875
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Microextraction and Determination of Poly- and Perfluoroalkyl Substances, Challenges, and Future Trends

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 463-482 | Published online: 20 Aug 2021

References

  • Taves, D. R. Evidence That There Are Two Forms of Fluoride in Human Serum. Nature 1968, 217, 1050–1051. DOI: 10.1038/2171050b0.
  • Martin, J. W.; Kannan, K.; Berger, U.; Voogt, P. D.; Field, J.; Franklin, J.; Giesy, J. P.; Harner, T.; Muir, D. C. G.; Scott, B.; et al. Analytical Challenges Hamper Perfluoroalkyl Research. Environ. Sci. Technol. 2004, 38, 248A–255A. DOI: 10.1021/es0405528.
  • Kissa, E. Fluorinated Surfactants and Repellents: CRC Press: Boca Raton, 2001.
  • Coggan, T. L.; Moodie, D.; Kolobaric, A.; Szabo, D.; Shimeta, J.; Crosbie, N. D.; Lee, E.; Fernandes, M.; Clarke, B. O. An Investigation into per- and Polyfluoroalkyl Substances (PFAS) in Nineteen Australian Wastewater Treatment Plants (WWTPs). Heliyon 2019, 5, e02316. DOI: 10.1016/j.heliyon.2019.e02316.
  • Lindstrom, A. B.; Strynar, M. J.; Libelo, E. L. Polyfluorinated Compounds: Past, Present, and future. Environ. Sci. Technol. 2011, 45, 7954–7961. DOI: 10.1021/es2011622.
  • Schröder, H. F.; Meesters, R. J. W. Stability of Fluorinated Surfactants in Advanced Oxidation processes-A Follow up of Degradation Products Using Flow Injection-Mass Spectrometry, Liquid Chromatography-Mass Spectrometry and Liquid Chromatography-Multiple Stage Mass Spectrometry. J. Chromatogr. A. 2005, 1082, 110–119. DOI: 10.1016/j.chroma.2005.02.070.
  • Takagi, S.; Adachi, F.; Miyano, K.; Koizumi, Y.; Tanaka, H.; Watanabe, I.; Tanabe, S.; Kannan, K. Fate of Perfluorooctanesulfonate and Perfluorooctanoate in Drinking Water Treatment Processes. Water Res. 2011, 45, 3925–3932. DOI: 10.1016/j.watres.2011.04.052.
  • USEPA, Fact sheet PFOA & PFOS drinking water health advisories; 800-F-16-003; Washington, DC, USA. 2016.
  • Wei, Z.; Xu, T.; Zhao, D. Treatment of per-and Polyfluoroalkyl Substances in Landfill Leachate: Status, Chemistry and Prospects. Environ. Sci: Water Res. Technol. 2019, 5, 1814–1835. DOI: 10.1039/C9EW00645A.
  • Dean, W. S.; Adejumo, H. A.; Caiati, A.; Garay, P. M.; Harmata, A. S.; Li, L.; Rodriguez, E. E.; Sundar, S. Framework for Regulation of New and Existing PFAS by EPA. J. Sci. Policy Governance 2020, 16, 1–14.
  • Pelch, K. E.; Reade, A.; Wolffe, T. A. M.; Kwiatkowski, C. F. PFAS Health Effects Database: Protocol for a Systematic Evidence Map. Environ. Int. 2019, 130, 104851. DOI: 10.1016/j.envint.2019.05.045.
  • Sunderland, E. M.; Hu, X. C.; Dassuncao, C.; Tokranov, A. K.; Wagner, C. C.; Allen, J. G. A Review of the Pathways of Human Exposure to Poly- and Perfluoroalkyl Substances (PFASs) and Present Understanding of Health effects. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 131–147. DOI: 10.1038/s41370-018-0094-1.
  • Grandjean, P.; Heilmann, C.; Weihe, P.; Nielsen, F.; Mogensen, U. B.; Budtz-Jørgensen, E. Serum Vaccine Antibody Concentrations in Adolescents Exposed to Perfluorinated Compounds. Environ. Health Perspect. 2017, 125, 077018. DOI: 10.1289/EHP275.
  • Braun, J. M.; Chen, A.; Romano, M. E.; Calafat, A. M.; Webster, G. M.; Yolton, K.; Lanphear, B. P. Prenatal Perfluoroalkyl Substance Exposure and Child Adiposity at 8 Years of Age: The HOME Study. Obesity 2016, 24, 231–237. DOI: 10.1002/oby.21258.
  • Grandjean, P.; Timmermann, C. A. G.; Kruse, M.; Nielsen, F.; Vinholt, P. J.; Boding, L.; Heilmann, C.; Mølbak, K. Severity of COVID-19 at Elevated Exposure to Perfluorinated alkylates. PLOS One. 2020, 15, e0244815. DOI: 10.1371/journal.pone.0244815.
  • Rodriguez, K. L.; Hwang, J.-H.; Esfahani, A. R.; Sadmani, A.; Lee, W. H. Recent Developments of PFAS-Detecting Sensors and Future Direction: A Review. Micromachines 2020, 11, 667. DOI: 10.3390/mi11070667.
  • Berger, U.; Kaiser, M. A.; Kärrman, A.; Barber, J. L.; van Leeuwen, S. P. Recent Developments in Trace Analysis of poly- and perfluoroalkyl substances . Anal. Bioanal. Chem. 2011, 400, 1625–1635. DOI: 10.1007/s00216-011-4823-8.
  • Al Amin, M.; Sobhani, Z.; Liu, Y.; Dharmaraja, R.; Chadalavada, S.; Naidu, R.; Chalker, J. M.; Fang, C. Recent Advances in the Analysis of per- and Polyfluoroalkyl Substances (PFAS)—a Review. Environ. Technol. Innovat. 2020, 19, 100879. DOI: 10.1016/j.eti.2020.100879.
  • Valsecchi, S.; Rusconi, M.; Polesello, S. Determination of Perfluorinated Compounds in Aquatic Organisms: A Review. Anal. Bioanal. Chem. 2013, 405, 143–157. DOI: 10.1007/s00216-012-6492-7.
  • Yao, C.; Li, T.; Twu, P.; Pitner, W. R.; Anderson, J. L. Selective Extraction of Emerging Contaminants from Water Samples by Dispersive liquid-liquid microextraction using functionalized ionic liquids. J. Chromatogr. A. 2011, 1218, 1556–1566. DOI: 10.1016/j.chroma.2011.01.035.
  • Arthur, C. L.; Pawliszyn, J. Solid Phase Microextraction with Thermal Desorption Using Fused Silica Optical Fibers. Anal. Chem. 1990, 62, 2145–2148. DOI: 10.1021/ac00218a019.
  • Jeannot, M. A.; Cantwell, F. F. Solvent Microextraction into a Single Drop. Anal. Chem. 1996, 68, 2236–2240. DOI: 10.1021/ac960042z.
  • Jalili, V.; Barkhordari, A.; Ghiasvand, A. A Comprehensive Look at Solid-Phase Microextraction Technique: A Review of Reviews. Microchem. J. 2020, 152, 104319. DOI: 10.1016/j.microc.2019.104319.
  • Nakayama, S. F.; Yoshikane, M.; Onoda, Y.; Nishihama, Y.; Iwai-Shimada, M.; Takagi, M.; Kobayashi, Y.; Isobe, T. Worldwide Trends in Tracing Poly- and Perfluoroalkyl Substances (PFAS) in the Environment. Trends Anal. Chem. 2019, 121, 115410. DOI: 10.1016/j.trac.2019.02.011.
  • Björnsdotter, M. K.; Yeung, L. W. Y.; Kärrman, A.; Jogsten, I. E. Challenges in the Analytical Determination of Ultra-Short-Chain Perfluoroalkyl Acids and Implications for Environmental and Human Health. Anal. Bioanal. Chem. 2020, 412, 4785–4796. DOI: 10.1007/s00216-020-02692-8.
  • Prevedouros, K.; Cousins, I. T.; Buck, R. C.; Korzeniowski, S. H. Sources, Fate and Transport of Perfluorocarboxylates. Environ. Sci. Technol. 2006, 40, 32–44. DOI: 10.1021/es0512475.
  • Cheng, W.; Ng, C. A. Using Machine Learning to Classify Bioactivity for 3486 Per- and Polyfluoroalkyl Substances (PFASs) from the OECD List . Environ. Sci. Technol. 2019, 53, 13970–13980. DOI: 10.1021/acs.est.9b04833.
  • Buck, R. C.; Franklin, J.; Berger, U.; Conder, J. M.; Cousins, I. T.; de Voogt, P.; Jensen, A. A.; Kannan, K.; Mabury, S. A.; van Leeuwen, S. P. J. Perfluoroalkyl and Polyfluoroalkyl Substances in the Environment: Terminology, Classification, and Origins. Integr. Environ. Assess. Manag. 2011, 7, 513–541. DOI: 10.1002/ieam.258.
  • Dadfarnia, S.; Haji Shabani, A. M. Recent Development in Liquid Phase Microextraction for Determination of Trace Level Concentration of Metals–A Review. Anal. Chim. Acta. 2010, 658, 107–119. DOI: 10.1016/j.aca.2009.11.022.
  • Wang, Z.; DeWitt, J. C.; Higgins, C. P.; Cousins, I. T. A Never-Ending Story of per- and Polyfluoroalkyl Substances (PFASs)? Environ. Sci. Technol. 2017, 51, 2508–2518. DOI: 10.1021/acs.est.6b04806.
  • De Silva, A. O.; Muir, D. C. G.; Mabury, S. A. Distribution of Perfluorocarboxylate Isomers in Select Samples from the North American Environment. Environ. Toxicol. Chem. 2009, 28, 1801–1814. DOI: 10.1897/08-500.1.
  • Kostov, G.; Boschet, F.; Ameduri, B. Original Fluorinated Surfactants Potentially Non-Bioaccumulable. J. Fluor. Chem. 2009, 130, 1192–1199. DOI: 10.1016/j.jfluchem.2009.08.002.
  • Goosey, E.; Harrad, S. Perfluoroalkyl Substances in UK Indoor and Outdoor Air: Spatial and Seasonal Variation, and Implications for Human Exposure. Environ. Int. 2012, 45, 86–90. DOI: 10.1016/j.envint.2012.04.007.
  • Xu, J.; Guo, C.-S.; Zhang, Y.; Meng, W. Bioaccumulation and Trophic Transfer of Perfluorinated Compounds in a Eutrophic Freshwater Food Web. Environ. Pollut. 2014, 184, 254–261. DOI: 10.1016/j.envpol.2013.09.011.
  • Poothong, S.; Boontanon, S. K.; Boontanon, N. Determination of Perfluorooctane Sulfonate and Perfluorooctanoic Acid in Food Packaging Using Liquid Chromatography Coupled with Tandem Mass Spectrometry. J. Hazard. Mater. 2012, 205-206, 139–143. DOI: 10.1016/j.jhazmat.2011.12.050.
  • Pérez, F.; Llorca, M.; Köck-Schulmeyer, M.; Škrbić, B.; Oliveira, L. S.; da Boit Martinello, K.; Al-Dhabi, N. A.; Antić, I.; Farré, M.; Barceló, D. Assessment of Perfluoroalkyl Substances in Food Items at Global Scale. Environ. Res. 2014, 135, 181–189. DOI: 10.1016/j.envres.2014.08.004.
  • Sundström, M.; Ehresman, D. J.; Bignert, A.; Butenhoff, J. L.; Olsen, G. W.; Chang, S.-C.; Bergman, Å. A Temporal Trend Study (1972-2008) of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in pooled human milk samples from Stockholm, Sweden. Environ. Int. 2011, 37, 178–183. DOI: 10.1016/j.envint.2010.08.014.
  • Barbarossa, A.; Masetti, R.; Gazzotti, T.; Zama, D.; Astolfi, A.; Veyrand, B.; Pession, A.; Pagliuca, G. Perfluoroalkyl Substances in Human Milk: A First Survey in Italy. Environ. Int. 2013, 51, 27–30. DOI: 10.1016/j.envint.2012.10.001.
  • Kubwabo, C.; Kosarac, I.; Lalonde, K. Determination of Selected Perfluorinated Compounds and Polyfluoroalkyl Phosphate Surfactants in Human Milk. Chemosphere 2013, 91, 771–777. DOI: 10.1016/j.chemosphere.2013.02.011.
  • Han, X.; Snow, T. A.; Kemper, R. A.; Jepson, G. W. Binding of Perfluorooctanoic Acid to Rat and Human Plasma Proteins. Chem. Res. Toxicol. 2003, 16, 775–781. DOI: 10.1021/tx034005w.
  • Chen, Y.-M.; Guo, L.-H. Fluorescence Study on Site-Specific Binding of Perfluoroalkyl Acids to Human Serum Albumin. Arch. Toxicol. 2009, 83, 255–261. DOI: 10.1007/s00204-008-0359-x.
  • Authority, E. F. S. Perfluorooctane Sulfonate (PFOS), Perfluorooctanoic Acid (PFOA) and Their Salts Scientific Opinion of the Panel on Contaminants in the Food Chain. Efsa J. 2008, 6, 653. DOI: 10.2903/j.efsa.2008.653.
  • Krafft, M. P.; Riess, J. G. Per-and Polyfluorinated Substances (PFASs): Environmental Challenges. Curr. Opin. Colloid Interface Sci. 2015, 20, 192–212. DOI: 10.1016/j.cocis.2015.07.004.
  • Rappazzo, K. M.; Coffman, E.; Hines, E. P. Exposure to Perfluorinated Alkyl Substances and Health Outcomes in Children: A Systematic Review of the Epidemiologic Literature. Int. J. Environ. Res. Public Health 2017, 14, 691. DOI: 10.3390/ijerph14070691.
  • Dorman, F. L.; Whiting, J. J.; Cochran, J. W.; Gardea-Torresdey, J. Gas Chromatography. Anal. Chem. 2010, 82, 4775–4785. DOI: 10.1021/ac101156h.
  • Trojanowicz, M.; Koc, M. Recent Developments in Methods for Analysis of Perfluorinated Persistent Pollutants. Mikrochim. Acta. 2013, 180, 957–971. DOI: 10.1007/s00604-013-1046-z.
  • Ateia, M.; Maroli, A.; Tharayil, N.; Karanfil, T. The Overlooked short- and ultrashort-chain poly- and perfluorinated substances: A review . Chemosphere 2019, 220, 866–882. DOI: 10.1016/j.chemosphere.2018.12.186.
  • Shafique, U.; Schulze, S.; Slawik, C.; Kunz, S.; Paschke, A.; Schüürmann, G. Gas Chromatographic Determination of Perfluorocarboxylic Acids in Aqueous Samples – A Tutorial Review. Anal. Chim. Acta. 2017, 949, 8–22. DOI: 10.1016/j.aca.2016.10.026.
  • Henderson, W. M.; Weber, E. J.; Duirk, S. E.; Washington, J. W.; Smith, M. A. Quantification of Fluorotelomer-Based Chemicals in Mammalian Matrices by Monitoring Perfluoroalkyl Chain Fragments with GC/MS. J. Chromatogr. B: Analyt Technol. Biomed. Life Sci. 2007, 846, 155–161. DOI: 10.1016/j.jchromb.2006.08.042.
  • Fujii, Y.; Yan, J.; Harada, K. H.; Hitomi, T.; Yang, H.; Wang, P.; Koizumi, A. Levels and Profiles of Long-Chain Perfluorinated Carboxylic Acids in Human Breast Milk and Infant Formulas in East Asia. Chemosphere 2012, 86, 315–321. DOI: 10.1016/j.chemosphere.2011.10.035.
  • Moody, C. A.; Field, J. A. Determination of Perfluorocarboxylates in Groundwater Impacted by Fire-Fighting Activity. Environ. Sci. Technol. 1999, 33, 2800–2806. +. DOI: 10.1021/es981355.
  • Alzaga, R.; Bayona, J. M. a. Determination of Perfluorocarboxylic Acids in Aqueous Matrices by Ion-Pair Solid-Phase Microextraction-in-Port Derivatization-Gas Chromatography-Negative Ion Chemical Ionization Mass Spectrometry . J. Chromatogr. A. 2004, 1042, 155–162. DOI: 10.1016/j.chroma.2004.05.015.
  • Dufková, V.; Čabala, R.; Maradová, D.; Štícha, M. A Fast Derivatization Procedure for Gas Chromatographic Analysis of Perfluorinated Organic Acids. J. Chromatogr. A. 2009, 1216, 8659–8664. DOI: 10.1016/j.chroma.2009.10.042.
  • Shan, G.; Sun, H.; Hou, Z.; Zhu, L. Recent Advances in Derivatization for Chromatographic Determination of Perfluoroalkyl Acids. Prog. Chem. 2012, 24, 2019–2027.
  • Li, D.-X.; Gan, L.; Bronja, A.; Schmitz, O. J. Gas Chromatography Coupled to Atmospheric Pressure Ionization Mass Spectrometry (GC-API-MS): review ). Anal. Chim. Acta. 2015, 891, 43–61. DOI: 10.1016/j.aca.2015.08.002.
  • Moody, C. A.; Martin, J. W.; Kwan, W. C.; Muir, D. C. G.; Mabury, S. A. Monitoring Perfluorinated Surfactants in Biota and Surface Water Samples following an Accidental Release of Fire-Fighting Foam into Etobicoke Creek. Environ. Sci. Technol. 2002, 36, 545–551. DOI: 10.1021/es011001.
  • Wang, Z.; Cousins, I. T.; Berger, U.; Hungerbühler, K.; Scheringer, M. Comparative Assessment of the Environmental Hazards of and Exposure to Perfluoroalkyl Phosphonic and Phosphinic Acids (PFPAs and PFPiAs): Current Knowledge, Gaps, Challenges and Research Needs. Environ. Int. 2016, 89-90, 235–247. DOI: 10.1016/j.envint.2016.01.023.
  • Flaherty, J. M.; Connolly, P. D.; Decker, E. R.; Kennedy, S. M.; Ellefson, M. E.; Reagen, W. K.; Szostek, B. Quantitative Determination of Perfluorooctanoic Acid in Serum and Plasma by Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr. B: Analyt Technol. Biomed. Life Sci. 2005, 819, 329–338. DOI: 10.1016/j.jchromb.2005.03.002.
  • Larsen, B. S.; Kaiser, M. A. Challenges in Perfluorocarboxylic Acid Measurements. Anal. Chem. 2007, 79, 3966–3973. DOI: 10.1021/ac071918c.
  • Jahnke, A.; Berger, U. Trace Analysis of Per- and Polyfluorinated Alkyl Substances in Various Matrices-How Do Current Methods Perform? J. Chromatogr. A. 2009, 1216, 410–421. DOI: 10.1016/j.chroma.2008.08.098.
  • Takino, M.; Daishima, S.; Nakahara, T. Determination of Perfluorooctane Sulfonate in River Water by Liquid Chromatography/Atmospheric Pressure Photoionization Mass Spectrometry by Automated On-line Extraction Using Turbulent Flow Chromatography. Rapid Commun. Mass Spectrom. 2003, 17, 383–390. DOI: 10.1002/rcm.937.
  • Rogatsky, E.; Stein, D. Evaluation of Matrix Effect and Chromatography Efficiency: new Parameters for Validation of Method Development. J. Am. Soc. Mass Spectrom. 2005, 16, 1757–1759. 10.1021/jasms.8b02308.
  • Liu, L. An UHPLC-MS/MS Quantitative Method for Trace Analysis of per-and Polyfluoroalkyl Substances (PFASs) in Environmental Media from Alabama Estuaries. Auburn: Civil Engineering; 2018.
  • Taniyasu, S.; Kannan, K.; So, M. K.; Gulkowska, A.; Sinclair, E.; Okazawa, T.; Yamashita, N. Analysis of Fluorotelomer Alcohols, Fluorotelomer Acids, and Short- and Long-Chain Perfluorinated Acids in Water and Biota. J. Chromatogr. A. 2005, 1093, 89–97. DOI: 10.1016/j.chroma.2005.07.053.
  • Kaufmann, A.; Butcher, P.; Maden, K.; Walker, S.; Widmer, M. Comprehensive Comparison of Liquid Chromatography Selectivity as Provided by Two Types of Liquid Chromatography Detectors (High Resolution Mass Spectrometry And Tandem Mass Spectrometry): "Where is the Crossover Point?” Anal. Chim. Acta 2010, 673, 60–72. DOI: 10.1016/j.aca.2010.05.020.
  • Fang, S.; Zhang, Y.; Zhao, S.; Qiang, L.; Chen, M.; Zhu, L. Bioaccumulation of Perfluoroalkyl Acids Including the Isomers of Perfluorooctane Sulfonate in Carp (Cyprinus Carpio) in a Sediment/Water Microcosm. Environ. Toxicol. Chem. 2016, 35, 3005–3013. DOI: 10.1002/etc.3483.
  • Zhang, H.; Wen, B.; Wen, W.; Ma, Y.; Hu, X.; Wu, Y.; Luo, L.; Zhang, S. Determination of Perfluoroalkyl Acid Isomers in Biosolids, Biosolids-Amended Soils and Plants Using Ultra-High Performance Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr. B: Analyt Technol. Biomed. Life Sci. 2018, 1072, 25–33. DOI: 10.1016/j.jchromb.2017.09.036.
  • Yeung, L. W. Y.; Stadey, C.; Mabury, S. A. Simultaneous Analysis of Perfluoroalkyl and Polyfluoroalkyl Substances Including Ultrashort-Chain C2 and C3 Compounds in Rain and River Water Samples by Ultra Performance Convergence Chromatography. J. Chromatogr. A. 2017, 1522, 78–85. DOI: 10.1016/j.chroma.2017.09.049.
  • Ohya, T.; Kudo, N.; Suzuki, E.; Kawashima, Y. Determination of Perfluorinated Carboxylic Acids in Biological Samples by High-Performance Liquid Chromatography. J. Chromatogr. B 1998, 720, 1–7. DOI: 10.1016/S0378-4347(98)00448-4.
  • Hansen, K. J.; Clemen, L. A.; Ellefson, M. E.; Johnson, H. O. Compound-Specific, Quantitative Characterization of Organic Fluorochemicals in Biological Matrices. Environ. Sci. Technol. 2001, 35, 766–770. DOI: 10.1021/es001489z.
  • Ruan, T.; Jiang, G. Analytical Methodology for Identification of Novel per- and Polyfluoroalkyl Substances in the Environment. Trends Anal. Chem. 2017, 95, 122–131. DOI: 10.1016/j.trac.2017.07.024.
  • Chu, S.; Letcher, R. J. Linear and Branched Perfluorooctane Sulfonate Isomers in Technical Product and Environmental Samples by in-Port Derivatization-Gas Chromatography-Mass Spectrometry. Anal. Chem. 2009, 81, 4256–4262. DOI: 10.1021/ac8027273.
  • Villagrasa, M.; López de Alda, M.; Barceló, D. Environmental Analysis of Fluorinated Alkyl Substances by Liquid Chromatography-(Tandem) Mass Spectrometry: A Review. Anal. Bioanal. Chem. 2006, 386, 953–972. DOI: 10.1007/s00216-006-0471-9.
  • Yamashita, N.; Kannan, K.; Taniyasu, S.; Horii, Y.; Okazawa, T.; Petrick, G.; Gamo, T. Analysis of Perfluorinated Acids at Parts-per-Quadrillion Levels in Seawater Using Liquid Chromatography-Tandem Mass Spectrometry. Environ. Sci. Technol. 2004, 38, 5522–5528. DOI: 10.1021/es0492541.
  • Richardson, S. D. Water Analysis: Emerging Contaminants and Current Issues. Anal. Chem. 2009, 81, 4645–4677. DOI: 10.1021/ac9008012.
  • Picó, Y.; Farré, M.; Barceló, D. Quantitative Profiling of Perfluoroalkyl Substances by Ultrahigh-Performance Liquid Chromatography and Hybrid Quadrupole Time-of-Flight Mass Spectrometry. Anal. Bioanal. Chem. 2015, 407, 4247–4259. DOI: 10.1007/s00216-015-8459-y.
  • Zacs, D.; Bartkevics, V. Trace Determination of Perfluorooctane Sulfonate and Perfluorooctanoic Acid in Environmental Samples (Surface Water, Wastewater, Biota, Sediments, and Sewage Sludge) Using Liquid Chromatography - Orbitrap Mass Spectrometry. J. Chromatogr. A. 2016, 1473, 109–121. DOI: 10.1016/j.chroma.2016.10.060.
  • Zacs, D.; Bartkevics, V. Analytical Capabilities of High Performance Liquid chromatography - Atmospheric Pressure Photoionization - Orbitrap Mass Spectrometry (HPLC-APPI-Orbitrap-MS) for the Trace Determination of Novel and Emerging Flame Retardants in Fish. Anal. Chim. Acta. 2015, 898, 60–72. DOI: 10.1016/j.aca.2015.10.008.
  • Cerveny, D.; Grabic, R.; Fedorova, G.; Grabicova, K.; Turek, J.; Kodes, V.; Golovko, O.; Zlabek, V.; Randak, T. Perfluoroalkyl Substances in Aquatic Environment-Comparison of Fish and Passive Sampling Approaches. Environ. Res. 2016, 144, 92–98. DOI: 10.1016/j.envres.2015.11.010.
  • Lorenzo, M.; Campo, J.; Picó, Y. Analytical Challenges to Determine Emerging Persistent Organic Pollutants in Aquatic Ecosystems. Trends Anal. Chem. 2018, 103, 137–155. DOI: 10.1016/j.trac.2018.04.003.
  • Jorgenson, J. W.; Lukacs, K. D. Zone Electrophoresis in Open-Tubular Glass Capillaries. Anal. Chem. 1981, 53, 1298–1302. DOI: 10.1021/ac00231a037.
  • Voeten, R. L.; Ventouri, I. K.; Haselberg, R.; Somsen, G. W. Capillary Electrophoresis: trends and Recent Advances. Anal. Chem. 2018, 90, 1464–1481. DOI: 10.1021/acs.analchem.8b00015.
  • Wójcik, L.; Korczak, K.; Szostek, B.; Trojanowicz, M. Separation and Determination of Perfluorinated Carboxylic Acids Using Capillary Zone Electrophoresis With Indirect Photometric Detection. J. Chromatogr. A. 2006, 1128, 290–297. DOI: 10.1016/j.chroma.2006.06.049.
  • Trojanowicz, M.; Wójcik, L.; Szostek, B.; Korczak, K.; Bojanowska-Czajka, A.; Drzewicz, P.; Masár, M.; Kaniansky, D. Application of Capillary Electrophoresis in Analysis of Perfluorinated Carboxylic Acids. Organohalogen Comp. 2006, 68, 2531.
  • Wang, Y.; Zhang, P.; Pan, G.; Chen, H. Ferric Ion Mediated Photochemical Decomposition of Perfluorooctanoic Acid (PFOA) by 254nm UV Light. J. Hazard. Mater. 2008, 160, 181–186. DOI: 10.1016/j.jhazmat.2008.02.105.
  • Wang, K.; Huang, D.; Wang, W.; Li, Y.; Xu, L.; Li, J.; Zhu, Y.; Niu, J. Enhanced Decomposition of long-chain perfluorocarboxylic acids (C9-C10) by electrochemical activation of peroxymonosulfate in aqueous solution . Sci. Total Environ. 2021, 758, 143666. DOI: 10.1016/j.scitotenv.2020.143666.
  • Knob, R.; Maier, V.; Petr, J.; Ranc, V.; Ševčík, J. On-line Preconcentration of Perfluorooctanoic Acid and Perfluorooctanesulfonic Acid by Nonaqueous Capillary Electrophoresis . Electrophoresis 2012, 33, 2159–2166. DOI: 10.1002/elps.201100665.
  • Cerutti, S.; Pacheco, P. H.; Gil, R.; Martinez, L. D. Green Sample Preparation Strategies for Organic/Inorganic Compounds in Environmental Samples. Curr. Opin. Green Sustain. Chem. 2019, 19, 76–86. DOI: 10.1016/j.cogsc.2019.08.007.
  • Jalili, V.; Barkhordari, A.; Ghiasvand, A. Liquid-Phase Microextraction of Polycyclic Aromatic Hydrocarbons: A Review. Rev. Anal. Chem. 2020, 39, 1–19. DOI: 10.1515/revac-2020-0101.
  • Jalili, V.; Barkhordari, A.; Ghiasvand, A. Solid-Phase Microextraction Technique for Sampling and Preconcentration of Polycyclic Aromatic Hydrocarbons: A Review. Microchem. J. 2020, 157, 104967. DOI: 10.1016/j.microc.2020.104967.
  • Ghiasvand, A. R.; Hajipour, S.; Heidari, N. Cooling-Assisted Microextraction: Comparison of Techniques and Applications. Trends Anal. Chem. 2016, 77, 54–65. DOI: 10.1016/j.trac.2015.12.008.
  • Kabir, A.; Locatelli, M.; Ulusoy, H. I. Recent Trends in Microextraction Techniques Employed in Analytical and Bioanalytical Sample Preparation. Separations 2017, 4, 36. DOI: 10.3390/separations4040036.
  • Lashgari, M.; Singh, V.; Pawliszyn, J. A Critical Review on Regulatory Sample Preparation Methods: Validating Solid-Phase Microextraction Techniques. Trends Anal. Chem. 2019, 119, 115618. DOI: 10.1016/j.trac.2019.07.029.
  • Chormey, D. S.; Bakırdere, S. Principles and Recent Advancements in Microextraction Techniques. in Comprehensive Analytical Chemistry: Elsevier: Netherland, 2018, 257.
  • Souza-Silva, É. A.; Jiang, R.; Rodríguez-Lafuente, A.; Gionfriddo, E.; Pawliszyn, J. A Critical Review of the State of the Art of Solid-Phase Microextraction of Complex Matrices I. Environmental Analysis. Trends Anal. Chem. 2015, 71, 224–235. DOI: 10.1016/j.trac.2015.04.016.
  • Jalili, V.; Barkhordari, A.; Ghiasvand, A. Bioanalytical Applications of Microextraction Techniques: A Review of Reviews. Chromatographia 2020, 83, 567–577. DOI: 10.1007/s10337-020-03884-1.
  • Reyes-Garcés, N.; Gionfriddo, E.; Gómez-Ríos, G. A.; Alam, M. N.; Boyacı, E.; Bojko, B.; Singh, V.; Grandy, J.; Pawliszyn, J. Advances in Solid Phase Microextraction and Perspective on Future Directions. Anal. Chem. 2018, 90, 302–360. DOI: 10.1021/acs.analchem.7b04502.
  • Ghiasvand, A. R.; Heidari, N.; Abdolhosseini, S.; Hamdi, A.; Haddad, P. R. Evaluation of a Cooling/Heating-Assisted Microextraction Instrument Using a Needle Trap Device Packed with Aminosilica/Graphene Oxide Nanocomposites, Covalently Attached to Cotton. Analyst 2018, 143, 2632–2640. DOI: 10.1039/c8an00063h.
  • Piri-Moghadam, H.; Alam, M. N.; Pawliszyn, J. Review of Geometries and Coating Materials in Solid Phase Microextraction: opportunities, Limitations, and Future Perspectives. Anal. Chim. Acta. 2017, 984, 42–65. DOI: 10.1016/j.aca.2017.05.035.
  • Sajid, M.; Khaled Nazal, M.; Rutkowska, M.; Szczepańska, N.; Namieśnik, J.; Płotka-Wasylka, J. Solid Phase Microextraction: Apparatus, Sorbent Materials, and Application. Crit. Rev. Anal. Chem. 2019, 49, 271–288. DOI: 10.1080/10408347.2018.1517035.
  • Ghiasvand, A. R.; Hajipour, S. Direct Determination of Acrylamide in Potato Chips by Using Headspace Solid-Phase Microextraction Coupled with Gas Chromatography-Flame Ionization Detection. Talanta 2016, 146, 417–422. DOI: 10.1016/j.talanta.2015.09.004.
  • Turiel, E.; Díaz-Álvarez, M.; Martín-Esteban, A. Supported Liquid Membrane-Protected Molecularly Imprinted Beads for the Solid Phase Micro-Extraction of Triazines from Environmental Waters. J. Chromatogr. A. 2016, 1432, 1–6. DOI: 10.1016/j.chroma.2015.11.086.
  • Carasek, E.; Merib, J. Membrane-Based Microextraction Techniques in Analytical Chemistry: A Review. Anal. Chim. Acta. 2015, 880, 8–25. DOI: 10.1016/j.aca.2015.02.049.
  • Behfar, M.; Ghiasvand, A. R.; Yazdankhah, F. Reinforced Microextraction of Polycyclic Aromatic Hydrocarbons from Polluted Soil Samples Using an in-Needle Coated Fiber with Polypyrrole/Graphene Oxide Nanocomposite. J. Sep. Sci. 2017, 40, 2975–2983. DOI: 10.1002/jssc.201700244.
  • Akbari, E.; Ghiasvand, A.; Dalvand, K. Nanostructured Octadecylsilica Chemically Coated Stainless-Steel Fiber for Vacuum-Assisted HS-SPME Sampling of PAHs in Soil. Microchem. J. 2020, 158, 105201. DOI: 10.1016/j.microc.2020.105201.
  • Jiang, R.; Pawliszyn, J. Thin-Film Microextraction Offers Another Geometry for Solid-Phase Microextraction. Trends Anal. Chem 2012, 39, 245–253. DOI: 10.1016/j.trac.2012.07.005.
  • Kueseng, P.; Pawliszyn, J. Carboxylated Multiwalled Carbon Nanotubes/Polydimethylsiloxane, A New Coating for 96-Blade Solid-Phase Microextraction for Determination of Phenolic Compounds in Water. J. Chromatogr. A. 2013, 1317, 199–202. DOI: 10.1016/j.chroma.2013.08.038.
  • Socas-Rodríguez, B.; Hernández-Borges, J.; Herrera-Herrera, A. V.; Rodríguez-Delgado, M. Á. Multiresidue Analysis of Oestrogenic Compounds in Cow, Goat, Sheep and Human Milk Using Core-Shell Polydopamine Coated Magnetic Nanoparticles as Extraction Sorbent in Micro-Dispersive Solid-Phase Extraction Followed by Ultra-High-Performance Liquid Chromatography Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2018, 410, 2031–2042. DOI: 10.1007/s00216-018-0882-4.
  • Hasan, C. K.; Ghiasvand, A.; Lewis, T. W.; Nesterenko, P. N.; Paull, B. Recent Advances in Stir-Bar Sorptive Extraction: Coatings, Technical Improvements, and Applications. Anal. Chim. Acta. 2020, 1139, 222–240. DOI: 10.1016/j.aca.2020.08.021.
  • Beiranvand, M.; Ghiasvand, A. An Ultrasound-Assisted Pressure-Regulated Solid-Phase Microextraction Setup for Fast and Sensitive Analysis of Volatile Pollutants in Contaminated Soil. Environ. Sci. Pollut. Res. Int. 2020, 27, 36306–36315. DOI: 10.1007/s11356-020-09620-4.
  • Heidari, N.; Ghiasvand, A. A Review on Magnetic Field-Assisted Solid-Phase Microextraction Techniques. J. Liq. Chromatogr. Relat. Technol. 2020, 43, 75–82. DOI: 10.1080/10826076.2019.1668804.
  • Eisert, R.; Pawliszyn, J. Automated in-Tube Solid-Phase Microextraction Coupled to High-Performance Liquid Chromatography. Anal. Chem. 1997, 69, 3140–3147. DOI: 10.1021/ac970319a.
  • Kędziora, K.; Wasiak, W. Extraction Media Used in Needle Trap devices-Progress in Development and Application. J. Chromatogr. A. 2017, 1505, 1–17. DOI: 10.1016/j.chroma.2017.05.030.
  • Augusto, F.; Carasek, E.; Silva, R. G. C.; Rivellino, S. R.; Batista, A. D.; Martendal, E. New Sorbents for Extraction and Microextraction Techniques. J. Chromatogr. A. 2010, 1217, 2533–2542. DOI: 10.1016/j.chroma.2009.12.033.
  • Deng, J.; Yang, Y.; Fang, L.; Lin, L.; Zhou, H.; Luan, T. Coupling Solid-Phase Microextraction with Ambient Mass Spectrometry Using Surface Coated Wooden-Tip Probe for Rapid Analysis of Ultra Trace Perfluorinated Compounds in Complex Samples. Anal. Chem. 2014, 86, 11159–11166. DOI: 10.1021/ac5034177.
  • Yang, Y.; Deng, J.; Liu, Y.; He, K.; Xiang, Z.; Luan, T. A Microscale Solid-Phase Microextraction Probe for the in Situ Analysis of Perfluoroalkyl Substances and Lipids in Biological Tissues Using Mass Spectrometry. Analyst 2019, 144, 5637–5645. DOI: 10.1039/c9an01195a.
  • Huang, Y.; Lu, M.; Chen, L.; Bai, M.; Ouyang, X.; Huang, X. Development of Solid-Phase Microextraction with Multiple Interactions-Based Monolithic Fibers for the Sensitive Determination of Perfluoroalkyl Phosphonic Acids in Water and Vegetable Samples. Talanta 2020, 206, 120198. DOI: 10.1016/j.talanta.2019.120198.
  • Huang, Y.; Lu, M.; Li, H.; Bai, M.; Huang, X. Sensitive Determination of Perfluoroalkane Sulfonamides in Water and Urine Samples by Multiple Monolithic Fiber Solid-Phase Microextraction and Liquid Chromatography Tandem Mass Spectrometry. Talanta 2019, 192, 24–31. DOI: 10.1016/j.talanta.2018.09.004.
  • Liao, Y.; Ouyang, X.; Lu, M.; Peng, J.; Huang, X. Approach Based on Multiple Monolithic Fiber Solid-Phase Microextraction Coupled to Liquid Chromatography-Tandem Mass Spectrometry for Sensitive Determination of Perfluoroalkyl Acids in Fish and Seafood. Microchem. J 2020, 158, 105189. DOI: 10.1016/j.microc.2020.105189.
  • Sun, X.; Ji, W.; Hou, S.; Wang, X. Facile Synthesis of Trifluoromethyl Covalent Organic Framework for the Efficient Microextraction of per-and Polyfluorinated Alkyl Substances from Milk Products. J. Chromatogr. A. 2020, 1623, 461197. DOI: 10.1016/j.chroma.2020.461197.
  • Ayala-Cabrera, J.; Contreras-Llin, A.; Moyano, E.; Santos, F. A Novel Methodology for the Determination of Neutral Perfluoroalkyl and Polyfluoroalkyl Substances in Water by Gas Chromatography-Atmospheric Pressure Photoionisation-High Resolution Mass Spectrometry. Anal. Chim. Acta 2020, 1100, 97–106. DOI: 10.1016/j.aca.2019.12.004.
  • Hou, Y. J.; Deng, J. W.; He, K. L.; Chen, C.; Yang, Y. Y. Covalent Organic Frameworks-Based Solid-Phase Microextraction Probe for Rapid and Ultrasensitive Analysis of Trace Per- and Polyfluoroalkyl Substances Using Mass Spectrometry. Anal. Chem. 2020, 92, 10213–10217. DOI: 10.1021/acs.analchem.0c01829.
  • Saito, K.; Uemura, E.; Ishizaki, A.; Kataoka, H. Determination of Perfluorooctanoic Acid and Perfluorooctane Sulfonate by Automated in-Tube Solid-Phase Microextraction Coupled With Liquid Chromatography-Mass Spectrometry. Anal. Chim. Acta. 2010, 658, 141–146. DOI: 10.1016/j.aca.2009.11.004.
  • Monteleone, M.; Naccarato, A.; Sindona, G.; Tagarelli, A. A Rapid and Sensitive Assay of Perfluorocarboxylic Acids in Aqueous Matrices by Headspace Solid Phase Microextraction-Gas Chromatography-Triple Quadrupole Mass Spectrometry. J. Chromatogr. A. 2012, 1251, 160–168. DOI: 10.1016/j.chroma.2012.06.033.
  • Alzaga, R.; Salgado-Petinal, C.; Jover, E.; Bayona, J. M. Development of a Procedure for the Determination of Perfluorocarboxylic Acids in Sediments by Pressurised Fluid Extraction, Headspace Solid-Phase Microextraction Followed by Gas Chromatographic-Mass Spectrometric Determination. J. Chromatogr. A. 2005, 1083, 1–6. DOI: 10.1016/j.chroma.2005.06.036.
  • Lashgari, M.; Lee, H. K. Determination of Perfluorinated Carboxylic Acids in Fish Fillet by Micro-Solid Phase Extraction, Followed by Liquid Chromatography-Triple Quadrupole Mass Spectrometry. J. Chromatogr. A. 2014, 1369, 26–32. DOI: 10.1016/j.chroma.2014.09.082.
  • Chen, C.; Liang, X.; Wang, J.; Zou, Y.; Hu, H.; Cai, Q.; Yao, S. Development of a Polymeric Ionic Liquid Coating for Direct-Immersion Solid-Phase Microextraction Using Polyhedral Oligomeric Silsesquioxane as Cross-Linker. J. Chromatogr. A 2014, 1348, 80–86. DOI: 10.1016/j.chroma.2014.04.098.
  • Yang, L.; Yu, W.; Yan, X.; Deng, C. Decyl-Perfluorinated Magnetic Mesoporous Microspheres for Extraction and Analysis Perfluorinated Compounds in Water Using Ultrahigh-Performance Liquid Chromatography-Mass Spectrometry. J. Sep. Sci. 2012, 35, 2629–2636. DOI: 10.1002/jssc.201200300.
  • Alzaga, R.; Peña, A.; Ortiz, L.; Bayona, J. M. Determination of Linear Alkylbenzensulfonates in Aqueous Matrices by Ion-Pair Solid-Phase Microextraction–in-Port Derivatization–Gas Chromatography–Mass Spectrometry. J. Chromatogr. A. 2003, 999, 51–60. DOI: 10.1016/S0021-9673(03)00493-X.
  • Dalvand, K.; Ghiasvand, A. Simultaneous Analysis of PAHs and BTEX in Soil by a Needle Trap Device Coupled with GC-FID and Using Response Surface Methodology Involving Box-Behnken Design. Anal. Chim. Acta. 2019, 1083, 119–129. DOI: 10.1016/j.aca.2019.07.063.
  • Liu, H.; Dasgupta, P. K. Analytical Chemistry in a Drop. Solvent Extraction in a Microdrop. Anal. Chem. 1996, 68, 1817–1821. DOI: 10.1021/ac960145h.
  • Chormey, D. S.; Zaman, B. T.; Kasa, N. A.; Bakırdere, S. Liquid Phase Microextraction Strategies and Their Application in the Determination of Endocrine Disruptive Compounds in Food Samples. Trends Anal. Chem. 2020, 128, 115917. DOI: 10.1016/j.trac.2020.115917.
  • Ghiasvand, A. R.; Solaymani, H.; Heidari, N. Separation and Sensitive Determination of Quercetin in Rosa Canina L. Using Solidified Floating Organic Drop Microextraction Followed by High-Performance Liquid Chromatography Determination. J. Iran. Chem. Soc. 2017, 14, 1113–1118. DOI: 10.1007/s13738-017-1061-9.
  • Ghiasvand, A. R.; Yazdankhah, F.; Hajipour, S. Use of Volatile Organic Solvents in Headspace Liquid-Phase Microextraction by Direct Cooling of the Organic Drop Using a Simple Cooling Capsule. J. Sep. Sci. 2016, 39, 3011–3018. DOI: 10.1002/jssc.201600142.
  • Rezaee, M.; Assadi, Y.; Hosseini, M.-R. M.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of Organic Compounds in Water Using Dispersive Liquid-Liquid Microextraction. J. Chromatogr. A. 2006, 1116, 1–9. DOI: 10.1016/j.chroma.2006.03.007.
  • Rykowska, I.; Ziemblińska, J.; Nowak, I. Modern Approaches in Dispersive Liquid-Liquid Microextraction (DLLME) Based on Ionic Liquids: A Review. J. Mol. Liq. 2018, 259, 319–339. DOI: 10.1016/j.molliq.2018.03.043.
  • Kasa, N. A.; Chormey, D. S.; Büyükpınar, Ç.; Turak, F.; Budak, T. B.; Bakırdere, S. Determination of Cadmium at Ultratrace Levels by Dispersive Liquid–Liquid Microextraction and Batch Type Hydride Generation Atomic Absorption Spectrometry. Microchem. J. 2017, 133, 144–148. DOI: 10.1016/j.microc.2017.03.035.
  • Martín, J.; Santos, J. L.; Aparicio, I.; Alonso, E. Determination of Hormones, a Plasticizer, Preservatives, Perfluoroalkylated Compounds, and a Flame Retardant in Water Samples by Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction Based on the Solidification of a Floating Organic Drop . Talanta 2015, 143, 335–343. DOI: 10.1016/j.talanta.2015.04.089.
  • Abril, C.; Martín, J.; Malvar, J. L.; Santos, J. L.; Aparicio, I.; Alonso, E. Dispersive Liquid–Liquid Microextraction as a New Clean-up Procedure for the Determination of Parabens, Perfluorinated Compounds, UV Filters, Biocides, Surfactants, and Plasticizers in Root Vegetables. Anal. Bioanal. Chem. 2018, 410, 5155–5163. DOI: 10.1007/s00216-018-1165-9.
  • Hu, Z.; Li, Q.; Xu, L.; Zhang, W.; Zhang, Y. Determination of Perfluoroalkyl Carboxylic Acids in Environmental Water Samples by Dispersive Liquid–Liquid Microextraction with GC-MS Analysis. J. Liq. Chromatogr. Relat. Technol. 2020, 43, 282–290. DOI: 10.1080/10826076.2020.1728311.
  • Wang, J.; Shi, Y.; Cai, Y. A Highly Selective Dispersive liquid-liquid microextraction Approach Based on the Unique Fluorous Affinity for the Extraction and Detection of per- and Polyfluoroalkyl Substances Coupled with High Performance Liquid Chromatography Tandem-Mass Spectrometry. J. Chromatogr. A. 2018, 1544, 1–7. DOI: 10.1016/j.chroma.2018.02.047.
  • Liu, W.-L.; Ko, Y.-C.; Hwang, B.-H.; Li, Z.-G.; Yang, T. C.-C.; Lee, M.-R. Determination of Perfluorocarboxylic Acids in Water by Ion-Pair Dispersive Liquid-Liquid Microextraction and Gas Chromatography-Tandem Mass Spectrometry With Injection Port Derivatization. Anal. Chim. Acta. 2012, 726, 28–34. DOI: 10.1016/j.aca.2012.03.019.
  • Papadopoulou, A.; Román, I. P.; Canals, A.; Tyrovola, K.; Psillakis, E. Fast Screening of Perfluorooctane Sulfonate in Water Using Vortex-Assisted Liquid-Liquid Microextraction Coupled to Liquid Chromatography-Mass Spectrometry. Anal. Chim. Acta. 2011, 691, 56–61. DOI: 10.1016/j.aca.2011.02.043.
  • Luque, N.; Ballesteros-Gómez, A.; van Leeuwen, S.; Rubio, S. Analysis of Perfluorinated Compounds in Biota by Microextraction with Tetrahydrofuran and Liquid Chromatography/Ion Isolation-Based Ion-Trap Mass Spectrometry. J. Chromatogr. A. 2010, 1217, 3774–3782. DOI: 10.1016/j.chroma.2010.04.014.
  • Primel, E. G.; Caldas, S. S.; Marube, L. C.; Escarrone, A. L. V. An Overview of Advances in Dispersive Liquid–Liquid Microextraction for the Extraction of Pesticides and Emerging Contaminants from Environmental Samples. Trends Environ. Anal. Chem. 2017, 14, 1–18. DOI: 10.1016/j.teac.2017.03.001.
  • Campillo, N.; Vinas, P.; Šandrejová, J.; Andruch, V. Ten Years of Dispersive Liquid-Liquid Microextraction and Derived Techniques. Appl. Spectrosc. Rev. 2017, 52, 267–415. DOI: 10.1080/05704928.2016.1224240.
  • Ruiz, F.-J.; Rubio, S.; Pérez-Bendito, D. Water-Induced Coacervation of Alkyl Carboxylic Acid Reverse Micelles: Phenomenon Description and Potential for the Extraction of Organic Compounds. Anal. Chem. 2007, 79, 7473–7484. DOI: 10.1021/ac0708644.
  • Ballesteros-Gómez, A.; Sicilia, M. D.; Rubio, S. Supramolecular Solvents in the Extraction of Organic Compounds. A Review. Anal. Chim. Acta. 2010, 677, 108–130. DOI: 10.1016/j.aca.2010.07.027.
  • Peyrovi, M.; Hadjmohammadi, M. Supramolecular Solvent-Based Microextraction of Warfarin From Biological Samples and Its Determination Using HPLC. J. Iran. Chem. Soc. 2015, 12, 1253–1259. DOI: 10.1007/s13738-015-0589-9.
  • Caballo, C.; Sicilia, M. D.; Rubio, S. Supramolecular Solvents for Green Chemistry. Elsevier: New York, 2017.
  • Ballesteros-Gómez, A.; Lunar, L.; Sicilia, M. D.; Rubio, S. Hyphenating Supramolecular Solvents and Liquid Chromatography: tips for Efficient Extraction and Reliable Determination of Organics. Chromatographia 2019, 82, 111–124. DOI: 10.1007/s10337-018-3614-1.
  • Zohrabi, P.; Shamsipur, M.; Hashemi, M.; Hashemi, B. Liquid-Phase Microextraction of Organophosphorus Pesticides Using Supramolecular Solvent as a Carrier for Ferrofluid. Talanta 2016, 160, 340–346. DOI: 10.1016/j.talanta.2016.07.036.
  • Dueñas-Mas, M. J.; Ballesteros-Gómez, A.; Rubio, S. Supramolecular Solvent-Based Microextraction of Emerging Bisphenol a Replacements (Colour Developers) in Indoor Dust from Public Environments. Chemosphere 2019, 222, 22–28. DOI: 10.1016/j.chemosphere.2019.01.095.
  • Salamat, Q.; Yamini, Y.; Moradi, M.; Farahani, A.; Feizi, N. Extraction of Antidepressant Drugs in Biological Samples Using Alkanol-Based Nano Structured Supramolecular Solvent Microextraction Followed by Gas Chromatography With Mass Spectrometric Analysis. J. Sep. Sci. 2019, 42, 1620–1628. DOI: 10.1002/jssc.201801152.
  • Jalili, V.; Zendehdel, R.; Barkhordari, A. Supramolecular Solvent-Based Microextraction Techniques for Sampling and Preconcentration of Heavy Metals: A Review. Rev. Anal. Chem. 2021, 40, 93–107. DOI: 10.1515/revac-2021-0130.
  • Deng, H.; Wang, H.; Liang, M.; Su, X. A Novel Approach Based on Supramolecular Solvent Microextraction and UPLC-Q-Orbitrap HRMS for Simultaneous Analysis of Perfluorinated Compounds and Fluorine-Containing Pesticides in Drinking and Environmental Water. Microchem. J. 2019, 151, 104250. DOI: 10.1016/j.microc.2019.104250.
  • Liang, M.; Xian, Y.; Wang, B.; Hou, X.; Wang, L.; Guo, X.; Wu, Y.; Dong, H. High Throughput Analysis of 21 Perfluorinated Compounds in Drinking Water, Tap Water, River Water and Plant Effluent from Southern China by Supramolecular Solvents-Based Microextraction Coupled with HPLC-Orbitrap HRMS. Environ. Pollut. 2020, 263, 114389. DOI: 10.1016/j.envpol.2020.114389.
  • Luque, N.; Ballesteros-Gómez, A.; van Leeuwen, S.; Rubio, S. A Simple and Rapid Extraction Method for Sensitive Determination of Perfluoroalkyl Substances in Blood Serum Suitable for Exposure evaluation. J. Chromatogr. A. 2012, 1235, 84–91. DOI: 10.1016/j.chroma.2012.02.055.
  • García, E. R.; Gómez, A. M. B. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, Supramolecular Solvents in the Analytical Process. In Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation 2006, Hoboken, New Jersey.
  • Rubio, S. Twenty Years of Supramolecular Solvents in Sample Preparation for Chromatography: Achievements and Challenges Ahead. Anal. Bioanal. Chem. 2020, 412, 1. DOI: 10.1007/s00216-020-02559-y.
  • Benskin, J. P.; Bataineh, M.; Martin, J. W. Simultaneous Characterization of Perfluoroalkyl Carboxylate, Sulfonate, and Sulfonamide Isomers by Liquid Chromatography-Tandem Mass Spectrometry. Anal. Chem. 2007, 79, 6455–6464. DOI: 10.1021/ac070802d.
  • Powley, C. R.; George, S. W.; Ryan, T. W.; Buck, R. C. Matrix Effect-Free Analytical Methods for Determination of Perfluorinated Carboxylic Acids in Environmental Matrixes. Anal. Chem. 2005, 77, 6353–6358. DOI: 10.1021/ac0508090.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.