535
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Chiral Sensing as a Future Challenge in Electroanalytical Chemistry: Cyclodextrin-Based Chiral Sensors

, , & ORCID Icon
Pages 498-519 | Published online: 03 Oct 2021

References

  • Alvarez-Rivera, G.; Bueno, M.; Ballesteros-Vivas, D.; Cifuentes, A. Chiral Analysis in Food Science. TrAC - Trends Anal. Chem. 2020, 123, 115761. DOI: 10.1016/j.trac.2019.115761.
  • Abedi, G.; Talebpour, Z.; Jamechenarboo, F. The Survey of Analytical Methods for Sample Preparation and Analysis of Fragrances in Cosmetics and Personal Care Products. TrAC - Trends Anal. Chem. 2018, 102, 41–59. DOI: 10.1016/j.trac.2018.01.006.
  • Ai, Y.; Zhang, F.; Wang, C.; Xie, R.; Liang, Q. Recent Progress in Lab-on-a-Chip for Pharmaceutical Analysis and Pharmacological/Toxicological Test. TrAC - Trends Anal. Chem. 2019, 117, 215–230. DOI: 10.1016/j.trac.2019.06.026.
  • Miggiels, P.; Wouters, B.; van Westen, G. J. P.; Dubbelman, A.-C.; Hankemeier, T. Novel Technologies for Metabolomics: More for Less. TrAC - Trends Anal. Chem. 2019, 120, 115323. DOI: 10.1016/j.trac.2018.11.021.
  • Chankvetadze, B. Recent Trends in Preparation, Investigation and Application of Polysaccharide-Based Chiral Stationary Phases for Separation of Enantiomers in High-Performance Liquid Chromatography. TrAC - Trends Anal. Chem. 2020, 122, 115709. DOI: 10.1016/j.trac.2019.115709.
  • Carrão, D. B.; Perovani, I. S.; de Albuquerque, N. C. P.; de Oliveira, A. R. M. Enantioseparation of Pesticides: A Critical Review. TrAC - Trends Anal. Chem. 2020, 122, 115719. DOI: 10.1016/j.trac.2019.115719.
  • D'Orazio, G.; Fanali, C.; Asensio-Ramos, M.; Fanali, S. Chiral Separations in Food Analysis. TrAC - Trends Anal. Chem. 2017, 96, 151–171. DOI: 10.1016/j.trac.2017.05.013.
  • Ilisz, I.; Péter, A.; Lindner, W. State-of-the-Art Enantioseparations of Natural and Unnatural Amino Acids by High-Performance Liquid Chromatography. TrAC - Trends Anal. Chem. 2016, 81, 11–22. DOI: 10.1016/j.trac.2016.01.016.
  • Do, T. K. T.; Hadji-Minaglou, F.; Antoniotti, S.; Fernandez, X. Authenticity of Essential Oils. TrAC - Trends Anal. Chem. 2015, 66, 146–157. DOI: 10.1016/j.trac.2014.10.007.
  • Chankvetadze, B. Recent Trends in Enantioseparations Using Capillary Electromigration Techniques. TrAC - Trends Anal. Chem. 1999, 18, 485–498. DOI: 10.1016/S0165-9936(99)00121-1.
  • Han, D.-Q.; Yao, Z.-P. Chiral Mass Spectrometry: An Overview. TrAC - Trends Anal. Chem. 2020, 123, 115763. DOI: 10.1016/j.trac.2019.115763.
  • Maceira, A.; Marcé, R. M.; Borrull, F. Analytical Methods for Determining Organic Compounds Present in the Particulate Matter from Outdoor Air. TrAC - Trends Anal. Chem. 2020, 122, 115707. DOI: 10.1016/j.trac.2019.115707.
  • Rocco, A.; Donati, E.; Touloupakis, E.; Aturki, Z. Miniaturized Separation Techniques as Analytical Methods to Ensure Quality and Safety of Dietary Supplements. TrAC - Trends Anal. Chem. 2018, 103, 156–183. DOI: 10.1016/j.trac.2018.04.004.
  • Petrie, B.; Camacho Muñoz, M. D.; Martín, J. Stereoselective LC–MS/MS Methodologies for Environmental Analysis of Chiral Pesticides. TrAC - Trends Anal. Chem. 2019, 110, 249–258. DOI: 10.1016/j.trac.2018.11.010.
  • Blaschke, G.; Chankvetadze, B. Resolution of Enantiomers of Chiral Drugs. In New Trends in Synthetic Medicinal Chemistry; Wiley Blackwell: New Jersey, 2008; pp 139–173.
  • Wong, S.-F. F. S.-F.; Khor, S. M. M. State-of-the-Art of Differential Sensing Techniques in Analytical Sciences. TrAC - Trends Anal. Chem. 2019, 114, 108–125. DOI: 10.1016/j.trac.2019.03.006.
  • Zor, E.; Bingol, H.; Ersoz, M. Chiral Sensors. TrAC - Trends Anal. Chem. 2019, 121, 115662. DOI: 10.1016/j.trac.2019.115662.
  • Peluso, P.; Chankvetadze, B. Native and Substituted Cyclodextrins as Chiral Selectors for Capillary Electrophoresis Enantioseparations: Structures, Features, Application, and Molecular Modeling. Electrophoresis. 2021, 16(11), 1874. DOI: 10.1002/elps.202100053.
  • Fanali, S. Enantioselective Determination by Capillary Electrophoresis with Cyclodextrins as Chiral Selectors. J. Chromatogr. A. 2000, 875, 89–122. DOI: 10.1016/S0021-9673(99)01309-6.
  • Pasteur, L. The Foundations of Stereo Chemistry. Memoirs by Pasteur, Van’t Hoff, Lebel and Wislicenus. American Book Co.: TN, 1901.
  • Płotka, J. M.; Biziuk, M.; Morrison, C.; Namieśnik, J. Pharmaceutical and Forensic Drug Applications of Chiral Supercritical Fluid Chromatography. TrAC - Trends Anal. Chem. 2014, 56, 74–89. DOI: 10.1016/j.trac.2013.12.012.
  • Gal, J. Carl Friedrich Naumann and the Introduction of Enantio Terminology: A Review and Analysis on the 150th Anniversary. Chirality. 2007, 19, 89–98. DOI: 10.1002/chir.20314.
  • Gal, J. Chiral Drugs from a Historical Point of View. In Chirality in Drug Research; R. Mannhold, H. Kubinyi, G. Folkers, E. Francotte and W. Lindner Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006, Vol. 33, pp. 3–26.
  • Gal, J. Louis Pasteur, Chemical Linguist: Founding the Language of Stereochemistry. Helv. Chim. Acta. 2019, 102, e1900098.
  • Caldwell, J.; Wainer, I. W. Stereochemistry: Definitions and a Note on Nomenclature. Hum. Psychopharmacol. 2001, 16, S105–S107. DOI: 10.1002/hup.334.
  • Gumustas, M.; Chankvetadze, B.; Ozkan, S. A. Analytical and Preparative Scale Separation of Enantiomers of Chiral Drugs by Chromatography and Related Methods. Curr. Med. Chem. 2018, 25, 4152–4188. DOI: 10.2174/0929867325666180129094955.
  • Gal, J. The Discovery of Stereoselectivity at Biological Receptors: Arnaldo Piutti and the Taste of the Asparagine Enantiomers-History and Analysis on the 125th Anniversary. Chirality. 2012, 24, 959–976. DOI: 10.1002/chir.22071.
  • Pinto, M. M. M.; Fernandes, C.; Tiritan, M. E. Chiral Separations in Preparative Scale: A Medicinal Chemistry Point of View. Molecules. 2020, 25, 1–16. DOI: 10.3390/molecules25081931.
  • Lin, G.-Q.; Zhang, J.-G.; Cheng, J.-F. Overview of Chirality and Chiral Drugs. Chiral Drugs. 2011.
  • Levy, R. H.; Boddy, A. V. Stereoselectivity in Pharmacokinetics: A General Theory. Pharm. Res. 1991, 8, 551–556. DOI: 10.1023/A:1015884102663.
  • Millership, J. S.; Fitzpatrick, A. Commonly Used Chiral Drugs: A Survey. Chirality. 1993, 5, 573–576. DOI: 10.1002/chir.530050802.
  • FDA’S Policy Statement for the Development of New Stereoisomeric Drugs. Chirality. 1992, 4, 338–340.
  • Li, B.; Haynie, D. Chiral Drug Separation. Encycl. Chem. Process. 2006, 1, 449–458.
  • Brooks, W. H.; Guida, W. C.; Daniel, K. G. The Significance of Chirality in Drug Design and Development. Curr. Top. Med. Chem. 2011, 11, 760–770. DOI: 10.2174/156802611795165098.
  • EMEA. Investigation of Chiral Active Substances. Eur. Med. Agency. 1994, 3CC29a, 381–391.
  • https://www.canada.ca/en/health-canada/services/drugs-health-products/drug-products/applications-submissions/guidance-documents/chemical-entity-products-quality/guidance-industry-stereochemical-issues-chiral-drug-development.html.
  • International Conference on Harmonisation; Guidance on Q6A Specifications: Test Procedures and Acceptance Criteria for New Drug Substances and New Drug Products: Chemical Substances. Notice. Fed. Regist., 2000, 65, 83041–83063.
  • Agranat, I.; Caner, H.; Caldwell, J. Putting Chirality to Work: The Strategy of Chiral Switches. Nat. Rev. Drug Discov. 2002, 1, 753–768. DOI: 10.1038/nrd915.
  • Reddy, I. K.; Mehvar, R., Eds. Chirality in Drug Design and Development; CRC Press: Florida, 2004.
  • Ballard, A.; Narduolo, S.; Ahmed, H. O.; Keymer, N. I.; Asaad, N.; Cosgrove, D. A.; Buurma, N. J.; Leach, A. G. Racemisation in Chemistry and Biology. Chem. Eur. J. 2020, 26, 3661–3687. DOI: 10.1002/chem.201903917.
  • Budău, M.; Hancu, G.; Rusu, A.; Cârcu-Dobrin, M.; Muntean, D. L. Chirality of Modern Antidepressants: An Overview. Adv. Pharm. Bull. 2017, 7, 495–500. DOI: 10.15171/apb.2017.061.
  • Marom, H.; Pogodin, S.; Agranat, I. Single Enantiomer versus Racemate: Chiral Distinction in the Proton Pump Inhibitors Omeprazole and Esomeprazole. Chirality. 2014, 26, 214–227. DOI: 10.1002/chir.22304.
  • Gellad, W. F.; Choi, P.; Mizah, M.; Good, C. B.; Kesselheim, A. S. Assessing the Chiral Switch: Approval and Use of Single-Enantiomer Drugs, 2001 to 2011. The American journal of managed care, 2014, 20(3), 90–97.
  • Sekhon, B. S. Exploiting the Power of Stereochemistry in Drugs: An Overview of Racemic and Enantiopure Drugs. J. Mod. Med. Chem. 2013, 1(10), 10–36. DOI: 10.12970/2308-8044.2013.01.01.2.
  • Tucker, G. T. Chiral Switches. Lancet (London, England). 2000, 355, 1085–1087. DOI: 10.1016/S0140-6736(00)02047-X.
  • Calcaterra, A.; D'Acquarica, I. The Market of Chiral Drugs: Chiral Switches versus de Novo Enantiomerically Pure Compounds. J. Pharm. Biomed. Anal. 2018, 147, 323–340. DOI: 10.1016/j.jpba.2017.07.008.
  • Hutt, A.; Valentová, J. The Chiral Switch: The Development of Single Enantiomer Drugs. Acta Facultatis Pharmaceuticae Universitatis Comenianae 2003, 50, 7–23.
  • Mansfield, P.; Henry, D.; Tonkin, A. Single-Enantiomer Drugs: Elegant Science, Disappointing Effects. Clin. Pharmacokinet. 2004, 43, 287–290. DOI: 10.2165/00003088-200443050-00002.
  • Elder, F. C. T.; Feil, E. J.; Snape, J.; Gaze, W. H.; Kasprzyk-Hordern, B. The Role of Stereochemistry of Antibiotic Agents in the Development of Antibiotic Resistance in the Environment. Environ. Int. 2020, 139, 105681. DOI: 10.1016/j.envint.2020.105681.
  • Ballard, A.; Narduolo, S.; Ahmad, H. O.; Cosgrove, D. A.; Leach, A. G.; Buurma, N. J. The Problem of Racemization in Drug Discovery and Tools to Predict It. Expert Opin Drug Discov. 2019, 14, 527–539. DOI: 10.1080/17460441.2019.1588881.
  • Lu, H. Stereoselectivity in Drug Metabolism. Expert Opin. Drug Metab. Toxicol 2007, 3, 149–158. DOI: 10.1517/17425255.3.2.149.
  • Blake, K.; Raissy, H. Chiral Switch Drugs for Asthma and Allergies: True Benefit or Marketing Hype. Pediatr. Allergy. Immunol. Pulmonol. 2013, 26, 157–160. DOI: 10.1089/ped.2013.0285.
  • Lenz, W.; Pfeiffer, R. A.; Kosenow, W.; Hayman, D. J. Thalidomide and Congenital Abnormalities. Lancet. 1962, 279, 45–46. DOI: 10.1016/S0140-6736(62)92665-X.
  • Zor, E.; Morales-Narváez, E.; Alpaydin, S.; Bingol, H.; Ersoz, M.; Merkoçi, A. Graphene-Based Hybrid for Enantioselective Sensing Applications. Biosens. Bioelectron. 2017, 87, 410–416. DOI: 10.1016/j.bios.2016.08.074.
  • Wang, S.-Y.; Li, L.; Xiao, Y.; Wang, Y. Recent Advances in Cyclodextrins-Based Chiral-Recognizing Platforms. TrAC - Trends Anal. Chem. 2019, 121, 115691. DOI: 10.1016/j.trac.2019.115691.
  • Gil-Av, E.; Feibush, B.; Charles-Sigler, R. Separation of Enantiomers by Gas Liquid Chromatography with an Optically Active Stationary Phase. Tetrahedron Lett. 1966, 7, 1009–1015. DOI: 10.1016/S0040-4039(00)70231-0.
  • Patil, R. A.; Weatherly, C. A.; Armstrong, D. W. Chiral Gas Chromatography. In Chiral Analysis: Advances in Spectroscopy, Chromatography and Emerging Methods, 2nd ed.; Elsevier B.V.: Amsterdam, Netherlands, 2018; pp 468–505.
  • Schurig, V. Separation of Enantiomers by Gas Chromatography. J. Chromatogr. A. 2001, 906, 275–299. DOI: 10.1016/S0021-9673(00)00505-7.
  • Konig, W. A.; Hochmuth, D. H. Enantioselective Gas Chromatography in Flavor and Fragrance Analysis: Strategies for the Identification of Known and Unknown Plant Volatiles. J. Chromatogr. Sci. 2004, 42, 423–439. DOI: 10.1093/chromsci/42.8.423.
  • Gus’kov, V. Y.; Maistrenko, V. N. New Chiral Stationary Phases: Preparation, Properties, and Applications in Gas Chromatography. J. Anal. Chem. 2018, 73, 937–945. DOI: 10.1134/S1061934818100027.
  • Elbashir, A. A.; Aboul-Enein, H. Y. Multidimensional Gas Chromatography for Chiral Analysis. Crit. Rev. Anal. Chem. 2018, 48, 416–427. DOI: 10.1080/10408347.2018.1444465.
  • Dymerski, T. Two-Dimensional Gas Chromatography Coupled with Mass Spectrometry in Food Analysis. Crit. Rev. Anal. Chem. 2018, 48, 252–278. DOI: 10.1080/10408347.2017.1411248.
  • Bucheli, T. D.; Brändli, R. C. Two-Dimensional Gas Chromatography Coupled to Triple Quadrupole Mass Spectrometry for the Unambiguous Determination of Atropisomeric Polychlorinated Biphenyls in Environmental Samples. J. Chromatogr. A. 2006, 1110, 156–164. DOI: 10.1016/j.chroma.2006.01.069.
  • Bordajandi, L. R.; Ramos, L.; González, M. J. Determination of Toxaphene Enantiomers by Comprehensive Two-Dimensional Gas Chromatography with Electron-Capture Detection. J. Chromatogr. A. 2006, 1125, 220–228. DOI: 10.1016/j.chroma.2006.05.039.
  • Willstätter, R. Ueber Einen Versuch Zur Theorie Des Färbens. Ber. Dtsch. Chem. Ges. 1904, 37, 3758–3760. DOI: 10.1002/cber.190403703222.
  • Henderson, G. M.; Rule, H. G. 3. A New Method of Resolving a Racemic Compound. J. Chem. Soc. 1939, 332, 1568–1573. DOI: 10.1039/jr9390001568.
  • Cavazzini, A.; Pasti, L.; Massi, A.; Marchetti, N.; Dondi, F. Recent Applications in Chiral High Performance Liquid Chromatography: A Review. Anal. Chim. Acta. 2011, 706, 205–222. DOI: 10.1016/j.aca.2011.08.038.
  • Francotte, E.; Lindner, W., Eds. Chirality in Drug Research. Methods and Principles in Medicinal Chemistry; Wiley: New Jersey, 2006; Vol. 33.
  • Chankvetadze, B. Recent Developments on Polysaccharide-Based Chiral Stationary Phases for Liquid-Phase Separation of Enantiomers. J. Chromatogr. A. 2012, 1269, 26–51. DOI: 10.1016/j.chroma.2012.10.033.
  • Shen, J.; Okamoto, Y. 8.11 Chromatographic Separations and Analysis: Cellulose and Polysaccharide Derivatives as Stationary Phases. In Comprehensive Chirality; Elsevier: Amsterdam, Netherlands, 2012; pp 200–226.
  • Chankvetadze, B. Liquid Chromatographic Separation of Enantiomers. In Liquid Chromatography; Elsevier, 2017; Vol. 2, pp 69–86.
  • Padró, J. M.; Keunchkarian, S. State-of-the-Art and Recent Developments of Immobilized Polysaccharide-Based Chiral Stationary Phases for Enantioseparations by High-Performance Liquid Chromatography (2013–2017). Microchem. J. 2018, 140, 142–157. DOI: 10.1016/j.microc.2018.04.017.
  • Patel, D. C.; Wahab, M. F.; Armstrong, D. W.; Breitbach, Z. S. Advances in High-Throughput and High-Efficiency Chiral Liquid Chromatographic Separations. J. Chromatogr. A. 2016, 1467, 2–18. DOI: 10.1016/j.chroma.2016.07.040.
  • Shen, J.; Okamoto, Y. Efficient Separation of Enantiomers Using Stereoregular Chiral Polymers. Chem. Rev. 2016, 116, 1094–1138. DOI: 10.1021/acs.chemrev.5b00317.
  • Subramanian, G., Ed. Chiral Separation Techniques; Wiley: New Jersey, 2006.
  • Ahuja, S., Ed. Chiral Separation Methods for Pharmaceutical and Biotechnological Products; John Wiley & Sons, Inc.: Hoboken, NJ, 2010.
  • Ward, T. J.; Ward, K. D. Chiral Separations: A Review of Current Topics and Trends. Anal. Chem. 2012, 84, 626–635. DOI: 10.1021/ac202892w.
  • Maier, N. M.; Franco, P.; Lindner, W. Separation of Enantiomers: Needs, Challenges, Perspectives. J. Chromatogr. A. 2001, 906, 3–33. DOI: 10.1016/S0021-9673(00)00532-X.
  • Yu, R. B.; Quirino, J. P. Chiral Liquid Chromatography and Capillary Electrochromatography: Trends from 2017 to 2018. TrAC - Trends Anal. Chem. 2019, 118, 779–792. DOI: 10.1016/j.trac.2019.07.011.
  • Guo, J.; Wang, Q.; Xu, D.; Crommen, J.; Jiang, Z. Recent Advances in Preparation and Applications of Monolithic Chiral Stationary Phases. TrAC - Trends Anal. Chem. 2020, 123, 115774. DOI: 10.1016/j.trac.2019.115774.
  • Zhang, C.; Liu, L.; Okamoto, Y. Enantioseparation Using Helical Polyacetylene Derivatives. TrAC - Trends Anal. Chem. 2020, 123, 115762. DOI: 10.1016/j.trac.2019.115762.
  • D’Orazio, G. Chiral Analysis by Nano-Liquid Chromatography. TrAC - Trends Anal. Chem. 2020, 125, 115832.
  • Lämmerhofer, M. Chiral Recognition by Enantioselective Liquid Chromatography: Mechanisms and Modern Chiral Stationary Phases. J. Chromatogr. A. 2010, 1217, 814–856. DOI: 10.1016/j.chroma.2009.10.022.
  • Fanali, C.; Fanali, S. Chiral Separations Using Miniaturized Techniques: State of the Art and Perspectives. Isr. J. Chem. 2016, 56, 958–967. DOI: 10.1002/ijch.201600061.
  • Cavazzini, A.; Marchetti, N.; Guzzinati, R.; Pierini, M.; Ciogli, A.; Kotoni, D.; D'Acquarica, I.; Villani, C.; Gasparrini, F. Enantioseparation by Ultra-High-Performance Liquid Chromatography. TrAC - Trends Anal. Chem. 2014, 63, 95–103. DOI: 10.1016/j.trac.2014.06.026.
  • Scriba, G. K. E. Chiral Recognition in Separation Science - An Update. J. Chromatogr. A. 2016, 1467, 56–78. DOI: 10.1016/j.chroma.2016.05.061.
  • Mourier, P. A.; Eliot, E.; Caude, M. H.; Rosset, R. H.; Tambute, A. G. Supercritical and Subcritical Fluid Chromatography on a Chiral Stationary Phase for the Resolution of Phosphine Oxide Enantiomers. Anal. Chem. 1985, 57, 2819–2823. DOI: 10.1021/ac00291a017.
  • De Klerck, K.; Mangelings, D.; Vander Heyden, Y. Supercritical Fluid Chromatography for the Enantioseparation of Pharmaceuticals. J. Pharm. Biomed. Anal. 2012, 69, 77–92. DOI: 10.1016/j.jpba.2012.01.021.
  • Frantz, J. J.; Thurbide, K. B. Chiral Separations Using a Modified Water Stationary Phase in Supercritical Fluid Chromatography. Chromatographia, 2018, 81, 969–979. DOI: 10.1007/s10337-018-3534-0.
  • Yan, Y.; Fan, J.; Guo, D.; Lin, Y.; Lai, Y.; Wang, T.; Gao, H.; Yao, X.; Zhang, W. Lenalidomide, a Blockbuster Drug for the Treatment of Multiple Myeloma: Semipreparative Separation through Supercritical Fluid Chromatography and Vibrational Circular Dichroism Spectroscopy. J. Sep. Sci. 2018, 41, 3840–3847. DOI: 10.1002/jssc.201800519.
  • Mai, B.; Fan, J.; Jiang, Y.; He, R.; Lai, Y.; Zhang, W. Fast Enantioselective Determination of Triadimefon in Different Matrices by Supercritical Fluid Chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 2019, 1126–1127, 121740. DOI: 10.1016/j.jchromb.2019.121740.
  • West, C. Recent Trends in Chiral Supercritical Fluid Chromatography. TrAC - Trends Anal. Chem. 2019, 120, 115648. DOI: 10.1016/j.trac.2019.115648.
  • Felletti, S.; Ismail, O. H.; De Luca, C.; Costa, V.; Gasparrini, F.; Pasti, L.; Marchetti, N.; Cavazzini, A.; Catani, M. Recent Achievements and Future Challenges in Supercritical Fluid Chromatography for the Enantioselective Separation of Chiral Pharmaceuticals. Chromatographia. 2019, 82, 65–75. DOI: 10.1007/s10337-018-3606-1.
  • Harps, L. C.; Joseph, J. F.; Parr, M. K. SFC for Chiral Separations in Bioanalysis. J. Pharm. Biomed. Anal. 2019, 162, 47–59. DOI: 10.1016/j.jpba.2018.08.061.
  • West, C. Enantioselective Separations with Supercritical Fluids - Review. Cac. 2013, 10, 99–120. DOI: 10.2174/1573411011410010009.
  • Ribeiro, A. R. L.; Maia, A. S.; Ribeiro, C.; Tiritan, M. E. Analysis of Chiral Drugs in Environmental Matrices: Current Knowledge and Trends in Environmental, Biodegradation and Forensic Fields. TrAC - Trends Anal. Chem. 2020, 124, 115783. DOI: 10.1016/j.trac.2019.115783.
  • Tarafder, A. Metamorphosis of Supercritical Fluid Chromatography to SFC: An Overview. TrAC - Trends Anal. Chem. 2016, 81, 3–10. DOI: 10.1016/j.trac.2016.01.002.
  • Desfontaine, V.; Guillarme, D.; Francotte, E.; Nováková, L. Supercritical Fluid Chromatography in Pharmaceutical Analysis. J. Pharm. Biomed. Anal. 2015, 113, 56–71. DOI: 10.1016/j.jpba.2015.03.007.
  • Raimbault, A.; Noireau, A.; West, C. Analysis of Free Amino Acids with Unified Chromatography-Mass Spectrometry-Application to Food Supplements. J. Chromatogr. A. 2020, 1616, 460772. DOI: 10.1016/j.chroma.2019.460772.
  • Raimbault, A.; Ma, C. M. A.; Ferri, M.; Bäurer, S.; Bonnet, P.; Bourg, S.; Lämmerhofer, M.; West, C. Cinchona-Based Zwitterionic Stationary Phases: Exploring Retention and Enantioseparation Mechanisms in Supercritical Fluid Chromatography with a Fragmentation Approach. J. Chromatogr. A. 2020, 1612, 460689. DOI: 10.1016/j.chroma.2019.460689.
  • Khater, S.; West, C. Characterization of Three Macrocyclic Glycopeptide Stationary Phases in Supercritical Fluid Chromatography. J. Chromatogr. A. 2019, 1604, 460485. DOI: 10.1016/j.chroma.2019.460485.
  • West, C.; Konjaria, M.-L.; Shashviashvili, N.; Lemasson, E.; Bonnet, P.; Kakava, R.; Volonterio, A.; Chankvetadze, B. Enantioseparation of Novel Chiral Sulfoxides on Chlorinated Polysaccharide Stationary Phases in Supercritical Fluid Chromatography. J. Chromatogr. A. 2017, 1499, 174–182. DOI: 10.1016/j.chroma.2017.03.089.
  • Dascalu, A.-E.; Ghinet, A.; Chankvetadze, B.; Lipka, E. Comparison of Dimethylated and Methylchlorinated Amylose Stationary Phases, Coated and Covalently Immobilized on Silica, for the Separation of Some Chiral Compounds in Supercritical Fluid Chromatography. J. Chromatogr. A. 2020, 1621, 461053. DOI: 10.1016/j.chroma.2020.461053.
  • Lipka, E.; Dascalu, A.-E.; Messara, Y.; Tsutsqiridze, E.; Farkas, T.; Chankvetadze, B. Separation of Enantiomers of Native Amino Acids with Polysaccharide-Based Chiral Columns in Supercritical Fluid Chromatography. J. Chromatogr. A. 2019, 1585, 207–212. DOI: 10.1016/j.chroma.2018.11.049.
  • Albals, D.; Heyden, Y. V.; Schmid, M. G.; Chankvetadze, B.; Mangelings, D. Chiral Separations of Cathinone and Amphetamine-Derivatives: Comparative Study between Capillary Electrochromatography, Supercritical Fluid Chromatography and Three Liquid Chromatographic Modes. J. Pharm. Biomed. Anal. 2016, 121, 232–243. DOI: 10.1016/j.jpba.2015.12.007.
  • Speybrouck, D.; Lipka, E. Preparative Supercritical Fluid Chromatography: A Powerful Tool for Chiral Separations. J. Chromatogr. A. 2016, 1467, 33–55. DOI: 10.1016/j.chroma.2016.07.050.
  • Jelinek, I.; Snopek, J.; Smolkova-Keulemansova, E. Use of Cyclodextrins in Isotachophoresis. I. Effect of Cyclodextrin on the Isotachophoretic Separation of Related Penicillins. J. Chromatogr. 1987, 405, 379–384. DOI: 10.1016/S0021-9673(01)81780-5.
  • Snopek, J.; Smolkova-Keulemansova, E.; Jelinek, I.; Dohnal, J.; Klinot, J.; Klinotova, E. Use of Cyclodextrins in Isotachophoresis. VI. Cyclodextrins as Leading Electrolyte Additives for the Separation of Bile Acids. J. Chromatogr. 1988, 450, 373–379. DOI: 10.1016/S0021-9673(01)83592-5.
  • Jelinek, I.; Dohnal, J.; Snopek, J.; Smolkova-Keulemansova, E. Use of Cyclodextrins in Isotachophoresis. VII. Resolution of Structurally Related and Chiral Phenothiazines. J. Chromatogr. 1989, 464, 139–147. DOI: 10.1016/S0021-9673(00)94230-4.
  • Snopek, J.; Jelínek, I.; Smolková-Keulemansová, E. Use of Cyclodextrins in Isotachophoresis: VIII. Two-Dimensional Chiral Separation in Isotachophoresis. J. Chromatogr. A. 1989, 472, 308–313. DOI: 10.1016/S0021-9673(00)94121-9.
  • Snopek, J.; Jelínek, I.; Smolková-Keulemansová, E. Use of Cyclodextrins in Isotachophoresis: IV. The Influence of Cyclodextrins on the Chiral Resolution of Ephedrine Alkaloid Enantiomers. J. Chromatogr. A. 1988, 438, 211–218. DOI: 10.1016/S0021-9673(00)90251-6.
  • Jelínek, I.; Dohnal, J.; Snopek, J.; Smolková-Keulemansová, E. Use of Cyclodextrins in Isotachophoresis: III. Purity Control of Naftidrofuryl Hydrogenoxalate and Some of Its Synthesis Intermediates. J. Chromatogr. A. 1988, 435, 496–500. DOI: 10.1016/S0021-9673(01)82213-5.
  • Snopek, J.; Jelínek, I.; Smolková-Keulemansová, E. Use of Cyclodextrins in Isotachophoresis: II. α, β and γ-Cyclodextrins as Leading Electrolyte Additives for the Separation of Ortho-, Meta- and Para-Substituted Halogenobenzoic Acids. J. Chromatogr. A. 1987, 411, 153–159. DOI: 10.1016/S0021-9673(00)93966-9.
  • Jelínek, I.; Snopek, J.; Smolková-Keulemansová, E. Use of Cyclodextrins in Isotachophoresis: V. The Separation of Ketotifen and Its Polar Intermediate Enantiomers. J. Chromatogr. A. 1988, 439, 386–392. DOI: 10.1016/S0021-9673(01)83850-4.
  • Chankvetadze, B. Contemporary Theory of Enantioseparations in Capillary Electrophoresis. J. Chromatogr. A. 2018, 1567, 2–25. DOI: 10.1016/j.chroma.2018.07.041.
  • Chankvetadze, B. Capillary Electrophoresis in Chiral Analysis; Wiley: Chichester, 1997.
  • Fanali, S.; Chankvetadze, B. Some Thoughts about Enantioseparations in Capillary Electrophoresis. Electrophoresis. 2019, 40, elps.2420–2437. DOI: 10.1002/elps.201900144.
  • Bernardo-Bermejo, S.; Sánchez-López, E.; Castro-Puyana, M.; Marina, M. L. Chiral Capillary Electrophoresis. TrAC - Trends Anal. Chem. 2020, 124, 115807. DOI: 10.1016/j.trac.2020.115807.
  • Fanali, S. Identification of Chiral Drug Isomers by Capillary Electrophoresis. J. Chromatogr. A. 1996, 735, 77–121. DOI: 10.1016/0021-9673(95)01327-X.
  • Müllerová, L.; Dubský, P.; Gaš, B. Twenty Years of Development of Dual and Multi-Selector Models in Capillary Electrophoresis: A Review. Electrophoresis. 2014, 35, 2688–2700. DOI: 10.1002/elps.201400149.
  • Blaschke, G.; Chankvetadze, B. Enantiomer Separation of Drugs by Capillary Electromigration Techniques. J. Chromatogr. A. 2000, 875, 3–25. DOI: 10.1016/S0021-9673(00)00134-5.
  • Zhu, Q.; Scriba, G. K. E. Analysis of Small Molecule Drugs, Excipients and Counter Ions in Pharmaceuticals by Capillary Electromigration Methods - Recent Developments. J. Pharm. Biomed. Anal. 2018, 147, 425–438. DOI: 10.1016/j.jpba.2017.06.063.
  • El Deeb, S.; Watzig, H.; Abd El-Hady, D.; Sanger-van de Griend, C.; Scriba, G. K. E. Recent Advances in Capillary Electrophoretic Migration Techniques for Pharmaceutical Analysis (2013–2015). Electrophoresis. 2016, 37, 1591–1608. DOI: 10.1002/elps.201600058.
  • Pretorius, V.; Hopkins, B. J.; Schieke, J. D. Electro-Osmosis: A New Concept for High-Speed Liquid Chromatography. J. Chromatogr. A. 1974, 99, 23–30. DOI: 10.1016/S0021-9673(00)90842-2.
  • Fanali, C. Enantiomers Separation by Capillary Electrochromatography. TrAC - Trends Anal. Chem. 2019, 120, 115640. DOI: 10.1016/j.trac.2019.115640.
  • Preinerstorfer, B.; Lämmerhofer, M. Recent Accomplishments in the Field of Enantiomer Separation by CEC. Electrophoresis. 2007, 28, 2527–2565. DOI: 10.1002/elps.200700070.
  • Schurig, V.; Jung, M.; Mayer, S.; Fluck, M.; Negura, S.; Jakubetz, H. Unified Enantioselective Capillary Chromatography on a Chirasil-DEX Stationary Phase. Advantages of Column Miniaturization. J. Chromatogr. A. 1995, 694, 119–128. DOI: 10.1016/0021-9673(94)01075-P.
  • Alfonta, L.; Bardea, A.; Khersonsky, O.; Katz, E.; Willner, I. Willner, I. Chronopotentiometry and Faradaic Impedance Spectroscopy as Signal Transduction Methods for the Biocatalytic Precipitation of an Insoluble Product on Electrode Supports: Routes for Enzyme Sensors, Immunosensors and DNA Sensors. Biosens. Bioelectron. 2001, 16, 675–687. DOI: 10.1016/S0956-5663(01)00231-7.
  • Yang, L.; Bashir, R. Electrical/Electrochemical Impedance for Rapid Detection of Foodborne Pathogenic Bacteria. Biotechnol. Adv. 2008, 26, 135–150. DOI: 10.1016/j.biotechadv.2007.10.003.
  • Caygill, R. L.; Blair, G. E.; Millner, P. A. A Review on Viral Biosensors to Detect Human Pathogens. Anal. Chim. Acta. 2010, 681, 8–15. DOI: 10.1016/j.aca.2010.09.038.
  • Yang, L. Electrical Impedance Spectroscopy for Detection of Bacterial Cells in Suspensions Using Interdigitated Microelectrodes. Talanta. 2008, 74, 1621–1629. DOI: 10.1016/j.talanta.2007.10.018.
  • Bard, A. J.; Faulkner, L. R. Allen J. Bard and Larry R. Faulkner, Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2001, 2nd ed. Russ. J. Electrochem., 2002, 38, 1364–1365.
  • Mandler, D. Chiral Self-Assembled Monolayers in Electrochemistry. Curr. Opin. Electrochem. 2018, 7, 42–47. DOI: 10.1016/j.coelec.2017.09.030.
  • Li, Z.; Mo, Z.; Meng, S.; Gao, H.; Niu, X.; Guo, R. The Construction and Application of Chiral Electrochemical Sensors. Anal. Methods. 2016, 8, 8134–8140. DOI: 10.1039/C6AY02431A.
  • Trojanowicz, M. Enantioselective Electrochemical Sensors and Biosensors: A Mini-Review. Electrochem. Commun. 2014, 38, 47–52. DOI: 10.1016/j.elecom.2013.10.034.
  • Brandt, J. R.; Salerno, F.; Fuchter, M. J. The Added Value of Small-Molecule Chirality in Technological Applications. Nat. Rev. Chem. 2017, 1, 1–12. DOI: 10.1038/s41570-017-0045.
  • Shen, Y.; Chen, C. F. Helicenes: Synthesis and Applications. Chem. Rev. 2012, 112, 1463–1535. DOI: 10.1021/cr200087r.
  • Saleh, N.; Shen, C.; Crassous, J. Helicene-Based Transition Metal Complexes: Synthesis, Properties and Applications. Chem. Sci. 2014, 5, 3680–3694. DOI: 10.1039/C4SC01404A.
  • Bosson, J.; Gouin, J.; Lacour, J. Cationic Triangulenes and Helicenes: Synthesis, Chemical Stability, Optical Properties and Extended Applications of These Unusual Dyes. Chem. Soc. Rev. 2014, 43, 2824–2840. DOI: 10.1039/c3cs60461f.
  • Gingras, G. One Hundred Years of Helicene Chemistry. Part 3: Applications and Properties of Carbohelicenes. Chem. Soc. Rev. 2013, 42, 1051–1095. DOI: 10.1039/c2cs35134j.
  • Arnaboldi, S.; Magni, M.; Mussini, P. R. Enantioselective Selectors for Chiral Electrochemistry and Electroanalysis: Stereogenic Elements and Enantioselection Performance. Curr. Opin. Electrochem. 2018, 8, 60–72. DOI: 10.1016/j.coelec.2018.01.002.
  • Pandey, I.; Kant, R. Electrochemical Impedance Based Chiral Analysis of anti-Ascorbutic Drug: L-Ascorbic Acid and d-Ascorbic Acid Using C-Dots Decorated Conductive Polymer Nano-Composite Electrode. Biosens. Bioelectron. 2016, 77, 715–724. DOI: 10.1016/j.bios.2015.10.039.
  • Yang, H.; Chi, D.; Sun, Q.; Sun, W.; Wang, H.; Lu, J. Entrapment of Alkaloids within Silver: From Enantioselective Hydrogenation to Chiral Recognition. Chem. Commun. (Camb.) 2014, 50, 8868–8870. DOI: 10.1039/c4cc02823f.
  • Yang, H. P.; Wang, H.; Lu, J. X. Alkaloid-Induced Asymmetric Hydrogenation on a Cu Nanoparticle Cathode by Electrochemical Conditions. Electrochem. Commun. 2015, 55, 18–21. DOI: 10.1016/j.elecom.2015.03.006.
  • Yang, H. P.; Fen, Q.; Wang, H.; Lu, J. X. Copper Encapsulated Alkaloids Composite: An Effective Heterogeneous Catalyst for Electrocatalytic Asymmetric Hydrogenation. Electrochem. Commun. 2016, 71, 38–42. DOI: 10.1016/j.elecom.2016.08.004.
  • Yutthalekha, T.; Wattanakit, C.; Lapeyre, V.; Nokbin, S.; Warakulwit, C.; Limtrakul, J.; Kuhn, A. Asymmetric Synthesis Using Chiral-Encoded Metal. Nat. Commun. 2016, 7, 1–8.
  • Sun, Y. x.; He, J. h.; Huang, J. w.; Sheng, Y.; Xu, D.; Bradley, M.; Zhang, R. Electrochemical Recognition of Tryptophan Enantiomers Based on the Self-Assembly of Polyethyleneimine and Chiral Peptides. J. Electroanal. Chem. 2020, 865, 114130. DOI: 10.1016/j.jelechem.2020.114130.
  • Maistrenko, V. N.; Zil’berg, R. A. Enantioselective Voltammetric Sensors on the Basis of Chiral Materials. J. Anal. Chem. 2020, 75, 1514–1526. DOI: 10.1134/S1061934820120102.
  • Rizzo, S.; Arnaboldi, S.; Mihali, V.; Cirilli, R.; Forni, A.; Gennaro, A.; Isse, A. A.; Pierini, M.; Mussini, P. R.; Sannicolò, F. “Inherently Chiral” Ionic-Liquid Media: Effective Chiral Electroanalysis on Achiral Electrodes. Angew. Chem. Int. Ed. 2017, 56, 2079–2082. DOI: 10.1002/anie.201607344.
  • Zhu, G.; Kingsford, O. J.; Yi, Y.; Wong, K. Review—Recent Advances in Electrochemical Chiral Recognition. J. Electrochem. Soc. 2019, 166, H205–H217. DOI: 10.1149/2.1121906jes.
  • Pu, C.; Xu, Y.; Liu, Q.; Zhu, A.; Shi, G. Enantiomers of Single Chirality Nanotube as Chiral Recognition Interface for Enhanced Electrochemical Chiral Analysis. Anal. Chem. 2019, 91, 3015–3020. DOI: 10.1021/acs.analchem.8b05336.
  • Naveen, M. H.; Gurudatt, N. G.; Shim, Y. B. Applications of Conducting Polymer Composites to Electrochemical Sensors: A Review. Appl. Mater. Today. 2017, 9, 419–433. DOI: 10.1016/j.apmt.2017.09.001.
  • Zhai, F.; Yu, Q.; Zhou, H.; Liu, J.; Yang, W.; You, J. Electrochemical Selective Detection of Carnitine Enantiomers Coupling Copper Ion Dependent DNAzyme with DNA Assistant Hybridization Chain Reaction. J. Electroanal. Chem. 2019, 837, 137–142. DOI: 10.1016/j.jelechem.2019.02.020.
  • Zhu, G.; Zhang, D.; Ma, Y.; Yi, Y. Electrochemical Chiral Recognition for a Complex System Based on Specific Enzymatic Reactions. J. Electrochem. Soc. 2020, 167, 027523. DOI: 10.1149/1945-7111/ab69fc.
  • Ma, W.; Xu, L.; Wang, L.; Xu, C.; Kuang, H. Chirality-Based Biosensors. Adv. Funct. Mater. 2019, 29, 1805512. DOI: 10.1002/adfm.201805512.
  • Zhong, C.; Yang, B.; Jiang, X.; Li, J. Current Progress of Nanomaterials in Molecularly Imprinted Electrochemical Sensing. Crit. Rev. Anal. Chem. 2018, 48, 15–32. DOI: 10.1080/10408347.2017.1360762.
  • Rutkowska, M.; Płotka-Wasylka, J.; Morrison, C.; Paweł, P.; Namieśnik, J.; Marć, M. Application of Molecularly Imprinted Polymers in Analytical Chiral Separations and Analysis. TrAC Trends in Analytical Chemistry. 2018;102:91–102.
  • Rapini, R.; Canfarotta, F.; Mazzotta, E.; Malitesta, C.; Marrazza, G.; Piletsky, S.; Piletska, E. NanoMIP-Based Approach for the Suppression of Interference Signals in Electrochemical Sensors. Analyst. 2019, 144, 7290–7295. DOI: 10.1039/c9an01244c.
  • Trojanowicz, M.; Kaniewska, M. Electrochemical Chiral Sensors and Biosensors. Electroanalysis. 2009, 21, 229–238. DOI: 10.1002/elan.200804382.
  • Trojanowicz, M.; Wcisło, M. Electrochemical and Piezoelectric Enantioselective Sensors and Biosensors. Anal. Lett. 2005, 38, 523–547. DOI: 10.1081/AL-200050157.
  • Aboul-Enein, H. Y.; Stefan, R. I. Enantioselective Sensors and Biosensors in the Analysis of Chiral Drugs. Crit. Rev. Anal. Chem. 1998, 28, 259–266. DOI: 10.1080/10408349891194199.
  • Fletcher, S. Electrochemistry in a Divided World: The Political Background. Springer: Berlin, Germany, 2015, 7–11.
  • Ozkan, S. A.; Kauffmann, J.-M.; Zuman, P. Electroanalysis in Pharmaceutical Biomedical and Pharmaceutical Sciences. Springer: Berlin, Germany, 2015.
  • Trojanowicz; Kaniewska, M. Chiral Biosensors and Immunosensors. In Biosensors - Emerging Materials and Applications; InTech: London, 2011.
  • Maier, N. M.; Lindner, W. Chiral Recognition Applications of Molecularly Imprinted Polymers: A Critical Review. Anal. Bioanal. Chem. 2007, 389, 377–397. DOI: 10.1007/s00216-007-1427-4.
  • Moein, M. M. Advancements of Chiral Molecularly Imprinted Polymers in Separation and Sensor Fields: A Review of the Last Decade. Talanta. 2021, 224, 121794. DOI: 10.1016/j.talanta.2020.121794.
  • Kane-Maguire, L. A. P.; Wallace, G. G. Chiral Conducting Polymers. Chem. Soc. Rev. 2010, 39, 2545–2576. DOI: 10.1039/b908001p.
  • Zilberg, R. A.; Maistrenko, V. N.; Zagitova, L. R.; Guskov, V. Y.; Dubrovsky, D. I. Chiral Voltammetric Sensor for Warfarin Enantiomers Based on Carbon Black Paste Electrode Modified by 3,4,9,10-Perylenetetracarboxylic Acid. J. Electroanal. Chem. 2020, 861, 113986. DOI: 10.1016/j.jelechem.2020.113986.
  • Zil’berg, R. A.; Maistrenko, V. N.; Kabirova, L. R.; Gus’kov, V. Y.; Khamitov, E. M.; Dubrovskii, D. I. A Chiral Voltammetric Sensor Based on a Paste Electrode Modified by Cyanuric Acid for the Recognition and Determination of Tyrosine Enantiomers. J. Anal. Chem. 2020, 75, 101–110. DOI: 10.1134/S1061934820010189.
  • Stefan‐van Staden, R.; Comnea‐Stancu, I. R. Chiral Single‐Walled Carbon Nanotubes as Chiral Selectors in Multimode Enantioselective Sensors. Chirality. 2021, 33, 51–58. DOI: 10.1002/chir.23288.
  • Niu, X.; Yang, X.; Li, H.; Liu, J.; Liu, Z.; Wang, K. Application of Chiral Materials in Electrochemical Sensors. Mikrochim. Acta. 2020, 187, 676–618. DOI: 10.1007/s00604-020-04646-4.
  • Hartlieb, K. J.; Holcroft, J. M.; Moghadam, P. Z.; Vermeulen, N. A.; Algaradah, M. M.; Nassar, M. S.; Botros, Y. Y.; Snurr, R. Q.; Stoddart, J. F. CD-MOF: A Versatile Separation Medium. J. Am. Chem. Soc. 2016, 138, 2292–2301. DOI: 10.1021/jacs.5b12860.
  • Wcisło, M.; Compagnone, D.; Trojanowicz, M. Enantioselective Screen-Printed Amperometric Biosensor for the Determination of d-Amino Acids. Bioelectrochemistry. 2007, 71, 91–98. DOI: 10.1016/j.bioelechem.2006.09.001.
  • Zhang, S.; Ding, J.; Liu, Y.; Kong, J.; Hofstetter, O. Development of a Highly Enantioselective Capacitive Immunosensor for the Detection of R-Amino Acids. Analytical chemistry, 2006, 78(21), 7592–7596.
  • Zhang, L.; Song, P.; Long, H.; Meng, M.; Yin, Y.; Xi, R. Magnetism Based Electrochemical Immunosensor for Chiral Separation of Amlodipine. Sens. Actuators, B Chem. 2017, 248, 682–689. DOI: 10.1016/j.snb.2017.04.010.
  • Atta, N. F.; Galal, A.; Ahmed, Y. M. Highly Conductive Crown Ether/Ionic Liquid Crystal-Carbon Nanotubes Composite Based Electrochemical Sensor for Chiral Recognition of Tyrosine Enantiomers. J. Electrochem. Soc. 2019, 166, B623–B630. DOI: 10.1149/2.0771908jes.
  • Song, J.; Yang, C.; Ma, J.; Han, Q.; Ran, P.; Fu, Y. Voltammetric Chiral Discrimination of Tryptophan Using a Multilayer Nanocomposite with Implemented Amino-Modified β-Cyclodextrin as Recognition Element. Microchim. Acta. 2018, 185, 1–9.
  • Upadhyay, S. S.; Srivastava, A. K. Hydroxypropyl β-Cyclodextrin Cross-Linked Multiwalled Carbon Nanotube-Based Chiral Nanocomposite Electrochemical Sensors for the Discrimination of Multichiral Drug Atorvastatin Isomers. New J. Chem. 2019, 43, 11178–11188. DOI: 10.1039/C9NJ02508A.
  • Lenik, J. Cyclodextrins Based Electrochemical Sensors for Biomedical and Pharmaceutical Analysis. Curr. Med. Chem. 2016, 24(22), 2359–2391.
  • Yang, F.; Kong, N.; Conlan, X. A.; Wang, H.; Barrow, C. J.; Yan, F.; Guo, J.; Yang, W. Electrochemical Evidences of Chiral Molecule Recognition Using L/D-Cysteine Modified Gold Electrodes. Electrochim. Acta. 2017, 237, 22–28. DOI: 10.1016/j.electacta.2017.03.180.
  • Muñoz, J.; González-Campo, A.; Riba-Moliner, M.; Baeza, M.; Mas-Torrent, M. Chiral Magnetic-Nanobiofluids for Rapid Electrochemical Screening of Enantiomers at a Magneto Nanocomposite Graphene-Paste Electrode. Biosens. Bioelectron. 2018, 105, 95–102. DOI: 10.1016/j.bios.2018.01.024.
  • Wang, L.; Park, H. Y.; Lim, S. I. I.; Schadt, M. J.; Mott, D.; Luo, J.; Wang, X.; Zhong, C. J. Core@Shell Nanomaterials: Gold-Coated Magnetic Oxide Nanoparticles. J. Mater. Chem. 2008, 18, 2629–2635. DOI: 10.1039/b719096d.
  • Kharisov, B. I.; Dias, H. V. R.; Kharissova, O. V.; Vázquez, A.; Peña, Y.; Gómez, I. Gómez, I. Solubilization, Dispersion and Stabilization of Magnetic Nanoparticles in Water and Non-Aqueous Solvents: Recent Trends. RSC Adv. 2014, 4, 45354–45381. DOI: 10.1039/C4RA06902A.
  • Guo, L. D.; Song, Y. Y.; Yu, H. R.; Pan, L. T.; Cheng, C. J. Novel Smart Chiral Magnetic Microspheres for Enantioselective Adsorption of Tryptophan Enantiomers. Appl. Surf. Sci. 2017, 407, 82–92. DOI: 10.1016/j.apsusc.2017.02.121.
  • Ghosh, S.; Fang, T. H.; Uddin, M. S.; Hidajat, K. Enantioselective Separation of Chiral Aromatic Amino Acids with Surface Functionalized Magnetic Nanoparticles. Colloids Surf. B Biointerfaces. 2013, 105, 267–277. DOI: 10.1016/j.colsurfb.2012.12.037.
  • Liu, Y.; Tian, A.; Wang, X.; Qi, J.; Wang, F.; Ma, Y.; Ito, Y.; Wei, Y. Fabrication of Chiral Amino Acid Ionic Liquid Modified Magnetic Multifunctional Nanospheres for Centrifugal Chiral Chromatography Separation of Racemates. J. Chromatogr. A. 2015, 1400, 40–46. DOI: 10.1016/j.chroma.2015.04.045.
  • Nie, R.; Bo, X.; Wang, H.; Zeng, L.; Guo, L. Chiral Electrochemical Sensing for Tyrosine Enantiomers on Glassy Carbon Electrode Modified with Cysteic Acid. Electrochem. Commun. 2013, 27, 112–115. DOI: 10.1016/j.elecom.2012.11.014.
  • Kuwana, T.; French, W. G. Electrooxidation or Reduction of Organic Compounds into Aqueous Solutions Using Carbon Paste Electrode. Anal. Chem. 1964, 36, 241–242. DOI: 10.1021/ac60207a006.
  • Ambrosi, A.; Chua, C. K.; Bonanni, A.; Pumera, M. Electrochemistry of Graphene and Related Materials. Chem. Rev. 2014, 114, 7150–7188. DOI: 10.1021/cr500023c.
  • Martin, P. Electrochemistry of Gaphene: New Horizons for Sensing and Energy Storage. Chem. Rec. 2009, 9, 211–223.
  • Zhu, G.; Yi, Y.; Chen, J. Recent Advances for Cyclodextrin-Based Materials in Electrochemical Sensing. TrAC - Trends Anal. Chem. 2016, 80, 232–241. DOI: 10.1016/j.trac.2016.03.022.
  • Knowles, R. R.; Jacobsen, E. N. Attractive Noncovalent Interactions in Asymmetric Catalysis: Links between Enzymes and Small Molecule Catalysts. Proc. Natl. Acad. Sci. USA. 2010, 107, 20678–20685. DOI: 10.1073/pnas.1006402107.
  • Iacob, B. C.; Bodoki, E.; Florea, A.; Bodoki, A. E.; Oprean, R. Simultaneous Enantiospecific Recognition of Several β-Blocker Enantiomers Using Molecularly Imprinted Polymer-Based Electrochemical Sensor. Anal. Chem. 2015, 87, 2755–2763. DOI: 10.1021/ac504036m.
  • Iacob, B. C.; Bodoki, E.; Farcau, C.; Barbu-Tudoran, L.; Oprean, R. Study of the Molecular Recognition Mechanism of an Ultrathin MIP Film-Based Chiral Electrochemical Sensor. Electrochim. Acta. 2016, 217, 195–202. DOI: 10.1016/j.electacta.2016.09.079.
  • Crini, G. Review: A History of Cyclodextrins. Chem. Rev. 2014, 114, 10940–10975. DOI: 10.1021/cr500081p.
  • Del Valle, E. M. M. Cyclodextrins and Their Uses: A Review. Process Biochem. 2004, 39, 1033–1046. DOI: 10.1016/S0032-9592(03)00258-9.
  • Szejtli, J. Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev. 1998, 98, 1743–1754. DOI: 10.1021/cr970022c.
  • Mitchell, C. R.; Armstrong, D. W. Cyclodextrin-Based Chiral Stationary Phases for Liquid Chromatography BT - Chiral Separations: Methods and Protocols. In Gübitz, G.; Schmid, M. G., Eds.; Humana Press: Totowa, NJ, 2004; pp 61–112.
  • Scriba, G. K. E. Chiral Recognition in Separation Sciences. Part I: Polysaccharide and Cyclodextrin Selectors. TrAC - Trends Anal. Chem. 2019, 120, 115639. DOI: 10.1016/j.trac.2019.115639.
  • Zhu, G.; Yi, Y.; Liu, Z.; Lee, H. J.; Chen, J. Highly Sensitive Electrochemical Sensing Based on 2-Hydroxypropyl-β-Cyclodextrin-Functionalized Graphene Nanoribbons. Electrochem. Commun. 2016, 66, 10–15. DOI: 10.1016/j.elecom.2016.02.013.
  • Xiao, Y.; Ng, S.-C.; Tan, T. T. Y.; Wang, Y. Recent Development of Cyclodextrin Chiral Stationary Phases and Their Applications in Chromatography. J. Chromatogr. A. 2012, 1269, 52–68. DOI: 10.1016/j.chroma.2012.08.049.
  • Berthod, A., Ed. Chiral Recognition in Separation Methods; Springer: Berlin, Heidelberg, 2010.
  • Tang, W.; Ng, S.-C.; Sun, D., Eds. Modified Cyclodextrins for Chiral Separation; Springer: Berlin, Heidelberg, 2013.
  • Dodziuk, H., Ed. Cyclodextrins and Their Complexes; Wiley: New Jersey, 2006.
  • Easton, C. J.; Lincoln, S. F. Modified Cyclodextrins; Imperial College Press and Distributed by World Scientific Publishing Co.: London, UK, 1999.
  • Chankvetadze, B. The Application of Cyclodextrins for Enantioseparations. In Cyclodextrins and Their Complexes; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, FRG, 2006; pp 119–146.
  • Wren, S.; Berger, T. A.; Boos, K.-S.; Engelhardt, H.; Adlard, E. R.; Davies, I. W.; Altria, K. D.; Stock, R. The Use of Cyclodextrins as Chiral Selectors BT - the Separation of Enantiomers by Capillary Electrophoresis; Wren, S.; Berger, T. A.; Boos, K.-S.; Engelhardt, H.; Adlard, E. R.; Davies, I. W.; Altria, K. D.; Stock, R., Eds.; Vieweg + Teubner Verlag: Wiesbaden, 2001; pp 59–77.
  • Russell, N. R. New Trends in Cyclodextrins and Derivatives. J. Incl. Phenom. Macrocycl. Chem. 1993, 15, 399–400. DOI: 10.1007/BF00708756.
  • Bender, M. L.; Komiyama, M. Cyclodextrin Chemistry; Reactivity and Structure Concepts in Organic Chemistry; Springer: Berlin, Heidelberg, 1978; Vol. 6.
  • Pringsheim, H. Die Polysaccharide; Springer: Berlin, Heidelberg, 1923.
  • Thompson, D. O. Cyclodextrins–Enabling Excipients: Their Present and Future Use in Pharmaceuticals. Crit. Rev. Ther. Drug Carrier Syst. 1997, 14, 1–104. DOI: 10.1615/CritRevTherDrugCarrierSyst.v14.i1.10.
  • Irie, T.; Uekama, K. Pharmaceutical Applications of Cyclodextrins. III. Toxicological Issues and Safety Evaluation. J. Pharm. Sci. 1997, 86, 147–162. DOI: 10.1021/js960213f.
  • Bilensoy, E., Ed. Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine; John Wiley & Sons, Inc.: Hoboken, NJ, 2011.
  • Villiers, M. A. Sur La Fermentation de La Fécule Par L’action Du Ferment Butyrique. Comptes Rendus. 1891, 112, 536–537.
  • Saenger, W.; Jacob, J.; Gessler, K.; Steiner, T.; Hoffmann, D.; Sanbe, H.; Koizumi, K.; Smith, S. M.; Takaha, T. Structures of the Common Cyclodextrins and Their Larger Analogues-Beyond the Doughnut. Chem. Rev. 1998, 98, 1787–1802. DOI: 10.1021/cr9700181.
  • Chankvetadze, B.; Lomsadze, K.; Bergenthal, D.; Breitkreutz, J.; Bergander, K.; Blaschke, G. Mechanistic Study on the opposite Migration Order of Clenbuterol Enantiomers in Capillary Electrophoresis with β-Cyclodextrin and Single-Isomer Heptakis(2,3-Diacetyl-6-Sulfo)-β-Cyclodextrin. Electrophoresis. 2001, 22, 3178–3184. DOI: 10.1002/1522-2683(200109)22:15<3178::AID-ELPS3178>3.0.CO;2-F.
  • Salgado, A.; Chankvetadze, B. Applications of Nuclear Magnetic Resonance Spectroscopy for the Understanding of Enantiomer Separation Mechanisms in Capillary Electrophoresis. J. Chromatogr. A. 2016, 1467, 95–144. DOI: 10.1016/j.chroma.2016.08.060.
  • Gogolashvili, A.; Chankvetadze, L.; Takaishvili, N.; Salgado, A.; Chankvetadze, B. Separation of Terbutaline Enantiomers in Capillary Electrophoresis with Neutral Cyclodextrin-Type Chiral Selectors and Investigation of the Structure of Selector-Selectand Complexes Using Nuclear Magnetic Resonance Spectroscopy. Electrophoresis. 2020, 41, 1023–1030. DOI: 10.1002/elps.202000010.
  • Gogolashvili, A.; Tatunashvili, E.; Chankvetadze, L.; Sohajda, T.; Szeman, J.; Gumustas, M.; Ozkan, S. A.; Salgado, A.; Chankvetadze, B. Separation of Terbutaline Enantiomers in Capillary Electrophoresis with Cyclodextrin-Type Chiral Selectors and Investigation of Structure of Selector-Selectand Complexes. J. Chromatogr. A. 2018, 1571, 231–239. DOI: 10.1016/j.chroma.2018.08.012.
  • Zhang, X.; Zhang, Y.; Armstrong, D. W. 8.10 Chromatographic Separations and Analysis: Cyclodextrin Mediated HPLC, GC and CE Enantiomeric Separations. Elsevier: Amsterdam, 2012; pp 177–199.
  • Guo, J.; Lin, Y.; Xiao, Y.; Crommen, J.; Jiang, Z. Recent Developments in Cyclodextrin Functionalized Monolithic Columns for the Enantioseparation of Chiral Drugs. J. Pharm. Biomed. Anal. 2016, 130, 110–125. DOI: 10.1016/j.jpba.2016.05.023.
  • Chankvetadze, B. Combined Approach Using Capillary Electrophoresis and NMR Spectroscopy for an Understanding of Enantioselective Recognition Mechanisms by Cyclodextrins. Chem. Soc. Rev. 2004, 33, 337–347. DOI: 10.1039/b111412n.
  • Gogolashvili, A.; Tatunashvili, E.; Chankvetadze, L.; Sohajda, T.; Gumustas, M.; Ozkan, S. A.; Salgado, A.; Chankvetadze, B. Separation of Brombuterol Enantiomers in Capillary Electrophoresis with Cyclodextrin-Type Chiral Selectors and Investigation of Structure of Selector-Selectand Complexes Using Nuclear Magnetic Resonance Spectroscopy. Electrophoresis. 2019, 40, 1904–1912. DOI: 10.1002/elps.201900062.
  • Szabó, Z.-I.; Szőcs, L.; Horváth, P.; Komjáti, B.; Nagy, J.; Jánoska, Á.; Muntean, D.-L.; Noszál, B.; Tóth, G. Liquid Chromatography with Mass Spectrometry Enantioseparation of Pomalidomide on Cyclodextrin-Bonded Chiral Stationary Phases and the Elucidation of the Chiral Recognition Mechanisms by NMR Spectroscopy and Molecular Modeling. J. Sep. Sci. 2016, 39, 2941–2949. DOI: 10.1002/jssc.201600354.
  • Shi, X.; Zhou, Y.; Liu, F.; Mao, J.; Zhang, Y.; Shan, T. Modeling of Chiral Gas Chromatographic Separation of Alkyl and Cycloalkyl 2-Bromopropionates Using Cyclodextrin Derivatives as Stationary Phases. J. Chromatogr. A. 2019, 1596, 161–174. DOI: 10.1016/j.chroma.2019.02.063.
  • Sardella, R.; Camaioni, E.; Macchiarulo, A.; Gioiello, A.; Marinozzi, M.; Carotti, A. Computational Studies in Enantioselective Liquid Chromatography: Forty Years of Evolution in Docking- and Molecular Dynamics-Based Simulations. TrAC - Trends Anal. Chem. 2020, 122, 115703. DOI: 10.1016/j.trac.2019.115703.
  • Menestrina, F.; Ronco, N. R.; Romero, L. M.; Castells, C. B. Enantioseparation of Polar Pesticides on Chiral Capillary Columns Based on Permethyl-β-Cyclodextrin in Matrices of Different Polarities. Microchem. J. 2018, 140, 52–59. DOI: 10.1016/j.microc.2018.03.037.
  • Li, H. X.; Xie, T. P.; Xie, S. M.; Wang, B. J.; Zhang, J. H.; Yuan, L. M. Enantiomeric Separation on a Homochiral Porous Organic Cage-Based Chiral Stationary Phase by Gas Chromatography. Chromatographia. 2020, 83, 703–713. DOI: 10.1007/s10337-020-03895-y.
  • Wu, Q.; Gao, J.; Chen, L.; Dong, S.; Li, H.; Qiu, H.; Zhao, L. Graphene Quantum Dots Functionalized β-Cyclodextrin and Cellulose Chiral Stationary Phases with Enhanced Enantioseparation Performance. J. Chromatogr. A. 2019, 1600, 209–218. DOI: 10.1016/j.chroma.2019.04.053.
  • Li, L.; Wang, H.; Jin, Y.; Shuang, Y.; Li, L. Preparation of a New Benzylureido-β-Cyclodextrin-Based Column and Its Application for the Determination of Phenylmercapturic Acid and Benzylmercapturic Acid Enantiomers in Human Urine by LC/MS/MS. Anal. Bioanal. Chem. 2019, 411, 5465–5479. DOI: 10.1007/s00216-019-01920-0.
  • Zhou, M.; Long, Y.; Zhi, Y.; Xu, X. Preparation and Chromatographic Evaluation of a Chiral Stationary Phase Based on Carboxymethyl-β-Cyclodextrin for High-Performance Liquid Chromatography. Chin. Chem. Lett. 2018, 29, 1399–1403. DOI: 10.1016/j.cclet.2017.10.039.
  • Jin, X.; Li, X.; Wang, Y. Click Regulation of Cyclodextrin Primary Face for the Preparation of Novel Chiral Stationary Phases. Electrophoresis. 2019, 40, 1978–1985. DOI: 10.1002/elps.201800418.
  • Qiu, X.; Sun, W.; Wang, C.; Yan, J.; Tong, S. Enantioseparation of Acetyltropic Acid by Countercurrent Chromatography with Sulfobutyl Ether-β-cyclodextrin as Chiral Selector. J. Sep. Sci. 2020, 43, 681–688. DOI: 10.1002/jssc.201900730.
  • Folprechtová, D.; Kalíková, K.; Kozlík, P.; Tesařová, E. The Degree of Substitution Affects the Enantioselectivity of Sulfobutylether-β-Cyclodextrin Chiral Stationary Phases. Electrophoresis. 2019, 40, 1972–1977. DOI: 10.1002/elps.201800471.
  • Deng, M.; Li, S.; Cai, L.; Guo, X. Preparation of a Hydroxypropyl-β-Cyclodextrin Functionalized Monolithic Column by One-Pot Sequential Reaction and Its Application for Capillary Electrochromatographic Enantiomer Separation. J. Chromatogr. A. 2019, 1603, 269–277. DOI: 10.1016/j.chroma.2019.06.044.
  • Zhou, L.; Lun, J.; Liu, Y.; Jiang, Z.; Di, X.; Guo, X. In Situ Immobilization of Sulfated-β-Cyclodextrin as Stationary Phase for Capillary Electrochromatography Enantioseparation. Talanta. 2019, 200, 1–8. DOI: 10.1016/j.talanta.2019.03.034.
  • Zhou, L.; Liu, B.; Guan, J.; Jiang, Z.; Guo, X. Preparation of Sulfobutylether β-Cyclodextrin-Silica Hybrid Monolithic Column, and Its Application to Capillary Electrochromatography of Chiral Compounds. J. Chromatogr. A. 2020, 1620, 460932. DOI: 10.1016/j.chroma.2020.460932.
  • Wang, Y.; Zhuo, S. Q.; Hou, J.; Li, W.; Ji, Y. Construction of β-Cyclodextrin Covalent Organic Framework-Modified Chiral Stationary Phase for Chiral Separation. ACS Appl. Mater. Interfaces. 2019, 11, 48363–48369. DOI: 10.1021/acsami.9b16720.
  • Li, Y.; Lin, X.; Qin, S.; Gao, L.; Tang, Y.; Liu, S.; Wang, Y. β-Cyclodextrin-Modified Covalent Organic Framework as Chiral Stationary Phase for the Separation of Amino Acids and β-Blockers by Capillary Electrochromatography. Chirality. 2020, 32, 1008–1007. DOI: 10.1002/chir.23227.
  • Sun, X.; Guo, J.; Yu, T.; Du, Y.; Feng, Z.; Zhao, S.; Huang, Z.; Liu, J. A Novel Coating Method for CE Capillary Using Carboxymethyl-Β-Cyclodextrin-Modified Magnetic Microparticles as Stationary for Electrochromatography Enantioseparation. Anal. Bioanal. Chem. 2019, 411, 1193–1202. DOI: 10.1007/s00216-018-1545-1.
  • Ren, X.; Luo, Q.; Zhou, D.; Zhang, K.; Gao, D.; Fu, Q.; Liu, J.; Xia, Z.; Wang, L. Thermoresponsive Chiral Stationary Phase Functionalized with the Copolymer of β-Cyclodextrin and N-Isopropylacrylamide for High Performance Liquid Chromatography. J. Chromatogr. A. 2020, 1618, 460904. DOI: 10.1016/j.chroma.2020.460904.
  • Fang, L.; Zhao, Y.; Wang, C.; Wang, C.; Han, X.; Chen, P.; Zhao, L.; Wang, J.; Li, S.; Jiang, Z. Preparation of a Thiols β-Cyclodextrin/Gold Nanoparticles-Coated Open Tubular Column for Capillary Electrochromatography Enantioseparations. J. Sep. Sci. 2020, 43, 2209–2208. DOI: 10.1002/jssc.201901323.
  • Jiang, Z.; Qu, J.; Tian, X.; Huo, X.; Zhang, J.; Guo, X.; Fang, L. Sol-Gel Technique for the Preparation of β-Cyclodextrin Gold Nanoparticles as Chiral Stationary Phase in Open-Tubular Capillary Electrochromatography. J. Sep. Sci. 2019, 42, 1948–1954. DOI: 10.1002/jssc.201900071.
  • Sun, X.; Du, Y.; Zhao, S.; Huang, Z.; Feng, Z. Enantioseparation of Propranolol, Amlodipine and Metoprolol by Electrochromatography Using an Open Tubular Capillary Modified with β-Cyclodextrin and Poly(Glycidyl Methacrylate) Nanoparticles. Microchim. Acta. 2019, 186, 1–7.
  • Wang, T.; Cheng, Y.; Zhang, Y.; Zha, J.; Ye, J.; Chu, Q.; Cheng, G. Β-Cyclodextrin Modified Quantum Dots as Pseudo-Stationary Phase for Direct Enantioseparation Based on Capillary Electrophoresis with Laser-Induced Fluorescence Detection. Talanta. 2020, 210, 120629. DOI: 10.1016/j.talanta.2019.120629.
  • Upadhyay, S. S.; Kalambate, P. K.; Srivastava, A. K. Enantioselective Biomimetic Sensor for Discrimination of R and S-Clopidogrel Promoted by β-Cyclodextrin Complexes Employing Graphene and Platinum Nanoparticle Modified Carbon Paste Electrode. J. Electroanal. Chem. 2019, 840, 305–312. DOI: 10.1016/j.jelechem.2019.03.068.
  • Ates, S.; Zor, E.; Akin, I.; Bingol, H.; Alpaydin, S.; Akgemci, E. G. Discriminative Sensing of DOPA Enantiomers by Cyclodextrin Anchored Graphene Nanohybrids. Anal. Chim. Acta. 2017, 970, 30–37. DOI: 10.1016/j.aca.2017.03.052.
  • Niu, X.; Mo, Z.; Yang, X.; Shuai, C.; Liu, N.; Guo, R. Graphene-Ferrocene Functionalized Cyclodextrin Composite with High Electrochemical Recognition Capability for Phenylalanine Enantiomers. Bioelectrochemistry. 2019, 128, 74–82. DOI: 10.1016/j.bioelechem.2019.03.006.
  • Zou, J.; Yu, J.-G. Nafion-Stabilized Black Phosphorus Nanosheets-Maltosyl-β-Cyclodextrin as a Chiral Sensor for Tryptophan Enantiomers. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 112, 110910. DOI: 10.1016/j.msec.2020.110910.
  • Niu, X.; Yang, X.; Mo, Z.; Liu, N.; Guo, R.; Pan, Z.; Liu, Z. Electrochemical Chiral Sensing of Tryptophan Enantiomers by Using 3D Nitrogen-Doped Reduced Graphene Oxide and Self-Assembled Polysaccharides. Microchim. Acta. 2019, 186(8), 1–12.
  • Tao, Y.; Chu, F.; Gu, X.; Kong, Y.; Lv, Y.; Deng, L. A Novel Electrochemical Chiral Sensor for Tyrosine Isomers Based on a Coordination-Driven Self-Assembly. Sens. Actuators, B Chem. 2018, 255, 255–261. DOI: 10.1016/j.snb.2017.08.077.
  • Paquin, F.; Rivnay, J.; Salleo, A.; Stingelin, N.; Silva, C. Multi-Phase Semicrystalline Microstructures Drive Exciton Dissociation in Neat Plastic Semiconductors. J. Mater. Chem. C. 2015, 3, 10715–10722. DOI: 10.1039/C5TC02043C.
  • Chen, Y.; Huang, Y.; Guo, D.; Chen, C.; Wang, Q.; Fu, Y. A Chiral Sensor for Recognition of DOPA Enantiomers Based on Immobilization of β-Cyclodextrin onto the Carbon Nanotube-Ionic Liquid Nanocomposite. J. Solid State Electrochem. 2014, 18, 3463–3469. DOI: 10.1007/s10008-014-2575-z.
  • Tian, X.; Cheng, C.; Yuan, H.; Du, J.; Xiao, D.; Xie, S.; Choi, M. M. F. Simultaneous Determination of L-Ascorbic Acid, Dopamine and Uric Acid with Gold Nanoparticles-β-Cyclodextrin-Graphene-Modified Electrode by Square Wave Voltammetry. Talanta. 2012, 93, 79–85. DOI: 10.1016/j.talanta.2012.01.047.
  • Mukdasai, S.; Poosittisak, S.; Ngeontae, W.; Srijaranai, S. A Highly Sensitive Electrochemical Determination of L-Tryptophan in the Presence of Ascorbic Acid and Uric Acid Using in Situ Addition of Tetrabutylammonium Bromide on the ß-Cyclodextrin Incorporated Multi-Walled Carbon Nanotubes Modified Electrode. Sens. Actuators, B Chem. 2018, 272, 518–525. DOI: 10.1016/j.snb.2018.06.014.
  • Upadhyay, S. S.; Kalambate, P. K.; Srivastava, A. K. Enantioselective Analysis of Moxifloxacin Hydrochloride Enantiomers with Graphene-β-Cyclodextrin-Nanocomposite Modified Carbon Paste Electrode Using Adsorptive Stripping Differential Pulse Voltammetry. Electrochim. Acta. 2017, 248, 258–269. DOI: 10.1016/j.electacta.2017.07.141.
  • Chen, F.; Fan, Z.; Zhu, Y.; Sun, H.; Yu, J.; Jiang, N.; Zhao, S.; Lai, G.; Yu, A.; Lin, C.-T.; Ye, C.; Fu, L. β-Cyclodextrin-Immobilized Ni/Graphene Electrode for Electrochemical Enantiorecognition of Phenylalanine. Materials (Basel). 2020, 13, 777. DOI: 10.3390/ma13030777.
  • Niu, X.; Yang, X.; Mo, Z.; Guo, R.; Liu, N.; Zhao, P.; Liu, Z. Perylene-Functionalized Graphene Sheets Modified with β-Cyclodextrin for the Voltammetric Discrimination of Phenylalanine Enantiomers. Bioelectrochemistry. 2019, 129, 189–198. DOI: 10.1016/j.bioelechem.2019.05.016.
  • Shishkanova, T. V.; Habanová, N.; Řezanka, M.; Broncová, G.; Fitl, P.; Vrňata, M.; Matějka, P. Molecular Recognition of Phenylalanine Enantiomers onto a Solid Surface Modified with Electropolymerized Pyrrole-β-Cyclodextrin Conjugate. Electroanalysis. 2020, 32, 767–774. DOI: 10.1002/elan.201900615.
  • Gao, J.; Zhang, H.; Ye, C.; Yuan, Q.; Chee, K. W. A.; Su, W.; Yu, A.; Yu, J.; Lin, C.; Te; Dai, D.; Fu, L. Electrochemical Enantiomer Recognition Based on Sp3-to-Sp2 Converted Regenerative Graphene/Diamond Electrode. Nanomaterials. 2018, 8, 3–8. DOI: 10.3390/nano8121050.
  • Zaidi, S. A. Facile and Efficient Electrochemical Enantiomer Recognition of Phenylalanine Using β-Cyclodextrin Immobilized on Reduced Graphene Oxide. Biosens. Bioelectron. 2017, 94, 714–718. DOI: 10.1016/j.bios.2017.03.069.
  • Cui, H.; Chen, L.; Dong, Y.; Zhong, S.; Guo, D.; Zhao, H.; He, Y.; Zou, H.; Li, X.; Yuan, Z. Molecular Recognition Based on an Electrochemical Sensor of per(6-Deoxy-6-Thio)-β-Cyclodextrin Self-Assembled Monolayer Modified Gold Electrode. J. Electroanal. Chem. 2015, 742, 15–22. DOI: 10.1016/j.jelechem.2015.01.031.
  • Tao, Y.; Gu, X.; Deng, L.; Qin, Y.; Xue, H.; Kong, Y. Chiral Recognition of D-Tryptophan by Confining High-Energy Water Molecules inside the Cavity of Copper-Modified β-Cyclodextrin. J. Phys. Chem. C. 2015, 119, 8183–8190. DOI: 10.1021/acs.jpcc.5b00927.
  • Xu, J.; Wang, Q.; Xuan, C.; Xia, Q.; Lin, X.; Fu, Y. Chiral Recognition of Tryptophan Enantiomers Based on β-Cyclodextrin-Platinum Nanoparticles/Graphene Nanohybrids Modified Electrode. Electroanalysis. 2016, 28, 868–873. DOI: 10.1002/elan.201500548.
  • Liang, W.; Rong, Y.; Fan, L.; Dong, W.; Dong, Q.; Yang, C.; Zhong, Z.; Dong, C.; Shuang, S.; Wong, W. Y. 3D Graphene/Hydroxypropyl-β-Cyclodextrin Nanocomposite as an Electrochemical Chiral Sensor for the Recognition of Tryptophan Enantiomers. J. Mater. Chem. C. 2018, 6, 12822–12829. DOI: 10.1039/C8TC04448A.
  • Niu, X.; Yang, X.; Mo, Z.; Guo, R.; Liu, N.; Zhao, P.; Liu, Z.; Ouyang, M. Voltammetric Enantiomeric Differentiation of Tryptophan by Using Multiwalled Carbon Nanotubes Functionalized with Ferrocene and β-Cyclodextrin. Electrochim. Acta. 2019, 297, 650–659. DOI: 10.1016/j.electacta.2018.12.041.
  • Ou, J.; Zhu, Y.; Kong, Y.; Ma, J. Graphene Quantum Dots/β-Cyclodextrin Nanocomposites: A Novel Electrochemical Chiral Interface for Tryptophan Isomer Recognition. Electrochem. Commun. 2015, 60, 60–63. DOI: 10.1016/j.elecom.2015.08.005.
  • Xiao, Q.; Lu, S.; Huang, C.; Su, W.; Zhou, S.; Sheng, J.; Huang, S. An Electrochemical Chiral Sensor Based on Amino-Functionalized Graphene Quantum Dots/β-Cyclodextrin Modified Glassy Carbon Electrode for Enantioselective Detection of Tryptophan Isomers. J. Iran. Chem. Soc. 2017, 14, 1957–1970. DOI: 10.1007/s13738-017-1134-9.
  • Tao, Y.; Gu, X.; Yang, B.; Deng, L.; Bao, L.; Kong, Y.; Chu, F.; Qin, Y. Electrochemical Enantioselective Recognition in a Highly Ordered Self-Assembly Framework. Anal. Chem. 2017, 89, 1900–1906. DOI: 10.1021/acs.analchem.6b04377.
  • Xiao, Q.; Lu, S.; Huang, C.; Su, W.; Huang, S. Novel N-Doped Carbon Dots/β-Cyclodextrin Nanocomposites for Enantioselective Recognition of Tryptophan Enantiomers. Sensors (Switzerland). 2016, 16(11), 1874, DOI: 10.3390/s16111874.
  • Yang, X.; Niu, X.; Mo, Z.; Wang, J.; Shuai, C.; Pan, Z.; Liu, Z.; Liu, N.; Guo, R. 3D Nitrogen and Sulfur Co-doped Graphene/Integrated Polysaccharides for Electrochemical Recognition Tryptophan Enantiomers. J. Electrochem. Soc. 2019, 166, B1053–B1062. DOI: 10.1149/2.1321912jes.
  • Dong, S.; Bi, Q.; Qiao, C.; Sun, Y.; Zhang, X.; Lu, X.; Zhao, L. Electrochemical Sensor for Discrimination Tyrosine Enantiomers Using Graphene Quantum Dots and β-Cyclodextrins Composites. Talanta. 2017, 173, 94–100. DOI: 10.1016/j.talanta.2017.05.045.
  • Ma, J.; Yang, C.; Zhu, S.; Song, J.; Fu, Y. A New Nanomatrix Based on Functionalized Fullerene and Porous Bimetallic Nanoparticles for Electrochemical Chiral Sensing. New J. Chem. 2018, 42, 9801–9807. DOI: 10.1039/C8NJ01599F.
  • Ji, J.; Qu, L.; Wang, Z.; Li, G.; Feng, W.; Yang, G. A Facile Electrochemical Chiral Sensor for Tryptophan Enantiomers Based on Multiwalled Carbon Nanotubes/Hydroxypropyl-Β-Cyclodextrin Functionalized Carboxymethyl Cellulose. Hydroxypropyl-Β-Cyclodextrin Functionalized Carboxymethyl Cellulose. SSRN Electron. J., Social Science Research Network, Amsterdam, Netherlands, 2021, 7.
  • Vyskočil, V.; Barek, J. Mercury Electrodes–Possibilities and Limitations in Environmental Electroanalysis. Crit. Rev. Anal. Chem. 2009, 39, 173–188. DOI: 10.1080/10408340903011820.
  • Chen, F.; Pei, H.; Jia, Q.; Guo, W.; Zhang, X.; Guo, R.; Liu, N.; Mo, Z. Construction of Cyclodextrin Functionalized Nitrogen-Doped Graphene Quantum Dot Electrochemical Sensing Interface for Recognition of Tryptophan Isomers. Mater. Chem. Phys. 2021, 273, 125086. DOI: 10.1016/j.matchemphys.2021.125086.
  • Teasdale, A.; Elder, D.; Harvey, J.; Spanhaak, S. Impurities in New Drug Substances and New Drug Products. In ICH Quality Guidelines; Teasdale, A., Elder, D., Nims, R.W., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, 2018; pp 167–198.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.