851
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Barrier Discharge Ionization Detector in Gas Chromatography: A Review on Applications

ORCID Icon, ORCID Icon & ORCID Icon
Pages 614-633 | Published online: 12 Sep 2021

References

  • Ferraz-Almeida, R.; Spokas, K. A.; De Oliveira, R. C. Columns and Detectors Recommended in Gas Chromatography to Measure Greenhouse Emission and O2 Uptake in Soil: A Review. Commun. Soil Sci. Plant Anal. 2020, 51, 582–594. DOI: 10.1080/00103624.2020.1729370.
  • Al-Farga, A.; Al-Bukhaiti, W. Q. Gas Chromatography: Principles, Advantages and Applications in Food Analysis. Int. J. Agri. Innov. Res. 2017, 6, 123.
  • Santos, I. C.; Schug, K. A. Recent Advances and Applications of Gas Chromatography Vacuum Ultraviolet Spectroscopy. J. Sep. Sci. 2017, 40, 138–151. DOI: 10.1002/jssc.201601023.
  • Ettre, L. S. The Early Development and Rapid Growth of Gas Chromatographic Instrumentation in the United States. J. Chromatogr. Sci. 2002, 40, 458–472. DOI: 10.1093/chromsci/40.8.458.
  • Radik, M.; Ratiu, I.-A.; Monedeiro, F.; Ligor, T.; Buszewski, B. Evolution and Evaluation of GC Columns. Crit. Rev. Anal. Chem. 2021, 51, 150–173. DOI: 10.1080/10408347.2019.1699013
  • Nahar, L.; Guo, M.; Sarker, S. D. Gas Chromatographic Analysis of Naturally Occurring Cannabinoids: A Review of Literature Published during the past Decade. Phytochem. Anal. 2020, 31, 135–146. DOI: 10.1002/pca.2886.
  • Zavahir, J. S.; Smith, J. S. P.; Blundell, S.; Waktola, H. D.; Nolvachai, Y.; Wood, B. R.; Marriott, P. J. Relationships in Gas Chromatography—Fourier Transform Infrared Spectroscopy—Comprehensive and Multilinear Analysis. Separations 2020, 7, 27. DOI: 10.3390/separations7020027.
  • Fan, J.; Fu, C.; Yin, H.; Wang, Y.; Jiang, Q. Power Transformer Condition Assessment Based on Online Monitor with SOFC Chromatographic Detector. Int. J. Electr. Power Energy Syst. 2020, 118, 105805. DOI: 10.1016/j.ijepes.2019.105805.
  • Shinada, K.; Horiike, S.; Uchiyama, S.; Takechi, R., & Nishimoto, T. Development of New Ionization Detector for Gas Chromatography by Applying Dielectric Barrier Discharge. 2012.
  • Antoniadou, M.; Zachariadis, G. A.; Rosenberg, E. Investigating the Performance Characteristics of the Barrier Discharge Ionization Detector and Comparison to the Flame Ionization Detector for the Gas Chromatographic Analysis of Volatile and Semivolatile Organic Compounds. Anal. Lett. 2019, 52, 2822–2839. DOI: 10.1080/00032719.2019.1628247.
  • Zhang, X.; Cui, Y. D.; Tay, C.-M. J.; Khoo, B. C. Ultrasound Generated by Alternating Current Dielectric Barrier Discharge Plasma in Quiescent Air. Plasma Sources Sci. Technol. 2020, 29, 015017. DOI: 10.1088/1361-6595/ab5733.
  • Laroussi, M. A Brief Note on the History of the Dielectric Barrier Discharge and Its Application for Biological Decontamination. IEEE Trans. Radiat. Plasma Med. Sci. 2021, 1.
  • Gao, K.; Liu, R.; Jia, P.; Ren, C.; Wu, K.; He, X.; Li, X. Mode Transitions of a Helium Dielectric Barrier Discharge from Townsend, Normal Glow, to Abnormal Glow with Varying Voltage Rising Time. AIP Adv. 2019, 9, 115210. DOI: 10.1063/1.5119143.
  • Leißing, M.; Winter, M.; Wiemers-Meyer, S.; Nowak, S. A Method for Quantitative Analysis of Gases Evolving during Formation Applied on LiNi0.6Mn0.2Co0.2O2 ∣∣ Natural Graphite Lithium Ion Battery Cells Using Gas Chromatography - Barrier Discharge Ionization Detector. J. Chromatogr. A. 2020, 1622, 461122. DOI: 10.1016/j.chroma.2020.461122.
  • Spanjers, C. S.; Beach, C. A.; Jones, A. J.; Dauenhauer, P. J. Increasing Flame Ionization Detector (FID) Sensitivity Using Post-Column Oxidation–Methanation. Anal. Methods 2017, 9, 1928–1934. DOI: 10.1039/C6AY03363F.
  • do Nascimento, J. G. d S.; Silva, E. V. A.; dos Santos, A. B.; da Silva, M. E. R.; Firmino, P. I. M. Microaeration Improves the Removal/Biotransformation of Organic Micropollutants in Anaerobic Wastewater Treatment Systems. Environ. Res. 2021, 198, 111313. DOI: 10.1016/j.envres.2021.111313.
  • Morais, N. W. S.; Coelho, M. M. H.; Ferreira, T. J. T.; Pereira, E. L.; Leitão, R. C.; dos Santos, A. B. A Kinetic Study on Carboxylic Acids Production Using Bovine Slaughterhouse Wastewater: A Promising Substrate for Resource Recovery in Biotechnological Processes. Bioprocess Biosyst. Eng. 2021, 44, 271–282. DOI: 10.1007/s00449-020-02440-3.
  • do Nascimento, J. G. d S.; de Araújo, M. H. P.; dos Santos, A. B.; da Silva, M. E. R.; Firmino, P. I. M. Redox Mediator, Microaeration, and Nitrate Addition as Engineering Approaches to Enhance the Biotransformation of Antibiotics in Anaerobic Reactors. J. Hazard Mater. 2021, 403, 123932. DOI: 10.1016/j.jhazmat.2020.123932.
  • Amodeo, C.; Sofo, A.; Tito, M. T.; Scopa, A.; Masi, S.; Pascale, R.; Mancini, I. M.; Caniani, D. Environmental Factors Influencing Landfill Gas Biofiltration: Lab Scale Study on Methanotrophic Bacteria Growth. J. Environ. Sci. Health A. Tox. Hazard Subst. Environ. Eng. 2018, 53, 825–831. DOI: 10.1080/10934529.2018.1455342.
  • Morais, N. W. S.; Coelho, M. M. H.; Silva, A. d S. e.; Pereira, E. L.; Leitão, R. C.; dos Santos, A. B. Kinetic Modeling of Anaerobic Carboxylic Acid Production from Swine Wastewater. Bioresour. Technol. 2020, 297, 122520. DOI: 10.1016/j.biortech.2019.122520.
  • Reli, M.; Huo, P.; Šihor, M.; Ambrožová, N.; Troppová, I.; Matějová, L.; Lang, J.; Svoboda, L.; Kuśtrowski, P.; Ritz, M.; et al. Novel TiO2/C3N4 Photocatalysts for Photocatalytic Reduction of CO2 and for Photocatalytic Decomposition of N2O. J. Phys. Chem. A. 2016, 120, 8564–8573., DOI: 10.1021/acs.jpca.6b07236.
  • Matějová, L.; Kočí, K.; Troppová, I.; Šihor, M.; Edelmannová, M.; Lang, J.; Čapek, L.; Matěj, Z.; Kuśtrowski, P.; Obalová, L. TiO2 and Nitrogen Doped TiO2 Prepared by Different Methods; on the (Micro)Structure and Photocatalytic Activity in CO2 Reduction and N2O Decomposition. J. Nanosci. Nanotechnol. 2018, 18, 688–698. DOI: 10.1166/jnn.2018.13936.
  • Dilla, M.; Moustakas, N. G.; Becerikli, A. E.; Peppel, T.; Springer, A.; Schlögl, R.; Strunk, J.; Ristig, S. Judging the Feasibility of TiO2 as Photocatalyst for Chemical Energy Conversion by Quantitative Reactivity Determinants. Phys. Chem. Chem. Phys. 2019, 21, 13144–13150. DOI: 10.1039/C9CP00981G.
  • Dilla, M.; Becerikli, A. E.; Jakubowski, A.; Schlögl, R.; Ristig, S. Development of a Tubular Continuous Flow Reactor for the Investigation of Improved Gas–Solid Interaction in Photocatalytic CO2 Reduction on TiO2. Photochem. Photobiol. Sci. 2019, 18, 314–318. DOI: 10.1039/c8pp00518d.
  • Tasbihi, M.; Kočí, K.; Edelmannová, M.; Troppová, I.; Reli, M.; Schomäcker, R. Pt/TiO2 Photocatalysts Deposited on Commercial Support for Photocatalytic Reduction of CO2. J. Photochem. Photobiol, A. 2018, 366, 72–80. DOI: 10.1016/j.jphotochem.2018.04.012.
  • Kumar, S.; Regue, M.; Isaacs, M. A.; Freeman, E.; Eslava, S. All-Inorganic CsPbBr3 Nanocrystals: Gram-Scale Mechanochemical Synthesis and Selective Photocatalytic CO2 Reduction to Methane. ACS Appl. Energy Mater. 2020, 3, 4509–4522. DOI: 10.1021/acsaem.0c00195.
  • Iguchi, S.; Teramura, K.; Hosokawa, S.; Tanaka, T. Effect of the Chloride Ion as a Hole Scavenger on the Photocatalytic Conversion of CO2 in an Aqueous Solution over Ni-Al Layered Double Hydroxides. Phys. Chem. Chem. Phys. 2015, 17, 17995–18003. DOI: 10.1039/c5cp02724a.
  • Iguchi, S.; Hasegawa, Y.; Teramura, K.; Hosokawa, S.; Tanaka, T. Preparation of Transition Metal-Containing Layered Double Hydroxides and Application to the Photocatalytic Conversion of CO2 in Water. J. Co2 Util. 2016, 15, 6–14. DOI: 10.1016/j.jcou.2016.04.001.
  • Iguchi, S.; Teramura, K.; Hosokawa, S.; Tanaka, T. A ZnTa2O6 Photocatalyst Synthesized via Solid State Reaction for Conversion of CO2 into CO in Water. Catal. Sci. Technol. 2016, 6, 4978–4985. DOI: 10.1039/C6CY00271D.
  • Woldu, A. R.; Shah, A. H.; Hu, H.; Cahen, D.; Zhang, X.; He, T. Electrochemical Reduction of CO2: Two- or Three-Electrode Configuration. Int. J. Energy Res. 2020, 44, 548–559. DOI: 10.1002/er.4904.
  • Jiang, Z.; Xu, X.; Ma, Y.; Cho, H. S.; Ding, D.; Wang, C.; Wu, J.; Oleynikov, P.; Jia, M.; Cheng, J.; et al. Filling Metal-Organic Framework Mesopores with TiO2 for CO2 Photoreduction. Nature 2020, 586, 549–554. DOI: 10.1038/s41586-020-2738-2.
  • Frink, L. A.; Weatherly, C. A.; Armstrong, D. W. Water Determination in Active Pharmaceutical Ingredients Using Ionic Liquid Headspace Gas Chromatography and Two Different Detection Protocols. J. Pharm. Biomed. Anal. 2014, 94, 111–117. DOI: 10.1016/j.jpba.2014.01.034.
  • Weatherly, C. A.; Woods, R. M.; Armstrong, D. W. Rapid Analysis of Ethanol and Water in Commercial Products Using Ionic Liquid Capillary Gas Chromatography with Thermal Conductivity Detection and/or Barrier Discharge Ionization Detection. J. Agric. Food Chem. 2014, 62, 1832–1838. DOI: 10.1021/jf4050167.
  • Frink, L. A.; Armstrong, D. W. The Utilisation of Two Detectors for the Determination of Water in Honey Using Headspace Gas Chromatography. Food Chem. 2016, 205, 23–27. DOI: 10.1016/j.foodchem.2016.02.118.
  • Frink, L. A.; Armstrong, D. W. Determination of Trace Water Content in Petroleum and Petroleum Products. Anal. Chem. 2016, 88, 8194–8201. DOI: 10.1021/acs.analchem.6b02006.
  • Vargheese, V.; Murakami, J.; Bando, K. K.; Ghampson, I. T.; Yun, G.-N.; Kobayashi, Y.; Oyama, S. T. The Direct Molecular Oxygen Partial Oxidation of CH4 to Dimethyl Ether without Methanol Formation over a Pt/Y2O3 Catalyst Using an NO/NO2 Oxygen Atom Shuttle. J. Catal. 2020, 389, 352–365. DOI: 10.1016/j.jcat.2020.05.021.
  • Zhang, G.; Zhang, H.; Yang, D.; Li, C.; Peng, Z.; Zhang, S. Catalysts, Kinetics and Process Optimization for the Synthesis of Methyl Acrylate over Cs–P/γ-Al2O3. Catal. Sci. Technol. 2016, 6, 6417–6430. DOI: 10.1039/C6CY00620E.
  • Frink, L. A.; Armstrong, D. W. Water Determination in Solid Pharmaceutical Products Utilizing Ionic Liquids and Headspace Gas Chromatography. J. Pharm. Sci. 2016, 105, 2288–2292. DOI: 10.1016/j.xphs.2016.05.014.
  • Dilla, M.; Jakubowski, A.; Ristig, S.; Strunk, J.; Schlögl, R. The Fate of O2 in Photocatalytic CO2 Reduction on TiO2 under Conditions of Highest Purity. Phys. Chem. Chem. Phys. 2019, 21, 15949–15957. DOI: 10.1039/C8CP07765G.
  • Gao, X.; Wang, J.; Xu, A.; Jia, M. Oxidative Dehydrogenation of Propane over Ni–Al Mixed Oxides: Effect of the Preparation Methods on the Activity of Surface Ni(II) Species. Catal. Lett. 2021, 151, 497–506. DOI: 10.1007/s10562-020-03317-6.
  • Kanayama, K.; Dubey, A.; Tezuka, T.; Hasegawa, S.; Nakamura, H.; Maruta, K. Study on Products from Fuel-Rich Methane Combustion near Sooting Limit Temperature Region and Importance of Methyl Radicals for the Formation of First Aromatic Rings. Combust. Sci. Technol. 2020, 1.
  • Pena-Pereira, F.; Marcinkowski, Ł.; Kloskowski, A.; Namieśnik, J. Silica-Based Ionogels: Nanoconfined Ionic Liquid-Rich Fibers for Headspace Solid-Phase Microextraction Coupled with Gas Chromatography-Barrier Discharge Ionization Detection. Anal. Chem. 2014, 86, 11640–11648. DOI: 10.1021/ac502666f.
  • Franchina, F. A.; Maimone, M.; Sciarrone, D.; Purcaro, G.; Tranchida, P. Q.; Mondello, L. Evaluation of a Novel Helium Ionization Detector within the Context of (Low-)Flow Modulation Comprehensive Two-Dimensional Gas Chromatography. J. Chromatogr. A. 2015, 1402, 102–109. DOI: 10.1016/j.chroma.2015.05.013.
  • Bhunia, A.; Esquivel, D.; Dey, S.; Fernández-Terán, R.; Goto, Y.; Inagaki, S.; Van Der Voort, P.; Janiak, C. A Photoluminescent Covalent Triazine Framework: CO2 Adsorption, Light-Driven Hydrogen Evolution and Sensing of Nitroaromatics. J. Mater. Chem. A. 2016, 4, 13450–13457. DOI: 10.1039/C6TA04623A.
  • Pascale, R.; Caivano, M.; Buchicchio, A.; Mancini, I. M.; Bianco, G.; Caniani, D. Validation of an Analytical Method for Simultaneous High-Precision Measurements of Greenhouse Gas Emissions from Wastewater Treatment Plants Using a Gas Chromatography-Barrier Discharge Detector System. J. Chromatogr. A. 2017, 1480, 62–69. DOI: 10.1016/j.chroma.2016.11.024.
  • Jo, S.-H.; Kim, K.-H. The Applicability of a Large-Volume Injection (LVI) System for Quantitative Analysis of Permanent Gases O2 and N2 Using a Gas Chromatograph/Barrier Discharge Ionization Detector. Environ. Monit. Assess. 2017, 189, 317. DOI: 10.1007/s10661-017-6024-1.
  • Shibata, T.; Nishiyama, H. Water Treatment by Dielectric Barrier Discharge Tube with Vapor Flow. Int. J. Plasma Environ. Sci. Technol. 2017, 11, 112.
  • Ueta, I.; Nakamura, Y.; Fujimura, K.; Kawakubo, S.; Saito, Y. Determination of Gaseous Formic and Acetic Acids by a Needle-Type Extraction Device Coupled to a Gas Chromatography-Barrier Discharge Ionization Detector. Chromatographia 2017, 80, 151–156. DOI: 10.1007/s10337-016-3201-2.
  • Wu, P.-H.; Ng, K. K.; Hong, P.-K. A.; Yang, P.-Y.; Lin, C.-F. Treatment of Low-Strength Wastewater at Mesophilic and Psychrophilic Conditions Using Immobilized Anaerobic Biomass. Chem. Eng. J. 2017, 311, 46–54. DOI: 10.1016/j.cej.2016.11.077.
  • Fusco, C.; Casiello, M.; Catucci, L.; Comparelli, R.; Cotugno, P.; Falcicchio, A.; Fracassi, F.; Margiotta, V.; Moliterni, A.; Petronella, F.; et al. TiO2@PEI-Grafted-MWCNTs Hybrids Nanocomposites Catalysts for CO2 Photoreduction. Materials 2018, 11, 307., DOI: 10.3390/ma11020307.
  • Hursán, D.; Janáky, C. Electrochemical Reduction of Carbon Dioxide on Nitrogen-Doped Carbons: Insights from Isotopic Labeling Studies. ACS Energy Lett. 2018, 3, 722–723. DOI: 10.1021/acsenergylett.8b00212.
  • Maier, M.; Machacova, K.; Lang, F.; Svobodova, K.; Urban, O. Combining Soil and Tree-Stem Flux Measurements and Soil Gas Profiles to Understand CH4 Pathways in Fagus sylvatica Forests. J. Plant Nutr. Soil Sci. 2018, 181, 31–35. DOI: 10.1002/jpln.201600405.
  • Pascale, R.; Bianco, G.; Calace, S.; Masi, S.; Mancini, I. M.; Mazzone, G.; Caniani, D. Method Development and Optimization for the Determination of Benzene, Toluene, Ethylbenzene and Xylenes in Water at Trace Levels by Static Headspace Extraction Coupled to Gas Chromatography–Barrier Ionization Discharge Detection. J. Chromatogr. A. 2018, 1548, 10–18. DOI: 10.1016/j.chroma.2018.03.018.
  • Tokudome, Y.; Fukui, M.; Iguchi, S.; Hasegawa, Y.; Teramura, K.; Tanaka, T.; Takemoto, M.; Katsura, R.; Takahashi, M. A nanoLDH Catalyst with High CO2 Adsorption Capability for Photo-Catalytic Reduction. J. Mater. Chem. A. 2018, 6, 9684–9690. DOI: 10.1039/C8TA01621F.
  • Ueta, I.; Nakamura, Y.; Kawakubo, S.; Saito, Y. Determination of Aqueous Formic and Acetic Acids by Purge-and-Trap Analysis with a Needle-Type Extraction Device and Gas Chromatography Barrier Discharge Ionization Detector. Anal. Sci. 2018, 34, 201–205. DOI: 10.2116/analsci.34.201.
  • Biswal, B. P.; Vignolo-González, H. A.; Banerjee, T.; Grunenberg, L.; Savasci, G.; Gottschling, K.; Nuss, J.; Ochsenfeld, C.; Lotsch, B. V. Sustained Solar H2 Evolution from a Thiazolo[5,4-d]thiazole-Bridged Covalent Organic Framework and Nickel-Thiolate Cluster in Water. J. Am. Chem. Soc. 2019, 141, 11082–11092. DOI: 10.1021/jacs.9b03243.
  • Yoo, M.-J.; Jo, S.-H.; Kim, K.-H. An Advanced Technique for Rapid and Accurate Monitoring of Gaseous Formaldehyde Using Large-Volume Injection Interfaced with Gas Chromatograph/Barrier Discharge Ionization Detector (LVI/GC/BID). Microchem. J. 2019, 147, 806–812. DOI: 10.1016/j.microc.2019.03.096.
  • Ueta, I.; Nakamura, Y.; Fujikawa, H.; Fujimura, K.; Saito, Y. Determination of Volatile Amines Using Needle-Type Extraction Coupled with Gas Chromatography–Barrier Discharge Ionization Detection. Chromatographia 2019, 82, 317–323. DOI: 10.1007/s10337-018-3653-7.
  • Caniani, D.; Caivano, M.; Pascale, R.; Bianco, G.; Mancini, I. M.; Masi, S.; Mazzone, G.; Firouzian, M.; Rosso, D. CO2 and N2O from Water Resource Recovery Facilities: Evaluation of Emissions from Biological Treatment, Settling, Disinfection, and Receiving Water Body. Sci. Total. Environ. 2019, 648, 1130–1140. DOI: 10.1016/j.scitotenv.2018.08.150.
  • Ueta, I.; Fujikawa, H.; Fujimura, K.; Saito, Y. Purge-and-trap Determination of Ammonia in Water Samples Using Needle-type Extraction Coupled with Gas Chromatography-Barrier Discharge Ionization Detection. Anal. Sci. 2019, 35, 759–762. DOI: 10.2116/analsci.19P016.
  • Alwin, E.; Kočí, K.; Wojcieszak, R.; Zieliński, M.; Edelmannová, M.; Pietrowski, M. Influence of High Temperature Synthesis on the Structure of Graphitic Carbon Nitride and Its Hydrogen Generation Ability. Materials 2020, 13, 2756. DOI: 10.3390/ma13122756.
  • Demir, B.; Kropp, T.; Rivera-Dones, K. R.; Gilcher, E. B.; Huber, G. W.; Mavrikakis, M.; Dumesic, J. A. A Self-Adjusting Platinum Surface for Acetone Hydrogenation. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 3446–3450. DOI: 10.1073/pnas.1917110117.
  • Ding, D.; Jiang, Z.; Ji, D.; Nosang Vincent, M.; Zan, L. Bi2O2Se as a Novel co-Catalyst for Photocatalytic Hydrogen Evolution Reaction. Chem. Eng. J. 2020, 400, 125931. DOI: 10.1016/j.cej.2020.125931.
  • Li, X.; Edelmannová, M.; Huo, P.; Kočí, K. Fabrication of Highly Stable CdS/g-C3N4 Composite for Enhanced Photocatalytic Degradation of RhB and Reduction of CO2. J. Mater. Sci. 2020, 55, 3299–3313. DOI: 10.1007/s10853-019-04208-x.
  • Edao, Y.; Iwai, Y. Investigation on Characteristic of Tritium Oxidation by Natural Soils. Fusion Sci. Technol. 2020, 76, 135–140. DOI: 10.1080/15361055.2019.1704572.
  • Hsieh, Y.-C.; Leißing, M.; Nowak, S.; Hwang, B.-J.; Winter, M.; Brunklaus, G. Quantification of Dead Lithium via in Situ Nuclear Magnetic Resonance Spectroscopy. Cell Rep. Phys. Sci. 2020, 1, 100139. DOI: 10.1016/j.xcrp.2020.100139.
  • Izadi, P.; Fontmorin, J.-M.; Godain, A.; Yu, E. H.; Head, I. M. Parameters Influencing the Development of Highly Conductive and Efficient Biofilm during Microbial Electrosynthesis: The Importance of Applied Potential and Inorganic Carbon Source. NPJ Biofilms Microbiomes. 2020, 6, 40. DOI: 10.1038/s41522-020-00151-x.
  • Gruca-Rokosz, R.; Szal, D.; Bartoszek, L.; Pękala, A. Isotopic Evidence for Vertical Diversification of Methane Production Pathways in Freshwater Sediments of Nielisz Reservoir (Poland). CATENA 2020, 195, 104803. DOI: 10.1016/j.catena.2020.104803.
  • Liang, Y.; Zhou, W.; Shi, Y.; Liu, C.; Zhang, B. Unveiling in Situ Evolved in/In2O3 − x Heterostructure as the Active Phase of In2O3 toward Efficient Electroreduction of CO2 to Formate. Sci. Bull. 2020, 65, 1547–1554. DOI: 10.1016/j.scib.2020.04.022.
  • Lima, A. L. D.; Batalha, D. C.; Fajardo, H. V.; Rodrigues, J. L.; Pereira, M. C.; Silva, A. C. Room Temperature Selective Conversion of Aniline to Azoxybenzene over an Amorphous Niobium Oxyhydroxide Supported on δ-FeOOH. Catal. Today 2020, 344, 118–123. DOI: 10.1016/j.cattod.2018.10.035.
  • Lima, A. L. D.; Fajardo, H. V.; Nogueira, A. E.; Pereira, M. C.; Oliveira, L. C. A.; de Mesquita, J. P.; Silva, A. C. Selective Oxidation of Aniline into Azoxybenzene Catalyzed by Nb-Peroxo@Iron Oxides at Room Temperature. New J. Chem. 2020, 44, 8710–8717. DOI: 10.1039/D0NJ00520G.
  • Mani, D.; Mathivanan, D.; Chang, H.; Sakthivel, K.; Elangovan, E.; Sivakumar, T.; Arivanandhan, M.; Jayavel, R. A Facile Synthesis of Novel ε-Fe2O3 Grafted 2D h-BN Nanostructures for Enhanced Visible Active Photocatalytic Applications. New J. Chem. 2020, 44, 12289–12298. DOI: 10.1039/D0NJ02321C.
  • Niu, X.; Li, X.; Yuan, G.; Feng, F.; Wang, M.; Zhang, X.; Wang, Q. Hollow Hierarchical Silicalite-1 Zeolite Encapsulated PtNi Bimetals for Selective Hydroconversion of Methyl Stearate into Aviation Fuel Range Alkanes. Ind. Eng. Chem. Res. 2020, 59, 8601–8611. DOI: 10.1021/acs.iecr.0c01275.
  • Ren, X.; Zhang, X.; Cao, X.; Wang, Q. Efficient Electrochemical Reduction of Carbon Dioxide into Ethylene Boosted by Copper Vacancies on Stepped Cuprous Oxide. J. CO2 Util. 2020, 38, 125–131. DOI: 10.1016/j.jcou.2020.01.018.
  • Gruca-Rokosz, R. Quantitative Fluxes of the Greenhouse Gases CH4 and CO2 from the Surfaces of Selected Polish Reservoirs. Atmosphere 2020, 11, 286. DOI: 10.3390/atmos11030286.
  • Shah, A. H.; Wang, Y.; Hussain, S.; Akbar, M. B.; Woldu, A. R.; Zhang, X.; He, T. New Aspects of C2 Selectivity in Electrochemical CO2 Reduction over Oxide-Derived Copper. Phys. Chem. Chem. Phys. 2020, 22, 2046–2053. DOI: 10.1039/c9cp06009j.
  • Szal, D.; Gruca-Rokosz, R. Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir. Water 2020, 12, 398. DOI: 10.3390/w12020398.
  • Sarkar, M. R.; Bell, S. G. Complementary and Selective Oxidation of Hydrocarbon Derivatives by Two Cytochrome P450 Enzymes of the Same Family. Catal. Sci. Technol. 2020, 10, 5983–5995. DOI: 10.1039/D0CY01040E.
  • Tobaldi, D. M.; Koci, K.; Edelmannova, M.; Lajaunie, L.; Figueiredo, B.; Calvino, J.; Seabra, M. P.; Labrincha, J. A. Copper-Graphene-TiO2 Hybrid Materials for Photocatalytically Assisted H2 Generation. ChemRxiv 2020.
  • Vargheese, V.; Ghampson, I. T.; Yun, G.-N.; Kobayashi, Y.; Takagaki, A.; Oyama, S. T. A New One-Pot Sequential Reduction-Deposition Method for the Synthesis of Silica-Supported NiPt and CuPt Bimetallic Catalysts. Appl. Catal, A. 2020, 591, 117371. DOI: 10.1016/j.apcata.2019.117371.
  • Wandell, R. J.; Bresch, S.; Wang, H.; Babicky, V.; Lukes, P.; Locke, B. R. The Effects of Pulse Frequency on Chemical Species Formation in a Nanosecond Pulsed Plasma Gas-Liquid Film Reactor. Int. J. Plasma Environ. Sci. Technol. 2020, 14, e01008.
  • Wang, M.; Ren, X.; Yuan, G.; Niu, X.; Xu, Q.; Gao, W.; Zhu, S.; Wang, Q. Selective Electroreduction of CO2 to CO over co-Electrodeposited Dendritic Core-Shell Indium-Doped Cu@Cu2O Catalyst. J. Co2 Util. 2020, 37, 204–212. DOI: 10.1016/j.jcou.2019.12.013.
  • Xu, F.; Meng, K.; Cheng, B.; Wang, S.; Xu, J.; Yu, J. Unique S-Scheme Heterojunctions in Self-Assembled TiO2/CsPbBr3 Hybrids for CO2 Photoreduction. Nat. Commun. 2020, 11, 4613. DOI: 10.1038/s41467-020-18350-7.
  • Zhao, B.; Huang, Y.; Liu, D.; Yu, Y.; Zhang, B. Integrating Photocatalytic Reduction of CO2 with Selective Oxidation of Tetrahydroisoquinoline over InP–In2O3 Z-Scheme p-n Junction. Sci. China Chem. 2020, 63, 28–34. DOI: 10.1007/s11426-019-9620-1.
  • Pena-Pereira, F.; Marcinkowski, Ł.; Kloskowski, A.; Namieśnik, J. Ionogel Fibres of Bis(Trifluoromethanesulfonyl)Imide Anion-Based Ionic Liquids for the Headspace Solid-Phase Microextraction of Chlorinated Organic Pollutants. Analyst 2015, 140, 7417–7422. DOI: 10.1039/c5an01337b.
  • Kröger, J.; Jiménez-Solano, A.; Savasci, G.; Rovó, P.; Moudrakovski, I.; Küster, K.; Schlomberg, H.; Vignolo-González, H. A.; Duppel, V.; Grunenberg, L.; et al. Interfacial Engineering for Improved Photocatalysis in a Charge Storing 2D Carbon Nitride: Melamine Functionalized Poly(Heptazine Imide). Adv. Energy Mater. 2021, 11, 2003016., DOI: 10.1002/aenm.202003016.
  • Kecsenovity, E.; Kochuveedu, S. T.; Chou, J.-P.; Lukács, D.; Gali, Á.; Janáky, C. Solar Photoelectroreduction of Nitrate Ions on PbI2/CuI Nanocomposite Electrodes. Sol. RRL 2021, 5, 2000418. DOI: 10.1002/solr.202000418.
  • Cavdar, O.; Malankowska, A.; Amgar, D.; Mazierski, P.; Łuczak, J.; Lisowski, W.; Zaleska-Medynska, A. Remarkable Visible-Light Induced Hydrogen Generation with ZnIn2S4 Microspheres/CuInS2 Quantum Dots Photocatalytic System. Int. J. Hydrogen Energy 2021, 46, 486–498. DOI: 10.1016/j.ijhydene.2020.09.212.
  • Gopi, S.; Panda, A.; Ramu, A. G.; Theerthagiri, J.; Kim, H.; Yun, K. Bifunctional Electrocatalysts for Water Splitting from a Bimetallic (V doped-NixFey) Metal–Organic Framework MOF@Graphene Oxide Composite. Int. J. Hydrogen Energy 2021, DOI: 10.1016/j.ijhydene.2021.05.028.
  • Gouveia, A. S. L.; Yáñez, M.; Alves, V. D.; Palomar, J.; Moya, C.; Gorri, D.; Tomé, L. C.; Marrucho, I. M. CO2/H2 Separation through Poly(Ionic Liquid)–Ionic Liquid Membranes: The Effect of Multicomponent Gas Mixtures, Temperature and Gas Feed Pressure. Sep. Purif. Technol. 2021, 259, 118113. DOI: 10.1016/j.seppur.2020.118113.
  • Haider, M. S.; Castello, D.; Rosendahl, L. A. The Art of Smooth Continuous Hydroprocessing of Biocrudes Obtained from Hydrothermal Liquefaction: Hydrodemetallization and Propensity for Coke Formation. Energy Fuels 2021, 35, 10611–10622. DOI: 10.1021/acs.energyfuels.1c01228.
  • Kleint, J. F.; Wellach, Y.; Schroll, M.; Keppler, F.; Isenbeck-Schröter, M. The Impact of Seasonal Sulfate–Methane Transition Zones on Methane Cycling in a Sulfate-Enriched Freshwater Environment. Limnol. Oceanogr. 2021, 66, 2290–2308. DOI: 10.1002/lno.11754.
  • Kohansal, K.; Toor, S.; Sharma, K.; Chand, R.; Rosendahl, L.; Pedersen, T. H. Hydrothermal Liquefaction of Pre-Treated Municipal Solid Waste (Biopulp) with Recirculation of Concentrated Aqueous Phase. Biomass Bioenergy 2021, 148, 106032. DOI: 10.1016/j.biombioe.2021.106032.
  • Leißing, M.; Horsthemke, F.; Wiemers-Meyer, S.; Winter, M.; Niehoff, P.; Nowak, S. The Impact of the C-Rate on Gassing during Formation of NMC622 II Graphite Lithium-Ion Battery Cells. Batteries & Supercaps 2021, 4, 1344–1350. DOI: 10.1002/batt.202100056.
  • Machacova, K.; Schindler, T.; Soosaar, K. Fourier Transform Infrared Spectroscopy and Interference of Volatile Organic Compounds on Measurements of Methane (CH4) Fluxes at Tree Stems - A General Phenomenon for Plant Systems? New Phytol. 2021, 230, 2100–2104. DOI: 10.1111/nph.17311.
  • Mahvelati-Shamsabadi, T.; Fattahimoghaddam, H.; Lee, B.-K.; Ryu, H.; Jang, J. I. Caesium Sites Coordinated in Boron-Doped Porous and Wrinkled Graphitic Carbon Nitride Nanosheets for Efficient Charge Carrier Separation and Transfer: Photocatalytic H2 and H2O2 Production. Chem. Eng. J. 2021, 423, 130067. DOI: 10.1016/j.cej.2021.130067.
  • de Matos, G. F.; Rouws, L. F. M.; Simões-Araújo, J. L.; Baldani, J. I. Evolution and Function of Nitrogen Fixation Gene Clusters in Sugarcane Associated Bradyrhizobium Strains. Environ. Microbiol. 2021.
  • Morawski, A. W.; Kusiak-Nejman, E.; Wanag, A.; Narkiewicz, U.; Edelmannová, M.; Reli, M.; Kočí, K. Influence of the Calcination of TiO2-Reduced Graphite Hybrid for the Photocatalytic Reduction of Carbon Dioxide. Catal. Today 2021, DOI: 10.1016/j.cattod.2021.05.017.
  • Murata, K.; Kurimoto, N.; Yamamoto, Y.; Oda, A.; Ohyama, J.; Satsuma, A. Structure–Property Relationships of Pt–Sn Nanoparticles Supported on Al2O3 for the Dehydrogenation of Methylcyclohexane. ACS Appl. Nano Mater. 2021, 4, 4532–4541. DOI: 10.1021/acsanm.1c00128.
  • do Nascimento, J. G. d S.; de Araújo, M. H. P.; dos Santos, A. B.; da Silva, M. E. R.; Firmino, P. I. M. Can Microaeration Boost the Biotransformation of Parabens in High-Rate Anaerobic Systems? Process Saf. Environ. Protect. 2021, 145, 255–261. DOI: 10.1016/j.psep.2020.08.014.
  • Nishizawa, M.; Saito, T.; Makabe, A.; Ueda, H.; Saitoh, M.; Shibuya, T.; Takai, K. Stable Abiotic Production of Ammonia from Nitrate in Komatiite-Hosted Hydrothermal Systems in the Hadean and Archean Oceans. Minerals 2021, 11, 321. DOI: 10.3390/min11030321.
  • de Sousa e Silva, A.; Tavares Ferreira, T. J.; Sales Morais, N. W.; Lopes Pereira, E.; Bezerra dos Santos, A. S/X Ratio Impacts the Profile and Kinetics of Carboxylic Acids Production from the Acidogenic Fermentation of Dairy Wastewater. Environ. Pollut. 2021, 287, 117605. DOI: 10.1016/j.envpol.2021.117605.
  • Wang, X.; Liu, C.; Gao, C.; Yao, K.; Masouleh, S. S. M.; Berté, R.; Ren, H.; Menezes, L. d S.; Cortés, E.; Bicket, I. C.; et al. Self-Constructed Multiple Plasmonic Hotspots on an Individual Fractal to Amplify Broadband Hot Electron Generation. ACS Nano. 2021, 15, 10553–10564., DOI: 10.1021/acsnano.1c03218.
  • Wang, Y.; Wang, C.; Li, M.; Yu, Y.; Zhang, B. Nitrate Electroreduction: Mechanism Insight, in Situ Characterization, Performance Evaluation, and Challenges. Chem. Soc. Rev. 2021, 50, 6720–6733. DOI: 10.1039/d1cs00116g.
  • Williams, N. B.; Nash, A.; Yamamoto, N.; Patrick, M.; Tran, I. C.; Gu, J. Unraveling Activity and Decomposition Pathways of [FeFe] Hydrogenase Mimics Covalently Bonded to Silicon Photoelectrodes. Adv. Mater. Interfaces 2021, 8, 2001961. DOI: 10.1002/admi.202001961.
  • Wu, W.-Y.; Tsai, M.-L.; Lai, Y.-A.; Hsieh, C.-H.; Liaw, W.-F. NO Reduction to N2O Triggered by a Dinuclear Dinitrosyl Iron Complex via the Associated Pathways of Hyponitrite Formation and NO Disproportionation. Inorg. Chem. 2021.
  • Yáñez, M.; Ortiz, A.; Gorri, D.; Ortiz, I. Comparative Performance of Commercial Polymeric Membranes in the Recovery of Industrial Hydrogen Waste Gas Streams. Int. J. Hydrogen Energy 2021, 46, 17507–17521. DOI: 10.1016/j.ijhydene.2020.04.026.
  • Morais, N. W. S.; Coelho, M. M. H.; Silva, A. d S. e.; Silva, F. S. S.; Ferreira, T. J. T.; Pereira, E. L.; dos Santos, A. B. Biochemical Potential Evaluation and Kinetic Modeling of Methane Production from Six Agro-Industrial Wastewaters in Mixed Culture. Environ. Pollut. 2021, 280, 116876. DOI: 10.1016/j.envpol.2021.116876.
  • Coelho, M. M. H.; Morais, N. W. S.; Pereira, E. L.; Leitão, R. C.; dos Santos, A. B. Potential Assessment and Kinetic Modeling of Carboxylic Acids Production Using Dairy Wastewater as Substrate. Biochem. Eng. J. 2020, 156, 107502. DOI: 10.1016/j.bej.2020.107502.
  • Chen, Y.-H.; Ye, J.-K.; Chang, Y.-J.; Liu, T.-W.; Chuang, Y.-H.; Liu, W.-R.; Liu, S.-H.; Pu, Y.-C. Mechanisms behind Photocatalytic CO2 Reduction by CsPbBr3 Perovskite-Graphene-Based Nanoheterostructures. Appl. Catal, B. 2021, 284, 119751. DOI: 10.1016/j.apcatb.2020.119751.
  • Filho, J. B. G.; Rios, R. D. F.; Bruziquesi, C. G. O.; Ferreira, D. C.; Victória, H. F. V.; Krambrock, K.; Pereira, M. C.; Oliveira, L. C. A. A Promising Approach to Transform Levulinic Acid into γ-Valerolactone Using Niobic Acid Photocatalyst and the Accumulated Electron Transfer Technique. Appl. Catal, B. 2021, 285, 119814. DOI: 10.1016/j.apcatb.2020.119814.
  • Saito, M.; Fujinami, T.; Sohmiya, M.; Hayashi, Y.; Koyama, K.; Otsuka, H.; Ito, K.; Kubo, Y.; Horiba, T. Comparison of Lithium Salt Effect on Negative Electrodes and Lithium–Air Cell Performance. J. Electrochem. Soc. 2021, 168, 010520. DOI: 10.1149/1945-7111/abd60d.
  • Zhao, J.; Yuan, Q.; Sun, Y.; Zhang, J.; Zhang, D.; Bian, R. Effect of Fluoxetine on Enhanced Biological Phosphorus Removal Using a Sequencing Batch Reactor. Bioresour. Technol. 2021, 320, 124396. DOI: 10.1016/j.biortech.2020.124396.
  • Takabatake, M.; Hashimoto, A.; Chun, W.-J.; Nambo, M.; Manaka, Y.; Motokura, K. Dehydrogenative Coupling of Alkanes and Benzene Enhanced by Slurry-Phase Interparticle Hydrogen Transfer. JACS Au 2021, 1, 124–129. DOI: 10.1021/jacsau.0c00070.
  • Ihnatiuk, D.; Vorobets, V.; Šihor, M.; Tossi, C.; Kolbasov, G.; Smirnova, N.; Tittonen, I.; Eremenko, A.; Kočí, K.; Linnik, O. Photoelectrochemical, Photocatalytic and Electrocatalytic Behavior of Titania Films Modified by Nitrogen and Platinum Species. Appl. Nanosci. 2021.
  • Carrasquillo-Flores, R.; Ro, I.; Kumbhalkar, M. D.; Burt, S.; Carrero, C. A.; Alba-Rubio, A. C.; Miller, J. T.; Hermans, I.; Huber, G. W.; Dumesic, J. A. Reverse Water-Gas Shift on Interfacial Sites Formed by Deposition of Oxidized Molybdenum Moieties onto Gold Nanoparticles. J. Am. Chem. Soc. 2015, 137, 10317–10325. DOI: 10.1021/jacs.5b05945.
  • Chen, H.-Y.; Ng, K. K.; Lee, C.-H.; Chen, T.-Y.; Hong, P.-K. A.; Yang, P.-Y.; Lin, C.-F. Entrapped Biomass for Removal of Organics and Total Nitrogen from Anaerobic Reactor Effluents. Bioresour. Technol. 2018, 267, 642–649. DOI: 10.1016/j.biortech.2018.07.091.
  • Ambrožová, N.; Edelmannová, M.; Troppová, I.; Kocí, K.; Valášková, M. Photocatalytic Decomposition of N2O over Ceramics Cordierite/CeO2 Nanoparticles. J. Nanosci. Nanotechnol. 2019, 19, 7339–7344. DOI: 10.1166/jnn.2019.15840.
  • Cui, Q.; Le, T.-H.; Lin, Y.-J.; Miao, Y.-B.; Sung, I. T.; Tsai, W.-B.; Chan, H.-Y.; Lin, Z.-H.; Sung, H.-W. A Self-Powered Battery-Driven Drug Delivery Device That Can Function as a Micromotor and Galvanically Actuate Localized Payload Release. Nano Energy 2019, 66, 104120. DOI: 10.1016/j.nanoen.2019.104120.
  • Fang, C.; Li, J.; Zhang, M.; Zhang, Y.; Yang, F.; Lee, J. Z.; Lee, M.-H.; Alvarado, J.; Schroeder, M. A.; Yang, Y.; et al. Quantifying Inactive Lithium in Lithium Metal Batteries. Nature 2019, 572, 511–515., DOI: 10.1038/s41586-019-1481-z.
  • Ranaivoarisoa, T. O.; Singh, R.; Rengasamy, K.; Guzman, M. S.; Bose, A. Towards Sustainable Bioplastic Production Using the Photoautotrophic Bacterium Rhodopseudomonas palustris TIE-1. J. Ind. Microbiol. Biotechnol. 2019, 46, 1401–1417. DOI: 10.1007/s10295-019-02165-7.
  • Sung, L.-Y.; Wu, M.-Y.; Lin, M.-W.; Hsu, M.-N.; Truong, V. A.; Shen, C.-C.; Tu, Y.; Hwang, K.-Y.; Tu, A.-P.; Chang, Y.-H.; Hu, Y.-C. Combining Orthogonal CRISPR and CRISPRi Systems for Genome Engineering and Metabolic Pathway Modulation in Escherichia coli. Biotechnol. Bioeng. 2019, 116, 1066–1079. DOI: 10.1002/bit.26915.
  • Wu, Z.; Ambrožová, N.; Eftekhari, E.; Aravindakshan, N.; Wang, W.; Wang, Q.; Zhang, S.; Kočí, K.; Li, Q. Photocatalytic H2 Generation from Aqueous Ammonia Solution Using TiO2 Nanowires-Intercalated Reduced Graphene Oxide Composite Membrane under Low Power UV Light. Emergent Mater. 2019, 2, 303–311. DOI: 10.1007/s42247-019-00029-5.
  • Xu, B.; Ng, T. C. A.; Huang, S.; Ng, H. Y. Effect of Quorum Quenching on EPS and Size-Fractioned Particles and Organics in Anaerobic Membrane Bioreactor for Domestic Wastewater Treatment. Water Res. 2020, 179, 115850. DOI: 10.1016/j.watres.2020.115850.
  • Bai, W.; Ranaivoarisoa, T. O.; Singh, R.; Rengasamy, K.; Bose, A. Sustainable Production of the Biofuel n-Butanol by Rhodopseudomonas palustris TIE-1. bioRxiv 2020.
  • Chen, M.-T.; Hsieh, B.-Y.; Liu, Y.-H.; Wu, K.-H.; Lussari, N.; Braga, A. A. C. N,N′-Bridged Binuclear NHC Palladium Complexes: A Combined Experimental Catalytic and Computational Study for the Suzuki Reaction. Appl. Organomet. Chem. 2020, 34, e5870. DOI: 10.1002/aoc.5870.
  • Choi, C.; Kwon, S.; Cheng, T.; Xu, M.; Tieu, P.; Lee, C.; Cai, J.; Lee, H. M.; Pan, X.; Duan, X.; et al. Highly Active and Stable Stepped Cu Surface for Enhanced Electrochemical CO2 Reduction to C2H4. Nat. Catal. 2020, 3, 804–812., DOI: 10.1038/s41929-020-00504-x.
  • Elshafie, H. S.; Camele, I.; Sofo, A.; Mazzone, G.; Caivano, M.; Masi, S.; Caniani, D. Mycoremediation Effect of Trichoderma Harzianum Strain T22 Combined with Ozonation in Diesel-Contaminated Sand. Chemosphere 2020, 252, 126597. DOI: 10.1016/j.chemosphere.2020.126597.
  • Horsthemke, F.; Leißing, M.; Winkler, V.; Friesen, A.; Ibing, L.; Winter, M.; Nowak, S. Development of a Lithium Ion Cell Enabling in Situ Analyses of the Electrolyte Using Gas Chromatographic Techniques. Electrochim. Acta 2020, 338, 135894. DOI: 10.1016/j.electacta.2020.135894.
  • Konieczna, K.; Yavir, K.; Kermani, M.; Mielewczyk-Gryń, A.; Kloskowski, A. The New Silica-Based Coated SPME Fiber as Universal Support for the Confinement of Ionic Liquid as an Extraction Medium. Sep. Purif. Technol. 2020, 252, 117411. DOI: 10.1016/j.seppur.2020.117411.
  • Schmiegel, J.-P.; Leißing, M.; Weddeling, F.; Horsthemke, F.; Reiter, J.; Fan, Q.; Nowak, S.; Winter, M.; Placke, T. Novel in Situ Gas Formation Analysis Technique Using a Multilayer Pouch Bag Lithium Ion Cell Equipped with Gas Sampling Port. J. Electrochem. Soc. 2020, 167, 060516. DOI: 10.1149/1945-7111/ab8409.
  • Vignolo-González, H. A.; Laha, S.; Jiménez-Solano, A.; Oshima, T.; Duppel, V.; Schützendübe, P.; Lotsch, B. V. Toward Standardized Photocatalytic Oxygen Evolution Rates Using RuO2@TiO2 as a Benchmark. Matter 2020, 3, 464–486. DOI: 10.1016/j.matt.2020.07.021.
  • Siahvashi, A.; Al Ghafri, S. Z. S.; Graham, B. F.; May, E. F. Experimental Study of Impurity Freeze-out in Ternary Methane + Ethane + Benzene Mixtures with Applications to LNG Production. J. Nat. Gas Sci. Eng. 2021, 90, 103918. DOI: 10.1016/j.jngse.2021.103918.
  • Kormányos, A.; Hursán, D.; Janáky, C. Photoelectrochemical Behavior of PEDOT/Nanocarbon Electrodes: Fundamentals and Structure-Property Relationships. J. Phys. Chem. C. Nanomater. Interfaces 2018, 122, 13682–13690. DOI: 10.1021/acs.jpcc.8b00145.
  • Kim, H. J.; Lee, S. H.; Upadhye, A. A.; Ro, I.; Tejedor-Tejedor, M. I.; Anderson, M. A.; Kim, W. B.; Huber, G. W. Plasmon-Enhanced Photoelectrochemical Water Splitting with Size-Controllable Gold Nanodot Arrays. ACS Nano 2014, 8, 10756–10765. DOI: 10.1021/nn504484u.
  • Upadhye, A. A.; Ro, I.; Zeng, X.; Kim, H. J.; Tejedor, I.; Anderson, M. A.; Dumesic, J. A.; Huber, G. W. Plasmon-Enhanced Reverse Water Gas Shift Reaction over Oxide Supported Au Catalysts. Catal. Sci. Technol. 2015, 5, 2590–2601. DOI: 10.1039/C4CY01183J.
  • Bi, Z.; Zhou, Z.; Wang, X.; Xuan, D. Preparation of Gas Standard Mixture of R134a by an Injection Method. AMR 2015, 1092–1093, 784–788. DOI: 10.4028/www.scientific.net/AMR.1092-1093.784.
  • Jiao, T.; Wang, H.; Dai, F.; Li, C.; Zhang, S. Thermodynamics Study on the Separation Process of Cresols from Hexane via Deep Eutectic Solvent Formation. Ind. Eng. Chem. Res. 2016, 55, 8848–8857. DOI: 10.1021/acs.iecr.6b00649.
  • Khaleel, A.; Nawaz, M. The Effect of Composition and Gel Treatment Conditions on the Textural Properties, Reducibility, and Catalytic Activity of Sol–Gel-Prepared Fe(III)–Cr(III) Bulk Mixed Oxides. Colloids Surf., A. 2016, 488, 52–57. DOI: 10.1016/j.colsurfa.2015.10.019.
  • Ro, I.; Carrasquillo-Flores, R.; Dumesic, J. A.; Huber, G. W. Intrinsic Kinetics of Plasmon-Enhanced Reverse Water Gas Shift on Au and Au–Mo Interfacial Sites Supported on Silica. Appl. Catal, A. 2016, 521, 182–189. DOI: 10.1016/j.apcata.2015.11.021.
  • Ro, I.; Sener, C.; Stadelman, T. M.; Ball, M. R.; Venegas, J. M.; Burt, S. P.; Hermans, I.; Dumesic, J. A.; Huber, G. W. Measurement of Intrinsic Catalytic Activity of Pt Monometallic and Pt-MoOx Interfacial Sites over Visible Light Enhanced PtMoOx/SiO2 Catalyst in Reverse Water Gas Shift Reaction. J. Catal. 2016, 344, 784–794. DOI: 10.1016/j.jcat.2016.08.011.
  • Zuo, C.; Ge, T.; Li, C.; Cao, S.; Zhang, S. Kinetic and Reactive Distillation for Acrylic Acid Synthesis via Transesterification. Ind. Eng. Chem. Res. 2016, 55, 8281–8291. DOI: 10.1021/acs.iecr.6b01128.
  • Dilla, M.; Pougin, A.; Strunk, J. Evaluation of the Plasmonic Effect of Au and Ag on Ti-Based Photocatalysts in the Reduction of CO2 to CH4. J. Energy Chem. 2017, 26, 277–283. DOI: 10.1016/j.jechem.2016.09.009.
  • Jasiūnas, L.; Pedersen, T. H.; Toor, S. S.; Rosendahl, L. A. Biocrude Production via Supercritical Hydrothermal co-Liquefaction of Spent Mushroom Compost and Aspen Wood Sawdust. Renew. Energy 2017, 111, 392–398. DOI: 10.1016/j.renene.2017.04.019.
  • Kormányos, A.; Ondok, R.; Janáky, C. Electrosynthesis and Photoelectrochemical Properties of Polyaniline/SiC Nanohybrid Electrodes. Electrochim. Acta 2017, 256, 73–80. DOI: 10.1016/j.electacta.2017.10.019.
  • Ku, J. T.; Simanjuntak, W.; Lan, E. I. Renewable Synthesis of n-Butyraldehyde from Glucose by Engineered Escherichia coli. Biotechnol. Biofuels 2017, 10, 291. DOI: 10.1186/s13068-017-0978-7.
  • Manto, M. J.; Xie, P.; Wang, C. Catalytic Dephosphorylation Using Ceria Nanocrystals. ACS Catal. 2017, 7, 1931–1938. DOI: 10.1021/acscatal.6b03472.
  • Mei, X.; Quek, P. J.; Wang, Z.; Ng, H. Y. Alkali-Assisted Membrane Cleaning for Fouling Control of Anaerobic Ceramic Membrane Bioreactor. Bioresour. Technol. 2017, 240, 25–32. DOI: 10.1016/j.biortech.2017.02.052.
  • Ambrožová, N.; Reli, M.; Šihor, M.; Kuśtrowski, P.; Wu, J. C. S.; Kočí, K. Copper and Platinum Doped Titania for Photocatalytic Reduction of Carbon Dioxide. Appl. Surf. Sci. 2018, 430, 475–487. DOI: 10.1016/j.apsusc.2017.06.307.
  • Comba, P.; Faltermeier, D.; Gieger, S.; Keppler, F.; Schöler, H. F.; Schroll, M. Iron Catalyzed Demethylation of Acetic Acid. J. Coord. Chem. 2018, 71, 1704–1714. DOI: 10.1080/00958972.2018.1490414.
  • Dezvarei, S.; Onoda, H.; Shoji, O.; Watanabe, Y.; Bell, S. G. Efficient Hydroxylation of Cycloalkanes by Co-Addition of Decoy Molecules to Variants of the Cytochrome P450 CYP102A1. J. Inorg. Biochem. 2018, 183, 137–145. DOI: 10.1016/j.jinorgbio.2018.03.001.
  • Khaleel, A.; Parvin, M.; AlTabaji, M.; Al-Zamly, A. Ti(IV)-Doped γ-Fe2O3 Nanoparticles Possessing Unique Textural and Chemical Properties: Enhanced Suppression of Phase Transformation and Promising Catalytic Activity. J. Solid State Chem. 2018, 259, 91–97. DOI: 10.1016/j.jssc.2018.01.008.
  • Luo, J.; Huang, Y.; Ding, B.; Wang, P.; Geng, X.; Zhang, J.; Wei, Y. Single-Atom Mn Active Site in a Triol-Stabilized β-Anderson Manganohexamolybdate for Enhanced Catalytic Activity towards Adipic Acid Production. Catalysts 2018, 8, 121. DOI: 10.3390/catal8030121.
  • Navas, M. B.; Lick, I. D.; Bolla, P. A.; Casella, M. L.; Ruggera, J. F. Transesterification of Soybean and Castor Oil with Methanol and Butanol Using Heterogeneous Basic Catalysts to Obtain Biodiesel. Chem. Eng. Sci. 2018, 187, 444–454. DOI: 10.1016/j.ces.2018.04.068.
  • Yang, D.; Wang, G.; Wu, H.; Guo, X.; Zhang, S.; Li, Z.; Li, C. Deactivation Behavior on VPO and VPO-Zr Catalysts in the Aldol Condensation of Methyl Acetate and Formaldehyde. Catal. Today 2018, 316, 122–128. DOI: 10.1016/j.cattod.2018.06.019.
  • Cisneros, L.; Gao, F.; Corma, A. Silver Nanocluster in Zeolites. ADSORPTION of ETHYLENE Traces for Fruit Preservation. Microporous Mesoporous Mater. 2019, 283, 25–30. DOI: 10.1016/j.micromeso.2019.03.032.
  • Dezvarei, S.; Shoji, O.; Watanabe, Y.; Bell, S. G. The Effect of Decoy Molecules on the Activity of the P450Bm3 Holoenzyme and a Heme Domain Peroxygenase Variant. Catal. Commun. 2019, 124, 97–102. DOI: 10.1016/j.catcom.2019.03.004.
  • Esmat, M.; Farghali, A. A.; El-Dek, S. I.; Khedr, M. H.; Yamauchi, Y.; Bando, Y.; Fukata, N.; Ide, Y. Conversion of a 2D Lepidocrocite-Type Layered Titanate into Its 1D Nanowire Form with Enhancement of Cation Exchange and Photocatalytic Performance. Inorg. Chem. 2019, 58, 7989–7996. DOI: 10.1021/acs.inorgchem.9b00722.
  • Ide, Y.; Tominaka, S.; Yoneno, Y.; Komaguchi, K.; Takei, T.; Nishida, H.; Tsunoji, N.; Machida, A.; Sano, T. Condensed Ferric Dimers for Green Photocatalytic Synthesis of Nylon Precursors. Chem. Sci. 2019, 10, 6604–6611. DOI: 10.1039/c9sc01253b.
  • Miyazaki, Y.; Oohora, K.; Hayashi, T. Methane Generation via Intraprotein C–S Bond Cleavage in Cytochrome b562 Reconstituted with Nickel Didehydrocorrin. J. Organomet. Chem. 2019, 901, 120945. DOI: 10.1016/j.jorganchem.2019.120945.
  • Rasul, S.; Pugnant, A.; Xiang, H.; Fontmorin, J.-M.; Yu, E. H. Low Cost and Efficient Alloy Electrocatalysts for CO2 Reduction to Formate. J. CO2 Util. 2019, 32, 1–10. DOI: 10.1016/j.jcou.2019.03.016.
  • Xiang, H.; Rasul, S.; Scott, K.; Portoles, J.; Cumpson, P.; Yu, E. H. Enhanced Selectivity of Carbonaceous Products from Electrochemical Reduction of CO2 in Aqueous Media. J. Co2 Util. 2019, 30, 214–221. DOI: 10.1016/j.jcou.2019.02.007.
  • Batalha, D. C.; Luz, S. C.; Taylor, J. G.; Fajardo, H. V.; Noremberg, B. S.; Cherubin, I. J. S.; Silva, R. M.; Gonçalves, M. R. F.; Bergmann, C. P.; Valentini, A.; Carreño, N. L. V. Application of Al2O3/AlNbO4 in the Oxidation of Aniline to Azoxybenzene. Chem. Pap. 2020, 74, 543–553. DOI: 10.1007/s11696-019-00897-5.
  • Yin, Z.; Peng, H.; Wei, X.; Zhou, H.; Gong, J.; Huai, M.; Xiao, L.; Wang, G.; Lu, J.; Zhuang, L. An Alkaline Polymer Electrolyte CO2 Electrolyzer Operated with Pure Water. Energy Environ. Sci. 2019, 12, 2455–2462. DOI: 10.1039/C9EE01204D.
  • Al Ghafri, S. Z. S.; Hughes, T. J.; Perez, F.; Baker, C. J.; Siahvashi, A.; Karimi, A.; Arami-Niya, A.; May, E. F. Phase Equilibrium Studies of High-Pressure Natural Gas Mixtures with Toluene for LNG Applications. Fluid Phase Equilib. 2020, 518, 112620. DOI: 10.1016/j.fluid.2020.112620.
  • Haider, M. S.; Castello, D.; Rosendahl, L. A. Two-Stage Catalytic Hydrotreatment of Highly Nitrogenous Biocrude from Continuous Hydrothermal Liquefaction: A Rational Design of the Stabilization Stage. Biomass Bioenergy 2020, 139, 105658. DOI: 10.1016/j.biombioe.2020.105658.
  • Harada, T.; Yagi, E.; Ikeda, S. Synthesis of Nano-Sized Tungsten Oxide Particles Encapsulated in a Hollow Silica Sphere and Their Photocatalytic Properties for Decomposition of Acetic Acid Using Pt as a co-Catalyst. RSC Adv. 2020, 10, 15360–15365. DOI: 10.1039/D0RA01988G.
  • Xiang, H.; Miller, H. A.; Bellini, M.; Christensen, H.; Scott, K.; Rasul, S.; Yu, E. H. Production of Formate by CO2 Electrochemical Reduction and Its Application in Energy Storage. Sustain. Energy Fuels 2020, 4, 277–284. DOI: 10.1039/C9SE00625G.
  • Yavir, K.; Konieczna, K.; Marcinkowski, Ł.; Kloskowski, A. Tuning the Extraction Properties of Ionogel-Coated Solid-Phase Microextraction Fibers Based on the Solvation Properties of the Ionic Liquids. Sep. Purif. Technol. 2020, 247, 116988. DOI: 10.1016/j.seppur.2020.116988.
  • Andrei, F.; Ion, V.; Bîrjega, R.; Dinescu, M.; Enea, N.; Pantelica, D.; Mihai, M. D.; Maraloiu, V.-A.; Teodorescu, V. S.; Marcu, I.-C.; Scarisoreanu, N. D. Thickness-Dependent Photoelectrochemical Water Splitting Properties of Self-Assembled Nanostructured LaFeO3 Perovskite Thin Films. Nanomaterials 2021, 11, 1371. DOI: 10.3390/nano11061371.
  • Chiu, M.-C.; Chen, H.-Y.; Lee, C.-H.; Hong, P.-K. A.; Yang, P.-Y.; Lin, C.-F. Immobilized Biological Method for Anaerobic Biodegradation of Carbohydrate and Protein in Wastewater. Environ. Technol. Innovation 2021, 22, 101431. DOI: 10.1016/j.eti.2021.101431.
  • Esmat, M.; El-Hosainy, H.; Tahawy, R.; Jevasuwan, W.; Tsunoji, N.; Fukata, N.; Ide, Y. Nitrogen Doping-Mediated Oxygen Vacancies Enhancing co-Catalyst-Free Solar Photocatalytic H2 Production Activity in Anatase TiO2 Nanosheet Assembly. Appl. Catal, B. 2021, 285, 119755. DOI: 10.1016/j.apcatb.2020.119755.
  • Izadi, P.; Fontmorin, J.-M.; Lim, S. S.; Head, I. M.; Yu, E. H. Enhanced Bio-Production from CO2 by Microbial Electrosynthesis (MES) with Continuous Operational Mode. Faraday Discuss. 2021, 230, 344–359. DOI: 10.1039/D0FD00132E.
  • Lu, Z.; Jiang, J.; Yang, Y.; Lacey, J.; Brear, M. J. Hydrogen Oxidation near the second explosion limit in a flow reactor. Proc. Combust. Inst. 2021, 38, 243–250. DOI: 10.1016/j.proci.2020.06.199.
  • Raynes, S. J.; Taylor, R. A. Zinc Oxide-Modified Mordenite as an Effective Catalyst for the Dehydrogenation of (Bio)Ethanol to Acetaldehyde. Sustain. Energy Fuels 2021, 5, 2136–2148. DOI: 10.1039/D1SE00091H.
  • Wang, G.; Cai, G. Cooperative Catalytic Effects between Brønsted and Lewis Acid Sites and Kinetics for Production of Methyl Methacrylate on SO42−/TiO2-SiO2. Chem. Eng. Sci. 2021, 229, 116165. DOI: 10.1016/j.ces.2020.116165.
  • Kumbhalkar, M. D.; Buchanan, J. S.; Huber, G. W.; Dumesic, J. A. Ring Opening of Biomass-Derived Cyclic Ethers to Dienes over Silica/Alumina. ACS Catal. 2017, 7, 5248–5256. DOI: 10.1021/acscatal.7b01436.
  • Lin, L.; Miao, N.; Huang, J.; Zhang, S.; Zhu, Y.; Horsell, D. D.; Ghosez, P.; Sun, Z.; Allwood, D. A. A Photocatalyst of Sulphur Depleted Monolayered Molybdenum Sulfide Nanocrystals for Dye Degradation and Hydrogen Evolution Reaction. Nano Energy 2017, 38, 544–552. DOI: 10.1016/j.nanoen.2017.06.008.
  • Liu, S.-H.; Lu, J.-S.; Chen, Y.-C. Sustainable Recovery of CO2 by Using Visible-Light-Responsive Crystal Cuprous Oxide/Reduced Graphene Oxide. Sustainability 2018, 10, 4145. DOI: 10.3390/su10114145.
  • Reli, M.; Svoboda, L.; Šihor, M.; Troppová, I.; Pavlovský, J.; Praus, P.; Kočí, K. Photocatalytic Decomposition of N2O over g-C3N4/WO3 Photocatalysts. Environ. Sci. Pollut. Res. Int. 2018, 25, 34839–34850. DOI: 10.1007/s11356-017-0723-6.
  • Ro, I.; Aragao, I. B.; Brentzel, Z. J.; Liu, Y.; Rivera-Dones, K. R.; Ball, M. R.; Zanchet, D.; Huber, G. W.; Dumesic, J. A. Intrinsic Activity of Interfacial Sites for Pt-Fe and Pt-Mo Catalysts in the Hydrogenation of Carbonyl Groups. Appl. Catal, B. 2018, 231, 182–190. DOI: 10.1016/j.apcatb.2018.02.058.
  • Zuo, C.; Ge, T.; Guo, X.; Li, C.; Zhang, S. Synthesis and Catalytic Performance of Cs/P Modified ZSM-5 Zeolite in Aldol Condensation of Methyl Acetate with Different Sources of Formaldehyde. Microporous Mesoporous Mater. 2018, 256, 58–66. DOI: 10.1016/j.micromeso.2017.07.045.
  • Gopi, S.; Ramu, A. G.; Sakthivel, S.; Maia, G.; Jang, C.-H.; Choi, D.; Yun, K. Cobalt-Modified 2D Porous Organic Polymer for Highly Efficient Electrocatalytic Removal of Toxic Urea and Nitrophenol. Chemosphere 2021, 265, 129052. DOI: 10.1016/j.chemosphere.2020.129052.
  • de Araújo Moreira, T. G.; de Carvalho Filho, J. F. S.; Carvalho, Y.; de Almeida, J. M. A. R.; Romano, P. N.; Sousa-Aguiar, E. F. Highly Stable Low Noble Metal Content Rhodium-Based Catalyst for the Dry Reforming of Methane. Fuel 2021, 287, 119536. DOI: 10.1016/j.fuel.2020.119536.
  • Pougin, A.; Dilla, M.; Strunk, J. Identification and Exclusion of Intermediates of Photocatalytic CO2 Reduction on TiO2 under Conditions of Highest Purity. Phys. Chem. Chem. Phys. 2016, 18, 10809–10817. DOI: 10.1039/c5cp07148h.
  • Fuchigami, K.; Fujimura, H.; Teramae, M.; Nakatsuka, T. Precision Synthesis of a Long-Chain Silane Coupling Agent Using Micro Flow Reactors and Its Application in Dentistry. JEAS 2016, 06, 35–46. DOI: 10.4236/jeas.2016.61004.
  • Maki, Y.; Ide, Y.; Okada, T. Water-Floatable Organosilica Particles for TiO2 Photocatalysis. Chem. Eng. J. 2016, 299, 367–372. DOI: 10.1016/j.cej.2016.04.059.
  • Munday, S. D.; Dezvarei, S.; Bell, S. G. Increasing the Activity and Efficiency of Stereoselective Oxidations by Using Decoy Molecules in Combination with Rate-Enhancing Variants of P450Bm3. ChemCatChem 2016, 8, 2789–2796. DOI: 10.1002/cctc.201600551.
  • Zuo, C.; Li, Y.; Li, C.; Cao, S.; Yao, H.; Zhang, S. Thermodynamics and Separation Process for Quaternary Acrylic Systems. AIChE J. 2016, 62, 228–240. DOI: 10.1002/aic.15015.
  • Downes, C. A.; Marinescu, S. C. Bioinspired Metal Selenolate Polymers with Tunable Mechanistic Pathways for Efficient H2 Evolution. ACS Catal. 2017, 7, 848–854. DOI: 10.1021/acscatal.6b03161.
  • Downes, C. A.; Marinescu, S. C. Understanding Variability in the Hydrogen Evolution Activity of a Cobalt Anthracenetetrathiolate Coordination Polymer. ACS Catal. 2017, 7, 8605–8612. DOI: 10.1021/acscatal.7b02977.
  • Giuffrè, A. M.; Capocasale, M.; Zappia, C. Tomato Seed Oil for Edible Use: Cold Break, Hot Break, and Harvest Year Effects. J. Food Process. Preserv. 2017, 41, e13309. DOI: 10.1111/jfpp.13309.
  • Jiang, S.; Li, C.; Chen, H.; Yang, D.; Zhang, S. One-Step Synthesis of Methyl Acrylate Using Methyl Acetate with Formaldehyde in a Fluidized Bed Reactor. Ind. Eng. Chem. Res. 2017, 56, 9322–9330. DOI: 10.1021/acs.iecr.7b02522.
  • Kočí, K.; Reli, M.; Troppová, I.; Šihor, M.; Kupková, J.; Kustrowski, P.; Praus, P. Photocatalytic Decomposition of N2O over TiO2/g-C3N4 Photocatalysts Heterojunction. Appl. Surf. Sci. 2017, 396, 1685–1695. DOI: 10.1016/j.apsusc.2016.11.242.
  • Ohashi, T.; Miyoshi, Y.; Katagiri, K.; Inumaru, K. Photocatalytic Reduction of Carbon Dioxide by Strontium Titanate Nanocube-Dispersed Mesoporous Silica. J. Asian Ceram. Soc. 2017, 5, 255–260. DOI: 10.1016/j.jascer.2017.04.008.
  • Hall, E. A.; Sarkar, M. R.; Bell, S. G. The Selective Oxidation of Substituted Aromatic Hydrocarbons and the Observation of Uncoupling via Redox Cycling during Naphthalene Oxidation by the CYP101B1 System. Catal. Sci. Technol. 2017, 7, 1537–1548. DOI: 10.1039/C7CY00088J.
  • Helmer Pedersen, T.; Conti, F. Improving the Circular Economy via Hydrothermal Processing of High-Density Waste Plastics. Waste Manag. 2017, 68, 24–31. DOI: 10.1016/j.wasman.2017.06.002.
  • Sápi, A.; Varga, A.; Samu, G. F.; Dobó, D.; Juhász, K. L.; Takács, B.; Varga, E.; Kukovecz, Á.; Kónya, Z.; Janáky, C. Photoelectrochemistry by Design: Tailoring the Nanoscale Structure of Pt/NiO Composites Leads to Enhanced Photoelectrochemical Hydrogen Evolution Performance. J. Phys. Chem. C. Nanomater. Interfaces 2017, 121, 12148–12158. DOI: 10.1021/acs.jpcc.7b00429.
  • Sarkar, M. R.; Lee, J. H. Z.; Bell, S. G. The Oxidation of Hydrophobic Aromatic Substrates by Using a Variant of the P450 Monooxygenase CYP101B1. Chembiochem 2017, 18, 2119–2128. DOI: 10.1002/cbic.201700316.
  • Shiraishi, Y.; Shiota, S.; Hirakawa, H.; Tanaka, S.; Ichikawa, S.; Hirai, T. Titanium Dioxide/Reduced Graphene Oxide Hybrid Photocatalysts for Efficient and Selective Partial Oxidation of Cyclohexane. ACS Catal. 2017, 7, 293–300. DOI: 10.1021/acscatal.6b02611.
  • Takashima, T.; Suzuki, T.; Irie, H. Electrochemical Carbon Dioxide Reduction on Copper-Modified Palladium Nanoparticles Synthesized by Underpotential Deposition. Electrochim. Acta 2017, 229, 415–421. DOI: 10.1016/j.electacta.2017.01.171.
  • Ueda, H.; Sawaki, Y.; Maruyama, S. Reactions between Olivine and CO2-Rich Seawater at 300 °C: Implications for H2 Generation and CO2 Sequestration on the Early Earth. Geosci. Front. 2017, 8, 387–396. DOI: 10.1016/j.gsf.2016.10.002.
  • Conti, F.; Toor, S. S.; Pedersen, T. H.; Nielsen, A. H.; Rosendahl, L. A. Biocrude Production and Nutrients Recovery through Hydrothermal Liquefaction of Wastewater Irrigated Willow. Biomass Bioenergy 2018, 118, 24–31. DOI: 10.1016/j.biombioe.2018.07.012.
  • Kočí, K.; Troppová, I.; Edelmannová, M.; Starostka, J.; Matějová, L.; Lang, J.; Reli, M.; Drobná, H.; Rokicińska, A.; Kuśtrowski, P.; Čapek, L. Photocatalytic Decomposition of Methanol over La/TiO2 Materials. Environ. Sci. Pollut. Res. Int. 2018, 25, 34818–34825. DOI: 10.1007/s11356-017-0460-x.
  • Li, C.; Raciti, D.; Pu, T.; Cao, L.; He, C.; Wang, C.; Mueller, T. Improved Prediction of Nanoalloy Structures by the Explicit Inclusion of Adsorbates in Cluster Expansions. J. Phys. Chem. C. 2018, 122, 18040–18047. DOI: 10.1021/acs.jpcc.8b03868.
  • Patnaik, S. G.; Gagan, R. K.; Vedarajan, R.; Yamaguchi, A.; Miyauchi, M.; Matsumi, N. BIAN-Fluorene Copolymer Bearing Ruthenium Pendant as Sensitizer of Titanium Nanotubes for Photocatalytic Hydrogen Evolution. J. Electrochem. Soc. 2018, 165, J3166–J3172. DOI: 10.1149/2.0231815jes.
  • Popov, D. A.; Luna, J. M.; Orchanian, N. M.; Haiges, R.; Downes, C. A.; Marinescu, S. C. A 2,2′-Bipyridine-Containing Covalent Organic Framework Bearing Rhenium(i) Tricarbonyl Moieties for CO2 Reduction. Dalton Trans. 2018, 47, 17450–17460. DOI: 10.1039/C8DT00125A.
  • Roy, A.; Hursán, D.; Artyushkova, K.; Atanassov, P.; Janáky, C.; Serov, A. Nanostructured metal-N-C Electrocatalysts for CO2 Reduction and Hydrogen Evolution Reactions. Appl. Catal, B. 2018, 232, 512–520. DOI: 10.1016/j.apcatb.2018.03.093.
  • da Silva, A. G. M.; Batalha, D. C.; Rodrigues, T. S.; Candido, E. G.; Luz, S. C.; de Freitas, I. C.; Fonseca, F. C.; de Oliveira, D. C.; Taylor, J. G.; Córdoba de Torresi, S. I.; et al. Sub-15 nm CeO2 Nanowires as an Efficient Non-Noble Metal Catalyst in the Room-Temperature Oxidation of Aniline. Catal. Sci. Technol. 2018, 8, 1828–1839., DOI: 10.1039/C7CY02402A.
  • Tasbihi, M.; Kočí, K.; Troppová, I.; Edelmannová, M.; Reli, M.; Čapek, L.; Schomäcker, R. Photocatalytic Reduction of Carbon Dioxide over Cu/TiO2 Photocatalysts. Environ. Sci. Pollut. Res. Int. 2018, 25, 34903–34911. DOI: 10.1007/s11356-017-0944-8.
  • Tasbihi, M.; Acharjya, A.; Thomas, A.; Reli, M.; AmbroŽová, N.; Kočcí, K.; Schomäcker, R. Photocatalytic CO2 Reduction by Mesoporous Polymeric Carbon Nitride Photocatalysts. J. Nanosci. Nanotechnol. 2018, 18, 5636–5644. DOI: 10.1166/jnn.2018.15445.
  • Zuo, C.; Ge, T.; Wang, G.; Guo, X.; Li, C.; Zhang, S. Enhanced Catalytic Activity with Oxygen for Methyl Acrylate Production via Cross-Aldol Condensation Reaction. Chem. Eng. Technol. 2018, 41, 1331–1341. DOI: 10.1002/ceat.201700500.
  • Castello, D.; Haider, M. S.; Rosendahl, L. A. Catalytic Upgrading of Hydrothermal Liquefaction Biocrudes: Different Challenges for Different Feedstocks. Renew. Energy 2019, 141, 420–430. DOI: 10.1016/j.renene.2019.04.003.
  • Hakawati, R.; Smyth, B.; Daly, H.; McCullough, G.; Rooney, D. Is the Fischer-Tropsch Conversion of Biogas-Derived Syngas to Liquid Fuels Feasible at Atmospheric Pressure? Energies 2019, 12, 1031. DOI: 10.3390/en12061031.
  • Handoko, C.; Moustakas, N. G.; Peppel, T.; Springer, A.; Oropeza, F.; Huda, A.; Bustan, M.; Bambang, Y.; Gulo, F.; Strunk, J. Characterization and Effect of Ag(0) vs. Ag(I) Species and Their Localized Plasmon Resonance on Photochemically Inactive TiO2. Catalysts 2019, 9, 323. DOI: 10.3390/catal9040323.
  • Huang, J.-F.; Wu, Y.-C. Tunable Ag Micromorphologies Show High Activities for Electrochemical H2 Evolution and CO2 Electrochemical Reduction. ACS Sustainable Chem. Eng. 2019, 7, 6352–6359. DOI: 10.1021/acssuschemeng.9b00116.
  • Li, J.; Peng, Z.; Li, C.; Li, P.; Gani, R. Process Design and Economic Analysis of Methacrylic Acid Extraction for Three Organic Solvents. Chin. J. Chem. Eng. 2019, 27, 2909–2916. DOI: 10.1016/j.cjche.2019.02.014.
  • Li, J.; Zhao, H.; Wang, L.; Peng, Z.; Li, C. Phase Equilibrium Measurements of the Methacrolein–Methacrylic Acid–Water Ternary System at 101.3 kPa. J. Chem. Eng. Data 2019, 64, 5523–5528. DOI: 10.1021/acs.jced.9b00649.
  • Liu, W.; Li, X.; Wang, C.; Pan, H.; Liu, W.; Wang, K.; Zeng, Q.; Wang, R.; Jiang, J. A Scalable General Synthetic Approach toward Ultrathin Imine-Linked Two-Dimensional Covalent Organic Framework Nanosheets for Photocatalytic CO2 Reduction. J. Am. Chem. Soc. 2019, 141, 17431–17440. DOI: 10.1021/jacs.9b09502.
  • Lukács, D.; Németh, M.; Szyrwiel, Ł.; Illés, L.; Pécz, B.; Shen, S.; Pap, J. S. Behavior of a Cu-Peptide Complex under Water Oxidation Conditions – Molecular Electrocatalyst or Precursor to Nanostructured CuO Films? Sol. Energy Mater. Sol. Cells 2019, 201, 110079. DOI: 10.1016/j.solmat.2019.110079.
  • Takashima, T.; Suzuki, T.; Irie, H. Electrochemical Reduction of Carbon Dioxide to Formate on Palladium-Copper Alloy Nanoparticulate Electrode. Electrochemistry 2019, 87, 134–138. DOI: 10.5796/electrochemistry.18-00086.
  • Wang, G.; Li, Z.; Fan, L.; Li, C.; Zhang, S. Sec-Amine Grafted D301 Resin Catalyzed Fixed-Bed Process for Continuous Preparation of Methacrolein via Mannich Reaction. Chem. Eng. J. 2019, 370, 625–636. DOI: 10.1016/j.cej.2019.03.198.
  • Xiang, K.; Zhu, F.; Liu, Y.; Pan, Y.; Wang, X.; Yan, X.; Liu, H. A Strategy to Eliminate carbon deposition on a Copper Electrode in Order to Enhance Its Stability in CO2RR Catalysis by Introducing Crystal Defects. Electrochem. Commun. 2019, 102, 72–77. DOI: 10.1016/j.elecom.2019.04.001.
  • Yao, Y.; Huang, Z.; Xie, P.; Wu, L.; Ma, L.; Li, T.; Pang, Z.; Jiao, M.; Liang, Z.; Gao, J.; et al. High Temperature Shockwave Stabilized Single Atoms. Nat. Nanotechnol. 2019, 14, 851–857., DOI: 10.1038/s41565-019-0518-7.
  • Zhao, H.; Li, J.; Wang, L.; Li, C.; Li, P. Thermodynamic Investigation of 1,3,5-Trioxane, Methyl Acrylate, Methyl Acetate, and Water Mixtures, in Terms of NRTL and UNIQUAC Models. Ind. Eng. Chem. Res. 2019, 58, 18378–18386. DOI: 10.1021/acs.iecr.9b02723.
  • Al-Zuraiji, S. M.; Benkó, T.; Illés, L.; Németh, M.; Frey, K.; Sulyok, A.; Pap, J. S. Utilization of Hydrophobic Ligands for Water-Insoluble Fe(II) Water Oxidation Catalysts – Immobilization and Characterization. J. Catal. 2020, 381, 615–625. DOI: 10.1016/j.jcat.2019.12.003.
  • Azenha, C.; Mateos-Pedrero, C.; Alvarez-Guerra, M.; Irabien, A.; Mendes, A. Enhancement of the Electrochemical Reduction of CO2 to Methanol and Suppression of H2 Evolution over CuO Nanowires. Electrochim. Acta 2020, 363, 137207. DOI: 10.1016/j.electacta.2020.137207.
  • Ismail, A. M.; Samu, G. F.; Nguyën, H. C.; Csapó, E.; López, N.; Janáky, C. Au/Pb Interface Allows the Methane Formation Pathway in Carbon Dioxide Electroreduction. ACS Catal. 2020, 10, 5681–5690. DOI: 10.1021/acscatal.0c00749.
  • Iio, T.; Nagai, K.; Kozuka, T.; Sammi, A. M.; Sato, K.; Narumi, T.; Mase, N. Fine-Bubble–Slug-Flow Hydrogenation of Multiple Bonds and Phenols. Synlett 2020, 31, 1919–1924. DOI: 10.1055/s-0040-1705948.
  • Navas, M. B.; Ruggera, J. F.; Lick, I. D.; Casella, M. L. A Sustainable Process for Biodiesel Production Using Zn/Mg Oxidic Species as Active, Selective and Reusable Heterogeneous Catalysts. Bioresour. Bioprocess. 2020, 7, 4. DOI: 10.1186/s40643-019-0291-3.
  • Papailias, I.; Todorova, N.; Giannakopoulou, T.; Ioannidis, N.; Dallas, P.; Dimotikali, D.; Trapalis, C. Novel Torus Shaped g-C3N4 Photocatalysts. Appl. Catal, B. 2020, 268, 118733. DOI: 10.1016/j.apcatb.2020.118733.
  • Todorova, N.; Papailias, I.; Giannakopoulou, T.; Ioannidis, N.; Boukos, N.; Dallas, P.; Edelmannová, M.; Reli, M.; Kočí, K.; Trapalis, C. J. C. Photocatalytic H2 Evolution, CO2 Reduction, and NO x Oxidation by Highly Exfoliated g-C3N4. Catalysts 2020, 10, 1147. DOI: 10.3390/catal10101147.
  • Wang, G.; Cai, G. Synergistic Effects between Acid and Base Sites and Kinetic for Synthesis of Methylacrolein on the Cs-P/γ-Al2O3 Catalyst. Ind. Eng. Chem. Res. 2020, 59, 17769–17778. DOI: 10.1021/acs.iecr.0c03337.
  • Fontmorin, J.-M.; Izadi, P.; Li, D.; Lim, S. S.; Farooq, S.; Bilal, S. S.; Cheng, S.; Yu, E. H. Gas Diffusion Electrodes Modified with Binary Doped Polyaniline for Enhanced CO2 Conversion during Microbial Electrosynthesis. Electrochim. Acta 2021, 372, 137853. DOI: 10.1016/j.electacta.2021.137853.
  • Guo, B.; Li, Q.; Lin, J.; Yu, C.; Gao, X.; Fang, Y.; Liu, Z.; Guo, Z.; Tang, C.; Huang, Y. Bimetallic AuPd Nanoparticles Loaded on Amine-Functionalized Porous Boron Nitride Nanofibers for Catalytic Dehydrogenation of Formic Acid. ACS Appl. Nano Mater. 2021, 4, 1849–1857. DOI: 10.1021/acsanm.0c03224.
  • Izadi, P.; Fontmorin, J.-M.; Virdis, B.; Head, I. M.; Yu, E. H. The Effect of the Polarised Cathode, Formate and Ethanol on Chain Elongation of Acetate in Microbial Electrosynthesis. Appl. Energy 2021, 283, 116310. DOI: 10.1016/j.apenergy.2020.116310.
  • Li, J.; Zan, W.-Y.; Kang, H.; Dong, Z.; Zhang, X.; Lin, Y.; Mu, Y.-W.; Zhang, F.; Zhang, X.-M.; Gu, J. Graphitic-N Highly Doped Graphene-like Carbon: A Superior Metal-Free Catalyst for Efficient Reduction of CO2. Appl. Catal, B. 2021, 298, 120510. DOI: 10.1016/j.apcatb.2021.120510.
  • Mateos, P. S.; Navas, M. B.; Morcelle, S. R.; Ruscitti, C.; Matkovic, S. R.; Briand, L. E. Insights in the Biocatalyzed Hydrolysis, Esterification and Transesterification of Waste Cooking Oil with a Vegetable Lipase. Catal. Today 2021, 372, 211–219. DOI: 10.1016/j.cattod.2020.09.027.
  • Papailias, I.; Todorova, N.; Giannakopoulou, T.; Dvoranová, D.; Brezová, V.; Dimotikali, D.; Trapalis, C. Selective Removal of Organic and Inorganic Air Pollutants by Adjusting the g-C3N4/TiO2 Ratio. Catal. Today 2021, 361, 37–42. DOI: 10.1016/j.cattod.2019.12.021.
  • Perumal, S.; Moon, I. S. Sustainable NO Removal and Its Sensitive Monitoring at Room Temperature by Electrogenerated Ni (I) electron Mediator. Chemosphere 2021, 265, 129122. DOI: 10.1016/j.chemosphere.2020.129122.
  • Ramu, A. G.; Umar, A.; Gopi, S.; Algadi, H.; Albargi, H.; Ibrahim, A. A.; Alsaiari, M. A.; Wang, Y.; Choi, D. Tetracyanonickelate (II)/KOH/Reduced Graphene Oxide Fabricated Carbon Felt for Mediated Electron Transfer Type Electrochemical Sensor for Efficient Detection of N2O Gas at Room Temperature. Environ. Res. 2021, 201, 111591. DOI: 10.1016/j.envres.2021.111591.
  • Ro, I.; Liu, Y.; Ball, M.; Jackson, D.; Chada, J.; Sener, C.; Kuech, T.; Madon, R.; Huber, G.; Dumesic, J. The Role of the Cu-ZrO2 Interfacial Sites for Ethanol Conversion to Ethyl Acetate and Methanol Synthesis from CO2 and H2. ACS Catal. 2016, 6, 7040–7050. DOI: 10.1021/acscatal.6b01805.
  • Reuillard, B.; Ly, K. H.; Rosser, T. E.; Kuehnel, M. F.; Zebger, I.; Reisner, E. Tuning Product Selectivity for Aqueous CO2 Reduction with a Mn(Bipyridine)-Pyrene Catalyst Immobilized on a Carbon Nanotube Electrode. J. Am. Chem. Soc. 2017, 139, 14425–14435. DOI: 10.1021/jacs.7b06269.
  • Dezvarei, S.; Lee, J. H. Z.; Bell, S. G. Stereoselective Hydroxylation of Isophorone by Variants of the Cytochromes P450 CYP102A1 and CYP101A1. Enzyme Microb. Technol. 2018, 111, 29–37. DOI: 10.1016/j.enzmictec.2018.01.002.
  • Kočí, K.; Troppová, I.; Reli, M.; Matějová, L.; Edelmannová, M.; Drobná, H.; Dubnová, L.; Rokicińska, A.; Kuśtrowski, P.; Čapek, L. Nd/TiO2 Anatase-Brookite Photocatalysts for Photocatalytic Decomposition of Methanol. 2018, 6.
  • Matějka, V.; Šihor, M.; Reli, M.; Martaus, A.; Kočí, K.; Kormunda, M.; Praus, P. Composites g-C3N4 and BiOIO3 for Photocatalytic Decomposition of N2O. Mater. Sci. Semicond. Process 2019, 100, 113–122. DOI: 10.1016/j.mssp.2019.04.036.
  • Wang, Y.; Wang, H.; Woldu, A. R.; Zhang, X.; He, T. Optimization of Charge Behavior in Nanoporous CuBi2O4 Photocathode for Photoelectrochemical Reduction of CO2. Catal. Today 2019, 335, 388–394. DOI: 10.1016/j.cattod.2018.12.047.
  • Adejoro, F. A.; Hassen, A.; Akanmu, A. M.; Morgavi, D. P. Replacing Urea with Nitrate as a Non-Protein Nitrogen Source Increases Lambs' Growth and Reduces Methane Production, Whereas Acacia Tannin Has No Effect. Anim. Feed Sci. Technol. 2020, 259, 114360. DOI: 10.1016/j.anifeedsci.2019.114360.
  • Lim, S. S.; Fontmorin, J.-M.; Izadi, P.; Wan Daud, W. R.; Scott, K.; Yu, E. H. Impact of Applied Cell Voltage on the Performance of a Microbial Electrolysis Cell Fully Catalysed by Microorganisms. Int. J. Hydrogen Energy 2020, 45, 2557–2568. DOI: 10.1016/j.ijhydene.2019.11.142.
  • Philip, M.; Woldu, A. R.; Akbar, M. B.; Louis, H.; Cong, H. A Facile Synthesis of Cu Catalysts with Multiple High-Index Facets for the Suppression of Competing H2 Evolution during Electrocatalytic CO2 Reduction. Nanoscale 2021, 13, 3042–3048. DOI: 10.1039/d0nr07286a.
  • Lee, K.-Y.; Mohamed, A.; Sato, K. Enhanced Photocatalytic Activity of TiO2–CNT Composites for Photoreduction of CO2. Sensors Mater. 2015, 27.
  • Downes, C. A.; Marinescu, S. C. One Dimensional Metal Dithiolene (M = Ni, Fe, Zn) Coordination Polymers for the Hydrogen Evolution Reaction. Dalton Trans. 2016, 45, 19311–19321. DOI: 10.1039/C6DT03257E.
  • Hursán, D.; London, G.; Olasz, B.; Janáky, C. Synthesis, Characterization, and Electrocatalytic Properties of a Custom-Designed Conjugated Polymer with Pyridine Side Chain. Electrochim. Acta 2016, 217, 92–99. DOI: 10.1016/j.electacta.2016.09.064.
  • Lin, L.; Miao, N.; Wen, Y.; Zhang, S.; Ghosez, P.; Sun, Z.; Allwood, D. A. Sulfur-Depleted Monolayered Molybdenum Disulfide Nanocrystals for Superelectrochemical Hydrogen Evolution Reaction. ACS Na 2016, 10, 8929–8937. DOI: 10.1021/acsnano.6b04904.
  • Guo, X.; Yang, D.; Zuo, C.; Peng, Z.; Li, C.; Zhang, S. Catalysts, Process Optimization, and Kinetics for the Production of Methyl Acrylate over Vanadium Phosphorus Oxide Catalysts. Ind. Eng. Chem. Res. 2017, 56, 5860–5871. DOI: 10.1021/acs.iecr.7b01212.
  • Kecsenovity, E.; Endrődi, B.; Tóth, P. S.; Zou, Y.; Dryfe, R. A. W.; Rajeshwar, K.; Janáky, C. Enhanced Photoelectrochemical Performance of Cuprous Oxide/Graphene Nanohybrids. J. Am. Chem. Soc. 2017, 139, 6682–6692. DOI: 10.1021/jacs.7b01820.
  • Sararuk, C.; Yang, D.; Zhang, G.; Li, C.; Zhang, S. One-Step Aldol Condensation of Ethyl Acetate with Formaldehyde over Ce and P Modified Cesium Supported Alumina Catalyst. J. Ind. Eng. Chem. 2017, 46, 342–349. DOI: 10.1016/j.jiec.2016.11.002.
  • Schwaminger, S. P.; Surya, R.; Filser, S.; Wimmer, A.; Weigl, F.; Fraga-García, P.; Berensmeier, S. Formation of Iron Oxide Nanoparticles for the Photooxidation of Water: Alteration of Finite Size Effects from Ferrihydrite to Hematite. Sci. Rep. 2017, 7, 12609. DOI: 10.1038/s41598-017-12791-9.
  • Tsai, Y.-F.; Luo, W.-I.; Chang, J.-L.; Chang, C.-W.; Chuang, H.-C.; Ramu, R.; Wei, G.-T.; Zen, J.-M.; Yu, S. S. F. Electrochemical Hydroxylation of C3–C12 n-Alkanes by Recombinant Alkane Hydroxylase (AlkB) and Rubredoxin-2 (AlkG) from Pseudomonas putida GPo1. Sci. Rep. 2017, 7, 8369. DOI: 10.1038/s41598-017-08610-w.
  • Carreno, N. L. V.; Deon, V. G.; Silva, R. M.; Santana, L. R.; Pereira, R. M.; Orlandi, M. O.; Ventura, W. M.; Dias, A.; Taylor, J. G.; Fajardo, H. V.; Mesko, M. F. Feasible and Clean Solid-Phase Synthesis of LiNbO3 by Microwave-Induced Combustion and Its Application as Catalyst for Low-Temperature Aniline Oxidation. ACS Sustainable Chem. Eng. 2018, 6, 1680–1691. DOI: 10.1021/acssuschemeng.7b02921.
  • Filser, S.; Maier, T. L.; Nagel, R. D.; Schindler, W.; Lugli, P.; Becherer, M.; Krischer, K. Photoelectrochemical Reactivity of Well-Defined Mesoscale Gold Arrays on SiO2/Si Substrates in CO2-Saturated Aqueous Electrolyte. Electrochim. Acta 2018, 268, 546–553. DOI: 10.1016/j.electacta.2018.02.018.
  • Jia, Q.; Tanabe, S.; Waki, I. Direct Gas-Phase CO2 Reduction for Solar Methane Generation Using a Gas Diffusion Electrode with a BiVO4:Mo and a Cu-in-Se Photoanode. Chem. Lett. 2018, 47, 436–439. DOI: 10.1246/cl.171094.
  • Kočí, K.; Reli, M.; Edelmannová, M.; Troppová, I.; Drobná, H.; Rokicińska, A.; Kuśtrowski, P.; Dvoranová, D.; Čapek, L. Photocatalytic Hydrogen Production from Methanol over Nd/TiO2. J. Photochem. Photobiol, A. 2018, 366, 55–64. DOI: 10.1016/j.jphotochem.2018.03.007.
  • Mori, A.; Kawamura, M.; Takase, S.; Shimizu, Y. Pyrochlore-Type Bi2Sn2O7 Oxide as an Electrocatalyst for Carbon Dioxide Reduction. J. Ceram. Soc. Japan 2018, 126, 843–846. DOI: 10.2109/jcersj2.18079.
  • Ro, I.; Aragao, I. B.; Chada, J. P.; Liu, Y.; Rivera-Dones, K. R.; Ball, M. R.; Zanchet, D.; Dumesic, J. A.; Huber, G. W. The Role of Pt-FexOy Interfacial Sites for CO Oxidation. J. Catal. 2018, 358, 19–26. DOI: 10.1016/j.jcat.2017.11.021.
  • Varga, A.; Samu, G. F.; Janáky, C. Rapid Synthesis of Interconnected CuCrO2 Nanostructures: A Promising Electrode Material for Photoelectrochemical Fuel Generation. Electrochim. Acta 2018, 272, 22–32. DOI: 10.1016/j.electacta.2018.03.185.
  • Yang, D.; Sararuk, C.; Wang, H.; Zhang, S.; Li, Z.; Li, C. Effect of Metal Ion in Bulk VPO in Aldol Condensation of Formaldehyde and Methyl Acetate to Methyl Acrylate. Ind. Eng. Chem. Res. 2018, 57, 93–100. DOI: 10.1021/acs.iecr.7b03521.
  • Adejoro, F.; Hassen, A.; Akanmu, A. Effect of Lipid-Encapsulated Acacia Tannin Extract on Feed Intake, Nutrient Digestibility and Methane Emission in Sheep. Animals 2019, 9, 863. DOI: 10.3390/ani9110863.
  • Souza de Carvalho Filho, J. F.; Maciel Pereira, M.; Gomes Aranda, D. A.; Monnerat Araujo Ribeiro de Almeida, J.; Falabella Sousa-Aguiar, E.; Nothaft Romano, P. Application of Response Surface Methodology for Ethanol Conversion into Hydrocarbons Using ZSM-5 Zeolites. Catalysts 2019, 9, 617. DOI: 10.3390/catal9070617.
  • Huang, Y.; Sun, Y.; Zheng, X.; Aoki, T.; Pattengale, B.; Huang, J.; He, X.; Bian, W.; Younan, S.; Williams, N.; et al. Atomically Engineering Activation Sites onto Metallic 1T-MoS2 Catalysts for Enhanced Electrochemical Hydrogen Evolution. Nat. Commun. 2019, 10, 982. DOI: 10.1038/s41467-019-08877-9.
  • Lin, R.; Ma, X.; Cheong, W.-C.; Zhang, C.; Zhu, W.; Pei, J.; Zhang, K.; Wang, B.; Liang, S.; Liu, Y.; et al. PdAg Bimetallic Electrocatalyst for Highly Selective Reduction of CO2 with Low COOH* Formation Energy and Facile CO Desorption. Nano Res. 2019, 12, 2866–2871., DOI: 10.1007/s12274-019-2526-1.
  • Liu, S.-H.; Lu, J.-S.; Pu, Y.-C.; Fan, H.-C. Enhanced Photoreduction of CO2 into Methanol by Facet-Dependent Cu2O/Reduce Graphene Oxide. J. CO2 Util. 2019, 33, 171–178. DOI: 10.1016/j.jcou.2019.05.020.
  • Milcarek, R. J.; Nakamura, H.; Tezuka, T.; Maruta, K.; Ahn, J. Microcombustion for Micro-Tubular Flame-Assisted Fuel Cell Power and Heat Cogeneration. J. Power Sources 2019, 413, 191–197. DOI: 10.1016/j.jpowsour.2018.12.043.
  • Moraes, L. C.; de Souza, G. P.; Fajardo, H. V.; Luz, S. C.; Álvarez, E.; Lloret, F.; Ribeiro-Viana, R. M.; Rojo, J.; Stumpf, H. O.; Figueiredo, R. C.; Corrêa, R. S. 1D Coordination Polymer Based on Copper(II)-Containing Tetrameric 1,2,3-Triazole Ligand from Click Chemistry: Magnetic and Catalytic Properties. Inorg. Chim. Acta 2019, 489, 93–99. DOI: 10.1016/j.ica.2019.02.010.
  • Ritter, S. M.; Isenbeck-Schröter, M.; Scholz, C.; Keppler, F.; Gescher, J.; Klose, L.; Schorndorf, N.; Avilés Olguín, J.; González-González, A.; Stinnesbeck, W. Subaqueous Speleothems (Hells Bells) Formed by the Interplay of Pelagic Redoxcline Biogeochemistry and Specific Hydraulic Conditions in the El Zapote Sinkhole, Yucatán Peninsula, Mexico. Biogeosciences 2019, 16, 2285–2305. DOI: 10.5194/bg-16-2285-2019.
  • Sharma, N.; Das, T.; Kumar, S.; Bhosale, R.; Kabir, M.; Ogale, S. Photocatalytic Activation and Reduction of CO2 to CH4 over Single Phase Nano Cu3SnS4: A Combined Experimental and Theoretical Study. ACS Appl. Energy Mater. 2019, 2, 5677–5685. DOI: 10.1021/acsaem.9b00813.
  • Teranishi, M.; Naya, S-i.; Tada, H. Nanohybrid Catalysts for Efficient Synthesis of Hydrogen Peroxide at Ambient Temperature and Pressure. J. Phys. Chem. C. 2019, 123, 9831–9837. DOI: 10.1021/acs.jpcc.9b00381.
  • Xie, P.; Yao, Y.; Huang, Z.; Liu, Z.; Zhang, J.; Li, T.; Wang, G.; Shahbazian-Yassar, R.; Hu, L.; Wang, C. Highly Efficient Decomposition of Ammonia Using High-Entropy Alloy Catalysts. Nat. Commun. 2019, 10, 4011. DOI: 10.1038/s41467-019-11848-9.
  • Aalinejad, M.; Pesyan, N. N.; Doustkhah, E. Diaza Crown-Type Macromocycle (Kryptofix 22) Functionalised Carbon Nanotube for Efficient Ni2+ Loading; a Unique Catalyst for Cross-Coupling Reactions. Mol. Catal. 2020, 494, 111117. DOI: 10.1016/j.mcat.2020.111117.
  • Al-Zuraiji, S.; Lukács, D.; Németh, M.; Frey, K.; Benkó, T.; Illés, L.; Pap, J. An Iron(III) Complex with Pincer Ligand—Catalytic Water Oxidation through Controllable Ligand Exchange. Reactions 2020, 1, 16–36. DOI: 10.3390/reactions1010003.
  • Chiang, C.-K.; Chu, K.-T.; Lin, C.-C.; Xie, S.-R.; Liu, Y.-C.; Demeshko, S.; Lee, G.-H.; Meyer, F.; Tsai, M.-L.; Chiang, M.-H.; Lee, C.-M. Photoinduced NO and HNO Production from Mononuclear {FeNO}6 Complex Bearing a Pendant Thiol. J. Am. Chem. Soc. 2020, 142, 8649–8661. DOI: 10.1021/jacs.9b13837.
  • Yang, F.; Hu, W.; Yang, C.; Patrick, M.; Cooksy, A. L.; Zhang, J.; Aguiar, J. A.; Fang, C.; Zhou, Y.; Meng, Y. S.; et al. Tuning Internal Strain in Metal-Organic Frameworks via Vapor Phase Infiltration for CO2 Reduction. Angew. Chem. Int. Ed. Engl. 2020, 59, 4572–4580., DOI: 10.1002/anie.202000022.
  • Adler, C.; Krivtsov, I.; Mitoraj, D.; Santos‐Gómez, L.; García‐Granda, S.; Neumann, C.; Kund, J.; Kranz, C.; Mizaikoff, B.; Turchanin, A.; Beranek, R. Sol − Gel Processing of Water-Soluble Carbon Nitride Enables High-Performance Photoanodes. ChemSusChem 2021, 14, 2170–2179. DOI: 10.1002/cssc.202100313.
  • Al-Zuraiji, S. M.; Benkó, T.; Frey, K.; Kerner, Z.; Pap, J. S. Electrodeposition of Fe-Complexes on Oxide Surfaces for Efficient OER Catalysis. Catalysts 2021, 11, 577. DOI: 10.3390/catal11050577.
  • Demir, B.; Kropp, T.; Gilcher, E. B.; Mavrikakis, M.; Dumesic, J. A. Effects of Water on the Kinetics of Acetone Hydrogenation over Pt and Ru Catalysts. J. Catal. 2021, DOI: 10.1016/j.jcat.2021.03.013.
  • Kitadai, N.; Nakamura, R.; Yamamoto, M.; Okada, S.; Takahagi, W.; Nakano, Y.; Takahashi, Y.; Takai, K.; Oono, Y. Thioester Synthesis through Geoelectrochemical CO2 Fixation on Ni Sulfides. Commun. Chem. 2021, 4, 37. DOI: 10.1038/s42004-021-00475-5.
  • Narayanaru, S.; Anilkumar, G. M.; Ito, M.; Tamaki, T.; Yamaguchi, T. An Enhanced Electrochemical CO2 Reduction Reaction on the SnOx–PdO Surface of SnPd Nanoparticles Decorated on N-Doped Carbon Fibers. Catal. Sci. Technol. 2021, 11, 143–151. DOI: 10.1039/D0CY01437K.
  • Wang, Y.; Wang, H.; He, T. Study on Nanoporous CuBi2O4 Photocathode Coated with TiO2 Overlayer for Photoelectrochemical CO2 Reduction. Chemosphere 2021, 264, 128508. DOI: 10.1016/j.chemosphere.2020.128508.
  • Waribam, P.; Jaiyen, K.; Samart, C.; Ogawa, M.; Guan, G.; Kongparakul, S. MXene Potassium Titanate Nanowire/Sulfonated Polyether Ether Ketone (SPEEK) Hybrid Composite Proton Exchange Membrane for Photocatalytic Water Splitting. RSC Adv. 2021, 11, 9327–9335. DOI: 10.1039/D0RA09935J.
  • Zhu, S.; Ren, X.; Li, X.; Niu, X.; Wang, M.; Xu, S.; Wang, Z.; Han, Y.; Wang, Q. Core-Shell ZnO@Cu2O as Catalyst to Enhance the Electrochemical Reduction of Carbon Dioxide to C2 Products. Catalysts 2021, 11, 535. DOI: 10.3390/catal11050535.
  • Czubaszek, R.; Wysocka-Czubaszek, A.; Roj-Rojewski, S.; Banaszuk, P. Greenhouse Gas Fluxes from Soils Fertilised with Anaerobically Digested Biomass from Wetlands. Mire. Peat. 2019, 25, 1.
  • Böhmer, S.; Marx, C.; Gómez-Baraibar, Á.; Nowaczyk, M. M.; Tischler, D.; Hemschemeier, A.; Happe, T. Evolutionary Diverse Chlamydomonas reinhardtii Old Yellow Enzymes Reveal Distinctive Catalytic Properties and Potential for Whole-Cell Biotransformations. Algal Res. 2020, 50, 101970. DOI: 10.1016/j.algal.2020.101970.
  • Kočí, K.; Dang Van, H.; Edelmannová, M.; Reli, M.; Wu, J. C. S. Photocatalytic Reduction of CO2 Using Pt/C3N4 Photocatalyts. Appl. Surf. Sci. 2020, 503, 144426. DOI: 10.1016/j.apsusc.2019.144426.
  • Lan, P.-W.; Wang, C.-C.; Chen, C.-Y. Enhancing the Formation of Nickel Catalysts (111) Crystal Plane and CO2 Methanation Reactivity by External Magnetic Field. J. Taiwan Inst. Chem. Eng. 2020, 116, 188–196. DOI: 10.1016/j.jtice.2020.11.021.
  • McMahon, S.; Rajagopal, A.; Amirjalayer, S.; Halpin, Y.; Fitzgerald-Hughes, D.; Buma, W. J.; Woutersen, S.; Long, C.; Pryce, M. T. Photo-Activated CO-Release in the Amino Tungsten Fischer Carbene Complex, [(CO)5WC(NC4H8)Me], Picosecond Time Resolved Infrared Spectroscopy, Time-Dependent Density Functional Theory, and an Antimicrobial Study. J. Inorg. Biochem. 2020, 208, 111071. DOI: 10.1016/j.jinorgbio.2020.111071.
  • Milcarek, R. J.; Nakamura, H.; Tezuka, T.; Maruta, K.; Ahn, J. Investigation of Microcombustion Reforming of Ethane/Air and micro-Tubular Solid Oxide Fuel Cells. J. Power Sources 2020, 450, 227606. DOI: 10.1016/j.jpowsour.2019.227606.
  • Niwa, T.; Naya, S-i.; Tada, H. Low-Temperature Selective Aerobic Oxidation of Cyclohexanol to Cyclohexanone over n-Type Metal Oxide-Supported Au Nanoparticles. Catal. Commun. 2020, 144, 106089. DOI: 10.1016/j.catcom.2020.106089.
  • Lidiane Sabino da, S.; Gabriela Gonzaga, C.; Maria Auxiliadora Scaramelo, B.; Victor Luis dos Santos Teixeira da, S.; Pedro Augusto, A. Removal of Sodium Compounds from Co/SBA-15 Catalysts for Fischer-Tropsch Synthesis. Acta Sci. Technol. 2020, 42, e45899. DOI: 10.4025/actascitechnol.v42i1.45899.
  • Tappan, B. A.; Chen, K.; Lu, H.; Sharada, S. M.; Brutchey, R. L. Synthesis and Electrocatalytic HER Studies of Carbene-Ligated Cu3-xP Nanocrystals. ACS Appl. Mater. Interfaces 2020, 12, 16394–16401. DOI: 10.1021/acsami.0c00025.
  • Vötterl, J.; Klinsoda, J.; Zebeli, Q.; Hennig-Pauka, I.; Kandler, W.; Metzler-Zebeli, B. Dietary Phytase and Lactic Acid-Treated CerealGrains Differently Affected Calcium and PhosphorusHomeostasis from Intestinal Uptake to SystemicMetabolism in a Pig Model. Nutrients 2020, 12, 1542. DOI: 10.3390/nu12051542.
  • Wan, W.-L.; Tian, B.; Lin, Y.-J.; Korupalli, C.; Lu, M.-Y.; Cui, Q.; Wan, D.; Chang, Y.; Sung, H.-W. Photosynthesis-Inspired H2 Generation Using a Chlorophyll-Loaded Liposomal Nanoplatform to Detect and Scavenge Excess ROS. Nat. Commun. 2020, 11, 534. DOI: 10.1038/s41467-020-14413-x.
  • Edelmannová, M.; Reli, M.; Matejova, L.; Troppová, I.; Dubnová, L.; Čapek, L.; Dvoranová, D.; Kuśtrowski, P.; Kočí, K. Successful Immobilization of Lanthanides Doped TiO2 on Inert Foam for Repeatable Hydrogen Generation from Aqueous Ammonia. Materials 2020, 13, 1254. DOI: 10.3390/ma13051254.
  • Wu, C.-Y.; Lee, C.-J.; Yu, Y.-H.; Tsao, H.-W.; Su, Y.-H.; Kaun, C.-C.; Chen, J.-S.; Wu, J.-J. Efficacious CO2 Photoconversion to C2 and C3 Hydrocarbons on Upright SnS-SnS2 Heterojunction Nanosheet Frameworks. ACS Appl Mater Interfaces 2021, 13, 4984–4992. DOI: 10.1021/acsami.0c18420.
  • Troppová, I.; Šihor, M.; Reli, M.; Ritz, M.; Praus, P.; Kočí, K. Unconventionally Prepared TiO2/g-C3N4 Photocatalysts for Photocatalytic Decomposition of Nitrous Oxide. Appl. Surf. Sci. 2018, 430, 335–347. DOI: 10.1016/j.apsusc.2017.06.299.
  • Tasbihi, M.; Schwarze, M.; Edelmannová, M.; Spöri, C.; Strasser, P.; Schomäcker, R. Photocatalytic Reduction of CO2 to Hydrocarbons by Using Photodeposited Pt Nanoparticles on Carbon-Doped Titania. Catal. Today 2019, 328, 8–14. DOI: 10.1016/j.cattod.2018.10.011.
  • Lee, J.; Wong, S.; Stok, J.; Bagster, S.; Beckett, J.; Clegg, J.; Brock, A.; Voss, J.; Bell, S. Selective Hydroxylation of 1,8- and 1,4-Cineole Using Bacterial P450 Variants. Arch. Biochem. Biophys. 2019, 663, 54–63. DOI: 10.1016/j.abb.2018.12.025.
  • Doustkhah, E.; Assadi, M. H. N.; Komaguchi, K.; Tsunoji, N.; Esmat, M.; Fukata, N.; Tomita, O.; Abe, R.; Ohtani, B.; Ide, Y. In Situ Blue Titania via Band Shape Engineering for Exceptional Solar H2 Production in Rutile TiO2. Appl. Catal, B. 2021, 297, 120380. DOI: 10.1016/j.apcatb.2021.120380.
  • Endrődi, B.; Samu, A.; Kecsenovity, E.; Halmágyi, T.; Sebők, D.; Janáky, C. Operando Cathode Activation with Alkali Metal Cations for High Current Density Operation of Water-Fed Zero-Gap Carbon Dioxide Electrolyzers . Nat. Energy. 2021, 6, 439–448. DOI: 10.1038/s41560-021-00813-w.
  • Gopi, S.; Selvamani, V.; Yun, K. MoS2 Decoration Followed by P Inclusion over Ni-Co Bimetallic Metal-Organic Framework-Derived Heterostructures for Water Splitting. Inorg. Chem. 2021, 60, 10772–10780. DOI: 10.1021/acs.inorgchem.1c01478.
  • Kumar, S.; Hassan, I.; Regue, M.; Gonzalez-Carrero, S.; Rattner, E.; Isaacs, M. A.; Eslava, S. Mechanochemically Synthesized Pb-Free Halide Perovskite-Based Cs2AgBiBr6–Cu–RGO Nanocomposite for Photocatalytic CO2 Reduction. J. Mater. Chem. A. 2021, 9, 12179–12187. DOI: 10.1039/D1TA01281A.
  • Lim, S. S.; Fontmorin, J.-M.; Pham, H. T.; Milner, E.; Abdul, P. M.; Scott, K.; Head, I.; Yu, E. H. Zinc Removal and Recovery from Industrial Wastewater with a Microbial Fuel Cell: Experimental Investigation and Theoretical Prediction. Sci. Total Environ. 2021, 776, 145934. DOI: 10.1016/j.scitotenv.2021.145934.
  • Sui, R.; Pei, J.; Fang, J.; Zhang, X.; Zhang, Y.; Wei, F.; Chen, W.; Hu, Z.; Hu, S.; Zhu, W.; Zhuang, Z. Engineering Ag–Nx Single-Atom Sites on Porous Concave N-Doped Carbon for Boosting CO2 Electroreduction. ACS Appl. Mater. Interfaces. 2021, 13, 17736–17744. DOI: 10.1021/acsami.1c03638.
  • Wang, Y.; Lei, H.; Xiang, H.; Fu, Y.; Xu, C.; Jiang, Y.; Xu, B. B.; Yu, E. H.; Gao, C.; Liu, T. X. Porous Bilayer Electrode-Guided Gas Diffusion for Enhanced CO2 Electrochemical Reduction. Adv. Energy Sustain. Res. 2021, 2100083.
  • Wei, X.; Yin, Z.; Lyu, K.; Li, Z.; Gong, J.; Wang, G.; Xiao, L.; Lu, J.; Zhuang, L. Highly Selective Reduction of CO2 to C2+ Hydrocarbons at Copper/Polyaniline Interfaces. ACS Catal. 2020, 10, 4103–4111. DOI: 10.1021/acscatal.0c00049.
  • Wu, C.-R.; Huang, Y.-D.; Hong, Y.-H.; Liu, Y.-H.; Narwane, M.; Chang, Y.-H.; Dinh, T. K.; Hsieh, H.-T.; Hseuh, Y.-J.; Wu, P.-C.; et al. Endogenous Conjugation of Biomimetic Dinitrosyl Iron Complex with Protein Vehicles for Oral Delivery of Nitric Oxide to Brain and Activation of Hippocampal Neurogenesis. JACS Au 2021, 1, 998–1013. DOI: 10.1021/jacsau.1c00160.
  • Falaki, F. Sample Preparation Techniques for Gas Chromatography. 2019.
  • Kolb, B. Headspace Sampling with Capillary Columns. J. Chromatogr. A. 1999, 842, 163–205. DOI: 10.1016/S0021-9673(99)00073-4.
  • Armstrong, D.; Jayawardhana, D.; Woods, R.; Zhang, Y.; Wang, C. Rapid, Efficient Quantification of Water in Solvents and Solvents in Water Using an Ionic Liquid-Based GC Column. LC GC Europe 2011, 24, 1.
  • Liwu, L.; Liu, Y.; Cao, C.; Li, Z.; Xing, L.; Zhang, M.; Wang, X. Analysis of Chemical Composition of Gases from Rock Samples by Pulsed Discharge Chromatography Combined Mass Spectrometry. Geochem. Int. 2020, 58, 968. DOI: 10.1134/S0016702920080078.
  • Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles of Instrumental Analysis. Boston, MA: Cengage Learning, 2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.