182
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Flow Injection Techniques for Tetracycline Quantification: A Review

ORCID Icon & ORCID Icon
Pages 396-414 | Published online: 17 Aug 2021

References

  • Treetepvijit, S.; Chuanuwatanakul, S.; Einaga, Y.; Sato, R.; Chailapakul, O. Electroanalysis of Tetracycline Using Nickel-Implanted Boron-Doped Diamond Thin Film Electrode Applied to Flow Injection System. Anal. Sci. 2005, 21, 531–535. DOI: 10.2116/analsci.21.531.
  • Townshend, A.; Ruengsitagoon, W.; Thongpoon, C.; Liawruangrath, S. Flow Injection Chemiluminescence Determination of Tetracycline. Anal. Chim. Acta 2005, 541, 103–109. DOI: 10.1016/j.aca.2004.11.013.
  • Norouzi, P.; Ganjali, M. R.; Daneshgar, P. FFT-Adsorptive Voltammetric Technique for Pico-Level Determination of Tetracycline in Capsules at an Au Microelectrode in Flowing Solutions. Turk. J. Chem. 2007, 31, 279–291.
  • Guo, L.; Xie, Z.; Lin, X.; Liu, X.; Zhang, W.; Chen, G. Flow Injection Chemiluminescent Determination of Tetracycline Using a tris(2,2'-Bipyridine)Ruthenium(II)-Cerium(IV) Sulphate System. Luminescence 2004, 19, 64–68. DOI: 10.1002/bio.757.
  • Pena, A.; Palilis, L. P.; Lino, C. M.; Silveira, M. I.; Calokerinos, A. C. Determination of Tetracycline and Its Major Degradation Products by Chemiluminescence. Anal. Chim. Acta 2000, 405, 51–56. DOI: 10.1016/S0003-2670(99)00668-6.
  • Zeng, W.; Zhu, C.; Liu, H.; Liu, J.; Cai, H.; Cheng, X.; Wei, L. Ultrasensitive Chemiluminescence of Tetracyclines in the Presence of MCLA. J. Lumin 2017, 186, 158–163. DOI: 10.1016/j.jlumin.2017.02.017.
  • Masawat, P.; Slater, J. M. The Determination of Tetracycline Residues in Food Using a Disposable Screen-Printed Gold Electrode (SPGE). Sensors and Actuators, B: Chemical 2007, 124, 127–132. DOI: 10.1016/j.snb.2006.12.010.
  • European-Commission. Commission Regulation (EU) No 37/2010 of 22 December 2009 on Pharmacologically Active Substances and Their Classification regarding Maximum Residue Limits in Foodstuffs of Animal Origin. Off. J. Eur. Union 2010, 15, 1–72.
  • Health-Canada. List of Maximum Residue Limits (MRLs) for Veterinary Drugs in Foods. Ontario, Canada: Health Canada Ottawa; 2017.
  • Codex-Alimentarius. Maximum Residue Limits (MRLs) and Risk Management Recommendations (RMRs) for Residues of Veterinary Drugs in Foods. Cac/Mrl 2017, 2, 8.
  • Rodríguez, M. P.; da Silva, B. F.; Pezza, H. R.; Pezza, L. A Greener Flow Injection Method Based on a LWCC for the Screening of Tetracycline Antibiotics in Bovine Milk Samples. Anal. Methods 2016, 8, 5262–5271. DOI: 10.1039/C6AY00536E.
  • Rodríguez, M. P.; Pezza, H. R.; Pezza, L. Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction of Tetracycline Drugs From Egg Supplements Before Flow Injection Analysis Coupled to a Liquid Waveguide Capillary Cell. Anal. Bioanal. Chem. 2016, 408, 6201–6211. DOI: 10.1007/s00216-016-9732-4.
  • Idris, A. M. An Overview of the Generations and Recent Versions of Flow Injection Techniques. Crit. Rev. Anal. Chem. 2010, 40, 150–158. DOI: 10.1080/10408340903103437.
  • Idris, A. M. Flow Injection, Overlooked Techniques in Forensic Analysis. Crit. Rev. Anal. Chem. 2010, 40, 218–225. DOI: 10.1080/10408347.2010.515448.
  • Ṙuz˘Ic˘Ka, J.; Hansen, E.. Flow Injection Analyses: Part I. A New Concept of Fast Continuous Flow Analysis. Anal. Chim. Acta 1975, 78, 145–157. DOI: 10.1016/S0003-2670(01)84761-9.
  • Ruzicka, J.; Marshall, G. D. Sequential Injection: A New Concept for Chemical Sensors, Process Analysis and Laboratory Assays. Anal. Chim. Acta 1990, 237, 329–343. DOI: 10.1016/S0003-2670(00)83937-9.
  • Ruzicka, J.; Pollema, C. H.; Scudder, K. M. Jet Ring Cell: A Tool for Flow Injection Spectroscopy and Microscopy on a Renewable Solid Support. Anal. Chem. 1993, 65, 3566–3570. DOI: 10.1021/ac00072a006.
  • Reis, B. F.; Giné, M. F.; Zagatto, E. A.; Lima, J. L. F.; Lapa, R. A. Multicommutation in Flow Analysis. Part 1. Binary Sampling: concepts, Instrumentation and Spectrophotometric Determination of Iron in Plant Digests. Anal. Chim. Acta 1994, 293, 129–138. DOI: 10.1016/0003-2670(94)00090-5.
  • Cerdà, V.; Estela, J.; Forteza, R.; Cladera, A.; Becerra, E.; Altimira, P.; Sitjar, P. Flow Techniques in Water Analysis. Talanta 1999, 50, 695–705. DOI: 10.1016/S0039-9140(99)00196-4.
  • Ruzicka, J. Lab-on-Valve: Universal Microflow Analyzer Based on Sequential and Bead Injection. Analyst 2000, 125, 1053–1060. DOI: 10.1039/b001125h.
  • Lapa, R. A.; Lima, J. L.; Reis, B. F.; Santos, J. L.; Zagatto, E. A. Multi-Pumping in Flow Analysis: concepts, Instrumentation, Potentialities. Anal. Chim. Acta 2002, 466, 125–132. DOI: 10.1016/S0003-2670(02)00514-7.
  • Šatı́nský, D.; Solich, P.; Chocholouš, P.;.; Karlı́ček, R. ; Monolithic Columns—a New Concept of Separation in the Sequential Injection Technique. Anal. Chim. Acta 2003, 499, 205–214. DOI: 10.1016/S0003-2670(03)00625-1.
  • Idris, A. M. The Second Five Years of Sequential Injection Chromatography: significant Developments in the Technology and Methodologies. Crit. Rev. Anal. Chem. 2014, 44, 220–232. DOI: 10.1080/10408347.2013.848778.
  • Wang, J.; Taha, Z. Batch Injection Analysis. Anal. Chem. 1991, 63, 1053–1056. DOI: 10.1021/ac00010a025.
  • Trojanowicz, M.; Kołacińska, K. Recent Advances in Flow Injection Analysis. Analyst 2016, 141, 2085–2139. DOI: 10.1039/C5AN02522B.
  • Bulatov, A. V.; Petrova, A. V.; Vishnikin, A. B.; Moskvin, A. L.; Moskvin, L. N. Stepwise Injection Spectrophotometric Determination of Epinephrine. Talanta 2012, 96, 62–67. DOI: 10.1016/j.talanta.2012.03.059.
  • Ratanawimarnwong, N.; Ponhong, K.; Teshima, N.; Nacapricha, D.; Grudpan, K.; Sakai, T.; Motomizu, S. Simultaneous Injection Effective Mixing Flow Analysis of Urinary Albumin Using Dye-Binding Reaction. Talanta 2012, 96, 50–54. DOI: 10.1016/j.talanta.2012.02.027.
  • Vakh, C.; Falkova, M.; Timofeeva, I.; Moskvin, A.; Moskvin, L.; Bulatov, A. Flow Analysis: A Novel Approach for Classification. Crit. Rev. Anal. Chem. 2016, 46, 374–388. DOI: 10.1080/10408347.2015.1087301.
  • Trojanowicz, M. Flow-Injection Analysis as a Tool for Determination of Pharmaceutical Residues in Aqueous Environment. Talanta 2012, 96, 3–10. DOI: 10.1016/j.talanta.2011.12.081.
  • Shen, L. M.; Chen, M. L.; Chen, X. W. A Novel Flow-through Fluorescence Optosensor for the Sensitive Determination of Tetracycline. Talanta 2011, 85, 1285–1290. DOI: 10.1016/j.talanta.2011.06.006.
  • Udalova, A. Y.; Dmitrienko, S.; Apyari, V. Methods for the Separation, Preconcentration, and Determination of Tetracycline Antibiotics. J. Anal. Chem. 2015, 70, 661–676. DOI: 10.1134/S1061934815060180.
  • Granados-Chinchilla, F.; Rodríguez, C. Tetracyclines in Food and Feedingstuffs: From Regulation to Analytical Methods, Bacterial Resistance, and Environmental and Health Implications. J. Anal. Methods Chem. 2017, 2017, 1315497–1315497. DOI: 10.1155/2017/1315497.
  • Dai, Y.; Liu, M.; Li, J.; Yang, S.; Sun, Y.; Sun, Q.; Wang, W.; Lu, L.; Zhang, K.; Xu, J.; et al. A Review on Pollution Situation and Treatment Methods of Tetracycline in Groundwater. Sep. Sci. Technol. 2020, 55, 1005–1021. DOI: 10.1080/01496395.2019.1577445.
  • Pérez-Rodríguez, M.; Pellerano, R. G.; Pezza, L.; Pezza, H. R. An Overview of the Main Foodstuff Sample Preparation Technologies for Tetracycline Residue Determination. Talanta 2018, 182, 1–21. DOI: 10.1016/j.talanta.2018.01.058.
  • Shalaby, A. R.; Salama, N. A.; Abou-Raya, S. H.; Emam, W. H.; Mehaya, F. M. Validation of HPLC Method for Determination of Tetracycline Residues in Chicken Meat and Liver. Food Chem. 2011, 124, 1660–1666. DOI: 10.1016/j.foodchem.2010.07.048.
  • Vienneau, D.; Kindberg, C. Development and Validation of a Sensitive Method for Tetracycline in Gingival Crevicular Fluid by HPLC Using Fluorescence Detection. J. Pharm. Biomed. Anal. 1997, 16, 111–117. DOI: 10.1016/S0731-7085(97)00009-5.
  • Moreno-González, D.; García-Campaña, A. M. Salting-out Assisted Liquid-Liquid Extraction Coupled to Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry for the Determination of Tetracycline Residues in Infant Foods . Food Chem. 2017, 221, 1763–1769. DOI: 10.1016/j.foodchem.2016.10.107.
  • Škrášková, K.; Santos, L. H.; Šatínský, D.; Pena, A.; Montenegro, M. C. B.; Solich, P.; Nováková, L. Fast and Sensitive UHPLC Methods with Fluorescence and Tandem Mass Spectrometry Detection for the Determination of Tetracycline Antibiotics in Surface Waters. J Chromatogr B Analyt Technol Biomed Life Sci 2013, 927, 201–208. DOI: 10.1016/j.jchromb.2012.12.032.
  • Grande-Martínez, Á.; Moreno-González, D.; Arrebola-Liébanas, F. J.; Garrido-Frenich, A.; Garcia-Campana, A. M. Optimization of a Modified QuEChERS Method for the Determination of Tetracyclines in Fish Muscle by UHPLC-MS/MS. J. Pharm. Biomed. Anal. 2018, 155, 27–32. DOI: 10.1016/j.jpba.2018.03.029.
  • Couto, C. M. C. M.; Lima, J. L. F. C.; Conceição, M.; Montenegro, B. S. M.; Reis, S. Tetracycline, Oxytetracycline and Chlortetracycline Determination by Flow Injection Potentiometry. J. Pharm. Biomed. Anal. 1998, 18, 527–533. DOI: 10.1016/S0731-7085(98)00207-6.
  • Evgen'ev, M. I.; Garmonov, S. Y.; Shakirova, L. S. Flow-Injection Analysis of Pharmaceuticals. J. Anal. Chem. 2001, 56, 313–323. DOI: 10.1023/A:1016687826266.
  • Tzanavaras, P. D.; Themelis, D. G. Review of Recent Applications of Flow Injection Spectrophotometry to Pharmaceutical Analysis. Anal. Chim. Acta 2007, 588, 1–9. DOI: 10.1016/j.aca.2007.01.060.
  • Medina, A. R.; Marín, M. G. G.; Fernández de Córdova, M. L.; Díaz, A. M. UV Spectrophotometric Flow-Injection Assay of Tetracycline Antibiotics Retained on Sephadex QAE A-25 in Drug Formulations. Microchem. J. 2000, 65, 325–331. DOI: 10.1016/S0026-265X(00)00130-2.
  • Ruengsitagoon, W. A Rapid Flow Injection Spectrophotometric Analysis for Tetracycline Chlortetracycline or Oxytetracycline. J. Food Drug Anal. 2008, 16, 16–21. DOI: 10.38212/2224-6614.2317.
  • Sultan, S. M.; Suliman, F.-E. O.; Duffuaa, S. O.; Abu-Abdoun, I. I. Abu-Abdoun, I.I. Simplex-Optimized and Flow Injection Spectrophotometric Assay of Tetracycline Antibiotics in Drug Formulations. Analyst 1992, 117, 1179–1183. DOI: 10.1039/an9921701179.
  • Liawruangrath, S.; Liawruangrath, B.; Watanesk, S.; Ruengsitagoon, W. Flow Injection Spectrophotometric Determination of Tetracycline in a Pharmaceutical Preparation by Complexation with Aluminium(III). Anal. Sci. 2006, 22, 15–19. DOI: 10.2116/analsci.22.15.
  • Thanasarakhan, W.; Kruanetr, S.; Deming, R. L.; Liawruangrath, B.; Wangkarn, S.; Liawruangrath, S. Sequential Injection Spectrophotometric Determination of Tetracycline Antibiotics in Pharmaceutical Preparations and Their Residues in Honey and Milk Samples Using Yttrium (III) and Cationic Surfactant. Talanta 2011, 84, 1401–1409. DOI: 10.1016/j.talanta.2011.03.087.
  • Karlíček, R.; Solich, P. Flow-Injection Spectrophotometric Determination of Tetracycline Antibiotics. Anal. Chim. Acta 1994, 285, 9–12. DOI: 10.1016/0003-2670(94)85002-X.
  • Rodriguez, J. A.; Espinosa, J.; Aguilar-Arteaga, K.; Ibarra, I. S.; Miranda, J. M. Determination of Tetracyclines in Milk Samples by Magnetic Solid Phase Extraction Flow Injection Analysis. Microchim. Acta 2010, 171, 407–413. DOI: 10.1007/s00604-010-0428-8.
  • Rodríguez, M. P.; Pezza, H. R.; Pezza, L. Simple and Clean Determination of Tetracyclines by Flow Injection Analysis. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2016, 153, 386–392. DOI: 10.1016/j.saa.2015.08.048.
  • Ruiz-Medina, A.; Llorent-Martínez, E. Recent Progress of Flow-through Optosensing in Clinical and Pharmaceutical Analysis. J. Pharm. Biomed. Anal. 2010, 53, 250–261. DOI: 10.1016/j.jpba.2010.04.020.
  • Páscoa, R. N.; Tóth, I. V.; Rangel, A. O. Review on Recent Applications of the Liquid Waveguide Capillary Cell in Flow Based Analysis Techniques to Enhance the Sensitivity of Spectroscopic Detection Methods. Anal. Chim. Acta. 2012, 739, 1–13. DOI: 10.1016/j.aca.2012.05.058.
  • Skoog, D. A.; West, D. M.; Holler, F. J.; Crouch, S. R. Fundamentals of Analytical Chemistry, Belmont, TN: Cengage Learning, 2013.
  • Mervartová, K.; Polášek, M.; Calatayud, J. M. Recent Applications of Flow-Injection and Sequential-Injection Analysis Techniques to Chemiluminescence Determination of Pharmaceuticals. J. Pharm. Biomed. Anal. 2007, 45, 367–381. DOI: 10.1016/j.jpba.2007.08.018.
  • Alwarthan, A. A.; Townshend, A. Determination of Tetracycline by Flow Injection with Chemiluminescence Detection. Anal. Chim. Acta 1988, 205, 261–265. DOI: 10.1016/S0003-2670(00)82337-5.
  • Syropoulos, A. B.; Calokerinos, A. C. Continuous-Flow Chemiluminometric Determination of Some Tetracyclines. Anal. Chim. Acta 1991, 255, 403–411. DOI: 10.1016/0003-2670(91)80075-5.
  • Zhang, X. R.; Baeyens, W. R. G.; Van Den Borre, A.; Van Der Weken, G.; Calokerinos, A. C.; Schulman, S. G. Chemiluminescence Determination of Tetracyclines Based on Their Reaction with Hydrogen Peroxide Catalysed by the Copper Ion. Analyst 1995, 120, 463–466. DOI: 10.1039/an9952000463.
  • Li, Z.; Feng, M.; Lu, J.; Gong, Z.; Jiang, H. Flow Injection Chemiluminescence Determination of Tetracyclines. Anal. Lett. 1997, 30, 797–807. DOI: 10.1080/00032719708006425.
  • Han, S. Q.; Liu, E. B.; Li, H. Indirect Flow Injection Chemiluminescence Method for the Determination of Tetracyclines Using Cu(II) as a Probe Ion. Chin. Chem. Lett. 2005, 16, 1067–1070.
  • Tang, Y.; Han, X.; Yu, C.; Sun, Y.; Yao, H. Determination of Tetracycline and Oxytetracycline by Flow-Injection Chemiluminescence Method. Acad. J. Xi'an Jiaotong Univ. 2006, 18, 136–138.
  • Xiong, Y.; Zhou, H.; Zhang, Z.; He, D.; He, C. Molecularly Imprinted on-Line Solid-Phase Extraction Combined with Flow-Injection Chemiluminescence for the Determination of Tetracycline. Analyst 2006, 131, 829–834. DOI: 10.1039/b606779b.
  • Yang, M.; Xu, Y.; Wang, J. H. Lab-on-Valve System Integrating a Chemiluminescent Entity and in Situ Generation of Nascent Bromine as Oxidant for Chemiluminescent Determination of Tetracycline. Anal. Chem. 2006, 78, 5900–5905. DOI: 10.1021/ac060742w.
  • Zheng, X.; Mei, Y.; Zhang, Z. Flow-Injection Chemiluminescence Determination of Tetracyclines with in Situ Electrogenerated Bromine as the Oxidant. Anal. Chim. Acta 2001, 440, 143–149. DOI: 10.1016/S0003-2670(01)01050-9.
  • Pang, Y. Q.; Cui, H.; Zheng, H. S.; Wan, G. H.; Liu, L. J.; Yu, X. F. Flow Injection Analysis of Tetracyclines Using Inhibited Ru(bpy)3(2+)/tripropylamine electrochemiluminescence system . Luminescence 2005, 20, 8–15. DOI: 10.1002/bio.793.
  • Alava-Moreno, F.; Elena Díaz-García, M.; Sanz-Medel, A. Room Temperature Phosphorescence Optosensor for Tetracyclines. Anal. Chim. Acta 1993, 281, 637–644. DOI: 10.1016/0003-2670(93)85025-F.
  • Traviesa-Alvarez, J. M.; Costa-Fernández, J. M.; Pereiro, R.; Sanz-Medel, A. Direct Screening of Tetracyclines in Water and Bovine Milk Using Room Temperature Phosphorescence Detection. Anal. Chim. Acta. 2007, 589, 51–58. DOI: 10.1016/j.aca.2007.02.063.
  • Wenzel, T. J.; Collette, L. M.; Dahlen, D. T.; Hendrickson, S. M.; Yarmaloff, L. W. Liquid Chromatographic and Flow Injection Analysis of Tetracycline Using Sensitized Europium(III) Luminescence Detection. J. Chromatogr. B: Biomed. Sci. Appl. 1988, 433, 149–158. DOI: 10.1016/S0378-4347(00)80593-9.
  • Tzanavaras, P. D. Automated Determination of Captopril by Flow and Sequential Injection Analysis: A Review. Anal. Lett. 2011, 44, 560–576. DOI: 10.1080/00032719.2010.500792.
  • Timofeeva, I. I.; Vakh, C. S.; Bulatov, A. V.; Worsfold, P. J. Flow Analysis with Chemiluminescence Detection: Recent Advances and Applications. Talanta 2018, 179, 246–270. DOI: 10.1016/j.talanta.2017.11.007.
  • Waseem, A.; Yaqoob, M.; Nabi, A. Analytical Applications of Flow Injection Chemiluminescence for the Determination of Pharmaceuticals–A Review. CPA. 2013, 9, 363–395. DOI: 10.2174/15734129113099990002.
  • Christodouleas, D.; Fotakis, C.; Economou, A.; Papadopoulos, K.; Timotheou-Potamia, M.; Calokerinos, A. Flow-Based Methods with Chemiluminescence Detection for Food and Environmental Analysis: A Review. Anal. Lett. 2011, 44, 176–215. DOI: 10.1080/00032719.2010.500791.
  • Garcia-Campana, A. M. Chemiluminescence in Analytical Chemistry, Boca Raton, FL: CRC Press; 2001.
  • Martınez-Calatayud, J. Flow Injection Analysis of Pharmaceuticals: Automation in the Laboratory; London: Taylor & Francis; 1996.
  • Calatayud, J. M.; Icardo, M. C. FLOW INJECTION ANALYSIS | Clinical and Pharmaceutical Applications. In Encyclopedia of Analytical Science, 2nd ed; Worsfold, P., Townshend, A., Poole, C., Eds.; Elsevier: Oxford, 2005; pp 76–89
  • Bevanda, A. M.; Talić, S.; Ivanković, A. Flow Injection Analysis toward Green Analytical Chemistry. In Green Analytical Chemistry: Past, Present and Perspectives; Płotka-Wasylka, J., Namieśnik, J., Eds. Springer: Singapore, 2019; pp 299–323
  • Wilson, R.; Akhavan-Tafti, H.; DeSilva, R.; Schaap, A. P. Comparison between Acridan Ester, Luminol, and Ruthenium Chelate Electrochemiluminescence. Electroanalysis 2001, 13, 1083–1092. DOI: 10.1002/1521-4109(200109)13:13<1083::AID-ELAN1083>3.0.CO;2-D.
  • Liu, X.; Huang, D.; Lai, C.; Zeng, G.; Qin, L.; Zhang, C.; Yi, H.; Li, B.; Deng, R.; Liu, S.; Zhang, Y. Recent Advances in Sensors for Tetracycline Antibiotics and Their Applications. TrAC, Trends Anal. Chem. 2018, 109, 260–274. DOI: 10.1016/j.trac.2018.10.011.
  • Sun, X.-Y.; Chen, H.; Gao, H.; Guo, X.-Q. Screening of Tetracycline Residues in Fish Muscles by CCD Camera-Based Solid-Surface Fluorescence. J. Agric. Food Chem. 2006, 54, 9687–9695. DOI: 10.1021/jf0622580.
  • Kurbanoglu, S.; Unal, M. A.; Ozkan, S. A. Recent Developments on Electrochemical Flow Injection in Pharmaceuticals and Biologically Important Compounds. Electrochim. Acta 2018, 287, 135–148. DOI: 10.1016/j.electacta.2018.04.217.
  • Trojanowicz, M. Recent Developments in Electrochemical Flow Detections–A Review: Part I. Flow Analysis and Capillary Electrophoresis. Anal. Chim. Acta. 2009, 653, 36–58. DOI: 10.1016/j.aca.2009.08.040.
  • Siangproh, W.; Leesutthipornchai, W.; Dungchai, W.; Orawon, C. Electrochemical Detection for Flow-Based System: A Review. J. Flow Inject. Anal. 2009, 26, 5. DOI: 10.24688/jfia.26.1_5.
  • Ji, H.; Wang, E. Flow Injection Amperometric Detection Based on Ion Transfer Across a Water-Solidified Nitrobenzene Interface for the Determination of Tetracycline and Terramycin. Analyst 1988, 113, 1541–1543. DOI: 10.1039/AN9881301541.
  • Moreno Gálvez, A.; Garcı́a Mateo, J. V.;.; Martı́nez Calatayud, J. ; Study of Various Indicating Redox Systems on the Indirect Flow-Injection Biamperometric Determination of Pharmaceuticals. Anal. Chim. Acta 1999, 396, 161–170. DOI: 10.1016/S0003-2670(99)00440-7.
  • Palaharn, S.; Charoenraks, T.; Wangfuengkanagul, N.; Grudpan, K.; Chailapakul, O. Flow Injection Analysis of Tetracycline in Pharmaceutical Formulation with Pulsed Amperometric Detection. Anal. Chim. Acta 2003, 499, 191–197. DOI: 10.1016/S0003-2670(03)00948-6.
  • Sattayasamitsathit, S.; Thavarungkul, P.; Kanatharana, P. Bismuth Film Electrode for Analysis of Tetracycline in Flow Injection System. Electroanalysis 2007, 19, 502–505. DOI: 10.1002/elan.200603726.
  • Wangfuengkanagul, N.; Siangproh, W.; Chailapakul, O. A Flow Injection Method for the Analysis of Tetracycline Antibiotics in Pharmaceutical Formulations Using Electrochemical Detection at Anodized Boron-Doped Diamond Thin Film Electrode. Talanta 2004, 64, 1183–1188. DOI: 10.1016/j.talanta.2004.04.032.
  • Faria, L. V.; Lima, A. P.; Araújo, F. M.; Lisboa, T. P.; Matos, M. A. C.; Munoz, R. A. A.; Matos, R. C. High-Throughput Amperometric Determination of Tetracycline Residues in Milk and Quality Control of Pharmaceutical Formulations: Flow-Injection: Versus Batch-Injection Analysis. Anal. Methods 2019, 11, 5328–5336. DOI: 10.1039/C9AY01759C.
  • Sales, M. G. F.; Montenegro, M. C. B. S. M. Tetracycline-Selective Electrode for Content Determination and Dissolution Studies of Pharmaceuticals by Flow-Injection Analysis (FIA). J. Pharm. Sci. 2001, 90, 1125–1133. DOI: 10.1002/jps.1066.
  • Moreira, F. T. C.; Kamel, A. H.; Guerreiro, R. L.; Azevedo, V.; Sales, M. G. F. New Potentiometric Sensors Based on Two Competitive Recognition Sites for Determining Tetracycline Residues Using Flow-Through System. Procedia Eng. 2010, 5, 1200–1203. DOI: 10.1016/j.proeng.2010.09.327.
  • Cunha, C. O.; Silva, R. C. R.; Amorim, C. G.; Júnior, S. A.; Araújo, A. N.; Montenegro, M. C. B. S. M.; Silva, V. L. Tetracycline Potentiometric Sensor Based on Cyclodextrin for Pharmaceuticals and Waste Water Analysis. Electroanalysis 2010, 22, 2967–2972. DOI: 10.1002/elan.201000301.
  • Shaidarova, L. G.; Gedmina, A. V.; Chelnokova, I. A.; Budnikov, G. K. Determination of Tetracycline Antibiotics Using the Electrocatalytic Response of an Electrode Modified by a Mixed-Valence Ruthenium Oxide-Ruthenium Cyanide Film. Pharm. Chem. J. 2008, 42, 545–549. DOI: 10.1007/s11094-009-0165-7.
  • Chailapakul, O.; Ngamukot, P.; Yoosamran, A.; Siangproh, W.; Wangfuengkanagul, N. Recent Electrochemical and Optical Sensors in Flow-Based Analysis. Sensors 2006, 6, 1383–1410. DOI: 10.3390/s6101383.
  • Renedo, O. D.; Alonso-Lomillo, M.; Martinez, M. A. Recent Developments in the Field of Screen-Printed Electrodes and Their Related Applications. Talanta 2007, 73, 202–219. DOI: 10.1016/j.talanta.2007.03.050.
  • Li, M.; Li, D.-W.; Xiu, G.; Long, Y.-T. Applications of Screen-Printed Electrodes in Current Environmental Analysis. Curr. Opin. Electrochem. 2017, 3, 137–143. DOI: 10.1016/j.coelec.2017.08.016.
  • Quintino, M. S. M.; Angnes, L. Batch Injection Analysis: An Almost Unexplored Powerful Tool. Electroanalysis 2004, 16, 513–523. DOI: 10.1002/elan.200302878.
  • Perez-Olmos, R.; Soto, J.; Zarate, N.; Araujo, A.; Montenegro, M. Sequential Injection Analysis Using Electrochemical Detection: A Review. Anal. Chim. Acta 2005, 554, 1–16. DOI: 10.1016/j.aca.2005.08.032.
  • Shariati, S.; Yamini, Y.; Esrafili, A. Carrier Mediated Hollow Fiber Liquid Phase Microextraction Combined With HPLC–UV for Preconcentration and Determination of Some Tetracycline Antibiotics. J. Chromatogr. B 2009, 877, 393–400. DOI: 10.1016/j.jchromb.2008.12.042.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.