mater. Chem. B 2017, 5, 4811–4826. DOI: 10.1039/c7tb01073g.
  • Dasari Shareena, T. P.; McShan, D.; Dasmahapatra, A. K.; Tchounwou, P. B. A Review on Graphene-Based Nanomaterials in Biomedical Applications and Risks in Environment and Health. Nano-Micro Lett. 2018, 10, 1–34. DOI: 10.1007/s40820-018-0206-4.
  • Sam-Daliri, O.; Faller, L. M.; Farahani, M.; Roshanghias, A.; Oberlercher, H.; Mitterer, T.; Araee, A.; Zangl, H. MWCNT–Epoxy Nanocomposite Sensors for Structural Health Monitoring. Electron 2018, 7, 1–14.
  • Crevillen, A. G.; Escarpa, A.; García, C. D. Chapter 1: Carbon-Based Nanomaterials in Analytical Chemistry. In Carbon-based Nanomaterials in Analytical Chemistry, Garcia, C. D., Crevillén, A. G., Escarpa, A., Eds.; Royal Society of Chemistry: London, 2019; pp 1–36.
  • Fan, Z.; Zhou, S.; Garcia, C.; Fan, L.; Zhou, J. PH-Responsive Fluorescent Graphene Quantum Dots for Fluorescence-Guided Cancer Surgery and Diagnosis. Nanoscale 2017, 9, 4928–4933. DOI: 10.1039/c7nr00888k.
  • Sireesha, M.; Jagadeesh Babu, V.; Kranthi Kiran, A. S.; Ramakrishna, S. A Review on Carbon Nanotubes in Biosensor Devices and Their Applications in Medicine. Nanocomposites 2018, 4, 36–57. DOI: 10.1080/20550324.2018.1478765.
  • Li, Z.; Wang, L.; Li, Y.; Feng, Y.; Feng, W. Carbon-Based Functional Nanomaterials: Preparation, Properties and Applications. Compos. Sci. Technol. 2019, 179, 10–40. DOI: 10.1016/j.compscitech.2019.04.028.
  • Chakrabarti, M.; Kiseleva, R.; Vertegel, A.; Ray, S. K. Carbon Nanomaterials for Drug Delivery and Cancer Therapy. J. Nanosci. Nanotechnol. 2015, 15, 5501–5511. DOI: 10.1166/jnn.2015.10614.
  • Kakran, M.; Li, L. Carbon Nanomaterials for Drug Delivery. KEM. 2012, 508, 76–80. DOI: 10.4028/www.scientific.net/KEM.508.76.
  • De Menezes, B. R. C.; Rodrigues, K. F.; Fonseca, B. C. D. S.; Ribas, R. G.; Montanheiro, T. L. D. A.; Thim, G. P. Recent Advances in the Use of Carbon Nanotubes as Smart Biomaterials. J. Mater. Chem. B 2019, 7, 1343–1360. DOI: 10.1039/c8tb02419g.
  • Erol, O.; Uyan, I.; Hatip, M.; Yilmaz, C.; Tekinay, A. B.; Guler, M. O. Recent Advances in Bioactive 1D and 2D Carbon Nanomaterials for Biomedical Applications. Nanomedicine 2018, 14, 2433–2454. DOI: 10.1016/j.nano.2017.03.021.
  • Zhang, Y.; Wu, M.; Wu, M.; Zhu, J.; Zhang, X. Multifunctional Carbon-Based Nanomaterials: Applications in Biomolecular Imaging and Therapy. ACS Omega. 2018, 3, 9126–9145. DOI: 10.1021/acsomega.8b01071.
  • Mohajeri, M.; Behnam, B.; Sahebkar, A. Biomedical Applications of Carbon Nanomaterials: Drug and Gene Delivery Potentials. J. Cell. Physiol. 2018, 234, 298–319. DOI: 10.1002/jcp.26899.
  • Yoshida, Y. Carbon Nanomaterials in Analytical Chemistry. Anal. Sci. 2018, 34, 257–257. DOI: 10.2116/analsci.34.257.
  • Chen, F.; Gao, W.; Qiu, X.; Zhang, H.; Liu, L.; Liao, P.; Fu, W.; Luo, Y. Graphene Quantum Dots in Biomedical Applications: Recent Advances and Future Challenges. Front. Lab. Med. 2017, 1, 192–199. DOI: 10.1016/j.flm.2017.12.006.
  • Gupta, S.; Murthy, C. N.; Prabha, C. R. Recent Advances in Carbon Nanotube Based Electrochemical Biosensors. Int. J. Biol. Macromol. 2018, 108, 687–703. DOI: 10.1016/j.ijbiomac.2017.12.038.
  • Farzin, L.; Sadjadi, S.; Shamsipur, M.; Sheibani, S. An Immunosensing Device Based on Inhibition of Mediator's Faradaic Process for Early Diagnosis of Prostate Cancer using Bifunctional Nanoplatform Reinforced by Carbon Nanotube. J. Pharm. Biomed. Anal. 2019, 172, 259–267. DOI: 10.1016/j.jpba.2019.05.008.
  • Simon, J.; Flahaut, E.; Golzio, M. Overview of Carbon Nanotubes for Biomedical Applications. Materials (Basel) 2019, 12, 624–621. DOI: 10.3390/ma12040624.
  • Shen, Y.; Tran, T. T.; Modha, S.; Tsutsui, H.; Mulchandani, A. A Paper-Based Chemiresistive Biosensor Employing Single-Walled Carbon Nanotubes for Low-Cost, Point-of-Care Detection. Biosens. Bioelectron. 2019, 130, 367–373. DOI: 10.1016/j.bios.2018.09.041.
  • Zhou, Y.; Fang, Y.; Ramasamy, R. P. Non-Covalent Functionalization of Carbon Nanotubes for Electrochemical Biosensor Development. Sensors (Switzerland) 2019, 19, 392. DOI: 10.3390/s19020392.
  • Camilli, L.; Passacantando, M. Advances on Sensors Based on Carbon Nanotubes. Chemosensors 2018, 6, 17–62. DOI: 10.3390/chemosensors6040062.
  • Sobhan, A.; Lee, J.; Park, M. K.; Oh, J. H. Rapid Detection of Yersinia enterocolitica Using a Single–Walled Carbon Nanotube-Based Biosensor for Kimchi Product. LWT 2019, 108, 48–54. DOI: 10.1016/j.lwt.2019.03.037.
  • Yan, T.; Wang, Z.; Pan, Z. J. Flexible Strain Sensors Fabricated Using Carbon-Based Nanomaterials: A Review. Curr. Opin. Solid State Mater. Sci 2018, 22, 213–228. DOI: 10.1016/j.cossms.2018.11.001.
  • Gao, Y.; Fang, X.; Tan, J.; Lu, T.; Pan, L.; Xuan, F. Highly Sensitive Strain Sensors Based on Fragmentized Carbon Nanotube/Polydimethylsiloxane Composites. Nanotechnology 2018, 29, 235501. DOI: 10.1088/1361-6528/aab888.
  • Fiorani, A.; Merino, J. P.; Zanut, A.; Criado, A.; Valenti, G.; Prato, M.; Paolucci, F. Advanced Carbon Nanomaterials for Electrochemiluminescent Biosensor Applications. Curr. Opin. Electrochem. 2019, 16, 66–74. DOI: 10.1016/j.coelec.2019.04.018.
  • Singh, A. K.; Singh, M.; Verma, N. Electrochemical Preparation of Fe3O4/MWCNT-Polyaniline Nanocomposite Film for Development of Urea Biosensor and Its Application in Milk Sample. Food Meas. 2020, 14, 163–175. DOI: 10.1007/s11694-019-00278-2.
  • Same, S. Carbon Nanotube Biosensor for Diabetes Disease. Crescent J. Med. Biol. Sci. 2018, 5, 1–6.
  • Comba, F. N.; Romero, M. R.; Garay, F. S.; Baruzzi, A. M. Mucin and Carbon Nanotube-Based Biosensor for Detection of Glucose in Human Plasma. Anal. Biochem. 2018, 550, 34–40. DOI: 10.1016/j.ab.2018.04.006.
  • Hatada, M.; Tran, T. T.; Tsugawa, W.; Sode, K.; Mulchandani, A. Affinity Sensor for Haemoglobin A1c Based on Single-Walled Carbon Nanotube Field-Effect Transistor and Fructosyl Amino Acid Binding Protein. Biosens. Bioelectron. 2019, 129, 254–259. DOI: 10.1016/j.bios.2018.09.069.
  • Zhang, X.; Xu, Y.; Ye, B. An Efficient Electrochemical Glucose Sensor Based on Porous Nickel-Based Metal Organic Framework/Carbon Nanotubes Composite (Ni-MOF/CNTs). J. Alloys Compd. 2018, 767, 651–656. DOI: 10.1016/j.jallcom.2018.07.175.
  • Aftab, S.; Ozcelikay, G.; Kurbanoglu, S.; Shah, A.; Iftikhar, F. J.; Ozkan, S. A. A Novel Electrochemical Nanosensor Based on NH2-Functionalized Multi Walled Carbon Nanotubes for the Determination of Catechol-Orto-Methyltransferase Inhibitor Entacapone. J. Pharm. Biomed. Anal. 2019, 165, 73–81. DOI: 10.1016/j.jpba.2018.11.050.
  • Tung, T. T.; Tripathi, K. M.; Kim, T.; Krebsz, M.; Pasinszki, T.; Losic, D. Carbon Nanomaterial Sensors for Cancer and Disease Diagnosis. In Carbon Nanomaterials for Bioimaging, Bioanalysis, and Therapy, Hui, Y. Y., Chang, H.-C., Dong, H., Zhang, X., Eds.; John Wiley&Sons Ltd: Chichester, UK, 2018; pp 167–193.
  • Mandal, D.; Nunna, B. B.; Zhuang, S.; Rakshit, S.; Lee, E. S. Carbon Nanotubes Based Biosensor for Detection of Cancer Antigens (CA-125) under Shear Flow Condition. Nano-Struct. Nano-Objects 2018, 15, 180–185. DOI: 10.1016/j.nanoso.2017.09.013.
  • Majd, S. M.; Salimi, A. Ultrasensitive Flexible FET-Type Aptasensor for CA 125 Cancer Marker Detection Based on Carboxylated Multiwalled Carbon Nanotubes Immobilized onto Reduced Graphene Oxide Film. Anal. Chim. Acta 2018, 1000, 273–282. DOI: 10.1016/j.aca.2017.11.008.
  • Gomes, F. O.; Maia, L. B.; Delerue-Matos, C.; Moura, I.; Moura, J. J. G.; Morais, S. Third-Generation Electrochemical Biosensor Based on Nitric Oxide Reductase Immobilized in a Multiwalled Carbon Nanotubes/1-n-Butyl-3-Methylimidazolium Tetrafluoroborate Nanocomposite for Nitric Oxide Detection. Sens. Actuat. B Chem. 2019, 285, 445–452. DOI: 10.1016/j.snb.2019.01.074.
  • Ozkan-Ariksoysal, D.; Kayran, Y. U.; Yilmaz, F. F.; Ciucu, A. A.; David, I. G.; David, V.; Hosgor-Limoncu, M.; Ozsoz, M. DNA-Wrapped Multi-Walled Carbon Nanotube Modified Electrochemical Biosensor for the Detection of Escherichia coli from Real Samples. Talanta 2017, 166, 27–35. DOI: 10.1016/j.talanta.2017.01.005.
  • Peng, R.; Tang, X. S.; Li, D. Detection of Individual Molecules and Ions by Carbon Nanotube-Based Differential Resistive Pulse Sensor. Small 2018, 14, 1800011–1800013. DOI: 10.1002/smll.201800013.
  • Camargo, J. R.; Baccarin, M.; Raymundo-Pereira, P. A.; Campos, A. M.; Oliveira, G. G.; Fatibello-Filho, O.; Oliveira, O. N.; Janegitz, B. C. Electrochemical Biosensor Made with Tyrosinase Immobilized in a Matrix of Nanodiamonds and Potato Starch for Detecting Phenolic Compounds. Anal. Chim. Acta 2018, 1034, 137–143. DOI: 10.1016/j.aca.2018.06.001.
  • Wee, Y.; Park, S.; Kwon, Y. H.; Ju, Y.; Yeon, K. M.; Kim, J. Tyrosinase-Immobilized CNT Based Biosensor for Highly-Sensitive Detection of Phenolic Compounds. Biosens. Bioelectron. 2019, 132, 279–285. DOI: 10.1016/j.bios.2019.03.008.
  • Goryacheva, I. Y.; Sapelkin, A. V.; Sukhorukov, G. B. Carbon Nanodots: Mechanisms of Photoluminescence and Principles of Application. TrAC - Trends Anal. Chem. 2017, 90, 27–37. DOI: 10.1016/j.trac.2017.02.012.
  • Duan, Q.; Che, M.; Hu, S.; Zhao, H.; Li, Y.; Ma, X.; Zhang, W.; Zhang, Y.; Sang, S. Rapid Cancer Diagnosis by Highly Fluorescent Carbon Nanodots-Based Imaging. Anal. Bioanal. Chem. 2019, 411, 967–972. DOI: 10.1007/s00216-018-1500-1.
  • Zhao, Q.; Lin, Y.; Han, N.; Li, X.; Geng, H.; Wang, X.; Cui, Y.; Wang, S. Mesoporous Carbon Nanomaterials in Drug Delivery and Biomedical Application. Drug Deliv. 2017, 24, 94–107. DOI: 10.1080/10717544.2017.1399300.
  • Liu, Z.; Robinson, J. T.; Tabakman, S. M.; Yang, K.; Dai, H. Carbon Materials for Drug Delivery & Cancer Therapy. Mater. Today 2011, 14, 316–323. DOI: 10.1016/S1369-7021(11)70161-4.
  • Sahoo, N. G.; Bao, H.; Pan, Y.; Pal, M.; Kakran, M.; Cheng, H. K. F.; Li, L.; Tan, L. P. Functionalized Carbon Nanomaterials as Nanocarriers for Loading and Delivery of a Poorly Water-Soluble Anticancer Drug: A Comparative Study. Chem. Commun. (Camb.) 2011, 47, 5235–5237. DOI: 10.1039/c1cc00075f.
  • Beluomini, M. A.; da Silva, J. L.; de Sá, A. C.; Buffon, E.; Pereira, T. C.; Stradiotto, N. R. Electrochemical Sensors Based on Molecularly Imprinted Polymer on Nanostructured Carbon Materials: A Review. J. Electroanal. Chem. 2019, 840, 343–366. DOI: 10.1016/j.jelechem.2019.04.005.
  • Munir, A.; Bozal-Palabiyik, B.; Khan, A.; Shah, A.; Uslu, B. A Novel Electrochemical Method for the Detection of Oxymetazoline Drug Based on MWCNTs and TiO2 Nanoparticles. J. Electroanal. Chem. 2019, 844, 58–65. DOI: 10.1016/j.jelechem.2019.05.017.
  • Nigović, B.; Jurić, S.; Mornar, A. Electrochemical Determination of Nepafenac Topically Applied Nonsteroidal Anti-Inflammatory Drug Using Graphene Nanoplatelets-Carbon Nanofibers Modified Glassy Carbon Electrode. J. Electroanal. Chem. 2018, 817, 30–35. DOI: 10.1016/j.jelechem.2018.03.068.
  • Nigović, B.; Mornar, A.; Brusač, E.; Jeličić, M. L. Selective Sensor for Simultaneous Determination of Mesalazine and Folic Acid Using Chitosan Coated Carbon Nanotubes Functionalized with Amino Groups. J. Electroanal. Chem. 2019, 851, 113450.
  • Kumar, M.; Kumara Swamy, B. E.; Reddy, S.; Zhao, W.; Chetana, S.; Kumar, V. G. ZnO/Functionalized MWCNT and Ag/Functionalized MWCNT Modified Carbon Paste Electrodes for the Determination of Dopamine, Paracetamol and Folic Acid. J. Electroanal. Chem. 2019, 835, 96–105. DOI: 10.1016/j.jelechem.2019.01.019.
  • Baccarin, M.; Santos, F. A.; Vicentini, F. C.; Zucolotto, V.; Janegitz, B. C.; Fatibello-Filho, O. Electrochemical Sensor Based on Reduced Graphene Oxide/Carbon Black/Chitosan Composite for the Simultaneous Determination of Dopamine and Paracetamol Concentrations in Urine Samples. J. Electroanal. Chem. 2017, 799, 436–443. DOI: 10.1016/j.jelechem.2017.06.052.
  • Atta, N. F.; Ahmed, Y. M.; Galal, A. Nano-Magnetite/Ionic Liquid Crystal Modifiers of Carbon Nanotubes Composite Electrode for Ultrasensitive Determination of a New anti-Hepatitis C Drug in Human Serum. J. Electroanal. Chem. 2018, 823, 296–306. DOI: 10.1016/j.jelechem.2018.06.016.
  • Atta, N. F.; Galal, A.; Hassan, S. H. Ultrasensitive Determination of Nalbuphine and Tramadol Narcotic Analgesic Drugs for Postoperative Pain Relief Using Nano-Cobalt Oxide/Ionic Liquid Crystal/Carbon Nanotubes-Based Electrochemical Sensor. J. Electroanal. Chem. 2019, 839, 48–58. DOI: 10.1016/j.jelechem.2019.03.002.
  • Jalal, N. R.; Madrakian, T.; Afkhami, A.; Ghamsari, M. Polyethylenimine@Fe3O4@Carbon Nanotubes Nanocomposite as a Modifier in Glassy Carbon Electrode for Sensitive Determination of Ciprofloxacin in Biological Samples. J. Electroanal. Chem. 2019, 833, 281–289. DOI: 10.1016/j.jelechem.2018.12.004.
  • Sun, Y.; Waterhouse, G. I. N.; Xu, L.; Qiao, X.; Xu, Z. Three-Dimensional Electrochemical Sensor with Covalent Organic Framework Decorated Carbon Nanotubes Signal Amplification for the Detection of Furazolidone. Sens. Actuat. B Chem. 2020, 321, 128501.
  • Murugan, N.; Kumar, T. H. V.; Devi, N. R.; Sundramoorthy, A. K. A Flower-Structured MoS2-Decorated f-MWCNTs/ZnO Hybrid Nanocomposite-Modified Sensor for the Selective Electrochemical Detection of Vitamin C. New J. Chem. 2019, 43, 15105–15114. DOI: 10.1039/C9NJ02993A.
  • Ertuğrul Uygun, H. D.; Demir, M. N. A Novel Fullerene-Pyrrole-Pyrrole-3-Carboxylic Acid Nanocomposite Modified Molecularly Imprinted Impedimetric Sensor for Dopamine Determination in Urine. Electroanalysis 2020, 32, 1971–1976. DOI: 10.1002/elan.202060023.
  • Anusha, T.; Bhavani, K. S.; Kumar, J. V. S.; Brahman, P. K. Designing and Fabrication of Electrochemical Nanosensor Employing Fullerene-C60 and Bimetallic Nanoparticles Composite Film for the Detection of Vitamin D3 in Blood Samples. Diam. Relat. Mater. 2020, 104, 107761. DOI: 10.1016/j.diamond.2020.107761.
  • Zambianco, N. A.; da Silva, V. A. O. P.; Orzari, L. O.; Corat, E. J.; Zanin, H. G.; Silva, T. A.; Buller, G. A.; Keefe, E. M.; Banks, C. E.; Janegitz, B. C. Determination of Tadalafil in Pharmaceutical Samples by Vertically Oriented Multi-Walled Carbon Nanotube Electrochemical Sensing Device. J. Electroanal. Chem. 2020, 877, 114501. DOI: 10.1016/j.jelechem.2020.114501.
  • Fayemi, O. E.; Adekunle, A. S.; Ebenso, E. E. Electrochemical Determination of Serotonin in Urine Samples Based on Metal Oxide Nanoparticles/MWCNT on Modified Glassy Carbon Electrode. Sens. Bio-Sensing Res. 2017, 13, 17–27. DOI: 10.1016/j.sbsr.2017.01.005.
  • da Silva, L. V.; Lopes, C. B.; da Silva, W. C.; de Paiva, Y. G.; de, F.; Silva, A. d. S.; Lima, P. R.; Kubota, L. T.; Goulart, M. O. F. Electropolymerization of Ferulic Acid on Multi-Walled Carbon Nanotubes Modified Glassy Carbon Electrode as a Versatile Platform for NADH, Dopamine and Epinephrine Separate Detection. Microchem. J. 2017, 133, 460–467. DOI: 10.1016/j.microc.2017.04.014.
  • Kolahi-Ahari, S.; Deiminiat, B.; Rounaghi, G. H. Modification of a Pencil Graphite Electrode with Multiwalled Carbon Nanotubes Capped Gold Nanoparticles for Electrochemical Determination of Tramadol. J. Electroanal. Chem. 2020, 862, 113996. DOI: 10.1016/j.jelechem.2020.113996.
  • Sacramento, A. S.; Moreira, F. T. C.; Guerreiro, J. L.; Tavares, A. P.; Sales, M. G. F. Novel Biomimetic Composite Material for Potentiometric Screening of Acetylcholine, a Neurotransmitter in Alzheimer's disease. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 79, 541–549. DOI: 10.1016/j.msec.2017.05.098.
  • Sadanandhan, N. K.; Cheriyathuchenaaramvalli, M.; Devaki, S. J.; Ravindranatha Menon, A. R. PEDOT-Reduced Graphene Oxide-Silver Hybrid Nanocomposite Modified Transducer for the Detection of Serotonin. J. Electroanal. Chem. 2017, 794, 244–253. DOI: 10.1016/j.jelechem.2017.04.027.
  • AlOthman, Z. A.; Wabaidur, S. M. Application of Carbon Nanotubes in Extraction and Chromatographic Analysis: A Review. Arab. J. Chem. 2019, 12, 633–651. DOI: 10.1016/j.arabjc.2018.05.012.
  • Mirzajani, R.; Kardani, F. Fabrication of Ciprofloxacin Molecular Imprinted Polymer Coating on a Stainless Steel Wire as a Selective Solid-Phase Microextraction Fiber for Sensitive Determination of Fluoroquinolones in Biological Fluids and Tablet Formulation Using HPLC-UV Detection. J. Pharm. Biomed. Anal. 2016, 122, 98–109. DOI: 10.1016/j.jpba.2016.01.046.
  • Campos-Mañas, M. C.; Plaza-Bolaños, P.; Sánchez-Pérez, J. A.; Malato, S.; Agüera, A. Fast Determination of Pesticides and Other Contaminants of Emerging Concern in Treated Wastewater Using Direct Injection Coupled to Highly Sensitive Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A 2017, 1507, 84–94. DOI: 10.1016/j.chroma.2017.05.053.
  • Ferrone, V.; Carlucci, M.; Cotellese, R.; Raimondi, P.; Cichella, A.; Marco, L. D.; Carlucci, G. Development and Validation of a Fast Micro-Extraction by Packed Sorbent UHPLC-PDA Method for the Simultaneous Determination of Linezolid and Ciprofloxacin in Human Plasma from Patients with Hospital-Acquired Pneumonia. Talanta 2017, 164, 64–68. DOI: 10.1016/j.talanta.2016.11.014.
  • Ahmed, M.; Yajadda, M. M. A.; Han, Z. J.; Su, D.; Wang, G.; Ostrikov, K. K.; Ghanem, A. Single-Walled Carbon Nanotube-Based Polymer Monoliths for the Enantioselective Nano-Liquid Chromatographic Separation of Racemic Pharmaceuticals. J. Chromatogr. A 2014, 1360, 100–109. DOI: 10.1016/j.chroma.2014.07.052.
  • Mayadunne, E.; Rassi, Z. E. Facile Preparation of Octadecyl Monoliths with Incorporated Carbon Nanotubes and Neutral Monoliths with Coated Carbon Nanotubes Stationary Phases for HPLC of Small and Large Molecules by Hydrophobic and π-π Interactions. Talanta 2014, 129, 565–574. DOI: 10.1016/j.talanta.2014.06.032.
  • Wiest, L. A.; Jensen, D. S.; Hung, C. H.; Olsen, R. E.; Davis, R. C.; Vail, M. A.; Dadson, A. E.; Nesterenko, P. N.; Linford, M. R. Pellicular Particles with Spherical Carbon Cores and Porous Nanodiamond/Polymer Shells for Reversed-Phase HPLC. Anal. Chem. 2011, 83, 5488–5501. DOI: 10.1021/ac200436a.
  • Mogensen, K. B.; Chen, M.; Molhave, K.; Boggild, P.; Kutter, J. P. Carbon Nanotube Based Separation Columns for High Electrical Field Strengths in Microchip Electrochromatography. Lab Chip 2011, 11, 2116–2118. DOI: 10.1039/c0lc00672f.
  • Speltini, A.; Merli, D.; Dondi, D.; Milanese, C.; Galinetto, P.; Bozzetti, C.; Profumo, A. Radiation-Induced Grafting of Carbon Nanotubes on HPLC Silica Microspheres: Theoretical and Practical Aspects. Analyst 2013, 138, 3778–3785. DOI: 10.1039/c3an00163f.
  • Ding, J.; Gao, Q.; Li, X. S.; Huang, W.; Shi, Z. G.; Feng, Y. Q. Magnetic Solid-Phase Extraction Based on Magnetic Carbon Nanotube for the Determination of Estrogens in Milk. J. Sep. Sci. 2011, 34, 2498–2504. DOI: 10.1002/jssc.201100323.
  • Sun, N.; Han, Y.; Yan, H.; Song, Y. A Self-Assembly Pipette Tip Graphene Solid-Phase Extraction Coupled with Liquid Chromatography for the Determination of Three Sulfonamides in Environmental Water. Anal. Chim. Acta 2014, 810, 25–31. DOI: 10.1016/j.aca.2013.12.013.
  • André, C.; Lenancker, G.; Guillaume, Y. C. Non-Covalent Functionalisation of Monolithic Silica for the Development of Carbon Nanotube HPLC Stationary Phases. Talanta 2012, 99, 580–585. DOI: 10.1016/j.talanta.2012.06.038.
  • Pirsaheb, M.; Mohammadi, S.; Salimi, A. Current advances of carbon dots based biosensors for tumor marker detection, cancer cells analysis and bioimaging. TrAC Trends. Anal. Chem. 2019, 115, 83–99. https://doi.org/10.1016/j.trac.2019.04.003
  • Rizwan, M.; Keasberry, N. A.; Ahmed, M. U. Efficient double electrochemiluminescence quenching based label-free highly sensitive detection of haptoglobin on a novel nanocomposite modified carbon nanofibers interface. Sens. Bio-Sensing. Res. 2019, 24, 100284. https://doi.org/10.1016/j.sbsr.2019.100284

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.