301
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Innovation in Strategies for Sensitivity Improvement of Chromatography and Mass Spectrometry Based Analytical Techniques

, , , & ORCID Icon
Pages 655-671 | Published online: 26 Aug 2021

References

  • Mattrey, F. T.; Makarov, A. A.; Regalado, E. L.; Bernardoni, F.; Figus, M.; Hicks, M. B.; Zheng, J.; Wang, L.; Schafer, W.; Antonucci, V.; et al. Current Challenges and Future Prospects in Chromatographic Method Development for Pharmaceutical Research. Trends Analyt. Chem. 2017, 95, 36–46. DOI: 10.1016/j.trac.2017.07.021.
  • Chen, Z.; Gao, Y.; Zhong, D. Technologies to Improve the Sensitivity of Existing Chromatographic Methods Used for Bioanalytical Studies. Biomed. Chromatogr. 2020, 34, e4798 DOI: 10.1002/bmc.4798.
  • Lingeman, H. Detection-Oriented Derivatization Techniques in Liquid Chromatography, 1st.; CRC Press: New York, 1990.
  • Pawar, H. A.; Lalitha, K. Development and Validation of a Novel RP-HPLC Method for Estimation of Losartan Potassium in DisSolution Samples of Immediate and Sustained Release Tablets. Chromatogr. Res. Int. 2014, 2014, 1–8. DOI: 10.1155/2014/736761.
  • Prabu, S. L.; Suriyaprakash, T. Cleaning Validation and Its Importance in Pharmaceutical Industry. Pharma Times 2010, 42, 21–25.
  • Rubashvili, I.; Kharukhnishvili, N.; Makharadze, K. Vincamine Residues Analysis Using HPLC and Establishing Limits of Cross-Contamination in Support of Cleaning Validation. Rev. Roum. Chim. 2018, 63, 205–215.
  • Holm, R.; Elder, D. P. Analytical Advances in Pharmaceutical Impurity Profiling. Eur. J. Pharm. Sci. 2016, 87, 118–135. DOI: 10.1016/j.ejps.2015.12.007.
  • Jain, D.; Basniwal, P. K. Forced Degradation and Impurity Profiling: Recent Trends in Analytical Perspectives. J. Pharm. Biomed. Anal. 2013, 86, 11–35. DOI: 10.1016/j.jpba.2013.07.013.
  • Ramachandra, B. Development of Impurity Profiling Methods Using Modern Analytical Techniques. Crit. Rev. Anal. Chem. 2017, 47, 24–36. DOI: 10.1080/10408347.2016.1169913.
  • Görög, S. The Importance and the Challenges of Impurity Profiling in Modern Pharmaceutical Analysis. Trends Analyt. Chem. 2006, 25, 755–757. DOI: 10.1016/j.trac.2006.05.011.
  • Mehta, T. N.; Patel, A. K.; Kulkarni, G. M.; Suubbaiah, G. Determination of Rosuvastatin in the Presence of Its Degradation Products by a Stability-Indicating LC Method. J. AOAC Int. 2005, 88, 1142–1147. DOI: 10.1093/jaoac/88.4.1142.
  • Blessy, M.; Patel, R. D.; Prajapati, P. N.; Agrawal, Y. K. Development of Forced Degradation and Stability Indicating Studies of drugs-a review. J. Pharm. Anal. 2014, 4, 159–165. DOI: 10.1016/j.jpha.2013.09.003.
  • Zhang, D.; Zhu, M.; Humphreys, W. G.; Eds. Drug Metabolism in Drug Design and Development: Basic Concepts and Practice; John Wiley & Sons: United State, 2007.
  • Qi, B.-L.; Liu, P.; Wang, Q.-Y.; Cai, W.-J.; Yuan, B.-F.; Feng, Y.-Q. Derivatization for Liquid Chromatography-Mass Spectrometry. Trends Analyt. Chem. 2014, 59, 121–132. DOI: 10.1016/j.trac.2014.03.013.
  • Savaşer, A.; Ozkan, Y.; Işimer, A. Işımer, A. PreparatIon and in Vitro EvaluatIon of Sustained Release Tablet Formulations of Diclofenac Sodium. Farmaco 2005, 60, 171–177. DOI: 10.1016/j.farmac.2004.10.001.
  • Fabio, P.; Alessandro, C.; Stefania, S.; Iolanda, G.; Elena, M.; Aldo, C. The Requirements for Manufacturing Highly Active or Sensitising Drugs Comparing Good Manufacturing Practices. Acta Biomed. 2019, 90, 288–299. DOI: 1023750%2Fabm.v90i2.8340.
  • Prabu, S. L.; Prakash, T. S.; Thirumurugan, R. Cleaning Validation and Its Regulatory Aspects in the Pharmaceutical Industry. In Developments in Surface Contamination and Cleaning; Kohli, R., Mittal, K. L., Eds.; William Andrew: New York, U.S., 2015; pp 129–186. DOI: 10.1016/B978-0-323-31303-2.00005-4.
  • Raghavan, R.; Burchett, M.; Loffredo, D.; Mulligan, J. A. Low-level (PPB) determination of cisplatin in cleaning validation (rinse water) samples. II. A high-performance liquid chromatographic method . Drug Dev. Ind. Pharm. 2000, 26, 429–440. DOI: 10.1081/DDC-100101250.
  • Miao, X.-S.; Koenig, B. G.; Metcalfe, C. D. Analysis of Acidic Drugs in the Effluents of Sewage Treatment Plants Using Liquid Chromatography–Electrospray Ionization Tandem Mass Spectrometry. J. Chromatogr. A. 2002, 952, 139–147. DOI: 10.1016/S0021-9673(02)00088-2.
  • El-Sayed, Y. M.; Abdel-Hameed, M. E.; Suleiman, M. S.; Najib, N. M. A Rapid and Sensitive High‐Performance Liquid Chromatographic Method for the Determination of Diclofenac Sodium in Serum and its Use in Pharmacokinetic Studies. J. Pharm. Pharmacol. 1988, 40, 727–729. DOI: 10.1111/j.2042-7158.1988.tb07005.x.
  • Abou-Auda, H. S.; Najjar, T. A.; Al-Khamis, K. I.; Al-Hadiya, B. M.; Ghilzai, N. M.; Al-Fawzan, N. F. Liquid Chromatographic Assay of Nifedipine in Human Plasma and Its Application to Pharmacokinetic Studies. J. Pharmaceut. Biomed. Anal. 2000, 22, 241–249. DOI: 10.1016/S0731-7085(99)00258-7.
  • Sripalakit, P.; Saraphanchotiwitthaya, A. Validation of an HPLC Method for Determination of Pentoxifylline in Human Plasma and Its Application to Pharmacokinetic Study. J. AOAC Int. 2009, 92, 837–845. DOI: 10.1093/jaoac/92.3.837.
  • Özkan, Y.; Savaşer, A.; Özkan, S. A. Simple and Reliable HPLC Method of Abacavir Determination in Pharmaceuticals, Human Serum and Drug DisSolution Studies from Tablets. J. Liq. Chromatogr. Relat. Technol. 2005, 28, 423–437. DOI: 10.1081/JLC-200044523.
  • Özkan, Y.; Savaşer, A.; Taş, Ç.; Uslu, B.; Özkan, S. A. Drug DisSolution Studies and Determination of Deflazacort in Pharmaceutical Formulations and Human Serum Samples by RP‐HPLC. J. Liq. Chromatogr. Relat. Technol. 2003, 26, 2141–2156. DOI: 10.1081/JLC-120022399.
  • Chen, R.; Huang, J.; Lv, C.; Wei, C.; Li, R.; Yuan, G.; Liu, X.; Wang, B.; Guo, R. A More Rapid, Sensitive, and Specific HPLC-MS/MS Method for Nifedipine Analysis in Human Plasma and Application to a Pharmacokinetic Study. Drug Res. (Stuttg) 2013, 63, 38–45. DOI: 10.1055/s-0032-1331713.
  • Zhou, Y.; Liu, A.; Jia, R.; Wu, M.; Wu, N.; ; Liu, C.; Han, Z.; Hu, H.; Wang, H.; He, Q. Determination of Isosorbide-5-Mononitrate in Human Plasma by High-Performance Liquid Chromatography-Tandem Mass Spectrometry and Its Application to a Bioequivalence Study. J. Anal. Methods Chem. 2020, 2020, 1753265. DOI: 10.1155/2020/1753265.
  • Jiang, J.; Tian, L.; Huang, Y.; Yan, Y.; Li, Y. Enantioselective and Sensitive Determination of Carvedilol in Human Plasma Using Chiral Stationary-Phase Column and Reverse-Phase Liquid Chromatography with Tandem Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2014, 960, 92–97. DOI: 10.1016/j.jchromb.2014.04.016.
  • Hanif, M.; Shoaib, M. H.; Yousuf, R. I.; Khan, A.; Anwer, S.; Rasul, A.; Sattar, S.; Arshad, H. Z. Reverse Phase High Performance Liquid Chromatographic (HPLC) Method for Nimesulide Tablets Dosage Form Prepared for in Vivo. In vitro Correlation (IVIVC) Studies. Afr. J. Pharm. Pharmaco 2011, 5, 2342–2348. DOI: 10.5897/AJPP11.545.
  • Özkan, S. A.; Özkan, Y.; Aboul-Enein, H. Y. Quality Control and Drug dissolution studies of Pharmaceutical Preparations Containing Cerivastatin Sodium by Means of RP-HPLC. J. Liq. Chromatogr. Relat. Technol. 2002, 25, 251–262. DOI: 10.1081/JLC-100108743.
  • Arayne, M. S.; Sultana, N.; Sajid, S. S.; Ali, S. S. Cleaning Validation of ofloxacin on Pharmaceutical Manufacturing Equipment and Validation of Desired HPLC Method. J. Anal. Sci. Technol. 2008, 62, 353–361.
  • Hassouna, M. E.; Mohamed, M. A. Efficient HPLC Method for Determination of Cephalosporin Residues on Spiked Stainless-Steel Plates and Human Plasma: Application of a Worst-Case Product for Cosa® CIP. Int. J. Environ. Anal. Chem. 2020, 100, 82–98. DOI: 10.1080/03067319.2019.1631301.
  • Kumar, N.; Sangeetha, D.; Balakrishna, P. Development and Validation of a UPLC Method for the Determination of Duloxetine Hydrochloride Residues on Pharmaceutical Manufacturing Equipment Surfaces. Pharm. Methods. 2011, 2, 161–166. DOI: 10.4103/2229-4708.90355.
  • Masada, S.; Tsuji, G.; Arai, R.; Uchiyama, N.; Demizu, Y.; Tsutsumi, T.; Abe, Y.; Akiyama, H.; Hakamatsuka, T.; Izutsu, K.-I.; et al. Rapid and Efficient High-Performance Liquid Chromatography Analysis of N-Nitrosodimethylamine Impurity in Valsartan Drug Substance and Its products. Sci. Rep. 2019, 9, 11852–11856. DOI: 10.1038/s41598-019-48344-5.
  • Van Nimmen, N. F.; Poels, K. L.; Veulemans, H. A. Highly Sensitive Gas Chromatographic—Mass Spectrometric Screening Method for the Determination of Picogram Levels of Fentanyl, Sufentanil and Alfentanil and Their Major Metabolites in Urine of Opioid Exposed Workers. J. Chromatogr. B 2004, 804, 375–387. DOI: 10.1016/j.jchromb.2004.01.044.
  • Gambaro, A.; Zangrando, R.; Gabrielli, P.; Barbante, C.; Cescon, P. Direct Determination of Levoglucosan at the Picogram per Milliliter Level in Antarctic Ice by High-Performance Liquid Chromatography/Electrospray Ionization Triple Quadrupole Mass Spectrometry. Anal. Chem. 2008, 80, 1649–55. doi:10.1021/ac701655.x.
  • Rodriguez-Mozaz, S.; Lopez de Alda, M. J.; Barceló, D. Picogram per Liter Level Determination of Estrogens in Natural Waters and Waterworks by a Fully Automated on-line Solid-hase Extraction-Liquid Chromatography-Electrospray Tandem Mass Spectrometry Method. Anal. Chem. 2004, 76, 6998–7006. DOI: 10.1021/ac049051v.
  • Ballesteros-Gómez, A.; Rubio, S.; van Leeuwen, S. Tetrahydrofuran–Water Extraction, in-line Clean-up and Selective Liquid Chromatography/Tandem Mass Spectrometry for the Quantitation of Perfluorinated Compounds in Food at the Low Picogram per Gram Level. J. Chromatogr. A. 2010, 1217, 5913–5921. DOI: 10.1016/j.chroma.2010.07.032.
  • Matuszewski, B.; Constanzer, M.; Chavez-Eng, C. Matrix Effect in Quantitative LC/MS/MS Analyses of Biological Fluids: A Method for Determination of Finasteride in Human Plasma at Picogram per Milliliter ConcentratIons. Anal. Chem. 1998, 70, 882–889. DOI: 10.1021/ac971078+.
  • Star-Weinstock, M.; Williamson, B. L.; Dey, S.; Pillai, S.; Purkayastha, S. LC-ESI-MS/MS Analysis of Testosterone at Sub-Picogram Levels Using a Novel Derivatization Reagent. Anal. Chem. 2012, 84, 9310–9317. DOI: 10.1021/ac302036r.
  • Santa, T. Derivatization in Liquid Chromatography for Mass Spectrometric Detection. Drug Discov. Ther. 2013, 7, 9–17. DOI: 10.5582/ddt.2013.v7.1.9.
  • Gao, S.; Zhang, Z. P.; Karnes, H. T. Sensitivity Enhancement in Liquid Chromatography/Atmospheric Pressure Ionization Mass Spectrometry Using Derivatization and Mobile Phase Additives. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2005, 825, 98–110. DOI: 10.1016/j.jchromb.2005.04.021.
  • Locatelli, M.; Melucci, D.; Carlucci, G.; Locatelli, C. Recent Hplc Strategies to Improve Sensitivity and Selectivity for the Analysis of Complex Matrices. Instrum. Sci. Technol. 2012, 40, 112–137. DOI: 10.1080/10739149.2011.651668.
  • Sacher, F.; Lenz, S.; Brauch, H.-J. Analysis of Primary and Secondary Aliphatic Amines in Waste Water and Surface Water by Gas Chromatography-Mass Spectrometry after Derivatization with 2, 4-Dinitrofluorobenzene or Benzenesulfonyl Chloride. J. Chromatogr. B 1997, 764, 85–93. DOI: 10.1016/S0021-9673(96)00868-0.
  • Einarsson, S.; Josefsson, B.; Möller, P.; Sanchez, D. Separation of Amino Acid Enantiomers and Chiral Amines Using Precolumn Derivatization with (+)-1-(9-fluorenyl) Ethyl Chloroformate and Reversed-Phase Liquid Chromatography. Anal. Chem. 1987, 59, 1191–1195. DOI: 10.1021/ac00135a025.
  • Kirschbaum, J.; Rebscher, K.; Brückner, H. Liquid Chromatographic Determination of Biogenic Amines in Fermented Foods after Derivatization with 3, 5-Dinitrobenzoyl Chloride. J. Chromatogr. A. 2000, 881, 517–530. DOI: 10.1016/S0021-9673(00)00257-0.
  • Kretschmer, A.; Giera, M.; Wijtmans, M.; De Vries, L.; Lingeman, H.; Irth, H.; Niessen, W. M. A. Derivatization of Carboxylic Acids with 4-APEBA for Detection by Positive-Ion LC-ESI–MS (/MS) Applied for the Analysis of Prostanoids and NSAID in Urine. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 1393–1401. DOI: 10.1016/j.jchromb.2010.11.028.
  • Ogawa, S.; Tadokoro, H.; Sato, M.; Hanawa, T.; HiGashi, T. (S)-1-(4-DimethylAminophenylcarbonyl)-3-Aminopyrrolidine: A Derivatization Reagent for Enantiomeric Separation and Sensitive Detection of Chiral Carboxylic Acids by LC/ESI-MS/MS. J. Chromatogr. B. Anal. Technol. Biomed. Life Sci. 2013, 940, 7–14. DOI: 10.1016/j.jchromb.2013.09.025.
  • Santa, T.; Al‐Dirbashi, O. Y.; IchibanGase, T.; Fukushima, T.; Rashed, M. S.; Funatsu, T.; Imai, K. Synthesis of Benzofurazan Derivatization Reagents for Carboxylic Acids in Liquid Chromatography/Electrospray Ionization–Tandem Mass Spectrometry. Biomed. Chromatogr. 2007, 21, 1207–1213. DOI: 10.1002/bmc.878.
  • Toyo'oka, T.; Ishibashi, M.; Terao, T.; Imai, K. 4-(N, N-dimethylAminosulfonyl)-7-(2-Chloroformylpyrrolidin-1-yl)-2, 1, 3-Benzoxadiazole: Novel Fluorescent Chiral Derivatization Reagents for the ReSolution of Alcohol Enantiomers by High-Performance Liquid Chromatography. Analyst 1993, 118, 759–763. DOI: 10.1039/an9931800759.
  • Katayama, M.; Masuda, Y.; Taniguchi, H. Determination of Alcohols by High-Performance Liquid Chromatography after Pre-Column Derivatization with 2-(4-Carboxyphenyl)-5, 6-Dimethylbenzimidazole. J. Chromatogr. A. 1991, 585, 219–224. DOI: 10.1016/0021-9673(91)85080-Y.
  • Motte, J.; Windey, R.; Delafortrie, A. High-Sensitivity Fluorescence Derivatization for the Determination of Hydroxy Compounds in Aqueous Solution by High-Performance Liquid Chromatography. J. Chromatogr. A. 1996, 728, 333–341. DOI: 10.1016/0021-9673(95)01138-2.
  • Van Leeuwen, S. M.; Hendriksen, L.; Karst, U. Determination of Aldehydes and Ketones Using Derivatization with 2,4-dinitrophenylhydrazine and liquid chromatography-atmospheric pressure photoionization-mass spectrometry . J. Chromatogr. A. 2004, 1058, 107–112. DOI: 10.1016/j.chroma.2004.08.149.
  • Lehmpuhl, D. W.; Birks, J. W. New Gas Chromatographic-Electron-Capture Detection Method for the Determination of Atmospheric Aldehydes and Ketones Based on Cartridge Sampling and Derivatization with 2, 4, 6-Trichlorophenylhydrazine. J. Chromatogr. A. 1996, 740, 71–81. DOI: 10.1016/0021-9673(96)00109-4.
  • Peters, R.; Hellenbrand, J.; Mengerink, Y.; Van der Wal, S. J. On-Line Determination of Carboxylic Acids, Aldehydes and Ketones by High-Performance Liquid Chromatography-Diode Array Detection-Atmospheric Pressure Chemical Ionisation Mass Spectrometry after Derivatization with 2-Nitrophenylhydrazine. J. Chromatogr. A. 2004, 1031, 35–50. DOI: 10.1016/j.chroma.2003.10.100.
  • Heinrikson, R. L.; Meredith, S. C. Amino Acid Analysis by Reverse-Phase High-Performance Liquid Chromatography: Precolumn Derivatization with Phenylisothiocyanate. Anal. Biochem. 1984, 136, 65–74. DOI: 10.1016/0003-2697(84)90307-5.
  • Bank, R. A.; Jansen, E. J.; Beekman, B.; Te Koppele, J. M. Amino Acid Analysis by Reverse-Phase High-Performance Liquid Chromatography: Improved Derivatization and Detection Conditions with 9-Fluorenylmethyl Chloroformate. Anal. Biochem. 1996, 240, 167–176. DOI: 10.1006/abio.1996.0346.
  • Ge, Y.; Bian, X.; Sun, B.; Zhao, M.; Ma, Y.; Tang, Y.; Li, N.; Wu, J.-L. Dynamic Profiling of Phenolic Acids during Pu-erh Tea Fermentation Using Derivatization Liquid Chromatography-Mass Spectrometry Approach . J. Agric. Food Chem. 2019, 67, 4568–4577. DOI: 10.1021/acs.jafc.9b00789.
  • Koshiyama, A.; IchibanGase, T.; Imai, K. Comprehensive Fluorogenic Derivatization–Liquid Chromatography/Tandem Mass Spectrometry Proteomic Analysis of Colorectal Cancer Cell to Identify Biomarker Candidate. Biomed. Chromatogr. 2013, 27, 440–450. DOI: 10.1002/bmc.2811.
  • Wang, S.-M.; Lewis, R. J.; Canfield, D.; Li, T.-L.; Chen, C.-Y.; Liu, R. H. Enantiomeric Determination of Ephedrines and Norephedrines by Chiral Derivatization Gas Chromatography–Mass Spectrometry Approaches. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2005, 825, 88–95. DOI: 10.1016/j.jchromb.2005.01.016.
  • Takino, M.; Daishima, S.; Yamaguchi, K. Analysis of Anatoxin-a in Freshwaters by Automated on-Line Derivatization–Liquid Chromatography–Electrospray Mass Spectrometry. J. Chromatogr. B 1999, 862, 191–197. DOI: 10.1016/S0021-9673(99)00943-7.
  • Newton, G. L.; Dorian, R.; Fahey, R. C. Analysis of Biological Thiols: Derivatization with Monobromobimane and Separation by Reverse-Phase High-Performance Liquid Chromatography. Anal. Biochem. 1981, 114, 383–387. DOI: 10.1016/0003-2697(81)90498-X.
  • Ahuja, S. Derivatization in Gas Chromatography. J. Pharm. Sci. 1976, 65, 163–182. DOI: 10.1002/jps.2600650203.
  • Santa, T. Derivatization Reagents in Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry. Biomed. Chromatogr. 2011, 25, 1–10. DOI: 10.1002/bmc.1548.
  • Kataoka, H. Derivatization Reactions for the Determination of Amines by Gas Chromatography and Their Applications in Environmental Analysis. J Chromatogr A 1996, 733, 19–34. DOI: 10.1016/0021-9673(95)00726-1.
  • Lawrence, J. F. Derivatization in Chromatography IntroductIon Practical Aspects of Chemical Derivatization in Chromatography. J. Chromatogr. Sci 1979, 17, 113–114. DOI: 10.1093/chromsci/17.3.113.
  • Higashi, T.; Ichikawa, T.; Inagaki, S.; Min, J. Z.; Fukushima, T.; Toyo'oka, T. Simple and Practical Derivatization Procedure for Enhanced Detection of Carboxylic Acids in Liquid Chromatography–Electrospray Ionization-Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2010, 52, 809–818. DOI: 10.1016/j.jpba.2010.03.001.
  • Drozd, J. Chemical Derivatization in Gas Chromatography. J. Chromatogr. A 1975, 113, 303–356. DOI: 10.1016/S0021-9673(00)95303-2.
  • Escrig-Doménech, A.; Simó-Alfonso, E.; Herrero-Martínez, J.; Ramis-Ramos, G. Derivatization of Hydroxyl Functional Groups for Liquid Chromatography and Capillary ElectroSeparation. J. Chromatogr. A. 2013, 1296, 140–156. DOI: 10.1016/j.chroma.2013.04.027.
  • Liang, Y.; Guan, T.; Zhou, Y.; Liu, Y.; Xing, L.; Zheng, X.; Dai, C.; Du, P.; Rao, T.; Zhou, L.; et al. Effect of Mobile Phase Additives on Qualitative and Quantitative Analysis of Ginsenosides by Liquid Chromatography Hybrid Quadrupole-Time of Flight Mass Spectrometry. J. Chromatogr. A. 2013, 1297, 29–36. DOI: 10.1016/j.chroma.2013.04.001.
  • Qi, W.; Guan, Q.; Sun, T.; Cao, Y.; Zhang, L.; Guo, Y. Improving Detection Sensitivity of Amino Acids in Thyroid Tissues by Using Phthalic Acid as a Mobile Phase Additive in Hydrophilic Interaction Chromatography-Electrospray Ionization-Tandem Mass Spectrometry. Anal. Chim. Acta 2015, 870, 75–82. DOI: 10.1016/j.aca.2015.02.048.
  • Hsiao, J. J.; Potter, O. G.; Chu, T.-W.; Yin, H. Improved LC/MS Methods for the Analysis of Metal-Sensitive Analytes Using Medronic Acid as a Mobile Phase Additive. Anal. Chem. 2018, 90, 9457–9464. DOI: 10.1021/acs.analchem.8b02100.
  • Monnin, C.; Ramrup, P.; Daigle‐Young, C.; Vuckovic, D. Improving Negative Liquid Chromatography/Electrospray Ionization Mass Spectrometry Lipidomic Analysis of Human Plasma Using Acetic Acid as a mobile-phase additive. Rapid Commun. Mass Spectrom. 2018, 32, 201–211. DOI: 10.1002/rcm.8024.
  • Brase, R. A.; Spink, D. C. Enhanced Sensitivity for the Analysis of Perfluoroethercarboxylic Acids Using LC-ESI-MS/MS: Effects of Probe Position, Mobile Phase Additive, and Capillary Voltage. J. Am. Soc. Mass Spectrom. 2020, 31, 2124–2132. DOI: 10.1021/jasms.0c00244.
  • Zhang, Y-n.; Yu, H.; Ma, Y.; J.; Cui, G. Imidazolium Ionic Liquids as Mobile Phase Additives in Reversed Phase Liquid Chromatography for the Determination of Iodide and Iodate. Anal. Bioanal. Chem. 2018, 410, 7347–7355. DOI: 10.1007/s00216-018-1347-5.
  • Zhang, W.; He, L.; Gu, Y.; Liu, X.; Jiang, S. Effect of Ionic Liquids as Mobile Phase Additives on RetentIon of Catecholamines in Reversed-Phase High-Performance Liquid Chromatography. Anal. Lett. 2003, 36, 827–838. DOI: 10.1081/AL-120018802.
  • Liigand, J.; Laaniste, A.; Kruve, A. Kruve, A. pH Effects on Electrospray Ionization Efficiency. J. Am. Soc. Mass Spectrom. 2017, 28, 461–469. DOI: 10.1007/s13361-016-1563-1.
  • Wang, J.; Aubry, A.; Bolgar, M. S.; Gu, H.; Olah, T. V.; Arnold, M.; Jemal, M. Effect of Mobile Phase pH, Aqueous‐Organic Ratio, and Buffer Concentrat Ion on Electrospray Ionization Tandem Mass Spectrometric Fragmentat Ion Patterns: Implications in Liquid Chromatography/Tandem Mass Spectrometric Bioanalysis. Rapid Commun. Mass Spectrom. 2010, 24, 3221–3229. DOI: 10.1002/rcm.4748.
  • Patring, J. D.; Jastrebova, J. A. Application of Liquid Chromatography–Electrospray Ionisation Mass Spectrometry for Determination of Dietary Folates: Effects of Buffer Nature and Mobile Phase Composition on Sensitivity and Selectivity. J. Chromatogr. A. 2007, 1143, 72–82. DOI: 10.1016/j.chroma.2006.12.079.
  • Jemal, M.; Almond, R. B.; Teitz, D. S. Quantitative Bioanalysis Utilizing High‐Performance Liquid Chromatography/Electrospray Mass Spectrometry via Selected‐Ion Monitoring of the Sodium Ion Adduct [M + NNa. Rapid Commun. Mass Spectrom. 1997, 11, 1083–1088. ]+. DOI: 10.1002/(SICI)1097-0231(19970630)11:10%3C1083::AID-RCM937%3E3.0.CO;2-F.
  • Stefansson, M.; Sjöberg, P. J.; Markides, K. E. Regulation of Multimer Formation in Electrospray Mass Spectrometry. Anal. Chem. 1996, 68, 1792–1797. DOI: 10.1021/ac950980j.
  • Fountain, K. J.; Gilar, M.; Gebler, J. C. Analysis of Native and Chemically Modified Oligonucleotides by Tandem Ion‐pair Reversed‐Phase High‐Performance Liquid Chromatography/Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 646–653. DOI: 10.1002/rcm.959.
  • Gibson, C. R.; Staubus, A. E.; Barth, R. F.; Yang, W.; Kleinholz, N. M.; Jones, R. B.; Green-Church, K. B.; Tjarks, W.; Soloway, A. H. Electrospray Ionization Mass Spectrometry Coupled to Reversed-Phase Ion-Pair High-Performance Liquid Chromatography for Quantitation of Sodium Borocaptate and Application to Pharmacokinetic Analysis. Anal. Chem. 2002, 74, 2394–2399. DOI: 10.1021/ac0112723.
  • Petritis, K.; Brussaux, S.; Guenu, S.; Elfakir, C.; Dreux, M. J. Ion-Pair Reversed-Phase Liquid Chromatography–Electrospray Mass Spectrometry for the Analysis of Underivatized Small Peptides. J. Chromatogr. A 2002, 957, 173–185. DOI: 10.1016/S0021-9673(98)01060-7.
  • Apffel, A.; Fischer, S.; Goldberg, G.; Goodley, P. C.; Kuhlmann, F. E. Enhanced Sensitivity for Peptide Mapping with Electrospray Liquid Chromatography-Mass Spectrometry in the Presence of Signal Suppression Due to Trifluoroacetic acid-Containing Mobile Phases. J. Chromatogr. A. 1995, 712, 177–190. DOI: 10.1016/0021-9673(95)00175-M.
  • Quintana, J. B.; Reemtsma, T. Sensitive Determination of Acidic Drugs and Triclosan in Surface and Wastewater by Ion‐pair Reverse‐Phase Liquid Chromatography/Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2004, 18, 765–774. DOI: 10.1002/rcm.1403.
  • Petritis, K.; Chaimbault, P.; Elfakir, C.; Dreux, M. Ion-Pair Reversed-Phase Liquid Chromatography for Determination of Polar Underivatized Amino Acids Using Perfluorinated Carboxylic Acids as Ion Pairing Agent. J. Chromatogr. A. 1999, 833, 147–155. DOI: 10.1016/S0021-9673(98)01060-7.
  • Souverain, S.; Rudaz, S.; Veuthey, J.-L. Protein Precipitation for the Analysis of a Drug Cocktail in Plasma by LC-ESI-MS. J. Pharm. Biomed. Anal. 2004, 35, 913–920. DOI: 10.1016/j.jpba.2004.03.005.
  • De Nicolò, A.; Avataneo, V.; Rabbia, F.; Bonifacio, G.; Cusato, J.; Tomasello, C.; Perlo, E.; Mulatero, P.; Veglio, F.; Di Perri, G.; D'Avolio, A. UHPLC–MS/MS Method with Protein Precipitation Extraction for the Simultaneous Quantification of Ten Antihypertensive Drugs in Human Plasma from Resistant Hypertensive Patients. J. Pharm. Biomed. Anal. 2016, 129, 535–541. DOI: 10.1016/j.jpba.2016.07.049.
  • Deshpande, N. M.; Gangrade, M. G.; Kekare, M. B.; Vaidya, V. V. Determination of Free and Liposomal Amphotericin B in Human Plasma by Liquid Chromatography–Mass Spectroscopy with Solid Phase Extraction and Protein Precipitation Techniques. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2010, 878, 315–326. DOI: 10.1016/j.jchromb.2009.11.036.
  • Churchwell, M. I.; Twaddle, N. C.; Meeker, L. R.; Doerge, D. R. Improving LC–MS Sensitivity through Increases in Chromatographic Performance: Comparisons of UPLC–ES/MS/MS to HPLC–ES/MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2005, 825, 134–143. DOI: 10.1016/j.jchromb.2005.05.037.
  • Wolfender, J.-L.; Marti, G.; Thomas, A.; Bertrand, S. Current Approaches and Challenges for the Metabolite Profiling of Complex Natural Eextracts. J. Chromatogr. A. 2015, 1382, 136–164. DOI: 10.1016/j.chroma.2014.10.091.
  • Gama, M. R.; Collins, C. H.; Bottoli, C. B. Nano-Liquid Chromatography in Pharmaceutical and Biomedical Research. J. Chromatogr. Sci. 2013, 51, 694–703. DOI: 10.1093/chromsci/bmt023.
  • Lanckmans, K.; Van Eeckhaut, A.; Sarre, S.; Smolders, I.; Michotte, Y. Capillary and Nano-Liquid Chromatography–Tandem Mass Spectrometry for the Quantification of Small Molecules in Microdialysis Samples: Comparison with Microbore Dimensions. J. Chromatogr. A. 2006, 1131, 166–175. DOI: 10.1016/j.chroma.2006.07.090.
  • Fanali, S. Nano-Liquid Chromatography Applied to Enantiomers Separation. J. Chromatogr. A. 2017, 1486, 20–34. DOI: 10.1016/j.chroma.2016.10.028.
  • Hernández‐Borges, J.; Aturki, Z.; Rocco, A.; Fanali, S. Recent Applications in Nano-Liquid Chromatography. J. Sep. Sci. 2007, 30, 1589–1610. DOI: 10.1002/jssc.200700061.
  • Stoll, D. R.; Li, X.; Wang, X.; Carr, P. W.; Porter, S. E.; Rutan, S. C. Fast, Comprehensive Two-Dimensional Liquid Chromatography. J. Chromatogr. A. 2007, 1168, 3–43. DOI: 10.1016/j.chroma.2007.08.054.
  • Erni, F.; Frei, R. Two-Dimensional Column Liquid Chromatographic Technique for Resolution of Complex Mixtures. J. Chromatogr. A. 1978, 149, 561–569. DOI: 10.1016/S0021-9673(00)81011-0.
  • Tranchida, P. Q.; Franchina, F. A.; Dugo, P.; Mondello, L. Comprehensive Two‐Dimensional Gas Chromatography‐Mass Spectrometry: Recent Evolution and Current Trends. Mass Spectrom. Rev. 2016, 35, 524–534. DOI: 10.1002/mas.21443.
  • Pani, O.; Górecki, T. Comprehensive Two-Dimensional Gas Chromatography (GC × GC) in Environmental Analysis and Monitoring. Anal. Bioanal. Chem. 2006, 386, 1013–1023. DOI: 10.1007/s00216-006-0568-1.
  • Liu, Z.; Phillips, J. B. Comprehensive Two-Dimensional Gas Chromatography Using an on-Column Thermal Modulator Interface. J. Chromatogr. Sci. 1991, 29, 227–231. DOI: 10.1093/chromsci/29.6.227.
  • Wang, Y.; Chen, Q.; Norwood, D. L.; McCaffrey, J. Recent Development in the Applications of Comprehensive Two-Dimensional Gas Chromatography. J. Liq. Chromatogr. Relat. Technol. 2010, 33, 1082–1115. DOI: 10.1080/10826076.2010.484339.
  • Górecki, T.; Panić, O.; Oldridge, N. Recent Advances in Comprehensive Two‐Dimensional Gas Chromatography (GC × GC). J. Liq. Chromatogr. Relat. Technol. 2006, 29, 1077–1104. DOI: 10.1080/10826070600574762.
  • Karschner, E. L.; Barnes, A. J.; Lowe, R. H.; Scheidweiler, K. B.; Huestis, M. A. Validation of a Two-Dimensional Gas Chromatography Mass Spectrometry Method for the Simultaneous Quantification of Cannabidiol, Δ 9-Tetrahydrocannabinol (THC), 11-hydroxy-THC, and 11-nor-9-carboxy-THC in Plasma. Anal. Bioanal. Chem. 2010, 397, 603–611. DOI: 10.1007/s00216-010-3599-6.
  • Mitrevski, B.; Veleska, B.; Engel, E.; Wynne, P.; Song, S. M.; Marriott, P. Chemical Signature of Ecstasy Volatiles by Comprehensive Two-Dimensional Gas Chromatography. Forensic Sci. Int. 2011, 209, 11–20. DOI: 10.1016/j.forsciint.2010.11.008.
  • Winnike, J. H.; Wei, X.; Knagge, K. J.; Colman, S. D.; Gregory, S. G.; Zhang, X. Comparison of GC-MS and GC × GC-MS in the Analysis of Human Serum Samples for Biomarker Discovery. J. Proteome Res. 2015, 14, 1810–1817. DOI: 10.1021/pr5011923.
  • Dispas, A.; Jambo, H.; André, S.; Tyteca, E.; Hubert, P. Supercritical Fluid Chromatography: A Promising Alternative to Current Bioanalytical Techniques. Bioanalysis 2018, 10, 107–124. DOI: 10.4155/bio-2017-0211.
  • Lafont, R.; Dauphin-Villemant, C.; Warren, J.; Rees, H. Ecdysteroid Chemistry and Biochemistry. In Insect Endocrinology; Gilbert LI, Ed.; Academic Press: United States, 2012; pp 106–176. DOI: 10.1016/B978-0-12-384749-2.10004-4.
  • Helmy, R.; Biba, M.; Zang, J.; Mao, B.; Fogelman, K.; Vlachos, V.; Hosek, P.; Welch, C. J. Improving Sensitivity in Chiral Supercritical Fluid Chromatography for Analysis of Active Pharmaceutical Ingredients. Chirality 2007, 19, 787–792. DOI: 10.1002/chir.20451.
  • Desfontaine, V.; Guillarme, D.; Francotte, E.; Nováková, L. Supercritical Fluid Chromatography in Pharmaceutical Analysis. J. Pharm. Biomed. Anal. 2015, 113, 56–71. DOI: 10.1016/j.jpba.2015.03.007.
  • Perrenoud, A. G.-G.; Veuthey, J.-L.; Guillarme, D. Coupling State-of-the-Art Supercritical Fluid Chromatography and Mass Spectrometry: From Hyphenation Interface Optimization to High-Sensitivity Analysis of Pharmaceutical Compounds. J. Chromatogr. A. 2014, 1339, 174–184. DOI: 10.1016/j.chroma.2014.03.006.
  • Matsubara, A.; Bamba, T.; Ishida, H.; Fukusaki, E.; Hirata, K. Highly Sensitive and Accurate Profiling of Carotenoids by Supercritical Fluid Chromatography Coupled with Mass Spectrometry. J. Sep. Sci. 2009, 32, 1459–1464. DOI: 10.1002/jssc.200800699.
  • Wang, Z.; Zhang, H.; Liu, O.; Donovan, B. Development of an Orthogonal Method for Mometasone Furoate Impurity Analysis Using Supercritical Fluid Chromatography. J. Chromatogr. A. 2011, 1218, 2311–2319. DOI: 10.1016/j.chroma.2011.02.027.
  • Vissers, J. P. Recent Developments in Microcolumn Liquid Chromatography. J. Chromatogr. A. 1999, 856, 117–143. DOI: 10.1016/S0021-9673(99)00692-5.
  • Vissers, J. P.; Claessens, H. A.; Cramers, C. A. Microcolumn Liquid Chromatography: InstrumentatIon, Detection and Applications. J. Chromatogr. A. 1997, 779, 1–28. DOI: 10.1016/S0021-9673(97)00422-6.
  • Cobb, Z.; Shaw, P.; Lloyd, L.; Wrench, N.; Barrett, D. Evaporative Light‐Scattering Detection Coupled to Microcolumn Liquid Chromatography for the Analysis of Underivatized Amino Acids: Sensitivity, Linearity of Response and Comparisons with UV Absorbance Detection. J. Micro. Sep. 2001, 13, 169–175. DOI: 10.1002/mcs.1037.
  • Adachi, T.; Nemoto, M.; Ito, Y. Method of Increasing the Sensitivity of Liquid Chromatography-Atmospheric Pressure Chemical Ionization Mass Spectrometry Using a Semi-Micro Column. J. Chromatogr. A. 1995, 715, 13–18. DOI: 10.1016/0021-9673(95)00587-D.
  • Novotny, M. V. Microcolumn Liquid Chromatography in Biochemical Analysis. Methods Enzymol. 1996, 270, 101–133. DOI: 10.1016/S0076-6879(96)70007-1.
  • Moldoveanu, S. Solutions and Challenges in Sample Preparation for Chromatography. J. Chromatogr. Sci. 2004, 42, 1–14. DOI: 10.1093/chromsci/42.1.1.
  • Pan, J.; Zhang, C.; Zhang, Z.; Li, G. Review of Online Coupling of Sample Preparation Techniques with Liquid Chromatography. Anal. Chim. Acta. 2014, 815, 1–15. DOI: 10.1016/j.aca.2014.01.017.
  • Liang, Y.; Zhou, T. Recent Advances of Online Coupling of Sample Preparation Techniques with Ultra High Performance Liquid Chromatography and Supercritical Fluid Chromatography. J. Sep. Sci. 2019, 42, 226–242. DOI: 10.1002/jssc.201800721.
  • Kole, P. L.; Venkatesh, G.; Kotecha, J.; Sheshala, R. Recent Advances in Sample Preparation Techniques for Effective Bioanalytical Methods. Biomed. Chromatogr. 2011, 25, 199–217. DOI: 10.1002/bmc.1560.
  • Kataoka, H.; Ishizaki, A.; Saito, K. Online Automated Micro Sample Preparation for High-Performance Liquid Chromatography. In Biochemical Analysis Tools-Methods for Bio-Molecules Studies; Boldura, O. M., Balta, C., Awwad, N., Eds.; IntechOpen: United Kingdom, 2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.