532
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

A Comprehensive Review on Metal Organic Framework Based Preconcentration Strategies for Chromatographic Analysis of Organic Pollutants

, &
Pages 415-441 | Published online: 26 Aug 2021

References

  • Subramanian, A.; Tanabe, S. Persistent Toxic Substances in India. Dev. Environ. Sci. 2007, 7, 433–485.
  • Hansen, B. G.; Paya-Perez, A. B.; Rahman, M.; Larsen, B. R. QSARs for KOW and KOC of PCB Congeners: A Critical Examination of Data, Assumptions and Statistical Approaches. Chemosphere 1999, 39, 2209–2228. DOI: 10.1016/S0045-6535(99)00145-9.
  • Bowman, B. T.; Sans, W. W. Determination of Octanol‐Water Partitioning Coefficients (KOW) of 61 Organophosphorus and Carbamate Insecticides and Their Relationship to Respective Water Solubility (S) Values. J. Environ. Sci. Health Part B 1983, 18, 667–683. DOI: 10.1080/03601238309372398.
  • Sand-Jensen, K. Freshwater Ecosystems, Human Impact On; Academic Press: Cambridge, 2013; 570-586.DOI:10.1016/B978-0-12-384719-5.00369-5.
  • Jones, K. C.; De Voogt, P. Persistent Organic Pollutants (POPs): State of the Science. Environ. Pollut. 1999, 100, 209–221. DOI: 10.1016/s0269-7491(99)00098-6.
  • Jacob, J.; Cherian, J. Review of Environmental and Human Exposure to Persistent Organic Pollutants. Asian Social Science, 2013, 9, 11. DOI: 10.5539/ass.v9n11p107.
  • Koenig, S.; Huertas, D.; Fernández, P. Legacy and Emergent Persistent Organic Pollutants (POPs) in NW Mediterranean Deep-Sea Organisms. Sci. Total. Environ. 2013, 443, 358–366. DOI: 10.1016/j.scitotenv.2012.10.111.
  • Kallenborn, R.; Hung, H.; Brorström-Lundén, E. Atmospheric Long-Range Transport of Persistent Organic Pollutants (POPs) into Polar Regions. In Comprehensive Analytical Chemistry; Eddy Y. Zeng, Ed.; Elsevier, 2015; Vol. 67, pp 411–432. DOI: 10.1016/B978-0-444-63299-9.00013-2.
  • Zhou, X.; Zhang, Y.; Yang, X.; Zhao, L.; Wang, G. Functionalized IRMOF-3 as Efficient Heterogeneous Catalyst for the Synthesis of Cyclic Carbonates. J. Mol. Catal. A Chem. 2012, 361, 12–16.
  • Zhang, S.; Xia, W.; Yang, Q.; Valentino Kaneti, Y.; Xu, X.; Alshehri, S. M.; Ahamad, T.; Hossain, M. S. A.; Na, J.; Tang, J.; Yamauchi, Y. Core-Shell Motif Construction: Highly Graphitic Nitrogen-Doped Porous Carbon Electrocatalysts Using MOF-Derived Carbon@ COF Heterostructures as Sacrificial Templates. Chem. Eng. J. 2020, 396, 125154. DOI: 10.1016/j.cej.2020.125154.
  • Ding, Z.; Wang, S.; Chang, X.; Wang, D.-H.; Zhang, T. Nano-MOF@ Defected Film C3N4 Z-Scheme Composite for Visible-Light Photocatalytic Nitrogen Fixation. RSC Adv. 2020, 10, 26246–26255. DOI: 10.1039/D0RA03562A.
  • Kumar, P.; Paul, A. K.; Deep, A. Sensitive Chemosensing of Nitro Group Containing Organophosphate Pesticides with MOF-5. Microporous Mesoporous Mater. 2014, 195, 60–66. DOI: 10.1016/j.micromeso.2014.04.017.
  • Gumilar, G.; Kaneti, Y. V.; Henzie, J.; Chatterjee, S.; Na, J.; Yuliarto, B.; Nugraha, N.; Patah, A.; Bhaumik, A.; Yamauchi, Y. General Synthesis of Hierarchical Sheet/Plate-like M-BDC (M = Cu, Mn, Ni, and Zr) Metal–Organic Frameworks for Electrochemical Non-Enzymatic Glucose Sensing. Chem. Sci. 2020, 11, 3644–3655. DOI: 10.1039/C9SC05636J.
  • Li, J.; Cheng, S.; Zhao, Q.; Long, P.; Dong, J. Synthesis and Hydrogen-Storage Behavior of Metal–Organic Framework MOF-5. Int. J. Hydrogen Energy 2009, 34, 1377–1382. DOI: 10.1016/j.ijhydene.2008.11.048.
  • Lee, C. S.; Lim, J. M.; Park, J. T.; Kim, J. H. Direct Growth of Highly Organized, 2D Ultra-Thin Nano-Accordion Ni-MOF@NiS2@C Core-Shell for High Performance Energy Storage Device. Chem. Eng. J. 2021, 406, 126810. DOI: 10.1016/j.cej.2020.126810.
  • Hasan, Z.; Khan, N. A.; Jhung, S. H. Adsorptive Removal of Diclofenac Sodium from Water with Zr-Based Metal–Organic Frameworks. Chem. Eng. J. 2016, 284, 1406–1413. DOI: 10.1016/j.cej.2015.08.087.
  • Niu, Z.; Cui, X.; Pham, T.; Verma, G.; Lan, P. C.; Shan, C.; Xing, H.; Forrest, K. A.; Suepaul, S.; Space, B.; et al. A MOF‐Based Ultra‐Strong Acetylene Nano‐Trap for Highly Efficient C2H2/CO2 Separation. Angew. Chem. 2021, 133, 5343–5348. DOI: 10.1002/ange.202016225.
  • Young, C.; Kim, J.; Kaneti, Y. V.; Yamauchi, Y. One-Step Synthetic Strategy of Hybrid Materials from Bimetallic Metal–Organic Frameworks for Supercapacitor Applications. ACS Appl. Energy Mater. 2018, 1, 2007–2015. DOI: 10.1021/acsaem.8b00103.
  • Wu, M.; Yang, Y. Metal–Organic Framework (MOF)‐Based Drug/Cargo Delivery and Cancer Therapy. Adv. Mater. 2017, 29, 1606134. DOI: 10.1002/adma.201606134.
  • He, X.; Wang, W.-N. MOF-Based Ternary Nanocomposites for Better CO2 Photoreduction: Roles of Heterojunctions and Coordinatively Unsaturated Metal Sites. J. Mater. Chem. A 2018, 6, 932–940. DOI: 10.1039/C7TA09192C.
  • Jiang, H.-L.; Liu, B.; Lan, Y.-Q.; Kuratani, K.; Akita, T.; Shioyama, H.; Zong, F.; Xu, Q. From Metal–Organic Framework to Nanoporous Carbon: Toward a Very High Surface Area and Hydrogen Uptake. J. Am. Chem. Soc. 2011, 133, 11854–11857. DOI: 10.1021/ja203184k.
  • Dhaka, S.; Kumar, R.; Deep, A.; Kurade, M. B.; Ji, S.-W.; Jeon, B.-H. Metal–Organic Frameworks (MOFs) for the Removal of Emerging Contaminants from Aquatic Environments. Coord. Chem. Rev. 2019, 380, 330–352. DOI: 10.1016/j.ccr.2018.10.003.
  • Li, X.; Ma, W.; Li, H.; Bai, Y.; Liu, H. Metal-Organic Frameworks as Advanced Sorbents in Sample Preparation for Small Organic Analytes. Coord. Chem. Rev. 2019, 397, 1–13. DOI: 10.1016/j.ccr.2019.06.014.
  • Yu, Y.; Ren, Y.; Shen, W.; Deng, H.; Gao, Z. Applications of Metal-Organic Frameworks as Stationary Phases in Chromatography. TrAC Trends Anal. Chem. 2013, 50, 33–41. DOI: 10.1016/j.trac.2013.04.014.
  • Zhang, J.; Chen, Z. Metal-Organic Frameworks as Stationary Phase for Application in Chromatographic Separation. J. Chromatogr. A 2017, 1530, 1–18. DOI: 10.1016/j.chroma.2017.10.065.
  • Helen, G. S.; Jacob, P.; Peng, M.; Dempsey, D. A.; Hammond, S. K.; Benowitz, N. L. Intake of Toxic and Carcinogenic Volatile Organic Compounds from Secondhand Smoke in Motor Vehicles. Cancer Epidemiol. Biomark. Prev. 2014, 23, 2774–2782. DOI: 10.1158/1055-9965.EPI-14-0548.
  • Bhargava, A.; Khanna, R. N.; Bhargava, S. K.; Kumar, S. Exposure Risk to Carcinogenic PAHs in Indoor-Air during Biomass Combustion Whilst Cooking in Rural India. Atmos. Environ. 2004, 38, 4761–4767. DOI: 10.1016/j.atmosenv.2004.05.012.
  • Hurley, P. M. Mode of Carcinogenic Action of Pesticides Inducing Thyroid Follicular Cell Tumors in Rodents. Environ Health Perspect. 1998, 106, 437–445. DOI: 10.1289/ehp.98106437.
  • Petrescu, A.-M.; Ilia, G. Molecular Docking Study to Evaluate the Carcinogenic Potential and Mammalian Toxicity of Thiophosphonate Pesticides by Cluster and Discriminant Analysis. Environ. Toxicol. Pharmacol. 2016, 47, 62–78. DOI: 10.1016/j.etap.2016.09.004.
  • Song, M.-K.; Song, M.; Choi, H.-S.; Kim, Y.-J.; Park, Y.-K.; Ryu, J.-C. Identification of Molecular Signatures Predicting the Carcinogenicity of Polycyclic Aromatic Hydrocarbons (PAHs). Toxicol. Lett. 2012, 212, 18–28. DOI: 10.1016/j.toxlet.2012.04.013.
  • Ulbrich, B.; Stahlmann, R. Developmental Toxicity of Polychlorinated Biphenyls (PCBs): A Systematic Review of Experimental Data. Arch. Toxicol. 2004, 78, 252–268. DOI: 10.1007/s00204-003-0519-y.
  • Winneke, G.; Walkowiak, J.; Lilienthal, H. PCB-Induced Neurodevelopmental Toxicity in Human Infants and Its Potential Mediation by Endocrine Dysfunction. Toxicology 2002, 181–182, 161–165. DOI: 10.1016/S0300-483X(02)00274-3.
  • Chatterjee, S.; Deb, U.; Datta, S.; Walther, C.; Gupta, D. K. Common Explosives (TNT, RDX, HMX) and Their Fate in the Environment: Emphasizing Bioremediation. Chemosphere 2017, 184, 438–451. DOI: 10.1016/j.chemosphere.2017.06.008.
  • Pennington, J. C.; Brannon, J. M. Environmental Fate of Explosives. Thermochim. Acta 2002, 384, 163–172. DOI: 10.1016/S0040-6031(01)00801-2.
  • Novotný, Č.; Dias, N.; Kapanen, A.; Malachová, K.; Vándrovcová, M.; Itävaara, M.; Lima, N. Comparative Use of Bacterial, Algal and Protozoan Tests to Study Toxicity of Azo- and Anthraquinone Dyes. Chemosphere 2006, 63, 1436–1442. DOI: 10.1016/j.chemosphere.2005.10.002.
  • Gičević, A.; Hindija, L.; Karačić, A. Toxicity of Azo Dyes in Pharmaceutical Industry. In International Conference on Medical and Biological Engineering; Springer, 2019; pp 581–587.
  • Anku, W. W.; Mamo, M. A.; Govender, P. P. Phenolic Compounds in Water: Sources, Reactivity, Toxicity and Treatment Methods. In Phenolic Compounds-Natural Sources, Importance and Applications; Marcos Soto-Hernandez, Mariana Palma-Tenango and Maria del Rosario Garcia-Mateos, eds. InTech London, 2017; pp 420–443. DOI:10.5772/66927.
  • Mano, H.; Okamoto, S. Preliminary Ecological Risk Assessment of 10 PPCPs and Their Contributions to the Toxicity of Concentrated Surface Water on an Algal Species in the Middle Basin of Tama River. J. Water Environ. Technol. 2016, 14, 423–436. DOI: 10.2965/jwet.15-045.
  • Sharmin, E.; Zafar, F. Introductory Chapter: Metal Organic Frameworks (MOFs). In Metal-Organic Frameworks; Fahmina Zafar and Eram Sharmin, eds.; IntechOpen, 2016. DOI: 10.5772/64797.
  • Liu, X.; Feng, T.; Wang, C.; Hao, L.; Wang, C.; Wu, Q.; Wang, Z. A Metal–Organic Framework-Derived Nanoporous Carbon/Iron Composite for Enrichment of Endocrine Disrupting Compounds from Fruit Juices and Milk Samples. Anal. Methods 2016, 8, 3528–3535. DOI: 10.1039/C6AY00191B.
  • Xia, L.; Liu, L.; Lv, X.; Qu, F.; Li, G.; You, J. Towards the Determination of Sulfonamides in Meat Samples: A Magnetic and Mesoporous Metal-Organic Framework as an Efficient Sorbent for Magnetic Solid Phase Extraction Combined with High-Performance Liquid Chromatography. J. Chromatogr. A 2017, 1500, 24–31. DOI: 10.1016/j.chroma.2017.04.004.
  • Bagheri, A. R.; Ghaedi, M. Application of Cu-Based Metal-Organic Framework (Cu-BDC) as a Sorbent for Dispersive Solid-Phase Extraction of Gallic Acid from Orange Juice Samples Using HPLC-UV Method. Arab. J. Chem. 2020, 13, 5218–5228.
  • Yaghi, O. M.; Li, H. Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels. J. Am. Chem. Soc. 1995, 117, 10401–10402. DOI: 10.1021/ja00146a033.
  • Nadizadeh, Z.; Naimi-Jamal, M. R.; Panahi, L. Mechanochemical Solvent-Free in Situ Synthesis of Drug-Loaded {Cu2(1,4-bdc)2(dabco)}n MOFs for Controlled Drug Delivery. J. Solid State Chem. 2018, 259, 35–42. DOI: 10.1016/j.jssc.2017.12.027.
  • Li, S.-Y.; Liu, Z.-H. Ionothermal Synthesis, Thermal Behavior, and Fluorescence of Two Gallium-1,4-Benzenedicarboxylate-Based MOFs. J. Coord. Chem. 2015, 68, 1765–1775. DOI: 10.1080/00958972.2015.1025769.
  • Yang, H. M.; Song, X. L.; Yang, T. L.; Liang, Z. H.; Fan, C. M.; Hao, X. G. Electrochemical Synthesis of Flower Shaped Morphology MOFs in an Ionic Liquid System and Their Electrocatalytic Application to the Hydrogen Evolution Reaction. RSC Adv. 2014, 4, 15720–15726. DOI: 10.1039/C3RA47744D.
  • Othong, J.; Boonmak, J.; Promarak, V.; Kielar, F.; Youngme, S. Sonochemical Synthesis of Carbon Dots/Lanthanoid MOFs Hybrids for White Light-Emitting Diodes with High Color Rendering. ACS Appl. Mater. Interfaces 2019, 11, 44421–44429. DOI: 10.1021/acsami.9b13814.
  • Yin, N.; Wang, K.; Li, Z. Rapid Microwave-Promoted Synthesis of Zr-MOFs: An Efficient Adsorbent for Pb(II) Removal. Chem. Lett. 2016, 45, 625–627. DOI: 10.1246/cl.160148.
  • Yang, T. B.; Sun, L. X.; Xu, F.; Wang, Z. Q. Microwave Synthesis of MOFs/Graphene Oxide Composites and Hydrogen Storage Properties. Mater. Sci. Forum 2016, 852, 835–840. DOI: 10.4028/www.scientific.net/MSF.852.835.
  • Luo, F.; Che, Y.; Zheng, J. Construction of Microporous Metal–Organic Frameworks (MOFs) by Mn–O–C Rod-like Secondary Building Units (SBUs): Solvothermal Synthesis, Structure, Thermostability, and Magnetic Properties. Inorg. Chem. Commun. 2008, 11, 358–362. DOI: 10.1016/j.inoche.2007.12.024.
  • Zhu, Z.; Xie, J.; Zhang, M.; Zhou, Q.; Liu, F. Insight into the Adsorption of PPCPs by Porous Adsorbents: Effect of the Properties of Adsorbents and Adsorbates. Environ. Pollut. 2016, 214, 524–531. DOI: 10.1016/j.envpol.2016.04.070.
  • Li, Y.; Du, Q.; Liu, T.; Peng, X.; Wang, J.; Sun, J.; Wang, Y.; Wu, S.; Wang, Z.; Xia, Y.; Xia, L. Comparative Study of Methylene Blue Dye Adsorption onto Activated Carbon, Graphene Oxide, and Carbon Nanotubes. Chem. Eng. Res. Des. 2013, 91, 361–368. DOI: 10.1016/j.cherd.2012.07.007.
  • Coelho, C.; Oliveira, A. S.; Pereira, M. F. R.; Nunes, O. C. The Influence of Activated Carbon Surface Properties on the Adsorption of the Herbicide Molinate and the Bio-Regeneration of the Adsorbent. J. Hazard. Mater. 2006, 138, 343–349. DOI: 10.1016/j.jhazmat.2006.05.062.
  • Díaz, E.; Ordónez, S.; Vega, A.; Coca, J. Adsorption Characterisation of Different Volatile Organic Compounds over Alumina, Zeolites and Activated Carbon Using Inverse Gas Chromatography. J. Chromatogr. A 2004, 1049, 139–146. DOI: 10.1016/j.chroma.2004.07.061.
  • Ma, J.; Xiao, R.; Li, J.; Yu, J.; Zhang, Y.; Chen, L. Determination of 16 Polycyclic Aromatic Hydrocarbons in Environmental Water Samples by Solid-Phase Extraction Using Multi-Walled Carbon Nanotubes as Adsorbent Coupled with Gas chromatography-mass spectrometry. J. Chromatogr. A 2010, 1217, 5462–5469. DOI: 10.1016/j.chroma.2010.06.060.
  • Pham, T.-H.; Lee, B.-K.; Kim, J. Improved Adsorption Properties of a Nano Zeolite Adsorbent toward Toxic Nitrophenols. Process Saf. Environ. Prot. 2016, 104, 314–322. DOI: 10.1016/j.psep.2016.08.018.
  • Li, C.; Dong, Y.; Wu, D.; Peng, L.; Kong, H. Surfactant Modified Zeolite as Adsorbent for Removal of Humic Acid from Water. Appl. Clay Sci. 2011, 52, 353–357. DOI: 10.1016/j.clay.2011.03.015.
  • Bibby, A.; Mercier, L. Adsorption and Separation of Water-Soluble Aromatic Molecules by Cyclodextrin-Functionalized Mesoporous Silica. Green Chem. 2003, 5, 15–19. DOI: 10.1039/b209251b.
  • Crini, G.; Peindy, H. N.; Gimbert, F.; Robert, C. Removal of CI Basic Green 4 (Malachite Green) from Aqueous Solutions by Adsorption Using Cyclodextrin-Based Adsorbent: Kinetic and Equilibrium Studies. Sep. Purif. Technol. 2007, 53, 97–110. DOI: 10.1016/j.seppur.2006.06.018.
  • Hasan, Z.; Jhung, S. H. Removal of Hazardous Organics from Water Using Metal-Organic Frameworks (MOFs): Plausible Mechanisms for Selective Adsorptions. J. Hazard. Mater. 2015, 283, 329–339. DOI: 10.1016/j.jhazmat.2014.09.046.
  • Hailili, R.; Wang, L.; Qv, J.; Yao, R.; Zhang, X.-M.; Liu, H. Planar Mn4O Cluster Homochiral Metal-Organic Framework for HPLC Separation of Pharmaceutically Important (±)-Ibuprofen Racemate. Inorg. Chem. 2015, 54, 3713–3715. DOI: 10.1021/ic502861k.
  • Mirzajani, R.; Kardani, F.; Ramezani, Z. Preparation and Characterization of Magnetic Metal–Organic Framework Nanocomposite as Solid-Phase Microextraction Fibers Coupled with High-Performance Liquid Chromatography for Determination of Non-Steroidal anti-Inflammatory Drugs in Biological Fluids and Tablet Formulation Samples. Microchem. J. 2019, 144, 270–284. DOI: 10.1016/j.microc.2018.09.014.
  • Ma, J.; Wu, G.; Li, S.; Tan, W.; Wang, X.; Li, J.; Chen, L. Magnetic Solid-Phase Extraction of Heterocyclic Pesticides in Environmental Water Samples Using Metal-Organic Frameworks Coupled to High Performance Liquid Chromatography Determination. J. Chromatogr. A 2018, 1553, 57–66. DOI: 10.1016/j.chroma.2018.04.034.
  • Huo, S.-H.; Yan, X.-P. Facile Magnetization of Metal-Organic Framework MIL-101 for Magnetic Solid-Phase Extraction of Polycyclic Aromatic Hydrocarbons in Environmental Water Samples. Analyst 2012, 137, 3445–3451. DOI: 10.1039/c2an35429b.
  • Yu, W.-L.; Li, Y.; Li, B.-H. 2019 Lanthanum (II)-Trimesic Acid MOF as Novel Sorbent for Solid-Phase Extraction Coupled with HPLC for Determination of Polycyclic Aromatic Hydrocarbons in Water. In 2018 7th International Conference on Sustainable Energy and Environment Engineering (ICSEEE 2018); Atlantis Press.
  • Hu, Y.; Huang, Z.; Liao, J.; Li, G. Chemical Bonding Approach for Fabrication of Hybrid Magnetic Metal-Organic Framework-5: High Efficient Adsorbents for Magnetic Enrichment of Trace Analytes. Anal. Chem. 2013, 85, 6885–6893. DOI: 10.1021/ac4011364.
  • Su, H.; Lin, Y.; Wang, Z.; Wong, Y.-L. E.; Chen, X.; Chan, T.-W. D. Magnetic metal-Organic Framework-Titanium Dioxide Nanocomposite as Adsorbent in the Magnetic Solid-Phase Extraction of Fungicides from Environmental Water Samples. J. Chromatogr. A 2016, 1466, 21–28. DOI: 10.1016/j.chroma.2016.08.066.
  • Dou, Y.; Guo, L.; Li, G.; Lv, X.; Xia, L. Amino Group Functionalized Metal-Organic Framework as Dispersive Solid-Phase Extraction Sorbent to Determine Nitrobenzene Compounds in Water Samples. Microchem. J. 2019, 146, 366–373.
  • Gu, Z.-Y.; Jiang, J.-Q.; Yan, X.-P. Fabrication of Isoreticular Metal-Organic Framework Coated Capillary Columns for High-Resolution Gas Chromatographic Separation of Persistent Organic Pollutants. Anal. Chem. 2011, 83, 5093–5100. DOI: 10.1021/ac200646w.
  • Wu, M.; Ai, Y.; Zeng, B.; Zhao, F. In Situ Solvothermal Growth of Metal-Organic Framework-Ionic Liquid Functionalized Graphene Nanocomposite for Highly Efficient Enrichment of Chloramphenicol and Thiamphenicol. J. Chromatogr. A 2016, 1427, 1–7. DOI: 10.1016/j.chroma.2015.11.080.
  • Vikrant, K.; Kim, K.-H.; Kumar, V.; Giannakoudakis, D. A.; Boukhvalov, D. W. Adsorptive Removal of an Eight-Component Volatile Organic Compound Mixture by Cu-, Co-, and Zr-Metal-Organic Frameworks: Experimental and Theoretical Studies. Chem. Eng. J. 2020, 397, 125391. DOI: 10.1016/j.cej.2020.125391.
  • Maghsoudi, H. Comparative Study of Adsorbents Performance in Ethylene/Ethane Separation. Adsorption 2016, 22, 985–992. DOI: 10.1007/s10450-016-9805-x.
  • Marco-Lozar, J. P.; Juan-Juan, J.; Suárez-García, F.; Cazorla-Amorós, D.; Linares-Solano, A. MOF-5 and Activated Carbons as Adsorbents for Gas Storage. Int. J. Hydrogen Energy 2012, 37, 2370–2381. DOI: 10.1016/j.ijhydene.2011.11.023.
  • Chisvert, A.; Cárdenas, S.; Lucena, R. Dispersive Micro-Solid Phase Extraction. TrAC Trends Anal. Chem. 2019, 112, 226–233. DOI: 10.1016/j.trac.2018.12.005.
  • Šafařı́ková, M.; Šafařı́k, I. Magnetic Solid-Phase Extraction. J. Magn. Magn. Mater. 1999, 194, 108–112. DOI: 10.1016/S0304-8853(98)00566-6.
  • Wang, Y.; Jin, S.; Wang, Q.; Lu, G.; Jiang, J.; Zhu, D. Zeolitic Imidazolate Framework-8 as Sorbent of Micro-Solid-Phase Extraction to Determine Estrogens in Environmental Water Samples. J. Chromatogr. A 2013, 1291, 27–32. DOI: 10.1016/j.chroma.2013.03.032.
  • Hu, H.; Liu, S.; Chen, C.; Wang, J.; Zou, Y.; Lin, L.; Yao, S. Two Novel Zeolitic Imidazolate Frameworks (ZIFs) as Sorbents for Solid-Phase Extraction (SPE) of Polycyclic Aromatic Hydrocarbons (PAHs) in Environmental Water Samples. Analyst 2014, 139, 5818–5826. DOI: 10.1039/c4an01410c.
  • Yang, S.; Chen, C.; Yan, Z.; Cai, Q.; Yao, S. Evaluation of Metal-Organic Framework 5 as a New SPE Material for the Determination of Polycyclic Aromatic Hydrocarbons in Environmental Waters. J. Sep. Sci. 2013, 36, 1283–1290. DOI: 10.1002/jssc.201200983.
  • Zhou, Y.-Y.; Yan, X.-P.; Kim, K.-N.; Wang, S.-W.; Liu, M.-G. Exploration of Coordination Polymer as Sorbent for Flow Injection Solid-Phase Extraction on-Line Coupled with High-Performance Liquid Chromatography for Determination of Polycyclic Aromatic Hydrocarbons in Environmental Materials. J. Chromatogr. A 2006, 1116, 172–178. DOI: 10.1016/j.chroma.2006.03.061.
  • Kahkha, M. R. R.; Oveisi, A. R.; Kaykhaii, M.; Kahkha, B. R. Determination of Carbamazepine in Urine and Water Samples Using Amino-Functionalized Metal–Organic Framework as Sorbent. Chem. Cent. J. 2018, 12, 1–12.
  • Li, Y.; Zhu, N.; Chen, T.; Ma, Y.; Li, Q. A Green Cyclodextrin Metal-Organic Framework as Solid-Phase Extraction Medium for Enrichment of Sulfonamides before Their HPLC Determination. Microchem. J. 2018, 138, 401–407. DOI: 10.1016/j.microc.2018.01.038.
  • Gao, G.; Xing, Y.; Liu, T.; Wang, J.; Hou, X. UiO-66 (Zr) as Sorbent for Porous Membrane Protected Micro-Solid-Phase Extraction Androgens and Progestogens in Environmental Water Samples Coupled with LC-MS/MS Analysis: The Application of Experimental and Molecular Simulation Method. Microchem. J. 2019, 146, 126–133. DOI: 10.1016/j.microc.2018.12.050.
  • Su, Y.; Wang, S.; Zhang, N.; Cui, P.; Gao, Y.; Bao, T. Zr-MOF Modified Cotton Fiber for Pipette Tip Solid-Phase Extraction of Four Phenoxy Herbicides in Complex Samples. Ecotoxicol. Environ. Saf. 2020, 201, 110764. DOI: 10.1016/j.ecoenv.2020.110764.
  • Yan, Z.; Wu, M.; Hu, B.; Yao, M.; Zhang, L.; Lu, Q.; Pang, J. Electrospun UiO-66/Polyacrylonitrile Nanofibers as Efficient Sorbent for Pipette Tip Solid Phase Extraction of Phytohormones in Vegetable Samples. J. Chromatogr. A 2018, 1542, 19–27. DOI: 10.1016/j.chroma.2018.02.030.
  • Zhou, Q.; Lei, M.; Wu, Y.; Yuan, Y. Magnetic Solid Phase Extraction of Typical Polycyclic Aromatic Hydrocarbons from Environmental Water Samples with Metal Organic Framework MIL-101 (Cr) Modified Zero Valent Iron Nano-Particles. J. Chromatogr. A 2017, 1487, 22–29. DOI: 10.1016/j.chroma.2017.01.046.
  • Du, F.; Qin, Q.; Deng, J.; Ruan, G.; Yang, X.; Li, L.; Li, J. Magnetic Metal–Organic Framework MIL‐100 (Fe) Microspheres for the Magnetic Solid‐Phase Extraction of Trace Polycyclic Aromatic Hydrocarbons from Water Samples. J. Sep. Sci. 2016, 39, 2356–2364. DOI: 10.1002/jssc.201600100.
  • Ma, J.; Yao, Z.; Hou, L.; Lu, W.; Yang, Q.; Li, J.; Chen, L. Metal Organic Frameworks (MOFs) for Magnetic Solid-Phase Extraction of Pyrazole/Pyrrole Pesticides in Environmental Water Samples Followed by HPLC-DAD Determination. Talanta 2016, 161, 686–692. DOI: 10.1016/j.talanta.2016.09.035.
  • Liang, L.; Wang, X.; Sun, Y.; Ma, P.; Li, X.; Piao, H.; Jiang, Y.; Song, D. Magnetic Solid-Phase Extraction of Triazine Herbicides from Rice Using Metal-Organic Framework MIL-101(Cr) Functionalized Magnetic Particles. Talanta 2018, 179, 512–519. DOI: 10.1016/j.talanta.2017.11.017.
  • Safari, M.; Shahlaei, M.; Yamini, Y.; Shakorian, M.; Arkan, E. Magnetic Framework Composite as Sorbent for Magnetic Solid Phase Extraction Coupled with High Performance Liquid Chromatography for Simultaneous Extraction and Determination of Tricyclic Antidepressants. Anal. Chim. Acta 2018, 1034, 204–213. DOI: 10.1016/j.aca.2018.06.023.
  • Li, M.; Wang, J.; Jiao, C.; Wang, C.; Wu, Q.; Wang, Z. Magnetic Porous Carbon Derived from a Zn/Co Bimetallic Metal–Organic Framework as an Adsorbent for the Extraction of Chlorophenols from Water and Honey Tea Samples. J. Sep. Sci. 2016, 39, 1884–1891. DOI: 10.1002/jssc.201600097.
  • Bahrani, S.; Ghaedi, M.; Dashtian, K.; Ostovan, A.; Mansoorkhani, M. J. K.; Salehi, A. MOF-5(Zn)-Fe2O4 Nanocomposite Based Magnetic Solid-Phase Microextraction Followed by HPLC-UV for Efficient Enrichment of Colchicine in Root of Colchicium Extracts and Plasma Samples. J. Chromatogr. B 2017, 1067, 45–52. DOI: 10.1016/j.jchromb.2017.09.044.
  • Zhang, W.; Yan, Z.; Gao, J.; Tong, P.; Liu, W.; Zhang, L. Metal-Organic Framework UiO-66 Modified Magnetite@Silica Core-Shell Magnetic Microspheres for Magnetic Solid-Phase Extraction of Domoic Acid from Shellfish Samples. J. Chromatogr. A 2015, 1400, 10–18. DOI: 10.1016/j.chroma.2015.04.061.
  • Liu, L.; Xia, L.; Wu, C.; Qu, F.; Li, G.; Sun, Z.; You, J. Zirconium (IV)-Based Metal Organic Framework (UIO-67) as Efficient Sorbent in Dispersive Solid Phase Extraction of Plant Growth Regulator from Fruits Coupled with HPLC Fluorescence Detection. Talanta 2016, 154, 23–30. DOI: 10.1016/j.talanta.2016.03.038.
  • Cao, X.; Jiang, Z.; Wang, S.; Hong, S.; Li, H.; Zhang, C.; Shao, Y.; She, Y.; Jin, F.; Jin, M.; Wang, J. Metal-Organic Framework UiO-66 for Rapid Dispersive Solid Phase Extraction of Neonicotinoid Insecticides in Water Samples. J. Chromatogr. B 2018, 1077-1078, 92–97. DOI: 10.1016/j.jchromb.2017.11.034.
  • Li, N.; Wu, L.; Nian, L.; Song, Y.; Lei, L.; Yang, X.; Wang, K.; Wang, Z.; Zhang, L.; Zhang, H.; et al. Dynamic Microwave Assisted Extraction Coupled with Dispersive Micro-Solid-Phase Extraction of Herbicides in Soybeans. Talanta 2015, 142, 43–50. DOI: 10.1016/j.talanta.2015.04.038.
  • Xia, L.; Liu, L.; Xu, X.; Zhu, F.; Wang, X.; Zhang, K.; Yang, X.; You, J. Determination of Chlorophenoxy Acid Herbicides by Using a Zirconium-Based Metal–Organic Framework as Special Sorbent for Dispersive Micro-Solid-Phase Extraction and High-Performance Liquid Chromatography. New J. Chem. 2017, 41, 2241–2248. DOI: 10.1039/C6NJ03378D.
  • Rocío-Bautista, P.; Martínez-Benito, C.; Pino, V.; Pasán, J.; Ayala, J. H.; Ruiz-Pérez, C.; Afonso, A. M. The Metal-Organic Framework HKUST-1 as Efficient Sorbent in a Vortex-Assisted Dispersive Micro Solid-Phase Extraction of Parabens from Environmental Waters, Cosmetic Creams, and Human Urine. Talanta 2015, 139, 13–20. DOI: 10.1016/j.talanta.2015.02.032.
  • Boontongto, T.; Burakham, R. Evaluation of Metal-Organic Framework NH2-MIL-101(Fe) as an Efficient Sorbent for Dispersive Micro-Solid Phase Extraction of Phenolic Pollutants in Environmental Water Samples. Heliyon 2019, 5, e02848. DOI: 10.1016/j.heliyon.2019.e02848.
  • Li, N.; Zhu, Q.; Yang, Y.; Huang, J.; Dang, X.; Chen, H. A Novel Dispersive Solid-Phase Extraction Method Using Metal-Organic Framework MIL-101 as the Adsorbent for the Analysis of Benzophenones in Toner. Talanta 2015, 132, 713–718. DOI: 10.1016/j.talanta.2014.10.038.
  • Moradi, Z.; Dil, E. A.; Asfaram, A. Dispersive Micro-Solid Phase Extraction Based on Fe3O4@SiO2@Ti-MOF as a Magnetic Nanocomposite Sorbent for the Trace Analysis of Caffeic Acid in the Medical Extracts of Plants and Water Samples Prior to HPLC-UV Analysis. Analyst 2019, 144, 4351–4361. DOI: 10.1039/c9an00120d.
  • Viana de Carvalho, P. H.; Santos Barreto, A.; Rodrigues, M. O.; de Menezes Prata, V.; Barreto Alves, P.; de Mesquita, M. E.; Alves Junior, S.; Navickiene, S. Two‐Dimensional Coordination Polymer Matrix for Solid‐Phase Extraction of Pesticide Residues from Plant Cordia Salicifolia. J. Sep. Sci. 2009, 32, 2132–2138. DOI: 10.1002/jssc.200900076.
  • Barreto, A. S.; da Silva, R. L.; dos Santos Silva, S. C. G.; Rodrigues, M. O.; de Simone, C. A.; de, S.; Júnior, G. F.; Navickiene, S. A.; de Mesquita, S.; Potential, M. E. Potential of a Metal-Organic Framework as a New Material for Solid-Phase Extraction of Pesticides from Lettuce (Lactuca sativa), with Analysis by Gas Chromatography-Mass Spectrometry. J. Sep. Sci. 2010, 33, 3811–3816. DOI: 10.1002/jssc.201000553.
  • Wang, G.-H.; Lei, Y.-Q.; Song, H.-C. Exploration of a Coordination Polymer as a Novel Sorbent for the Solid-Phase Extraction of Benzo[a]Pyrene in Edible Oils. Anal. Methods 2012, 4, 647–651. DOI: 10.1039/c2ay05878b.
  • Zang, H.; Yuan, J.-P.; Chen, X.-F.; Liu, C.-A.; Cheng, C.-G.; Zhao, R.-S. Hollow Fiber-Protected Metal–Organic Framework Materials as Micro-Solid-Phase Extraction Adsorbents for the Determination of Polychlorinated Biphenyls in Water Samples by Gas Chromatography-Tandem Mass Spectrometry. Anal. Methods 2013, 5, 4875–4882. DOI: 10.1039/c3ay40305j.
  • Cui, X.-Y.; Gu, Z.-Y.; Jiang, D.-Q.; Li, Y.; Wang, H.-F.; Yan, X.-P. In Situ Hydrothermal Growth of Metal-Organic Framework 199 Films on Stainless Steel Fibers for Solid-Phase Microextraction of Gaseous Benzene Homologues. Anal. Chem. 2009, 81, 9771–9777. DOI: 10.1021/ac901663x.
  • Shang, H.-B.; Yang, C.-X.; Yan, X.-P. Metal–Organic Framework UiO-66 Coated Stainless Steel Fiber for Solid-Phase Microextraction of Phenols in Water Samples. J. Chromatogr. A 2014, 1357, 165–171. DOI: 10.1016/j.chroma.2014.05.027.
  • Abolghasemi, M. M.; Yousefi, V.; Piryaei, M. Synthesis of a Metal-Organic Framework Confined in Periodic Mesoporous Silica with Enhanced Hydrostability as a Novel Fiber Coating for Solid-Phase Microextraction. J. Sep. Sci. 2015, 38, 1187–1193. DOI: 10.1002/jssc.201400916.
  • Jia, Y.; Su, H.; Wang, Z.; Wong, Y.-L. E.; Chen, X.; Wang, M.; Chan, T.-W. D. Metal-Organic Framework@Microporous Organic Network as Adsorbent for Solid-Phase Microextraction. Anal. Chem. 2016, 88, 9364–9367. DOI: 10.1021/acs.analchem.6b03156.
  • Chen, X.-F.; Zang, H.; Wang, X.; Cheng, J.-G.; Zhao, R.-S.; Cheng, C.-G.; Lu, X.-Q. Metal–Organic Framework MIL-53 (Al) as a Solid-Phase Microextraction Adsorbent for the Determination of 16 Polycyclic Aromatic Hydrocarbons in Water Samples by Gas Chromatography–Tandem Mass Spectrometry. Analyst 2012, 137, 5411–5419. DOI: 10.1039/c2an35806a.
  • Zheng, J.; Li, S.; Wang, Y.; Li, L.; Su, C.; Liu, H.; Zhu, F.; Jiang, R.; Ouyang, G. In Situ Growth of IRMOF-3 Combined with Ionic Liquids to Prepare Solid-Phase Microextraction Fibers. Anal. Chim. Acta 2014, 829, 22–27. DOI: 10.1016/j.aca.2014.04.039.
  • Wu, Y.-Y.; Yang, C.-X.; Yan, X.-P. Fabrication of Metal-Organic Framework MIL-88B Films on Stainless Steel Fibers for Solid-Phase Microextraction of Polychlorinated Biphenyls. J. Chromatogr. A 2014, 1334, 1–8. DOI: 10.1016/j.chroma.2014.01.079.
  • Zang, X.; Zhang, X.; Chang, Q.; Li, S.; Wang, C.; Wang, Z. Metal-Organic Framework UiO-67-Coated Fiber for the Solid-Phase Microextraction of Nitrobenzene Compounds from Water. J. Sep. Sci. 2016, 39, 2770–2776. DOI: 10.1002/jssc.201600426.
  • Lin, S.; Gan, N.; Qiao, L.; Zhang, J.; Cao, Y.; Chen, Y. Magnetic Metal-Organic Frameworks Coated Stir Bar Sorptive Extraction Coupled with GC-MS for Determination of Polychlorinated Biphenyls in Fish Samples. Talanta 2015, 144, 1139–1145. DOI: 10.1016/j.talanta.2015.07.084.
  • Zhang, S.; Jiao, Z.; Yao, W. A Simple Solvothermal Process for Fabrication of a Metal-Organic Framework with an Iron Oxide Enclosure for the Determination of Organophosphorus Pesticides in Biological Samples. J. Chromatogr. A 2014, 1371, 74–81. DOI: 10.1016/j.chroma.2014.10.088.
  • Jin, R.; Ji, F.; Lin, H.; Luo, C.; Hu, Y.; Deng, C.; Cao, X.; Tong, C.; Song, G. The Synthesis of Zr-Metal-Organic Framework Functionalized Magnetic Graphene Nanocomposites as an Adsorbent for Fast Determination of Multi-Pesticide Residues in Tobacco Samples. J. Chromatogr. A 2018, 1577, 1–7. DOI: 10.1016/j.chroma.2018.09.041.
  • Lu, N.; He, X.; Wang, T.; Liu, S.; Hou, X. Magnetic Solid-Phase Extraction Using MIL-101 (Cr)-Based Composite Combined with Dispersive Liquid-Liquid Microextraction Based on Solidification of a Floating Organic Droplet for the Determination of Pyrethroids in Environmental Water and Tea Samples. Microchem. J. 2018, 137, 449–455. DOI: 10.1016/j.microc.2017.12.009.
  • Aquino, A.; Wanderley, K. A.; de Oliveira Paiva-Santos, C.; De Sa, G. F.; Alexandre, M. d R.; Júnior, S. A.; Navickiene, S. Coordination Polymer Adsorbent for Matrix Solid-Phase Dispersion Extraction of Pesticides during Analysis of Dehydrated Hyptis pectinata Medicinal Plant by GC/MS. Talanta 2010, 83, 631–636. DOI: 10.1016/j.talanta.2010.10.014.
  • Su, H.; Wang, Z.; Jia, Y.; Deng, L.; Chen, X.; Zhao, R.; Chan, T.-W. D. A Cadmium (II)-Based Metal-Organic Framework Material for the Dispersive Solid-Phase Extraction of Polybrominated Diphenyl Ethers in Environmental Water Samples. J. Chromatogr. A 2015, 1422, 334–339. DOI: 10.1016/j.chroma.2015.10.039.
  • Dargahi, R.; Ebrahimzadeh, H.; Asgharinezhad, A. A.; Hashemzadeh, A.; Amini, M. M. Dispersive Magnetic Solid-Phase Extraction of Phthalate Esters from Water Samples and Human Plasma Based on a Nanosorbent Composed of MIL-101(Cr) Metal-Organic Framework and Magnetite Nanoparticles Before Their Determination by GC-MS. J. Sep. Sci. 2018, 41, 948–957. DOI: 10.1002/jssc.201700700.
  • Lin, S.; Gan, N.; Cao, Y.; Chen, Y.; Jiang, Q. Selective Dispersive Solid Phase Extraction-Chromatography Tandem Mass Spectrometry Based on Aptamer-Functionalized UiO-66-NH2 for Determination of Polychlorinated Biphenyls. J. Chromatogr. A 2016, 1446, 34–40. DOI: 10.1016/j.chroma.2016.04.016.
  • Huang, Z.; Lee, H. K. Performance of Metal-Organic Framework MIL-101 after Surfactant Modification in the Extraction of Endocrine Disrupting Chemicals from Environmental Water Samples. Talanta 2015, 143, 366–373. DOI: 10.1016/j.talanta.2015.05.006.
  • Rahman, M. M.; Abd El‐Aty, A. M.; Choi, J.; Shin, H.; Shin, S. C.; Shim J. Basic Overview on Gas Chromatography Columns. Anal. Sep. Sci. 2015, 823–834.
  • Chen, B.; Liang, C.; Yang, J.; Contreras, D. S.; Clancy, Y. L.; Lobkovsky, E. B.; Yaghi, O. M.; Dai, S. A Microporous Metal–Organic Framework for Gas‐Chromatographic Separation of Alkanes. Angew. Chem. Int. Ed. Engl. 2006, 45, 1390–1393. DOI: 10.1002/anie.200502844.
  • Chang, N.; Gu, Z.-Y.; Yan, X.-P. Zeolitic Imidazolate Framework-8 Nanocrystal Coated Capillary for Molecular Sieving of Branched Alkanes from Linear Alkanes along with High-Resolution Chromatographic Separation of Linear Alkanes. J. Am. Chem. Soc. 2010, 132, 13645–13647. DOI: 10.1021/ja1058229.
  • Fan, L.; Yan, X.-P. Evaluation of Isostructural Metal-Organic Frameworks Coated Capillary Columns for the Gas Chromatographic Separation of Alkane Isomers. Talanta 2012, 99, 944–950. DOI: 10.1016/j.talanta.2012.07.063.
  • Böhle, T.; Mertens, F. A [Cu2(bdc)2(dabco)] Coated GC Capillary Column for the Separation of Light Hydrocarbons and the Determination Thermodynamic and Kinetic Data Thereof. Microporous Mesoporous Mater. 2014, 183, 162–167. DOI: 10.1016/j.micromeso.2013.09.001.
  • Fang, Z.-L.; Zheng, S.-R.; Tan, J.-B.; Cai, S.-L.; Fan, J.; Yan, X.; Zhang, W.-G. Tubular Metal-Organic Framework-Based Capillary Gas Chromatography Column for Separation of Alkanes and Aromatic Positional Isomers. J. Chromatogr. A 2013, 1285, 132–138. DOI: 10.1016/j.chroma.2013.02.024.
  • Chang, N.; Yan, X.-P. Exploring Reverse Shape Selectivity and Molecular Sieving Effect of Metal-Organic Framework UIO-66 Coated Capillary Column for Gas Chromatographic Separation. J. Chromatogr. A 2012, 1257, 116–124. DOI: 10.1016/j.chroma.2012.07.097.
  • Zhang, Y.; Wang, L.; Yao, R.-X.; Zhang, X.-M. Fourfold-Interpenetrated MOF [Ni(pybz)2] as Coating Material in Gas Chromatographic Capillary Column for Separation. Inorg. Chem. 2017, 56, 8912–8919. DOI: 10.1021/acs.inorgchem.7b00863.
  • Ameloot, R.; Liekens, A.; Alaerts, L.; Maes, M.; Galarneau, A.; Coq, B.; Desmet, G.; Sels, B. F.; Denayer, J. F. M.; De Vos, D. E. Silica–MOF Composites as a Stationary Phase in Liquid Chromatography. Eur. J. Inorg. Chem. 2010, 2010, 3735–3738. DOI: 10.1002/ejic.201000494.
  • Zhao, W.-W.; Zhang, C.-Y.; Yan, Z.-G.; Bai, L.-P.; Wang, X.; Huang, H.; Zhou, Y.-Y.; Xie, Y.; Li, F.-S.; Li, J.-R. Separations of Substituted Benzenes and Polycyclic Aromatic Hydrocarbons Using Normal- and Reverse-Phase High Performance Liquid Chromatography with UiO-66 as the Stationary Phase. J. Chromatogr. A 2014, 1370, 121–128. DOI: 10.1016/j.chroma.2014.10.036.
  • Qu, Q.; Xuan, H.; Zhang, K.; Chen, X.; Ding, Y.; Feng, S.; Xu, Q. Core-Shell Silica Particles with Dendritic Pore Channels Impregnated with Zeolite Imidazolate Framework-8 for High Performance Liquid Chromatography Separation. J. Chromatogr. A 2017, 1505, 63–68. DOI: 10.1016/j.chroma.2017.05.031.
  • Zhu, M.; Zhang, L.; Chu, Z.; Wang, S.; Chen, K.; Zhang, W.; Liu, F. Preparation and Evaluation of Open-Tubular Capillary Columns Modified with Metal-Organic Framework Incorporated Polymeric Porous Layer for Liquid Chromatography. Talanta 2018, 184, 29–34. DOI: 10.1016/j.talanta.2018.02.010.
  • Qin, W.; Silvestre, M. E.; Brenner-Weiss, G.; Wang, Z.; Schmitt, S.; Hübner, J.; Franzreb, M. Insights into the Separation Performance of MOFs by High-Performance Liquid Chromatography and in-Depth Modelling. Sep. Purif. Technol. 2015, 156, 249–258. DOI: 10.1016/j.seppur.2015.10.008.
  • Hu, Y.; Song, C.; Liao, J.; Huang, Z.; Li, G. Water Stable Metal-Organic Framework Packed Microcolumn for Online Sorptive Extraction and Direct Analysis of Naproxen and Its Metabolite from Urine Sample. J. Chromatogr. A 2013, 1294, 17–24. DOI: 10.1016/j.chroma.2013.04.034.
  • Xie, S.; Hu, C.; Li, L.; Zhang, J.; Fu, N.; Wang, B.; Yuan, L. Homochiral Metal-Organic Framework for HPLC Separation of Enantiomers. Microchem. J. 2018, 139, 487–491. DOI: 10.1016/j.microc.2018.03.035.
  • Huang, H.-Y.; Lin, C.-L.; Wu, C.-Y.; Cheng, Y.-J.; Lin, C.-H. Metal Organic Framework-Organic Polymer Monolith Stationary Phases for Capillary Electrochromatography and Nano-Liquid Chromatography. Anal. Chim. Acta 2013, 779, 96–103. DOI: 10.1016/j.aca.2013.03.071.
  • Li, L.-M.; Yang, F.; Wang, H.-F.; Yan, X.-P. Metal-Organic Framework Polymethyl Methacrylate Composites for Open-Tubular Capillary Electrochromatography. J. Chromatogr. A 2013, 1316, 97–103. DOI: 10.1016/j.chroma.2013.09.081.
  • Bao, T.; Zhang, J.; Zhang, W.; Chen, Z. Growth of Metal–Organic Framework HKUST-1 in Capillary Using Liquid-Phase Epitaxy for Open-Tubular Capillary Electrochromatography and Capillary Liquid Chromatography. J. Chromatogr. A 2015, 1381, 239–246. DOI: 10.1016/j.chroma.2015.01.005.
  • Yang, S.; Ye, F.; Lv, Q.; Zhang, C.; Shen, S.; Zhao, S. Incorporation of Metal-Organic Framework HKUST-1 into Porous Polymer Monolithic Capillary Columns to Enhance the Chromatographic Separation of Small Molecules. J. Chromatogr. A 2014, 1360, 143–149. DOI: 10.1016/j.chroma.2014.07.067.
  • Yu, L.-Q.; Yang, C.-X.; Yan, X.-P. Room Temperature Fabrication of Post-Modified Zeolitic Imidazolate Framework-90 as Stationary Phase for Open-Tubular Capillary Electrochromatography. J. Chromatogr. A 2014, 1343, 188–194. DOI: 10.1016/j.chroma.2014.04.003.
  • Li, L.; Wang, H.; Yan, X. Metal-Organic Framework ZIF-8 Nanocrystals as Pseudostationary Phase for Capillary Electrokinetic Chromatography. Electrophoresis 2012, 33, 2896–2902. DOI: 10.1002/elps.201200269.
  • Titato, G. M.; Lanças, F. M. Comparison between Different Extraction (LLE and SPE) and Determination (HPLC and Capillary‐LC) Techniques in the Analysis of Selected PAHs in Water Samples. J. Liq. Chromatogr. Relat. Technol. 2005, 28, 3045–3056. DOI: 10.1080/10826070500295120.
  • Kayali-Sayadi, M. N.; Rubio-Barroso, S.; Cuesta-Jimenez, M. P.; Polo-Diez, L. M. A New Method for the Determination of Selected PAHs in Coffee Brew Samples by HPLC with Fluorimetric Detection and Solid-Phase Extraction. J. Liq. Chromatogr. Relat. Technol. 1999, 22, 615–627. DOI: 10.1081/JLC-100101686.
  • García-Alonso, S.; Barrado-Olmedo, A. I.; Pérez-Pastor, R. M. An Analytical Method to Determine Selected Nitro-PAHs in Soil Samples by HPLC with Fluorescence Detection. Polycycl. Aromat. Compd. 2012, 32, 669–682. DOI: 10.1080/10406638.2012.725196.
  • Pan, D.; Chen, C.; Yang, F.; Long, Y.; Cai, Q.; Yao, S. Titanium Wire-Based SPE Coupled with HPLC for the Analysis of PAHs in Water Samples. Analyst 2011, 136, 4774–4779. DOI: 10.1039/c1an15435d.
  • Gupta, M. K.; Jain, R.; Singh, P.; Ch, R.; Mudiam, M. K. R. Determination of Urinary PAH Metabolites Using DLLME Hyphenated to Injector Port Silylation and GC-MS-MS. J. Anal. Toxicol. 2015, 39, 365–373. DOI: 10.1093/jat/bkv023.
  • Asadi, M.; Shahabuddin, S.; Mollahosseini, A.; Kaur, J.; Saidur, R. Electrospun Magnetic Zeolite/Polyacrylonitrile Nanofibers for Extraction of PAHs from Waste Water: Optimized with Central Composite Design. J. Inorg. Organomet. Polym. 2019, 29, 1057–1066. DOI: 10.1007/s10904-018-1027-0.
  • De la Colina, C.; Báez, M. E.; Pena, A.; Romero, E.; Dios, G.; Sánchez-Rasero, F. Simultaneous Determination of Various Pesticides in Water by Solid-Phase Extraction/HPLC with Photodiode Array Detection. Sci. Total Environ. 1994, 153, 1–6. DOI: 10.1016/0048-9697(94)90097-3.
  • Padrón, M. E. T.; Ferrera, Z. S.; Rodríguez, J. J. S. Optimisation of Solid-Phase Microextraction Coupled to HPLC-UV for the Determination of Organochlorine Pesticides and Their Metabolites in Environmental Liquid Samples. Anal. Bioanal. Chem. 2006, 386, 332–340.
  • Badawy, M. E. I.; El-Nouby, M. A. M.; Marei, A. E.-S. M. Development of a Solid-Phase Extraction (SPE) Cartridge Based on Chitosan-Metal Oxide Nanoparticles (Ch-MO NPs) for Extraction of Pesticides from Water and Determination by HPLC. Int. J. Anal. Chem. 2018, 2018, 3640691. DOI: 10.1155/2018/3640691.
  • Correia, M.; Delerue-Matos, C.; Alves, A. Development of a SPME-GC-ECD Methodology for Selected Pesticides in Must and Wine Samples. Fresenius J. Anal. Chem. 2001, 369, 647–651. DOI: 10.1007/s002160100762.
  • Carro, A. M.; Cobas, J. C.; Rodriguez, J. B.; Lorenzo, R. A.; Cela, R. Application of Chemometric Techniques to the Optimization of the Solid-Phase Extraction of 27 Pesticides before GC-MIP-AES Analysis. J. Anal. At. Spectrom. 1999, 14, 1867–1873. DOI: 10.1039/A906098G.
  • Fischer, E.; Henze, G.; Platt, K. L. Sensitive and Selective Determination of Metabolically Formed Trans-Dihydrodiols and Phenols of Benzo[a]Pyrene in Water and Urine Samples by HPLC with Amperometric Detection. Fresenius J. Anal. Chem. 1998, 360, 95–99. DOI: 10.1007/s002160050649.
  • Bielicka-Daszkiewicz, K.; Hadzicka, M.; Voelkel, A. Optimization of SPE/GC/HPLC Analytical Procedure for Determination of Phenol, Quinones, and Carboxylic Acids in Water Samples. Int. Sch. Res. Not. 2012, 2012, 1–7. DOI: 10.5402/2012/680929.
  • Jasim, H. H.; Altahir, B. M. Determination of Priority Pollutant Phenols in Petroleum Refinery Wastewater and Tigris River Water by SPE-HPLC-UV. Eur. J. Sci. Res. 2015, 135, 47–60.
  • Silva, S. L.; Alves, A.; Santos, L. Uncertainty Measurement of Chlorophenols and PCBs Analyzed in Aqueous Media by SPME-GC-ECD. J. Chromatogr. Sci. 2009, 47, 103–109. DOI: 10.1093/chromsci/47.2.103.
  • Tang, K.; Gu, X.; Luo, Q.; Chen, S.; Wu, L.; Xiong, J. Preparation of Molecularly Imprinted Polymer for Use as SPE Adsorbent for the Simultaneous Determination of Five Sulphonylurea Herbicides by HPLC. Food Chem. 2014, 150, 106–112. DOI: 10.1016/j.foodchem.2013.10.152.
  • Merlo, F.; Speltini, A.; Maraschi, F.; Sturini, M.; Profumo, A. HPLC-MS/MS Multiclass Determination of Steroid Hormones in Environmental Waters after Preconcentration on the Carbonaceous Sorbent HA-C@ Silica. Arab. J. Chem. 2020, 13, 4673–4680. DOI: 10.1016/j.arabjc.2019.10.009.
  • Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T.-H.; Long, J. R. Carbon Dioxide Capture in Metal-Organic Frameworks. Chem. Rev. 2012, 112, 724–781. DOI: 10.1021/cr2003272.
  • Rocio-Bautista, P.; Pacheco-Fernández, I.; Pasán, J.; Pino, V. Are Metal-Organic Frameworks Able to Provide a New Generation of Solid-Phase Microextraction coatings? A Review. Anal. Chim. Acta 2016, 939, 26–41. DOI: 10.1016/j.aca.2016.07.047.
  • Olszowy, P.; Szultka, M.; Ligor, T.; Nowaczyk, J.; Buszewski, B. Fibers with Polypyrrole and Polythiophene Phases for Isolation and Determination of Adrenolytic Drugs from Human Plasma by SPME-HPLC. J. Chromatogr. B 2010, 878, 2226–2234. DOI: 10.1016/j.jchromb.2010.06.033.
  • Tonic-Ribarska, J.; Sterjev, Z.; Cvetkovska, E.; Kuzmanovski, I.; Kiteva, G.; Suturkova, L.; Trajkovic-Jolevska, S. Optimization and Validation of Bioanalytical SPE–HPLC Method for the Simultaneous Determination of Carbamazepine and Its Main Metabolite, Carbamazepine-10, 11-Epoxide, in Plasma. Maced. Pharm. Bull. 2011, 57, 53–61. DOI: 10.33320/maced.pharm.bull.2011.57.006.
  • Rivoira, L.; De Carlo, R. M.; Cavalli, S.; Bruzzoniti, M. C. Simple SPE–HPLC Determination of Some Common Drugs and Herbicides of Environmental Concern by Pulsed Amperometry. Talanta 2015, 131, 205–212. DOI: 10.1016/j.talanta.2014.07.070.
  • Napoletano, S.; Montesano, C.; Compagnone, D.; Curini, R.; D’ascenzo, G.; Roccia, C.; Sergi, M. Determination of Illicit Drugs in Urine and Plasma by Micro-SPE Followed by HPLC–MS/MS. Chromatographia 2012, 75, 55–63. DOI: 10.1007/s10337-011-2156-6.
  • Böger, B.; Amaral, B. do; Estevão, P. L. da S.; Wagner, R.; Peralta-Zamora, P. G.; Gomes, E. C. Determination of Carbamazepine and Diazepam by SPE-HPLC-DAD in Belém River Water, Curitiba-PR/Brazil. Rev. Ambiente Água. 2018, 13, e2196. DOI: 10.4136/ambi-agua.2196.
  • Fisher, C.; Lopez, L. Automated Extraction and Determination of Human Hormones in Drinking Water Using Solid-Phase Extraction and HPLC with UV Detection; Thermo Fisher Scientific: Sunnyvale, CA, 2014; pp 1–6.
  • Beldean-Galea, M. S.; Klein, R.; Coman, M.-V. Simultaneous Determination of Four Nonsteroidal anti-Inflammatory Drugs and Three Estrogen Steroid Hormones in Wastewater Samples by Dispersive Liquid–Liquid Microextraction Based on Solidification of Floating Organic Droplet and HPLC. J. AOAC Int. 2020, 103, 392–398. DOI: 10.5740/jaoacint.19-0258.
  • Zhang, X.; Niu, J.; Zhang, X.; Xiao, R.; Lu, M.; Cai, Z. Graphene Oxide-SiO2 Nanocomposite as the Adsorbent for Extraction and Preconcentration of Plant Hormones for HPLC Analysis. J. Chromatogr. B 2017, 1046, 58–64. DOI: 10.1016/j.jchromb.2017.01.004.
  • Hassan, M.; Alshana, U.; Ertaş, N. Dispersive Liquid-Liquid Microextraction of Parabens from Pharmaceuticals and Personal Care Products Prior to Their Determination Using HPLC-DAD. Turk. J. Chem. 2019, 43, 1634–1645. DOI: 10.3906/kim-1908-6.
  • Shaaban, H.; Mostafa, A.; Alhajri, W.; Almubarak, L.; AlKhalifah, K. Development and Validation of an Eco-Friendly SPE-HPLC-MS Method for Simultaneous Determination of Selected Parabens and Bisphenol A in Personal Care Products: Evaluation of the Greenness Profile of the Developed Method. J. Liq. Chromatogr. Relat. Technol. 2018, 41, 621–628. DOI: 10.1080/10826076.2018.1499527.
  • Alexiadou, D. K.; Maragou, N. C.; Thomaidis, N. S.; Theodoridis, G. A.; Koupparis, M. A. Molecularly Imprinted Polymers for Bisphenol a for HPLC and SPE from Water and Milk. J. Sep. Sci. 2008, 31, 2272–2282. DOI: 10.1002/jssc.200700643.
  • Tran, A. T. K.; Hyne, R.; V; Doble, P. Determination of Commonly Used Polar Herbicides in Agricultural Drainage Waters in Australia by HPLC. Chemosphere 2007, 67, 944–953. DOI: 10.1016/j.chemosphere.2006.11.002.
  • Safari, M.; Yamini, Y.; Tahmasebi, E.; Ebrahimpour, B. Magnetic Nanoparticle Assisted Supramolecular Solvent Extraction of Triazine Herbicides Prior to Their Determination by HPLC with UV Detection. Microchim. Acta 2016, 183, 203–210. DOI: 10.1007/s00604-015-1607-4.
  • Huang, B.; Sun, W. W.; Li, X. M.; Yang, X. X.; Ren, D.; Wang, Y.; Pan, X. J. Simultaneous Determination of Progestogens, Androgens, Estrogens and Phenols in Water, Sediment and Biological Samples by Enolisation–Silylation with ASE-GPC-SPE-GC/MS. Anal. Methods 2015, 7, 6139–6151. DOI: 10.1039/C5AY01050K.
  • Hansen, M.; Jacobsen, N. W.; Nielsen, F. K.; Björklund, E.; Styrishave, B.; Halling-Sørensen, B. Determination of Steroid Hormones in Blood by GC-MS/MS. Anal. Bioanal. Chem. 2011, 400, 3409–3417. DOI: 10.1007/s00216-011-5038-8.
  • Matysik, S.; Schmitz, G. Determination of Steroid Hormones in Human Plasma by GC-Triple Quadrupole MS. Steroids 2015, 99, 151–154. DOI: 10.1016/j.steroids.2015.01.016.
  • Ligor, T.; Żebrowski, W.; Buszewski, B. Determination of PCBs in selected components of a Food Chain by Means of SPE and GC/MS. Polish J. Environ. Stud. 2007, 16, 571–578.
  • Jia, K.; Feng, X.; Liu, K.; Han, Y.; Xue, Y.; Xue, C. Development of a Subcritical Fluid Extraction and GC-MS Validation Method for Polychlorinated Biphenyls (PCBs) in Marine Samples. J. Chromatogr. B 2013, 923–924, 37–42. DOI: 10.1016/j.jchromb.2013.01.033.
  • Přikryl, P.; Kubinec, R.; Jurdakova, H.; Ševčík, J.; Ostrovský, I.; Sojak, L.; Berezkin, V. Comparison of Needle Concentrator with SPME for GC Determination of Benzene, Toluene, Ethylbenzene, and Xylenes in Aqueous Samples. Chromatographia 2006, 64, 65–70. DOI: 10.1365/s10337-006-0800-3.
  • Guidotti, M.; Vitali, M.; Pamblanco, A.; Ravaioli, G. Urinary Benzene Determination in Subjects Exposed to Low Environmental Concentrations Using SPME and GC-MS. Leukemia 1, 5.
  • Li, X.; Li, X. M.; Yang, X. X.; Li, Q.; Huang, B.; Pan, X. J. An Optimized Method Based on MAE-SPE-GC-MS for the Analysis of Thirteen PBDEs in Airborne Particles. Anal. Methods 2014, 6, 9658–9666. DOI: 10.1039/C4AY01708K.
  • Xiao, Q.; Hu, B.; Duan, J.; He, M.; Zu, W. Analysis of PBDEs in Soil, Dust, Spiked Lake Water, and Human Serum Samples by Hollow Fiber-Liquid Phase Microextraction Combined with GC-ICP-MS. J. Am. Soc. Mass Spectrom. 2007, 18, 1740–1748. DOI: 10.1016/j.jasms.2007.07.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.