745
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

Application of Identification and Evaluation Techniques for Edible Mushrooms: A Review

, , &
Pages 634-654 | Published online: 26 Aug 2021

References

  • Meenu, M.; Xu, B. J. Application of Vibrational Spectroscopy for Classification, Authentication and Quality Analysis of Mushroom: A Concise Review. Food Chem. 2019, 289, 545–557. DOI: 10.1016/j.foodchem.2019.03.091.
  • Chang, S. T.; Wasser, S. P. The Role of Culinary-Medicinal Mushrooms on Human Welfare with a Pyramid Model for Human Health. Int. J. Med. Mushrooms. 2012, 14, 95–134. DOI: 10.1615/IntJMedMushr.v14.i2.10.
  • Zhang, Y.; Venkitasamy, C.; Pan, Z. L.; Wang, W. Recent Developments on Umami Ingredients of Edible Mushrooms a Review. Trends Food Sci. Technol. 2013, 33, 78–92. DOI: 10.1016/j.tifs.2013.08.002.
  • Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/zh/#data. (accessed May 20, 2021)
  • Mo, X. M. Development Status of China's Edible Fungi Industry and Analysis of Industrial Upgrade Path. Edible Fungi China 2020, 39, 108–110. DOI: 10.13629/j.cnki.53-1054.2020.01.029.
  • Kuang, D. The Nutritional Value and Application Progress of Edible Fungi. Modern Food 2020, 15, 53–55. DOI: 10.16736/j.cnki.cn41-1434/ts.2020.15.016.
  • Yu, Q. N.; Guo, M. J.; Zhang, B.; Wu, H.; Zhang, Y.; Zhang, L. T. Analysis of Nutritional Composition in 23 Kinds of Edible Fungi. J. Food Qual. 2020, 2020, 2020, 1–9. DOI: 10.1155/2020/8821315.
  • Dong, H.; Li, X. B.; Zhang, Y. M.; E, H. C.; Zhou, C. Y.; Zhao, X. Y. Research Progress on Quality Evaluation of Edible Fungi. Acta. Agric. Shanghai 2020, 36, 146–150. DOI: 10.15955/j.issn1000-3924.2020.03.27.
  • Rathore, H.; Prasad, S.; Sharma, S. Mushroom Nutraceuticals for Improved Nutrition and Better Human Health: A Review. PharmaNutrition 2017, 5, 35–46. DOI: 10.1016/j.phanu.2017.02.001.
  • Heleno, S. A.; Ferreira, R. C.; Antonio, A. L.; Queiroz, M. R. P.; Barros, L.; Ferreira, I. C. F. R. Nutritional Value, Bioactive Compounds and Antioxidant Properties of Three Edible Mushrooms from Poland. Food Biosci. 2015, 11, 48–55. DOI: 10.1016/j.fbio.2015.04.006.
  • Barros, L.; Baptista, P.; Ferreira, I. C. F. R. Effect of Lactarius Piperatus Fruiting Body Maturity Stage on Antioxidant Activity Measured by Several Biochemical Assays. Food Chem. Toxicol. 2007, 45, 1731–1737. DOI: 10.1016/j.fct.2007.03.006.
  • Heleno, S. A.; Barros, L.; Sousa, M. J.; Martins, A.; Ferreira, I. C. F. R. Tocopherols Composition of Portuguese Wild Mushrooms with Antioxidant Capacity. Food Chem. 2010, 119, 1443–1450. DOI: 10.1016/j.foodchem.2009.09.025.
  • Zhang, J. F. Analysis of Nutritional Components and Health Care Function of Edible Fungi. Edible Fungi China 2020, 39, 185–187. DOI: 10.13629/j.cnki.53-1054.2020.07.053.
  • Mattila, P.; Könkö, K.; Eurola, M.; Pihlava, J.; Astola, J.; Vahteristo, L.; Hietaniemi, V.; Kumpulainen, J.; Valtonen, M.; Piironen, V. Contents of Vitamins, Mineral Elements, and Some Phenolic Compounds in Cultivated Mushrooms. J. Agric. Food Chem. 2001, 49, 2343–2348. DOI: 10.1021/jf001525d.
  • Wani, B. A.; Bodha, R. H.; Wani, A. H. Nutritional and Medicinal Importance of Mushrooms. J. Med. Plant. Res. 2010, 4, 2598–2604. DOI: 10.5897/JMPR09.565.
  • Yin, M.; Wang, J. L.; Huang, H. L.; Huang, Q. P.; Fu, Z. P.; Lu, Y. L. Analysis of Flavonoid Compounds by Terahertz Spectroscopy Combined with Chemometrics. ACS Omega. 2020, 5, 18134–18141. DOI: 10.1021/acsomega.0c01706.
  • Sun, Y. N.; Zhang, M.; Fang, Z. X. Efficient Physical Extraction of Active Constituents from Edible Fungi and Their Potential Bioactivities: A Review. Trends Food Sci. Technol. 2020, 105, 468–482. DOI: 10.1016/j.tifs.2019.02.026.
  • Firenzuoli, F.; Gori, L.; Lombardo, G. The Medicinal Mushroom Agaricus Blazei Murrill: Review of Literature and Pharmaco-Toxicological Problems. Evid Based Complementary Altern. Med. 2008, 5, 3–15. DOI: 10.1093/ecam/nem007.
  • Biljana, B. P. Protein Fraction in Edible Macedonian Mushrooms. Eur. Food Res. Technol. 2001, 212, 469–472. DOI: 10.1007/s002170000285.
  • Li, J. C.; Lu, H.; Zhang, X. R.; Zhu, X. R. Research Progress on Characteristics and Health Effects of Polysaccharides from Edible Fungi. Edible Fungi China 2005, 24, 7–11. DOI: 10.13629/j.cnki.53-1054.2005.06.003.
  • Zhu, Z. Y.; Zhang, J. Y.; Chen, L. J.; Liu, X. C.; Liu, Y.; Wang, W. X.; Zhang, Y. M. Comparative Evaluation of Polysaccharides Isolated from Astragalus, Oyster Mushroom, and Yacon as Inhibitors of α-Glucosidase. Chin. J. Nat. Med. 2014, 12, 290–293. DOI: 10.1016/S1875-5364(14)60056-X.
  • Wang, X. M.; Zhang, J.; Wu, L. H.; Zhao, Y. L.; Li, T.; Li, J. Q.; Wang, Y. Z.; Liu, H. G. A Mini-Review of Chemical Composition and Nutritional Value of Edible Wild-Grown Mushroom from China. Food Chem. 2014, 151, 279–285. DOI: 10.1016/j.foodchem.2013.11.062.
  • Cheung, P. C. K. The Nutritional and Health Benefits of Mushrooms. Food Nutr. Bull. 2010, 35, 292–299. DOI: 10.1111/j.1467-3010.2010.01859.x.
  • Zuo, Y. Y.; Ren, J. L.; Li, Z. H. Review of Inflammatury Activties of Sterol Substances in Edible Fungi. Food Machin. 2018, 34, 167–172.
  • Chen, L.; Guo, X. H.; Li, F. H.; Xia, C. Y.; Ming, J. Research Progress on the Function and Application of Dietary Fiber from Edible Fungi. Food Sci. 2012, 33, 303–307.
  • Mann, J. I.; Cummings, J. H. Possible Implications for Health of the Different Definitions of Dietary Fibre. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 226–229. DOI: 10.1016/j.numecd.2009.02.002.
  • Mohaček-Grošev, V.; Božac, R.; Puppels, G. J. Vibrational Spectroscopic Characterization of Wild Growing Mushrooms and Toadstools. Spectrochim. Acta. A 2001, 57, 2815–2829. DOI: 10.1016/S1386-1425(01)00584-4.
  • Barros, L.; Cruz, T.; Baptista, P.; Estevinho, L. M.; Ferreira, I. C. F. R. Wild and Commercial Mushrooms as Source of Nutrients and Nutraceuticals. Food Chem. Toxicol. 2008, 46, 2742–2747. DOI: 10.1016/j.fct.2008.04.030.
  • Aida, F. M. N. A.; Shuhaimi, M.; Yazid, M.; Maaruf, A. G. Mushroom as a Potential Source of Prebiotics: A Review. Trends Food. Sci. Technol 2009, 20, 567–575. [Database] DOI: 10.1016/j.tifs.2009.07.007.
  • Sullivan, R.; Smith, J. E.; Rowan, N. J. Medicinal Mushrooms and Cancer Therapy: Translating a Traditional Practice into Western Medicine. Perspect. Biol. Med. 2006, 49, 159–170. DOI: 10.1353/pbm.2006.0034.
  • Yao, S.; Li, T.; Liu, H. G.; Li, J. Q.; Wang, Y. Z. Identification of Geographical Origin of Boletus Tomentipes by Multi-Spectral Data Fusion. Food Sci. 2018, 39, 212–217. DOI: 10.7506/spkx1002-6630-201808033.
  • Li, S. H.; Zhao, Y. C.; Yu, F. Q.; Wang, X. H.; Zhang, X. L.; Liu, P. G. Systematics of the Easily Confusing Poisonous Boletes from Yunnan Wild Mushroom Markets. Edible Fungi China 2011, 30, 34–36. DOI: 10.3969/j.issn.1003-8310.2011.05.013.
  • Zhang, Y.; Li, J. Q.; Li, T.; Liu, H. G.; Wang, Y. Z. Research on Identification of Boletus Tomentipes with Different Storage Period by UV and FT-IR Combined with Data Fusion. Modern Food Sci. Technol. 2018, 34, 218–225. DOI: 10.13982/j.mfst.1673-9078.2018.2.034.
  • Rasalanavho, M.; Moodley, R.; Jonnalagadda, S. B. Elemental Bioaccumulation and Nutritional Value of Five Species of Wild Growing Mushrooms from South Africa. Food Chem. 2020, 319, 126596. DOI: 10.1016/j.foodchem.2020.126596.
  • Zhu, F. K.; Qu, L.; Fan, W. X.; Qiao, M. Y.; Hao, H. L.; Wang, X. J. Assessment of Heavy Metals in Some Wild Edible Mushrooms Collected from Yunnan Province, China. Environ. Monit. Assess. 2011, 179, 191–199. DOI: 10.1007/s10661-010-1728-5.
  • Širić, I.; Falandysz, J. Contamination, Bioconcentration and Distribution of Mercury in Tricholoma Spp. Mushrooms from Southern and Northern Regions of Europe. Chemosphere 2020, 251, 126614. DOI: 10.1016/j.chemosphere.2020.126614.
  • Mleczek, M.; Siwulski, M.; Mikołajczak, P.; Goliński, P.; Gąsecka, M.; Sobieralski, K.; Dawidowicz, L.; Szymańczyk, M. Bioaccumulation of Elements in Three Selected Mushroom Species from Southwest Poland. J. Environ. Sci. Health. B. 2015, 50, 207–216. DOI: 10.1080/03601234.2015.982427.
  • Kalac, P. A Review of Chemical Composition and Nutritional Value of Wild-Growing and Cultivated Mushrooms. J. Sci. Food Agric. 2013, 93, 209–218. DOI: 10.1002/jsfa.5960.
  • Saniewski, M.; Zalewska, T.; Krasińska, G.; Szylke, N.; Wang, Y. Z.; Falandysz, J. 90Sr in King Bolete Boletus Edulis and Certain Other Mushrooms Consumed in Europe and China. Sci. Total. Environ. 2016, 543, 287–294. DOI: 10.1016/j.scitotenv.2015.11.042.
  • Pankavec, S.; Hanć, A.; Barałkiewicz, D. B.; Dryżałowska, A.; Zhang, J.; Falandysz, J. Mineral Constituents of Conserved White Button Mushrooms: Similarities and Differences. Rocz. Panstw. Zakl. Hig. 2019, 70, 15–25. DOI: 10.32394/rpzh.2019.0051.
  • Pan, J. L.; Plant, J. A.; Voulvoulis, N.; Oates, C. J.; Ihlenfeld, C. Cadmium Levels in Europe: Implications for Human Health. Environ. Geochem. Health. 2010, 32, 1–12. DOI: 10.1007/s10653-009-9273-2.
  • Wei, H. L.; Li, H. B.; Wang, L. L.; Ding, H. M.; Hu, C. J.; Zeng, F. Q.; Cheng, J. W. Molecular Recognition of Species in Boletus Sect. Appendiculati. Mycosystema 2014, 33, 242–253. DOI: 10.13346/j.mycosystema.130069.
  • Li, H. B.; Wei, H. L.; Peng, H. Z.; Ding, H. M.; Wang, L. L.; He, L.; L. Z. Boletus, F. Roseoflavus, a New Species of Boletus in Section Appendiculati from China. Mycol. Progress 2014, 13, 21–31. DOI: 10.1007/s11557-013-0888-4.
  • Xiong, F. Analysis of Molecular Marker in Germplasm Resource of Genus Pleurotus. Dissertation, Fujian Agricultural and Forestry University, Fujian, China, 2008.
  • Chen, Q. L.; Yi, T.; Tang, Y. A.; Wong, L. L.; Huang, X. X.; Zhao, Z. Z.; Chen, H. B. Comparative Authentication of Three “Snow Lotus” Herbs by Macroscopic and Microscopic features. Microsc. Res. Tech. 2014, 77, 631–641. DOI: 10.1002/jemt.22381.
  • Tian, H. M.; Wang, X. Y.; Yin, Y.; Lv, X. N.; Li, X. D. Morphology and rDNA-ITS Sequencing Analysis of Four Tricholomataceae. Hubei Agric. Sci. 2019, 58, 137–142. DOI: 10.14088/j.cnki.issn0439-8114.2019.02.030.
  • Li, Y. J.; Zhang, P.; Zhang, X. H.; Zhang, Y. Y.; Song, J. Q.; Lu, D. W. A Review for Molecular Biology of Edible Fungi. J. Anhui Agric. Sci. 2019, 47, 4–6. DOI: 10.3969/j.issn.0517-6611.2019.14.002.
  • Zhang, Y. Z.; Li, H. Y.; Zhang, K. P.; Sun, C. Y.; Zhang, H. S.; Lu, J. J.; He, C.; Li, H. J. A Method of Real-Time Fluorescent Quantitative PCR for Detection of Russula Subnigricans Based on Taqman-MGB Probe. Mycosystema 2020, 39, 937–943. DOI: 10.13346/j.mycosystema.190342.
  • Smith, B. J.; Sivasithamparam, K. Internal Transcribed Spacer Ribosomal DNA Sequence of Five Species of Ganoderma from Australia. Mycol. Res. 2000, 104, 943–951. DOI: 10.1017/S0953756200002458.
  • Zhang, R. Y.; Hu, D. D.; Gu, J. G.; Hu, Q. X.; Zuo, X. M.; Wang, H. X. Development of SSR Markers for Typing Cultivars in the Mushroom Auricularia Auricula-Judae. Mycol. Progress 2012, 11, 587–592. DOI: 10.1007/s11557-011-0798-2.
  • Thiel, T.; Michalek, W.; Varshney, R. K.; Graner, A. Exploiting Est Databases for the Development and Characterization of Gene-Derived SSR-Markers in Barley (Hordeum Vulgare L.). Theor. Appl. Genet. 2003, 106, 411–422. DOI: 10.1007/s00122-002-1031-0.
  • Yin, Y. G.; Liu, Y.; Li, H. M.; Zhao, S.; Wang, S. X.; Liu, Y.; Wu, D.; Xu, F. Genetic Diversity of Pleurotus Pulmonarius Revealed by RAPD, ISSR, and SRAP Fingerprinting. Curr. Microbiol. 2014, 68, 397–403. DOI: 10.1007/s00284-013-0489-0.
  • Yang, H. C.; Tan, Y. L.; Su, W. Y.; Qin, Y. Y.; Ma, T.; Fu, H. C.; Zhou, Z. L. Genetic Diversity Analysis of White Flammulina Velutipes Strains Based on RAPD. Acta. Agric. Jiangxi 2019, 31, 62–65. DOI: 10.19386/j.cnki.jxnyxb.2019.02.12.
  • Chen, Z. H.; Zhang, Z. G.; Zhang, T. X. Study on Relationship among Species of Amanita Using RAPD. Mycosystema 2000, 19, 51–55. DOI: 10.13346/j.mycosystem.a.2000.01.011.
  • Wu, X. Q.; Li, H. B.; Wei, H. L.; Fu, L. Z.; Wu, Q. Q.; Peng, H. Z.; Zhu, M. Y. Application of SCAR Molecular Marker Technology in Identification of Lentinula Edodes. Mycosystema 2005, 24, 259–266.
  • Xu, M. Y.; Tang, C. H.; Zhang, J. S.; Tang, Q. J.; Yang, Y.; Jia, W.; Pan, Y. J. Development of SCAR Markers Based on SRAP and ISSR for Rapid Identification of Ganoderma Strains. Mycosystema 2008, 27, 707–717.
  • Xiong, F.; Zheng, M. J.; Liu, X. R.; Xie, B. G. Establishment and Preliminary Application of Scar Marker in Germplasm Resource of Pleurotus Abalones. Chin. Agric. Sci. Bull. 2010, 26, 330–335.
  • Lin, H. J.; Jiang, X.; Wang, X. G.; Wang, W. F. The Technology of DNA Barcode and Its Application in the Study of Fungi. Plant Quara 2013, 27, 11–18. DOI: 10.19662/j.cnki.issn1005-2755.2013.02.002.
  • Xu, L. N.; Tu, M.; Wang, X. F. DNA Barcoding and Its Application in Studying Fungi. Hubei Agric. Sci. 2014, 53, 4790–4795. DOI: 10.14088/j.cnki.issn0439-8114.2014.20.005.
  • Hebert, P. D.; Cywinska, A.; Ball, S. L.; DeWaard, J. R. Biological Identifications through DNA Barcodes. Proc. Biol. Sci. 2003, 270, 313–321. DOI: 10.1098/rspb.2002.2218.
  • Liu, S. Y.; Zhang, A.; Li, Y. Advances in Research on the Fungal DNA Barcoding Technology. J. Huazhong Agric. Univ. 2012, 31, 121–126.
  • Le, T. H.; Linh, N. N.; Minh, B. M.; Hanh, H. H.; Hue, H. T. T.; Hai, N. V.; Van. Ha, H.; L. T. T. Application Of, H. DNA Barcodes in Identification of Ginseng Samples in the Genus Panax L. Vietnam J. Biotechnol. 2017, 15, 63–72. DOI: 10.15625/1811-4989/15/1/12321.
  • Gilmore, S. R.; Gräfenhan, T.; Louis-Seize, G.; Seifert, K. A. Multiple Copies of Cytochrome Oxidase 1 in Species of the Fungal Genus Fusarium. Mol. Ecol. Resour. 2009, 9 Suppl s1, 90–98. DOI: 10.1111/j.1755-0998.2009.02636.x.
  • Cai, J.; Tang, L. P.; Yang, Z. L. DNA Barcoding of Economically Important Mushrooms: A Case Study on Lethal Amanitas from China. Plant Divers. Resour. 2012, 34, 614–622. DOI: 10.3724/SP.J.1143.2012.12140.
  • Raja, H. A.; Baker, T. R.; Little, J. G.; Oberlies, N. H. DNA Barcoding for Identification of Consumer-Relevant Mushrooms: A Partial Solution for Product Certification? Food Chem. 2017, 214, 383–392. DOI: 10.1016/j.foodchem.2016.07.052.
  • Liao, B. S.; Chen, X. C.; Han, J. P.; Dan, Y.; Wang, L. L.; Jiao, W. J.; Song, J. Y.; Chen, S. L. Identification of Commercial Ganoderma (Lingzhi) Species by ITS2 Sequences. Chin. Med. 2015, 10, 22. DOI: 10.1186/s13020-015-0056-7.
  • Von Cräutlein, M.; Korpelainen, H.; Pietiläinen, M.; Rikkinen, J. DNA Barcoding: A Tool for Improved Taxon Identification and Detection of Species Diversity. Biodivers. Conserv. 2011, 20, 373–389. DOI: 10.1007/s10531-010-9964-0.
  • Zhang, J.; Zhang, X. S.; Dediu, L.; Victor, C. Review of the Current Application of Fingerprinting Allowing Detection of Food Adulteration and Fraud in China. Food Control 2011, 22, 1126–1135. DOI: 10.1016/j.foodcont.2011.01.019.
  • Yi, T.; Chen, H.-B.; Zhao, Z.-Z.; Jiang, Z.-H.; Cai, S.-Q.; Wang, T.-M. Determination of the Major Constituents in the Traditional Uighur Medicinal Plant Saussurea Involucrata by LC-DAD-MS. Chroma. 2009, 69, 537–542. [Database] DOI: 10.1365/s10337-008-0923-9.
  • Yi, T.; Zhu, L.; Peng, W. L.; He, X. C.; Chen, H. L.; Li, J.; Yu, T.; Liang, Z. T.; Zhao, Z. Z.; Chen, H. B. Comparison of Ten Major Constituents in Seven Types of Processed Tea Using HPLC-DAD-MS Followed by Principal Component and Hierarchical Cluster Analysis. LWT-Food Sci. Technol. 2015, 62, 194–201. DOI: 10.1016/j.lwt.2015.01.003.
  • Xiong, S. B.; He, J.; Zhang, K.; Wang, J. L.; He, L. T.; Lan, H. Determination of Arsenic Species in Dried Edible Fungi by HPLC-ICP-MS Combined with Microwave Acid Extraction Analysis. Sci. Technol. Food Ind. 2020, 42, 236–241. DOI: 10.13386/j.issn1002-0306.2020060175.
  • Li, M. Y.; Wang, P.; Wang, J. Y.; Chen, X. Q.; Zhao, D.; Yin, D. X.; Luo, J.; Juhasz, A. L.; Li, H. B.; Ma, L. Q. Arsenic Concentrations, Speciation, and Localization in 141 Cultivated Market Mushrooms: Implications for Arsenic Exposure to Humans. Environ. Sci. Technol. 2019, 53, 503–511. DOI: 10.1021/acs.est.8b05206.
  • Huang, B. F.; Pan, X. D.; Zhang, J. S.; Xu, J. I.; Cai, Z. X. Determination of Vitamins D2 and D3 in Edible Fungus by Reversed-Phase Two-Dimensional Liquid Chromatography. J. Food Qual. 2020, 2020, 1–6. DOI: 10.1155/2020/8869279.
  • Qian, Z. M.; Wu, Z.; Li, C. H.; Tan, G. Y.; Hu, H. K.; Li, W. J. A Green Liquid Chromatography Method for Rapid Determination of Ergosterol in Edible Fungi Based on Matrix Solid-Phase Dispersion Extraction and a Core-Shell Column. Anal Methods 2020, 12, 3337–3343. DOI: 10.1039/D0AY00714E.
  • Liang, Y.; Zhao, Z. G.; Zhang, M. M.; Liu, Q.; Geng, Y. L.; Wang, X.; Zhao, H. Q. Analysis of Monosaccharide Compositions of Ganoderma lucidum Polysaccharide by Ultrasonic Assisted Acid Hydrolysis-Ultra Performance Liquid Chromatography-Charged Aerosol Detection Method. Sci. Technol. Food Ind. 2020, 41, 216–222. DOI: 10.13386/j.issn1002-0306.2020020060.
  • Malheiro, R.; Guedes, D. P. P.; Soares, S.; César, D. S. F. A.; Baptista, P. Volatile Biomarkers for Wild Mushrooms Species Discrimination. Food Res. Int. 2013, 54, 186–194. DOI: 10.1016/j.foodres.2013.06.010.
  • Cui, X. L. Determination of Pesticide Residues in Crops by Ultra Performance Liquid Chromatography. Agric. Technol. 2019, 39, 29–30. DOI: 10.19754/j.nyyjs.20191115010.
  • Shen, X. Determination of 19 Insecticides, Fungicides and Their Metabolites in Edible Fungi by Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry with Dispersed Solid Phase Extraction. J. Instrum. Anal. 2020, 39, 1105–1111. DOI: 10.3969/j.issn.4-4957.2020.09.007.
  • Tian, F. J.; Qiao, C. K.; Wang, C. X.; Luo, J.; Guo, L. L.; Pang, T.; Li, J.; Wang, R. P.; Pang, R. L.; Xie, H. Z. Simultaneous Determination of Spirodiclofen, Spiromesifen, and Spirotetramat and Their Relevant Metabolites in Edible Fungi Using Ultra-Performance Liquid Chromatography/Tandem Mass Spectrometry. Sci. Rep. 2021, 11, 1547. DOI: 10.1038/s41598-021-81013-0.
  • Gałgowska, M.; Pietrzak-Fiećko, R. Pesticide Contaminants in Selected Species of Edible Wild Mushrooms from the North-Eastern Part of Poland. J. Environ. Sci. Health. B. 2017, 52, 214–217. DOI: 10.1080/03601234.2017.1261553.
  • Ni, Z. L.; Tang, F. B.; Qu, M. H.; Mo, R. H. Determination of Trivalent Chromium and Hexavalent Chromium in Dried Edible Fungi by Microwave Ashing-Liquid Chromatography with Inductively Coupled Plasma Mass Spectrometry. Chin. J. Chromatogr. 2014, 32, 174–178. J.1123.2013.09047. DOI: 10.3724/SP.
  • Lin, T.; Wei, M.; Yu, J.; Li, M.; Zou, Y.; Sha, L.; Liu, H. Determination of Nicotine in Wild Edible Fungi by QuEChERS-Ultra Performance Liquid Chromatography-Triple Quadrupole Mass Spectrometry. Se Pu 2019, 37, 512–517. DOI: 10.3724/SP.J.1123.2018.11005.
  • Liu, H. Y.; Bai, B.; Xing, Z. T.; Zhao, X. Y.; Rao, Q. Q.; Dong, M. F.; Shao, Y. Extraction and Analysis of Monosaccharides and Trehalose in Edible Fungi by High Performance Anion-Exchange Chromatography-Pulsed Amperometric Detection. Nat. Prod. Res. Dev. 2013, 25, 1562–1567.
  • Yang, Y.; Gu, Z.; Liu, Y. F.; Zhou, S.; Zhang, J. S. Determination of Seven Organic Acids in Edible Fungi by Reversed-Phase High Performance Liquid Chromatography. Mycosystema 2013, 32, 1064–1070. DOI: 10.13346/j.mycosystema.2013.06.008.
  • Yin, Z. M.; Fan, X. Z.; Shi, D. F.; Fan, Z.; Cheng, W.; Gao, H. Flavor Compounds Analysis of 5 Fresh Mushrooms Using HS-SPME-GC-MS and HPLC. Sci. Technol. Food Ind. 2019, 40, 254–260. DOI: 10.13386/j.issn1002-0306.2019.03.040.
  • Li, M.; Yu, H.; Zheng, X. R. Simultaneous Analysis of Iodate, Iodide, Bromate and Bromide by Ion Chromatography with Ultraviolet Detection. Se Pu 2014, 32, 299–303. DOI: 10.3724/SP.J.1123.2013.11002.
  • Zhou, C. Y.; He, J.; Tang, X. Q.; Cheng, L.; Zhao, J.; Gan, Y. Determination of 6 Arsenic Species in Wild Edible Mushrooms by Inductively Coupled Plasma Mass Spectrometry. Chin. J. Health. Laboratory Technol. 2017, 27, 1980.
  • Heitkemper, D. T.; Vela, N. P.; Stewart, K. R.; Westphal, C. S. Determination of Total and Speciated Arsenicin Rice by Ion Chromatography and Inductively Coupled Plasma Mass Spectrometry. J. Anal. At. Spectrom. 2001, 16, 299–306. DOI: 10.1039/b007241i.
  • Yi, T.; Fang, J.-Y.; Zhu, L.; Tang, Y.-N.; Ji, H.; Zhang, Y.-Z.; Yu, J.-C.; Zhang, X.-J.; Yu, Z.-L.; Zhao, Z.-Z.; Chen, H.-B. The Variation in the Major Constituents of the Dried Rhizome of Ligusticum Chuanxiong (Chuanxiong) after Herbal Processing. Chin. Med. 2016, 11, 26–28. DOI: 10.1186/s13020-016-0098-5.
  • Villares, A.; García-Lafuente, A.; Guillamón, E.; Ramos, Á. Identification and Quantification of Ergosterol and Phenolic Compounds Occurring in Tuber Spp. truffles. J. Food Compos. Anal. 2012, 26, 177–182. DOI: 10.1016/j.jfca.2011.12.003.
  • Chen, Y.; Yan, Y.; Xie, M. Y.; Nie, S. P.; Liu, W.; Gong, X. F.; Wang, Y. X. Development of a Chromatographic Fingerprint for the Chloroform Extracts of Ganoderma lucidum by HPLC and LC-MS. J. Pharm. Biomed. Anal. 2008, 47, 469–477. DOI: 10.1016/j.jpba.2008.01.039.
  • Yu, C. X.; Wang, Y.; Cao, H.; Zhao, Y.; Li, Z. P.; Wang, H.; Chen, M. J.; Tang, Q. J. Simultaneous Determination of 13 Organic Acids in Liquid Culture Media of Edible Fungi Using High-Performance Liquid Chromatography. Biomed. Res. Int. 2020, 2020, 2817979. DOI: 10.1155/2020/2817979.
  • Zhang, H. Y.; Pu, D. D.; Sun, B. G.; Ren, F. Z.; Zhang, Y. Y.; Chen, H. T. Characterization and Comparison of Key Aroma Compounds in Raw and Dry Porcini Mushroom (Boletus Edulis) by Aroma Extract Dilution Analysis, Quantitation and Aroma Recombination Experiments. Food Chem. 2018, 258, 260–268. DOI: 10.1016/j.foodchem.2018.03.056.
  • Chang, Q. Y.; Fan, C. L.; Chen, H.; Kang, J.; Wang, M. L.; Pang, G. F. Determination of 187 Pesticide Residues in Edible Fungi by Liquid Chromatography-Tandem Mass Spectrometry. Anal. Methods 2014, 6, 4288. DOI: 10.1039/c3ay42213e.
  • Lei, X. Y.; Fu, C. P.; Zhong, L. L.; Li, X.; Zhao, S. Study on Determination Method of Fluorescent Whitening Agents in Edible Fungi by HPLC. Tianjin Agric. Sci. 2018, 24, 5–9. DOI: 10.3969/j.issn.1006-6500.2018.07.002.
  • Huang, W.; Zhu, L. L.; Sun, W. F.; Liu, X. P. HPLC Determination of 10 Fluorescent Whitenings in Mushrooms. Phys. Test. Chem. Anal. Part B: Chem. Anal. 2015, 51, 1576–1579. DOI: 10.11973/lhjy-hx201511020.
  • Yao, S.; Zhang, J.; Liu, H. G.; Li, J. Q.; Wang, Y. Z. A Review of the Application of Infrared Spectroscopy in Chemical Analysis and Quality Control of Edible Mushrooms. Food Sci. 2018, 39, 305–312. DOI: 10.7506/spkx1002-6630-201801046.
  • Cruz-Tirado, J. P.; Fernández Pierna, J. A.; Rogez, H.; Barbin, D. F.; Baeten, V. Authentication of Cocoa (Theobroma Cacao) Bean Hybrids by NIR-Hyperspectral Imaging and Chemometrics. Food Control 2020, 118, 107445. DOI: 10.1016/j.foodcont.2020.107445.
  • Zhao, C.; Qiao, X. L.; Shao, Q. J.; Hassan, M.; Ma, Z. Q. Evolution of the Lignin Chemical Structure during the Bioethanol Production Process and Its Inhibition to Enzymatic Hydrolysis. Energy Fuels 2020, 34, 5938–5947. DOI: 10.1021/acs.energyfuels.0c00293.
  • Zhang, M.; Zhao, C.; Shao, Q. J.; Yang, Z. D.; Zhang, X. F.; Xu, X. F.; Hassan, M. Determination of Water Content in Corn Stover Silage Using near-Infrared Spectroscopy. Int. J. Agric. Biol. Eng. 2019, 12, 143–148. DOI: 10.25165/j.ijabe.20191205.4914.
  • Ma, H. L.; Wang, J. W.; Chen, Y. J.; Cheng, J. L.; Lai, Z. T. Rapid Authentication of Starch Adulterations in Ultrafine Granular Powder of Shanyao by near-Infrared Spectroscopy Coupled with Chemometric Methods. Food Chem. 2017, 215, 108–115. DOI: 10.1016/j.foodchem.2016.07.156.
  • Ma, D. X.; Cai, Y.; Ai, P.; Li, X.; Li, B. Analysis and Identification of Six Species of Porcini by Two-Dimensional Correlation Infrared Spectroscopy. Sci. Technol. Innov. 2020, 25, 59–61.
  • Shi, Y. M.; Liu, G.; Sun, Y. L.; Wei, S. X.; Yan, C. Q.; He, X. J. Identification of Tricholoma Matsutake (S.Ito et Imai) Sing and Agaricus Blazei Murrill Using Fourier Transform Infrared Spectroscopy and Hierarchical Cluster Analysis. J. Light Scattering 2010, 22, 171–174.
  • Yang, T. W.; Zhang, J.; Shi, Y. D.; Li, T.; Wang, Y. Z.; Liu, H. G. Infrared Spectroscopy Combined with Multivariate Statistical Analysis to Quickly Identify Different Species of Bolete Mushrooms. Food Sci. 2015, 36, 116–121. DOI: 10.7506/spkx1002-6630-201524020.
  • Hu, Y. R.; Li, J. Q.; Liu, H. G.; Fan, M. P.; Wang, Y. Z. Identify Different Species in Yunnan Wild Edible Bolete by Infrared Spectrum Based on Support Vector Machine. Food Sci. 2021, 42, 1–11. DOI: 10.7506/spkx1002-6630-20191016-151.
  • Zervakis, G. I.; Bekiaris, G.; Tarantilis, P. A.; Pappas, C. S. Rapid Strain Classification and Taxa Delimitation within the Edible Mushroom Genus Pleurotus through the Use of Diffuse Reflectance Infrared Fourier Transform (DRIFT) Spectroscopy. Fungal Biol. 2012, 116, 715–728. DOI: 10.1016/j.funbio.2012.04.006.
  • Zhang, Y.; Li, J. Q.; Li, T.; Liu, H. G.; Wang, Y. Z. Discrimination of Geographical Origins of Boletus Edulis Using Data Fusion Combined Mineral Elements with FTIR Spectrum of Different Parts. Spectrosc. Spect. Anal. 2018, 38, 3070–3076. DOI: 10.3964/j.issn.1000-0593(2018)10-3070-07.
  • Qi, L. M.; Zhang, J.; Liu, H. G.; Li, T.; Wang, Y. Z. Fourier Transform Mid-Infrared Spectroscopy and Chemometrics to Identify and Discriminate Boletus Edulis and Boletus Tomentipes Mushrooms. Int. J. Food Prop. 2017, 20, 56–68. DOI: 10.1080/10942912.2017.1289387.
  • Chen, F. X.; Yang, T. W.; Li, J. Q.; Liu, H. G.; Fan, M. P.; Wang, Y. Z. Study on Enrichment Ability of Mineral Elements and Identification of Producing Area of Boletus Edulis. Food Sci. 2021, 42, 1–10. DOI: 10.7506/spkx1002-6630-20191104-039.
  • Liu, L.; Zuo, Z. T.; Wang, Y. Z.; Xu, F. R. A Fast Multi-Source Information Fusion Strategy Based on FTIR Spectroscopy for Geographical Authentication of Wild Gentiana Rigescens. Microchem. J. 2020, 159, 105360. DOI: 10.1016/j.microc.2020.105360.
  • Yang, T. W.; Li, T.; Li, J. Q.; Zhang, X.; Wang, Y. Z.; Liu, H. G. Discrimination of Geographical Origins of Boletus Edulis Using Data Fusion Combined Mineral Elements with FTIR Spectrum of Different Parts. Spectrosc. Spect. Anal. 2016, 36, 2117–2123. DOI: 10.3964/j,issn,1000-0593(2018)10-3070-07.
  • Nnorom, I. C.; Jarzyńska, G.; Falandysz, J.; Drewnowska, M.; Okoye, I.; Oji-Nnorom, C. G. Occurrence and Accumulation of Mercury in Two Species of Wild Grown Pleurotus Mushrooms from Southeastern Nigeria. Ecotoxicol. Environ. Saf. 2012, 84, 78–83. DOI: 10.1016/j.ecoenv.2012.06.024.
  • Nnorom, I. C.; Jarzyńska, G.; Drewnowska, M.; Dryżałowska, A.; Kojta, A.; Pankavec, S.; Falandysz, J. Major and Trace Elements in Sclerotium of Pleurotus Tuber-Regium (Ósū) Mushroom—Dietary Intake and Risk in Southeastern Nigeria. J. Food Compos. Anal. 2013, 29, 73–81. DOI: 10.1016/j.jfca.2012.10.001.
  • Mazurkiewicz, N.; Podlasińska, J. Bioaccumulation of Trace Elements in Wild-Growing Edible Mushrooms from Lubuskie Voivodeship, Poland. Chem. Ecol 2014, 30, 110–117. DOI: 10.1080/02757540.2013.841899.
  • Li, J. Q.; Yang, T. W.; Wang, Y. Z.; Li, T.; Liu, H. G. Determination and Characteristic Analysis of Mineral Elements in Leccinum Rugosiceps from Different Geographic Origins. Food Sci. 2014, 35, 119–122. DOI: 10.7506/spkx1002-6630-201424023.
  • Podlasińska, J.; Mazurkiewicz, N.; Szymańska, A. Content of Pb, Hg, Zn, Mn, Cu, and Fe in Macrofungi Collected from Wkrzanska Forest in Northwestern Poland. Pol. J. Environ. Stud. 2015, 24, 651–656. DOI: 10.15244/pjoes/26959.
  • Su, J. Y.; Zhang, J.; Li, J. Q.; Li, T.; Liu, H. G.; Wang, Y. Z. Determination of Mineral Contents of Wild Boletus Edulis Mushroom and Its Edible Safety Sssessment. J. Environ. Sci. Health B 2018, 53, 454–463. DOI: 10.1080/03601234.2018.1455361.
  • Zhang, J.; Barałkiewicz, D.; Hanć, A.; Falandysz, J.; Wang, Y. Z. Contents and Health Risk Assessment of Elements in Three Edible Ectomycorrhizal Fungi (Boletaceae) from Polymetallic Soils in Yunnan Province, SW China. Biol. Trace Elem. Res. 2020, 195, 250–259. DOI: 10.1007/s12011-019-01843-y.
  • Wang, Y.; Li, J.; Liu, H. G.; Fan, M. P.; Wang, Y. Z. Species and Geographical Origins Discrimination of Porcini Mushrooms Based on FT-IR Spectroscopy and Mineral Elements Combined with Sparse Partial Least Square-Discriminant Analysis. J. Food Sci. 2019, 84, 2112–2120. DOI: 10.1111/1750-3841.14715.
  • Lin, H. L.; Zhu, R. L.; Yu, L.; Cheng, Y. X.; Zhu, R. R.; Liu, P.; Ren, Z. H. Determination of Arsenic, Mercury, Selenium, Antimony and Bismuth in Soil and Sediments by Water Bath Digestion-Atomic Fluorescence Spectrometry. Spectrosc. Spect. Anal. 2020, 40, 1528. DOI: 10.3964/j.issn.1000-0593(2020)02-1528-06.
  • Zhang, H. X.; Yao, J. J.; Wang, M. R.; Yi, T.; Peng, X. T. Application of Microwave Digestion-Ultrasonic-Assisted-Atomic Fluorescence Spectrometry for Rapid Determination of Mercury in Edible Mushrooms. Hubei Agric. Sci. 2016, 55, 6572–6574. DOI: 10.14088/j.cnki.issn0439-8114.2016.24.062.
  • Gonzaga, M. L. C.; Menezes, T. M. F.; de Souza, J. R. R.; Ricardo, N. M. P. S.; Soares, S. D. A. Structural Characterization of β Lucans Isolated from Agaricus Blazei Murill Using NMR and FTIR Spectroscopy. Bioact. Carbohydr. Diet. Fibre. 2013, 2, 152–156. DOI: 10.1016/j.bcdf.2013.10.005.
  • Zhang, J. S.; Zhong, X.; Li, S. S.; Zhang, G.; Liu, X. Metabolic Characterization of Natural and Cultured Ophicordyceps Sinensis from Different Origins by 1H NMR Spectroscopy. J. Pharm. Biomed. Anal. 2015, 115, 395–401. DOI: 10.1016/j.jpba.2015.07.035.
  • Li, X. P.; Li, J. Q.; Li, T.; Liu, H. G.; Wang, Y. Z. Species Discrimination and Total Polyphenol Prediction of Porcini Mushrooms by Fourier Transform Mid-Infrared (FT-MIR) Spectrometry Combined with Multivariate Statistical Analysis. Food Sci. Nutr. 2020, 8, 754–766. DOI: 10.1002/fsn3.1313.
  • Chen, Y.; Xie, M. Y.; Zhang, H.; Wang, Y. X.; Nie, S. P.; Li, C. Quantification of Total Polysaccharides and Triterpenoids in Ganoderma lucidum and Ganoderma Atrum by near Infrared Spectroscopy and Chemometrics. Food Chem. 2012, 135, 268–275. DOI: 10.1016/j.foodchem.2012.04.089.
  • Zhang, T. L.; Wu, S.; Tang, H. S.; Wang, K.; Duan, Y. X.; Li, H. Progress of Chemometrics in Laser-Induced Breakdown Spectroscopic Analysis. Chin. J. Anal. Chem. 2015, 43, 939–948. DOI: 10.11895/j.issn.0253-3820.141136.
  • Rodriguez-Saona, L. E.; Allendorf, M. E. Use of FTIR for Rapid Authentication and Detection of Adulteration of Food. Annu. Rev. Food Sci. Technol. 2011, 2, 467–483. DOI: 10.1146/annurev-food-022510-133750.
  • Xu, L.; Fu, X. S.; Cai, C. B.; She, Y. B. The Feasibility of Using near Infrared Spectroscopy for Rapid Discrimination of Aged Shiitake Mushroom (Lentinula edodes) after Long-Term Storage. J. Chem. 2015, 2015, 1–7. DOI: 10.1155/2015/692983.
  • Esquerre, C.; Gowen, A. A.; O Donnell, C. P.; Downey, G. Initial Studies on the Quantitation of Bruise Damage and Freshness in Mushrooms Using Visible-Near-Infrared Spectroscopy. J. Agric. Food Chem. 2009, 57, 1903–1907. DOI: 10.1021/jf803090c.
  • O'Gorman, A.; Downey, G.; Gowen, A. A.; Barry-Ryan, C.; Frias, J. M. Use of Fourier Transform Infrared Spectroscopy and Chemometric Data Analysis to Evaluate Damage and Age in Mushrooms (Agaricus Bisporus) Grown in Ireland. J. Agric. Food Chem. 2010, 58, 7770–7776. DOI: 10.1021/jf101123a.
  • Fu, H. Y.; Yin, Q. B.; Xu, L.; Wang, W. Z.; Chen, F.; Yang, T. M. A Comprehensive Quality Evaluation Method by FT-NIR Spectroscopy and Chemometric: Fine Classification and Untargeted Authentication against Multiple Frauds for Chinese Ganoderma lucidum. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 182, 17–25. DOI: 10.1016/j.saa.2017.03.074.
  • Zhu, Y.; Tan, T. L. Penalized Discriminant Analysis for the Detection of Wild-Grown and Cultivated Ganoderma lucidum Using Fourier Transform Infrared Spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 159, 68–77. DOI: 10.1016/j.saa.2016.01.018.
  • Chen, Y.; Zhu, S. B.; Xie, M. Y.; Nie, S. P.; Liu, W.; Li, C.; Gong, X. F.; Wang, Y. X. Quality Control and Original Discrimination of Ganoderma lucidum Based on High-Performance Liquid Chromatographic Fingerprints and Combined Chemometrics Methods. Anal. Chim. Acta. 2008, 623, 146–156. DOI: 10.1016/j.aca.2008.06.018.
  • García, S.; Luengo, J.; Herrera, J. F. Tutorial on Practical Tips of the Most Influential Data Preprocessing Algorithms in Data Mining. Knowl. Based Syst. 2016, 98, 1–29. DOI: 10.1016/j.knosys.2015.12.006.
  • Gao, R. Q.; Fan, S. F.; Yan, Y. L.; Zhao, L. L. Preprocessing of near Infrared Spectroscopic Data. Spectrosc. Spect. Anal. 2004, 24, 1563–1565.
  • Di, W. P. Y.; Bian, X. H.; Wang, Z. F.; Liu, W. Study on the Selection of Spectral Preprocessing Methods. Spectrosc. Spect. Anal. 2019, 39, 2800–2806. DOI: 10.3964/j.issn.1000-0593(2019)09-2800-07.
  • Lin, H. The Data Preprocessing Technique in Multi-Sensor Data Fusion System. J. Nav. Univ. Eng. 2002, 14, 34–35.
  • Chen, Y.; Xie, M. Y.; Yan, Y.; Zhu, S. B.; Nie, S.; Li, C.; Wang, Y. X.; Gong, X. F. Discrimination of Ganoderma lucidum according to Geographical Origin with near Infrared Diffuse Reflectance Spectroscopy and Pattern Recognition Techniques. Anal. Chim. Acta. 2008, 618, 121–130. DOI: 10.1016/j.aca.2008.04.055.
  • Sun, L. H.; Wang, M.; Ren, X. L. Application Progress on Chemical Pattern Recognition in Quality Control of Chinese Materia Medica. Chinese Trad. Herb. Drug 2017, 48, 4339. DOI: 10.7501/j.issn.0253-2670.2017.20.031.
  • Yang, T. W.; Li, T.; Zhang, J.; Li, J. Q.; Liu, H. G.; Wang, Y. Z. Ultraviolet Spectrum Identification of Bolete Mushroom from Different Regions and Species. Food Ind. 2015, 36, 208–212.
  • Brzezicha-Cirocka, J.; Grembecka, M.; Grochowska, I.; Falandysz, J.; Szefer, P. Elemental Composition of Selected Species of Mushrooms Based on a Chemometric Evaluation. Ecotoxicol. Environ. Saf. 2019, 173, 353–365. DOI: 10.1016/j.ecoenv.2019.02.036.
  • Zhou, L.; Zhang, C.; Qiu, Z. J.; He, Y. Information Fusion of Emerging Non-Destructive Analytical Techniques for Food Quality Authentication: A Survey. Trends Analyt. Chem. 2020, 127, 115901. DOI: 10.1016/j.trac.2020.115901.
  • Liu, Z.; Forsyth, D. S.; Komorowski, J. P.; Hanasaki, K.; Kirubarajan, T. Survey: State of the Art in NDE Data Fusion Techniques. IEEE Trans. Instrum. Meas. 2007, 56, 2435–2451. DOI: 10.1109/TIM.2007.908139.
  • Zhang, J.; Wang, Y. Z.; Yang, M. Q.; Yang, W. Z.; Yang, S. B.; Zhang, J. Y. Identification and Evaluation of Polygonatum Kingianum with Different Growth Ages Based on Data Fusion Strategy. Microchem. J. 2021, 160, 105662. DOI: 10.1016/j.microc.2020.105662.
  • Hu, Z. H.; Cai, Y. Z.; Li, Y. G.; Xu, X. M. Data Fusion for Fault Diagnosis Using Multi-Class Support Vector Machines. J. Zhejiang Univ. Sci. A 2005, 6A, 1030–1039. DOI: 10.1631/jzus.2005.A.1030.
  • Borràs, E.; Ferré, J.; Boqué, R.; Mestres, M.; Aceña, L.; Busto, O. Data Fusion Methodologies for Food and Beverage Authentication and Quality Assessment - A Review. Anal. Chim. Acta. 2015, 891, 1–14. DOI: 10.1016/j.aca.2015.04.042.
  • Casale, M.; Bagnasco, L.; Zotti, M.; Di Piazza, S.; Sitta, N.; Oliveri, P. A NIR Spectroscopy-Based Efficient Approach to Detect Fraudulent Additions within Mixtures of Dried Porcini Mushrooms. Talanta 2016, 160, 729–734. DOI: 10.1016/j.talanta.2016.08.004.
  • Qi, L. M.; Liu, H. G.; Li, J. Q.; Li, T.; Wang, Y. Z. Feature Fusion of ICP-AES, UV-Vis and FT-MIR for Origin Traceability of Boletus Edulis Mushrooms in Combination with Chemometrics. Sensors 2018, 18, 241. DOI: 10.3390/s18010241.
  • Hu, Y. R.; Li, J. Q.; Liu, H. G.; Fan, M. P.; Wang, Y. Z. Infrared Spectral Study on the Origin Identification of Boletus Tomentipes Based on the Random Forest Algorithm and Data Fusion Strategy. Spectrosc. Spect. Anal. 2020, 40, 1495–1502. DOI: 10.3964/j.issn.1000-0593(2020)05-1495-08.
  • Li, X. P.; Li, J. Q.; Li, T.; Liu, H. G.; Wang, Y. Z. The Identification of Edible Boletus Based on Heterogeneous Multi-Spectral Information Fusion. Spectrosc. Spect. Anal. 2018, 38, 3897–3904. DOI: 10.3964/j.issn.1000-0593(2018)12-3897-08.
  • Li, Y.; Zhang, J.; Li, T.; Liu, H. G.; Li, J. Q.; Wang, Y. Z. Geographical Traceability of Wild Boletus Edulis Based on Data Fusion of FT-MIR and ICP-AES Coupled with Data Mining Methods (SVM). Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 177, 20–27. DOI: 10.1016/j.saa.2017.01.029.
  • Yao, S.; Li, T.; Li, J. Q.; Liu, H. G.; Wang, Y. Z. Geographic Identification of Boletus Mushrooms by Data Fusion of FT-IR and UV Spectroscopies Combined with Multivariate Statistical Analysis. Spectrochim Acta A Mol Biomol Spectrosc. 2018, 198, 257–263. DOI: 10.1016/j.saa.2018.03.018.
  • Yao, S.; Li, T.; Liu, H. G.; Li, J. Q.; Wang, Y. Z. Traceability of Boletaceae Mushrooms Using Data Fusion of UV-Visible and FTIR Combined with Chemometrics Methods. J. Sci. Food Agric. 2018, 98, 2215–2222. DOI: 10.1002/jsfa.8707.
  • Yao, S.; Li, J. Q.; Duan, Z. L.; Li, T.; Wang, Y. Z. Fusion of Ultraviolet and Infrared Spectra Using Support Vector Machine and Random Forest Models for the Discrimination of Wild and Cultivated Mushrooms. Anal. Lett. 2020, 53, 1019–1033. DOI: 10.1080/00032719.2019.1692857.
  • Yao, S.; Li, J. Q.; Li, T.; Liu, H. G.; Wang, Y. Z. Discrimination of Boletaceae Mushrooms Based on Data Fusion of FT-IR and ICP-AES Combined with SVM. Int. J. Food. Prop. 2018, 21, 255–266. DOI: 10.1080/10942912.2018.1453838.
  • Alessandra, B.; Naesx, T. The Sequential and Orthogonalized PLS Regression for Multiblock Regression: Theory, Examples, and Extensions. Data Hand. Sci. Technol. 2019, 31, 157–177. DOI: 10.1016/B978-0-444-63984-4.00006-5.
  • Mishra, P.; Passos, D. A Synergistic Use of Chemometrics and Deep Learning Improved the Predictive Performance of near-Infrared Spectroscopy Models for Dry Matter Prediction in Mango Fruit. Chemometr. Intell. Laboratory Syst. 2021, 212, 104287. DOI: 10.1016/j.chemolab.2021.104287.
  • Lecun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. DOI: 10.1038/nature14539.
  • Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Jianfei Cai, T. C. Recent Advances in Convolutional Neural Networks. Pattern Recognit. 2018, 77, 354–377. DOI: 10.1016/j.patcog.2017.10.013.
  • Lawrence, S.; Giles, C. L.; Tsoi, A. C.; Back, A. D. Face Recognition: A Convolutional Neural-Network Approach. IEEE Trans. Neural Netw. 1997, 8, 98–113. DOI: 10.1109/72.554195.
  • Maxime, O.; Bottou, L.; Laptev, I.; Sivic, J. Learning and Transferring Mid-Level Image Representations Using Convolutional Neural Networks. 2014 IEEE Conference on Computer Vision and Pattern Recognition, IEEE. DOI: 10.1109/CVPR.2014.222.
  • Dong, J. E.; Zhang, J.; Zuo, Z. T.; Wang, Y. Z. Deep Learning for Species Identification of Bolete Mushrooms with Two-Dimensional Correlation Spectral (2DCOS) images. Spectrochim Acta A Mol Biomol Spectrosc. 2021, 249, 119211. DOI: 10.1016/j.saa.2020.119211.
  • Dong, J. E.; Zuo, Z. T.; Zhang, J.; Wang, Y. Z. Geographical Discrimination of Boletus Edulis Using Two Dimensional Correlation Spectral or Integrative Two Dimensional Correlation Spectral Image with ResNet. Food Control. 2021, 129, 108132. DOI: doi.org/10.1016/j.foodcont.2021.108132. DOI: 10.1016/j.foodcont.2021.108132.
  • Cimpoiu, C.; Cristea, V.; Hosu, A.; Sandru, M.; Seserman, L. Antioxidant Activity Prediction and Classification of Some Teas Using Artificial Neural Networks. Food Chem. 2011, 127, 1323–1328. DOI: 10.1016/j.foodchem.2011.01.091.
  • Hosu, A.; Cristea, V.; Cimpoiu, C. Analysis of Total Phenolic, Flavonoids, Anthocyanins and Tannins Content in Romanian Red Wines: Prediction of Antioxidant Activities and Classification of Wines Using Artificial Neural networks. Food Chem. 2014, 150, 113–118. DOI: 10.1016/j.foodchem.2013.10.153.
  • Rojas-Moraleda, R.; Valous, N. A.; Gowen, A.; Esquerre, C.; Härtel, S.; Salinas, L.; O Donnell, C. A Frame-Based ANN for Classification of Hyperspectral Images: assessment of Mechanical Damage in Mushrooms. Neural Comput. Appl. 2017, 28, 969–981. DOI: 10.1007/s00521-016-2376-7.
  • Yang, J.; Huang, Y.; Xu, H.; Gu, D.; Xu, F.; Tang, J.; Fang, C.; Yang, Y. Optimization of Fungi co-Fermentation for Improving Anthraquinone Contents and Antioxidant Activity Using Artificial Neural Networks. Food Chem. 2020, 313, 126138. DOI: 10.1016/j.foodchem.2019.126138.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.