587
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Recent Advances in the Fabrication of Nano-aptasensors for the Detection of Troponin as a Main Biomarker of Acute Myocardial Infarction

&
Pages 594-613 | Published online: 02 Sep 2021

References

  • Wilkins, E.; Wilson, L.; Wickramasinghe, K.; Bhatnagar, P.; Leal, J.; Luengo-Fernandez, R.; Burns, R.; Rayner, M.; Townsend, N. European Cardiovascular Disease Statistics 2017; European Heart Network, Brussels, 2017.
  • Sanchis-Gomar, F.; Perez-Quilis, C.; Leischik, R.; Lucia, A. Epidemiology of Coronary Heart Disease and Acute Coronary Syndrome. Ann. Transl. Med. 2016, 4, 256–256. DOI: 10.21037/atm.2016.06.33.
  • Kim, K.; Park, C.; Kwon, D.; Kim, D.; Meyyappan, M.; Jeon, S.; Lee, J.-S. Silicon Nanowire Biosensors for Detection of Cardiac Troponin I (cTnI) with High Sensitivity. Biosens. Bioelectron. 2016, 77, 695–701. DOI: 10.1016/j.bios.2015.10.008.
  • Fathil, M. F. M.; Md Arshad, M. K.; Gopinath, S. C. B.; Hashim, U.; Adzhri, R.; Ayub, R. M.; Ruslinda, A. R.; Nuzaihan, M. N.; M.; Azman, A. H.; Zaki, M.; Tang, T.-H. Diagnostics on Acute Myocardial Infarction: Cardiac Troponin Biomarkers. Biosens. Bioelectron. 2015, 70, 209–220. DOI: 10.1016/j.bios.2015.03.037.
  • Chan, D.; Ng, L. L. Biomarkers in Acute Myocardial Infarction. BMC Med. 2010, 8, 34–34. DOI: 10.1186/1741-7015-8-34.
  • Aydin, S.; Ugur, K.; Aydin, S.; Sahin, İ.; Yardim, M. Biomarkers in Acute Myocardial Infarction: Current Perspectives. Vasc. Health Risk Manag. 2019, 15, 1–10. DOI: 10.2147/VHRM.S166157.
  • Aldous, S. J. Cardiac Biomarkers in Acute Myocardial Infarction. Int. J. Cardiol. 2013, 164, 282–294. DOI: 10.1016/j.ijcard.2012.01.081.
  • Nezami, A.; Dehghani, S.; Nosrati, R.; Eskandari, N.; Taghdisi, S. M.; Karimi, G. Nanomaterial-Based Biosensors and Immunosensors for Quantitative Determination of Cardiac Troponins. J. Pharm. Biomed. Anal. 2018, 159, 425–436. DOI: 10.1016/j.jpba.2018.07.031.
  • Hajipour, M. J.; Mehrani, M.; Abbasi, S. H.; Amin, A.; Kassaian, S. E.; Garbern, J. C.; Caracciolo, G.; Zanganeh, S.; Chitsazan, M.; Aghaverdi, H.; et al. Nanoscale Technologies for Prevention and Treatment of Heart Failure: Challenges and Opportunities. Chem. Rev. 2019, 119, 11352–11390. DOI: 10.1021/acs.chemrev.8b00323.
  • Daubert, M. A.; Jeremias, A. J. V. h.; Management, r. The Utility of Troponin Measurement to Detect Myocardial Infarction: Review of the Current Findings. Vasc. Health Risk Manag. 2010, 6, 691–699. DOI: 10.2147/vhrm.s5306.
  • Tuteja, S. K.; Priyanka; Bhalla, V.; Deep, A.; Paul, A. K.; Suri, C. R. Graphene-Gated Biochip for the Detection of Cardiac Marker Troponin I. Anal. Chim. Acta. 2014, 809, 148–154.
  • Twerenbold, R.; Rubini Gimenez, M.; Nestelberger, T.; Boeddinghaus, J.; Wildi, K.; Mueller, C. Optimising the Early Rule-out and Rule-in of Myocardial Infarction Using Biomarkers. Cardiovasc. Med. 2019, 22, 02010.
  • Ohtsuki, I.; Morimoto, S. Troponin. In Encyclopedia of Biological Chemistry, 2nd ed.; Lennarz, W. J., Lane, M. D., Eds.; Academic Press: Waltham, 2013, 445–449
  • Laine, R.; Stuckey, D. W.; Manning, H.; Warren, S. C.; Kennedy, G.; Carling, D.; Dunsby, C.; Sardini, A.; French, P. M. J. P. O. Fluorescence Lifetime Readouts of Troponin-C-Based Calcium FRET Sensors: A Quantitative Comparison of CFP and mTFP1 as Donor Fluorophores. PLoS One. 2012, 7, e49200. DOI: 10.1371/journal.pone.0049200.
  • Nusier, M. K.; Ababneh, B. M. Diagnostic Efficiency of Creatine Kinase (CK), CKMB, Troponin T and Troponin I in Patients with Suspected Acute Myocardial Infarction. J. Health Sci. 2006, 52, 180–185. DOI: 10.1248/jhs.52.180.
  • Sherwood, M. W.; Kristin Newby, L. High-Sensitivity Troponin Assays: Evidence, Indications, and Reasonable Use. J. Am. Heart Assoc. 2014, 3, e000403. DOI: 10.1161/JAHA.113.000403.
  • White, H. D. Pathobiology of Troponin Elevations: Do Elevations Occur with Myocardial Ischemia as Well as Necrosis? American College of Cardiology Foundation: Washington, DC, 2011.
  • Periyakaruppan, A.; Gandhiraman, R. P.; Meyyappan, M.; Koehne, J. E. J. A. c. Label-Free Detection of Cardiac troponin-I Using Carbon Nanofiber Based Nanoelectrode Arrays. Anal. Chem. 2013, 85, 3858–3863. DOI: 10.1021/ac302801z.
  • Rosalki, S. B.; Roberts, R.; Katus, H. A.; Giannitsis, E.; Ladenson, J. H.; Apple, F. S. Cardiac Biomarkers for Detection of Myocardial Infarction: Perspectives from Past to Present. Clin. Chem. 2004, 50, 2205–2213. DOI: 10.1373/clinchem.2004.041749.
  • Qureshi, A.; Gurbuz, Y.; Niazi, J. H. Biosensors for Cardiac Biomarkers Detection: A Review. Sens. Actuators B Chem. 2012, 171–172, 62–76. DOI: 10.1016/j.snb.2012.05.077.
  • Kordasht, H. k.; Hassanpour, S.; Baradaran, B.; Nosrati, R.; Hashemzaei, M.; Mokhtarzadeh, A.; la Guardia, M. d. Biosensing of Microcystins in Water Samples; Recent Advances. Biosens. Bioelectron. 2020, 165, 112403. DOI: 10.1016/j.bios.2020.112403.
  • Pourali, A.; Rashidi, M. R.; Barar, J.; Pavon-Djavid, G.; Omidi, Y. Voltammetric Biosensors for Analytical Detection of Cardiac Troponin Biomarkers in Acute Myocardial Infarction. TrAC. 2021, 134, 116123. DOI: 10.1016/j.trac.2020.116123.
  • Regan, B.; O’Kennedy, R.; Collins, D. Point-of-Care Compatibility of Ultra-Sensitive Detection Techniques for the Cardiac Biomarker Troponin I—Challenges and Potential Value. Biosensors. 2018, 8, 114. DOI: 10.3390/bios8040114.
  • Bayat, P.; Nosrati, R.; Alibolandi, M.; Rafatpanah, H.; Abnous, K.; Khedri, M.; Ramezani, M. SELEX Methods on the Road to Protein Targeting with Nucleic Acid Aptamers. Biochimie. 2018, 154, 132–155. DOI: 10.1016/j.biochi.2018.09.001.
  • Ruiz Ciancio, D.; Vargas, M. R.; Thiel, W. H.; Bruno, M. A.; Giangrande, P. H.; Mestre, M. B. Aptamers as Diagnostic Tools in Cancer. Pharmaceuticals (Basel, Switzerland). 2018, 11, 86. DOI: 10.3390/ph11030086.
  • Chang, Y. M.; Donovan, M. J.; Tan, W. Using Aptamers for Cancer Biomarker Discovery. J. Nucl. Acids. 2013, 2013, 2013, 1–7. DOI: 10.1155/2013/817350.
  • Toh, S. Y.; Citartan, M.; Gopinath, S. C. B.; Tang, T.-H. Aptamers as a Replacement for Antibodies in Enzyme-Linked Immunosorbent Assay. Biosens. Bioelectron. 2015, 64, 392–403. DOI: 10.1016/j.bios.2014.09.026.
  • Ali, M. H.; Elsherbiny, M. E.; Emara, M. Updates on Aptamer Research. IJMS. 2019, 20, 2511. DOI: 10.3390/ijms20102511.
  • Chen, A.; Yang, S. Replacing Antibodies with Aptamers in Lateral Flow Immunoassay. Biosens. Bioelectron. 2015, 71, 230–242. DOI: 10.1016/j.bios.2015.04.041.
  • Chen, K.; Zhou, J.; Shao, Z.; Liu, J.; Song, J.; Wang, R.; Li, J.; Tan, W. Aptamers as Versatile Molecular Tools for Antibody Production Monitoring and Quality Control. J. Am. Chem. Soc. 2020, 142, 12079–12086. DOI: 10.1021/jacs.9b13370.
  • Golichenari, B.; Nosrati, R.; Farokhi-Fard, A.; Abnous, K.; Vaziri, F.; Behravan, J. Nano-Biosensing Approaches on Tuberculosis: Defy of Aptamers. Biosens. Bioelectron. 2018, 117, 319–331. DOI: 10.1016/j.bios.2018.06.025.
  • Freeman, R.; Girsh, J.; Fang-Ju Jou, A.; Ho, J. A. A.; Hug, T.; Dernedde, J.; Willner, I. Optical Aptasensors for the Analysis of the Vascular Endothelial Growth Factor (VEGF). Anal. Chem. 2012, 84, 6192–6198. DOI: 10.1021/ac3011473.
  • Fu, X. M.; Liu, Z. J.; Cai, S. X.; Zhao, Y. P.; Wu, D. Z.; Li, C. Y.; Chen, J. H. Electrochemical Aptasensor for the Detection of Vascular Endothelial Growth Factor (VEGF) Based on DNA-Templated Ag/Pt Bimetallic Nanoclusters. Chin. Chem. Lett. 2016, 27, 920–926. DOI: 10.1016/j.cclet.2016.04.014.
  • Hassanpour, S.; Baradaran, B.; Hejazi, M.; Hasanzadeh, M.; Mokhtarzadeh, A.; de la Guardia, M. Recent Trends in Rapid Detection of Influenza Infections by Bio and Nanobiosensor. TrAC. 2018, 98, 201–215. DOI: 10.1016/j.trac.2017.11.012.
  • Hassanpour, S.; Baradaran, B.; de la Guardia, M.; Baghbanzadeh, A.; Mosafer, J.; Hejazi, M.; Mokhtarzadeh, A.; Hasanzadeh, M. Diagnosis of Hepatitis via Nanomaterial-Based Electrochemical, Optical or Piezoelectrical Biosensors: A Review on Recent Advancements. Mikrochim. Acta. 2018, 185, 568. DOI: 10.1007/s00604-018-3088-8.
  • Han, X.; Li, S.; Peng, Z.; Othman, A. M.; Leblanc, R. Recent Development of Cardiac Troponin I Detection. ACS Sens. 2016, 1, 106–114. DOI: 10.1021/acssensors.5b00318.
  • Cheng, W.; Ding, S.; Li, Q.; Yu, T.; Yin, Y.; Ju, H.; Ren, G. A Simple Electrochemical Aptasensor for Ultrasensitive Protein Detection Using Cyclic Target-Induced Primer Extension. Biosens. Bioelectron. 2012, 36, 12–17. DOI: 10.1016/j.bios.2012.03.032.
  • Ayodele, O. O.; Adesina, A. O.; Pourianejad, S.; Averitt, J.; Ignatova, T. Recent Advances in Nanomaterial-Based Aptasensors in Medical Diagnosis and Therapy. Nanomaterials. 2021, 11, 932. DOI: 10.3390/nano11040932.
  • Charbgoo, F.; Soltani, F.; Taghdisi, S. M.; Abnous, K.; Ramezani, M. Nanoparticles Application in High Sensitive Aptasensor Design. TrAC. 2016, 85, 85–97. DOI: 10.1016/j.trac.2016.08.008.
  • Kaur, H.; Shorie, M. Nanomaterial Based Aptasensors for Clinical and Environmental Diagnostic Applications. Nanoscale Adv. 2019, 1, 2123–2138. DOI: 10.1039/C9NA00153K.
  • Vigneshvar, S.; Sudhakumari, C. C.; Senthilkumaran, B.; Prakash, H. Recent Advances in Biosensor Technology for Potential Applications – An Overview. Front. Bioeng. Biotechnol. 2016, 4, 11.
  • Perumal, V.; Hashim, U. Advances in Biosensors: Principle, Architecture and Applications. J. Appl. Biomed. 2014, 12, 1–15. DOI: 10.1016/j.jab.2013.02.001.
  • Vashistha, R.; Dangi, A. K.; Kumar, A.; Chhabra, D.; Shukla, P. Futuristic Biosensors for Cardiac Health Care: An Artificial Intelligence Approach. 3 Biotech. 2018, 8, 1–11. DOI: 10.1007/s13205-018-1368-y.
  • Liu, X.; Liu, H.; Li, M.; Qi, H.; Gao, Q.; Zhang, C. Highly Sensitive Electrochemiluminescence Assay for Cardiac Troponin I and Adenosine Triphosphate by Using Supersandwich Amplification and Bifunctional Aptamer. ChemElectroChem. 2017, 4, 1708–1713. DOI: 10.1002/celc.201600845.
  • Saremi, M.; Amini, A.; Heydari, H. An Aptasensor for Troponin I Based on the Aggregation-Induced Electrochemiluminescence of Nanoparticles Prepared from a Cyclometallated Iridium(III) Complex and Poly(4-Vinylpyridine-co-Styrene) Deposited on Nitrogen-Doped Graphene. Microchim. Acta. 2019, 186, 254.
  • Han, Z.; Shu, J.; Liang, X.; Cui, H. Label-Free Ratiometric Electrochemiluminescence Aptasensor Based on Nanographene Oxide Wrapped Titanium Dioxide Nanoparticles with Potential-Resolved Electrochemiluminescence. Anal. Chem. 2019, 91, 12260–12267. DOI: 10.1021/acs.analchem.9b02318.
  • Gopinathan, P.; Sinha, A.; Chung, Y.-D.; Shiesh, S.-C.; Lee, G.-B. Optimization of an Enzyme Linked DNA Aptamer Assay for Cardiac Troponin I Detection: Synchronous Multiple Sample Analysis on an Integrated Microfluidic Platform. Analyst. 2019, 144, 4943–4951. DOI: 10.1039/C9AN00779B.
  • Krasitskaya, V. V.; Goncharova, N. S.; Biriukov, V. V.; Bashmakova, E. E.; Kabilov, M. R.; Baykov, I. K.; Sokolov, A. E.; Frank, L. A. The Ca2+-Regulated Photoprotein Obelin as a Tool for SELEX Monitoring and DNA Aptamer Affinity Evaluation. Photochem. Photobiol. 2020, 96, 1041–1046. DOI: 10.1111/php.13274.
  • Kitte, S. A.; Tafese, T.; Xu, C.; Saqib, M.; Li, H.; Jin, Y. Plasmon-Enhanced Quantum Dots Electrochemiluminescence Aptasensor for Selective and Sensitive Detection of Cardiac Troponin I. Talanta. 2021, 221, 121674.
  • Rezaei, Z.; Ranjbar, B. Ultra-sensitive, Rapid Gold Nanoparticle-Quantum Dot Plexcitonic Self-Assembled Aptamer-Based Nanobiosensor for the Detection of Human Cardiac Troponin I. Eng. Life Sci. 2017, 17, 165–174. DOI: 10.1002/elsc.201500188.
  • Li, Y.; Dai, W.; Lv, X.; Deng, Y. Aptamer-Based Rolling Circle Amplification Coupled with Graphene Oxide-Based Fluorescence Resonance Energy Transfer for Sensitive Detection of Cardiac Troponin I. Anal. Methods. 2018, 10, 1767–1773. DOI: 10.1039/C8AY00309B.
  • Li, Y.; Yang, Y.; Lü, X.; Deng, Y. Aptamer-Based Fluorescent Assay for Sensitive Detection of Cardiac Troponin I. J. Beijing Inst. Tech. 2020, 29, 45–51.
  • Liu, D.; Lu, X.; Yang, Y.; Zhai, Y.; Zhang, J.; Li, L. A Novel Fluorescent Aptasensor for the Highly Sensitive and Selective Detection of Cardiac Troponin I Based on a Graphene Oxide Platform. Anal. Bioanal. Chem. 2018, 410, 4285–4291. DOI: 10.1007/s00216-018-1076-9.
  • Wong, K.-W.; Xu, D.; He, D.; Wong, M. S.; Li, H.-W. Direct Immunomagnetic Detection of Low Abundance Cardiac Biomarker by Aptamer DNA Nanocomplex. Sens. Actuators B Chem. 2019, 291, 200–206. DOI: 10.1016/j.snb.2019.04.035.
  • Alves, R. S.; Sigoli, F. A.; Mazali, I. O. Aptasensor Based on a Flower-Shaped Silver Magnetic Nanocomposite Enables the Sensitive and Label-Free Detection of Troponin I (cTnI) by SERS. Nanotechnology. 2020, 31, 505505.
  • Lee, H.; Youn, H.; Hwang, A.; Lee, H.; Park, J. Y.; Kim, W.; Yoo, Y.; Ban, C.; Kang, T.; Kim, B. B. Troponin Aptamer on an Atomically Flat Au Nanoplate Platform for Detection of Cardiac Troponin I. Nanomaterials. 2020, 10, 1402. DOI: 10.3390/nano10071402.
  • Tu, D.; Holderby, A.; Coté, G. L. Aptamer-Based Surface-Enhanced Resonance Raman Scattering Assay on a Paper Fluidic Platform for Detection of Cardiac Troponin I. J. Biomed. Opt. 2020, 25, 097001. DOI: 10.1117/1.JBO.25.9.097001.
  • Zhang, J.; Arbault, S.; Sojic, N.; Jiang, D. Electrochemiluminescence Imaging for Bioanalysis. Annu. Rev. Anal. Chem. (Palo Alto CA). 2019, 12, 275–295. DOI: 10.1146/annurev-anchem-061318-115226.
  • Su, Y.; Lv, Y. Graphene and Graphene Oxides: Recent Advances in Chemiluminescence and Electrochemiluminescence. RSC Adv. 2014, 4, 29324–29339. DOI: 10.1039/C4RA03598D.
  • Pasquardini, L.; Pancheri, L.; Potrich, C.; Ferri, A.; Piemonte, C.; Lunelli, L.; Napione, L.; Comunanza, V.; Alvaro, M.; Vanzetti, L.; et al. SPAD Aptasensor for the Detection of Circulating Protein Biomarkers. Biosens. Bioelectron. 2015, 68, 500–507. DOI: 10.1016/j.bios.2015.01.042.
  • Zanut, A.; Fiorani, A.; Canola, S.; Saito, T.; Ziebart, N.; Rapino, S.; Rebeccani, S.; Barbon, A.; Irie, T.; Josel, H.-P. Insights into the Mechanism of Coreactant Electrochemiluminescence Facilitating Enhanced Bioanalytical Performance. Nat. Commun. 2020, 11, 1–9.
  • Saha, K.; Agasti, S. S.; Kim, C.; Li, X.; Rotello, V. M. Gold Nanoparticles in Chemical and Biological Sensing. Chem. Rev. 2012, 112, 2739–2779.
  • Nosrati, R.; Golichenari, B.; Nezami, A.; Taghdisi, S. M.; Karimi, B.; Ramezani, M.; Abnous, K.; Shaegh, S. A. M. Helicobacter pylori Point-of-Care Diagnosis: Nano-Scale Biosensors and Microfluidic Systems. TrAC. 2017, 97, 428–444. DOI: 10.1016/j.trac.2017.10.013.
  • Feng, C.; Dai, S.; Wang, L. J. B. Optical Aptasensors for Quantitative Detection of Small Biomolecules: A Review. Biosens. Bioelectron. 2014, 59, 64–74. DOI: 10.1016/j.bios.2014.03.014.
  • Zheng, P.; Wu, N. Fluorescence and Sensing Applications of Graphene Oxide and Graphene Quantum Dots: A Review. Chem. Asian J. 2017, 12, 2343–2353. DOI: 10.1002/asia.201700814.
  • Shi, J.; Tian, F.; Lyu, J.; Yang, M. Nanoparticle Based Fluorescence Resonance Energy Transfer (FRET) for Biosensing Applications. J. Mater. Chem. B. 2015, 3, 6989–7005. DOI: 10.1039/c5tb00885a.
  • Dehghani, S.; Nosrati, R.; Yousefi, M.; Nezami, A.; Soltani, F.; Taghdisi, S. M.; Abnous, K.; Alibolandi, M.; Ramezani, M. Aptamer-Based Biosensors and Nanosensors for the Detection of Vascular Endothelial Growth Factor (VEGF): A Review. Biosens. Bioelectron. 2018, 110, 23–37. DOI: 10.1016/j.bios.2018.03.037.
  • Nelson, B. P.; Grimsrud, T. E.; Liles, M. R.; Goodman, R. M.; Corn, R. M. Surface Plasmon Resonance Imaging Measurements of DNA and RNA Hybridization Adsorption onto DNA Microarrays. Anal. Chem. 2001, 73, 1–7. DOI: 10.1021/ac0010431.
  • Jo, H.; Gu, H.; Jeon, W.; Youn, H.; Her, J.; Kim, S. K.; Lee, J.; Shin, J. H.; Ban, C. Electrochemical Aptasensor of Cardiac Troponin i for the Early Diagnosis of Acute Myocardial Infarction. Anal. Chem. 2015, 87, 9869–9875. DOI: 10.1021/acs.analchem.5b02312.
  • Torrini, F.; Palladino, P.; Brittoli, A.; Baldoneschi, V.; Minunni, M.; Scarano, S. Characterization of Troponin T Binding Aptamers for an Innovative Enzyme-Linked Oligonucleotide Assay (ELONA). Anal. Bioanal. Chem. 2019, 411, 7709–7716. DOI: 10.1007/s00216-019-02014-7.
  • Dorraj, G. S.; Rassaee, M. J.; Latifi, A. M.; Pishgoo, B.; Tavallaei, M. Selection of DNA Aptamers against Human Cardiac Troponin I for Colorimetric Sensor Based Dot Blot Application. J. Biotechnol. 2015, 208, 80–86. DOI: 10.1016/j.jbiotec.2015.05.002.
  • Christenson, C.; Baryeh, K.; Ahadian, S.; Nasiri, R.; Dokmeci, M. R.; Goudie, M.; Khademhosseini, A.; Ye, J. Y. Enhancement of Label-Free Biosensing of Cardiac Troponin I. Proc. SPIE Int. Soc. Opt. Eng. 2020, 11251, 112512J.
  • Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. J. A. c. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures. Anal. Chem. 2015, 87, 230–249. DOI: 10.1021/ac5039863.
  • Luo, X.; Davis, J. J. J. C. S. R. Electrical Biosensors and the Label Free Detection of Protein Disease Biomarkers. Chem. Soc. Rev. 2013, 42, 5944–5962. DOI: 10.1039/c3cs60077g.
  • Jo, H.; Her, J.; Lee, H.; Shim, Y. B.; Ban, C. Highly Sensitive Amperometric Detection of Cardiac Troponin I Using Sandwich Aptamers and Screen-Printed Carbon Electrodes. Talanta. 2017, 165, 442–448. DOI: 10.1016/j.talanta.2016.12.091.
  • Chekin, F.; Vasilescu, A.; Jijie, R.; Singh, S. K.; Kurungot, S.; Iancu, M.; Badea, G.; Boukherroub, R.; Szunerits, S. Sensitive Electrochemical Detection of Cardiac Troponin I in Serum and Saliva by Nitrogen-Doped Porous Reduced Graphene Oxide Electrode. Sens. Actuators B Chem. 2018, 262, 180–187. DOI: 10.1016/j.snb.2018.01.215.
  • Grabowska, I.; Sharma, N.; Vasilescu, A.; Iancu, M.; Badea, G.; Boukherroub, R.; Ogale, S.; Szunerits, S. Electrochemical Aptamer-Based Biosensors for the Detection of Cardiac Biomarkers. ACS Omega. 2018, 3, 12010–12018. DOI: 10.1021/acsomega.8b01558.
  • Lopa, N. S.; Rahman, M. M.; Ahmed, F.; Ryu, T.; Sutradhar, S. C.; Lei, J.; Kim, J.; Kim, D. H.; Lee, Y. H.; Kim, W. Simple, Low-Cost, Sensitive and Label-Free Aptasensor for the Detection of Cardiac Troponin I Based on a Gold Nanoparticles Modified Titanium Foil. Biosens. Bioelectron. 2019, 126, 381–388. DOI: 10.1016/j.bios.2018.11.012.
  • Lee, T.; Lee, Y.; Park, S. Y.; Hong, K.; Kim, Y.; Park, C.; Chung, Y.-H.; Lee, M.-H.; Min, J. Fabrication of Electrochemical Biosensor Composed of Multi-Functional DNA Structure/Au Nanospike on Micro-Gap/PCB System for Detecting Troponin I in Human Serum. Colloids Surf. B Biointerfaces. 2019, 175, 343–350. DOI: 10.1016/j.colsurfb.2018.11.078.
  • Negahdary, M.; Behjati-Ardakani, M.; Sattarahmady, N.; Yadegari, H.; Heli, H. Electrochemical Aptasensing of Human Cardiac Troponin I Based on an Array of Gold Nanodumbbells-Applied to Early Detection of Myocardial Infarction. Sens. Actuators B Chem. 2017, 252, 62–71. DOI: 10.1016/j.snb.2017.05.149.
  • Negahdary, M.; Behjati-Ardakani, M.; Sattarahmady, N.; Heli, H. An Aptamer-Based Biosensor for Troponin i Detection in Diagnosis of Myocardial Infarction. J. Biomed. Phys. Eng. 2018, 8, 167–178.
  • Negahdary, M.; Behjati-Ardakani, M.; Heli, H.; Sattarahmady, N. A Cardiac Troponin T Biosensor Based on Aptamer Selfassembling on Gold. Int. J. Mol. Cell Med. 2019, 8, 271–282.
  • Negahdary, M.; Behjati-Ardakani, M.; Heli, H. An Electrochemical Troponin T Aptasensor Based on the Use of a Macroporous Gold Nanostructure. Microchim. Acta. 2019, 186, 377.
  • Sun, D.; Luo, Z.; Lu, J.; Zhang, S.; Che, T.; Chen, Z.; Zhang, L. Electrochemical Dual-Aptamer-Based Biosensor for Nonenzymatic Detection of Cardiac Troponin I by Nanohybrid Electrocatalysts Labeling Combined with DNA Nanotetrahedron Structure. Biosens. Bioelectron. 2019, 134, 49–56. DOI: 10.1016/j.bios.2019.03.049.
  • Sun, D.; Lin, X.; Lu, J.; Wei, P.; Luo, Z.; Lu, X.; Chen, Z.; Zhang, L. DNA Nanotetrahedron-Assisted Electrochemical Aptasensor for Cardiac Troponin I Detection Based on the Co-catalysis of Hybrid Nanozyme, Natural Enzyme and Artificial DNAzyme. Biosens. Bioelectron. 2019, 142, 111578.
  • Luo, Z.; Sun, D.; Tong, Y.; Zhong, Y.; Chen, Z. DNA Nanotetrahedron Linked Dual-Aptamer Based Voltammetric Aptasensor for Cardiac Troponin I Using a Magnetic Metal-Organic Framework as a Label. Microchim. Acta. 2019, 186, 374.
  • Mokhtari, Z.; Khajehsharifi, H.; Hashemnia, S.; Shahrokhian, S. Predicting the Cardiac Troponin I (cTnl) Aptamer/Methylene Blue Configuration Using Computational Modeling Studies: A Screening Search Method for Constructing Aptasensors. ChemistrySelect. 2020, 5, 10958–10969. DOI: 10.1002/slct.202001780.
  • Lang, M.; Luo, D.; Yang, G.; Mei, Q.; Feng, G.; Yang, Y.; Liu, Z.; Chen, Q.; Wu, L. An Ultrasensitive Electrochemical Sensing Platform for the Detection of cTnI Based on Aptamer Recognition and Signal Amplification Assisted by TdT. RSC Adv. 2020, 10, 36396–36403. DOI: 10.1039/D0RA05171C.
  • Villalonga, A.; Estabiel, I.; Pérez-Calabuig, A. M.; Mayol, B.; Parrado, C.; Villalonga, R. Amperometric Aptasensor with Sandwich-Type Architecture for Troponin I Based on Carboxyethylsilanetriol-Modified Graphene Oxide Coated Electrodes. Biosens. Bioelectron. 2021, 183, 113203.
  • Zhang, J.; Lakshmipriya, T.; Gopinath, S. C. B. Electroanalysis on an Interdigitated Electrode for High-Affinity Cardiac Troponin I Biomarker Detection by Aptamer–Gold Conjugates. ACS Omega. 2020, 5, 25899–25905. DOI: 10.1021/acsomega.0c03260.
  • Agarwal, D. K.; Kandpal, M.; Surya, S. G. Characterization and Detection of Cardiac Troponin-T Protein by Using ‘Aptamer’ Mediated Biofunctionalization of ZnO Thin-Film Transistor. Appl. Surf. Sci. 2019, 466, 874–881. DOI: 10.1016/j.apsusc.2018.10.086.
  • Hlukhova, H.; Menger, M.; Offenhäusser, A.; Vitusevich, S. Highly Sensitive Aptamer-Based Method for the Detection of Cardiac Biomolecules on Silicon Dioxide Surfaces. MRS Adv. 2018, 3, 1535–1541. DOI: 10.1557/adv.2018.332.
  • Zhang, G.; Zhang, L.; Yu, Y.; Lin, B.; Wang, Y.; Guo, M.; Cao, Y. Dual-Mode of Electrochemical-Colorimetric Imprinted Sensing Strategy Based on Self-Sacrifice Beacon for Diversified Determination of Cardiac Troponin I in Serum. Biosens. Bioelectron. 2020, 167, 112502. DOI: 10.1016/j.bios.2020.112502.
  • Mi, X.; Li, H.; Tan, R.; Tu, Y. Dual-Modular Aptasensor for Detection of Cardiac Troponin i Based on Mesoporous Silica Films by Electrochemiluminescence/Electrochemical Impedance Spectroscopy. Anal. Chem. 2020, 92, 14640–14647. DOI: 10.1021/acs.analchem.0c03130.
  • Qiao, X.; Li, K.; Xu, J.; Cheng, N.; Sheng, Q.; Cao, W.; Yue, T.; Zheng, J. Novel Electrochemical Sensing Platform for Ultrasensitive Detection of Cardiac Troponin I Based on aptamer-MoS2 Nanoconjugates. Biosens. Bioelectron. 2018, 113, 142–147. DOI: 10.1016/j.bios.2018.05.003.
  • Vasudevan, M.; Tai, M. J. Y.; Perumal, V.; Gopinath, S. C. B.; Murthe, S. S.; Ovinis, M.; Mohamed, N. M.; Joshi, N. Highly Sensitive and Selective Acute Myocardial Infarction Detection Using Aptamer-Tethered MoS2 Nanoflower and Screen-Printed Electrodes. Biotechnol. Appl. Biochem. 2020. DOI: 10.1002/bab.2060.
  • Vasudevan, M.; Tai, M. J. Y.; Perumal, V.; Gopinath, S. C. B.; Murthe, S. S.; Ovinis, M.; Mohamed, N. M.; Joshi, N. Cellulose acetate-MoS2 Nanopetal Hybrid: A Highly Sensitive and Selective Electrochemical Aptasensor of Troponin I for the Early Diagnosis of Acute Myocardial Infarction. J. Taiwan Inst. Chem. Eng. 2021, 118, 245–253. DOI: 10.1016/j.jtice.2021.01.016.
  • Sharma, A.; Jang, J. Flexible Electrical Aptasensor Using Dielectrophoretic Assembly of Graphene Oxide and Its Subsequent Reduction for Cardiac Biomarker Detection. Sci. Rep. 2019, 9, 5970.
  • Wang, C.; Li, J.; Kang, M.; Huang, X.; Liu, Y.; Zhou, N.; Zhang, Z. Nanodiamonds and Hydrogen-Substituted Graphdiyne Heteronanostructure for the Sensitive Impedimetric Aptasensing of Myocardial Infarction and Cardiac Troponin I. Anal. Chim. Acta. 2021, 1141, 110–119. DOI: 10.1016/j.aca.2020.10.044.
  • Sarangadharan, I.; Regmi, A.; Chen, Y.-W.; Hsu, C.-P.; Chen, P-c.; Chang, W.-H.; Lee, G.-Y.; Chyi, J.-I.; Shiesh, S.-C.; Lee, G.-B.; Wang, Y.-L. High Sensitivity Cardiac Troponin I Detection in Physiological Environment Using AlGaN/GaN High Electron Mobility Transistor (HEMT) Biosensors. Biosens. Bioelectron. 2018, 100, 282–289. DOI: 10.1016/j.bios.2017.09.018.
  • Surya, S. G.; Majhi, S. M.; Lahcen, A. A.; Yuvaraja, S.; Chappanda, K. N.; Salama, K. N.; Agarwal, D. K.; Chappanda, K. N. A Label-Free Aptasensor FET Based on Au Nanoparticle Decorated Co3O4 Nanorods and a SWCNT Layer for Detection of Cardiac Troponin T Protein. J. Mater. Chem. B. 2020, 8, 18–26. DOI: 10.1039/C9TB01989H.
  • Kutovyi, Y.; Li, J.; Zadorozhnyi, I.; Hlukhova, H.; Boichuk, N.; Yehorov, D.; Menger, M.; Vitusevich, S. Highly Sensitive and Fast Detection of C-Reactive Protein and Troponin Biomarkers Using Liquidgated Single Silicon Nanowire Biosensors. MRS Adv. 2020, 5, 835–846. DOI: 10.1557/adv.2020.60.
  • Rodrigues, T.; Mishyn, V.; Bozdogan, A.; Leroux, Y.; Happy, H.; Kasry, A.; Boukherroub, R.; Dostalek, J.; Aspermair, P.; Bintinger, J. On the Detection of cTnI-a Comparison of Surface-Plasmon Optical-Electrochemical-, and Electronic Sensing Concepts. Ann. Clin. Med. Case Rep. 2021, 6, 1–16.
  • Prajesh, R.; Goyal, V.; Kakkar, S.; Sharma, J.; Alam, M.; Maurya, R. K.; Bhalla, V.; Agarwal, A. Polysilicon Field Effect Transistor Biosensor for the Detection of Cardiac Troponin-I (cTnI). J. Electrochem. Soc. 2021, 168, 027501. DOI: 10.1149/1945-7111/abdde6.
  • Golichenari, B.; Nosrati, R.; Farokhi-Fard, A.; Faal Maleki, M.; Gheibi Hayat, S. M.; Ghazvini, K.; Vaziri, F.; Behravan, J. Electrochemical-Based Biosensors for Detection of Mycobacterium Tuberculosis and Tuberculosis Biomarkers. Crit. Rev. Biotechnol. 2019, 39, 1056–1077. DOI: 10.1080/07388551.2019.1668348.
  • Patil, M.; Umanzor, F.; Kormos, R.; Kumta, P. N. Platinum Aptasensor Wire Arrays for Cardiac Biomarker Detection. Mater. Today Commun. 2018, 15, 55–60. DOI: 10.1016/j.mtcomm.2018.02.018.
  • Huang, Y.; Guo, J.; Kang, Y.; Ai, Y.; Li, C. M. Two Dimensional Atomically Thin MoS2 Nanosheets and Their Sensing Applications. Nanoscale. 2015, 7, 19358–19376. DOI: 10.1039/c5nr06144j.
  • Tang, K.; Wang, L.; Geng, H.; Qiu, J.; Cao, H.; Liu, X. Molybdenum Disulfide (MoS2) Nanosheets Vertically Coated on Titanium for Disinfection in the Dark. Arab. J. Chem. 2020, 13, 1612–1623. DOI: 10.1016/j.arabjc.2017.12.013.
  • Lee, T.; Ahn, J.-H.; Choi, J.; Lee, Y.; Kim, J.-M.; Park, C.; Jang, H.; Kim, T.-H.; Lee, M.-H. Development of the Troponin Detection System Based on the Nanostructure. Micromachines. 2019, 10, 203. DOI: 10.3390/mi10030203.
  • Xu, H.; Kou, F.; Ye, H.; Wang, Z.; Huang, S.; Liu, X.; Zhu, X.; Lin, Z.; Chen, G. Highly Sensitive Antibody-Aptamer Sensor for Vascular Endothelial Growth Factor Based on Hybridization Chain Reaction and pH Meter/Indicator. Talanta. 2017, 175, 177–182. DOI: 10.1016/j.talanta.2017.04.073.
  • Kopra, K.; Syrjänpää, M.; Hänninen, P.; Härmä, H. Non-competitive Aptamer-Based Quenching Resonance Energy Transfer Assay for Homogeneous Growth Factor Quantification. Analyst. 2014, 139, 2016–2023. DOI: 10.1039/c3an01814h.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.