575
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Bio-Fabricated Gold and Silver Nanoparticle Based Plasmonic Sensors for Detection of Environmental Pollutants: An Overview

&
Pages 672-688 | Published online: 03 Sep 2021

References

  • Siddique, H. M. A.; Kiani, A. K. Industrial Pollution and Human Health: Evidence from Middle-Income Countries. Environ. Sci. Pollut. Res. Int. 2020, 27, 12439–12448. DOI: 10.1007/s11356-020-07657-z.
  • Bings, N. H.; Bogaerts, A.; Broekaert, J. A. Atomic Spectroscopy. Anal. Chem. 2006, 78, 3917–3946. DOI: 10.1021/ac060597m.
  • Aydin, F. A.; Soylak, M. Separation, Preconcentration and Inductively Coupled Plasma-Mass Spectrometric (ICP-MS) Determination of Thorium(IV), Titanium(IV), Iron(III), Lead(II) and Chromium(III) on 2-Nitroso-1-Naphthol Impregnated MCI GEL CHP20P Resin. J. Hazard. Mater. 2010, 173, 669–674. DOI: 10.1016/j.jhazmat.2009.08.137.
  • Lopez-Artiguez, M.; Cameán, A.; Repetto, M. Preconcentration of Heavy Metals in Urine and Quantification by Inductively Coupled Plasma Atomic Emission Spectrometry. J. Anal. Toxicol. 1993, 17, 18–22. DOI: 10.1093/jat/17.1.18.
  • Sadeghi, S.; Moghaddam, A. Z. Solid-Phase Extraction and HPLC-UV Detection of Cr (III) and Cr (VI) Using Ionic Liquid-Functionalized Silica as a Hydrophobic Sorbent. Anal. Methods 2014, 6, 4867–4877. DOI: 10.1039/c4ay00493k.
  • Pal, K. Nanofabrication for Smart Nanosensor Applications; Elsevier: Amsterdam, Netherlands, 2020.
  • Pal, K.; Asthana, N.; Aljabali, A. A.; Bhardwaj, S. K.; Kralj, S.; Penkova, A.; Thomas, S.; Zaheer, T.; de Souza, F. G. A Critical Review on Multifunctional Smart Materials ‘Nanographene’ Emerging Avenue: Nano-Imaging and Biosensor Applications. Crit. Rev. Solid State Mater. Sci 2021. DOI: 10.1080/10408436.2021.1935717.
  • Asiya, S. I.; Pal, K.; Kralj, S.; Thomas, S. Nanomaterials Dispersed Liquid Crystalline Self-Assembly of Hybrid Matrix Application towards Thermal Sensor. In Nanofabrication for Smart Nanosensor Applications; Kaushik Pal and Fernando Gomes, Eds.; 2020; pp 295–321. DOI: 10.1016/B978-0-12-820702-4.00013-1.
  • Saha, K.; Agasti, S. S.; Kim, C.; Li, X.; Rotello, V. M. Gold Nanoparticles in Chemical and Biological Sensing. Chem. Rev. 2012, 112, 2739–2779. DOI: 10.1021/cr2001178.
  • Montes-García, V.; Squillaci, M. A.; Diez-Castellnou, M.; Ong, Q. K.; Stellacci, F.; Samorì, P. Chemical Sensing with Au and Ag Nanoparticles. Chem. Soc. Rev. 2021, 50, 1269–1304. DOI: 10.1039/d0cs01112f.
  • Rassaei, L.; Marken, F.; Sillanpää, M.; Amiri, M.; Cirtiu, C. M.; Sillanpää, M. Nanoparticles in Electrochemical Sensors for Environmental Monitoring. Trends Analyt. Chem. 2011, 30, 1704–1715. DOI: 10.1016/j.trac.2011.05.009.
  • Li, Y.; Wang, Z.; Sun, L.; Liu, L.; Xu, C.; Kuang, H. Nanoparticle-Based Sensors for Food Contaminants. Trends Analyt. Chem. 2019, 113, 74–83. DOI: 10.1016/j.trac.2019.01.012.
  • Kumar, G. P.; Shruthi, S.; Vibha, B.; Reddy, B. A.; Kundu, T. K.; Narayana, C. Hot Spots in Ag Core − Au Shell Nanoparticles Potent for Surface-Enhanced Raman Scattering Studies of Biomolecules. J. Phys. Chem. C. 2007, 111, 4388–4392. DOI: 10.1021/jp068253n.
  • Sabela, M.; Balme, S.; Bechelany, M.; Janot, J. M.; Bisetty, K. A Review of Gold and Silver Nanoparticle‐Based Colorimetric Sensing Assays. Adv. Eng. Mater. 2017, 19, 1700270–1700294. DOI: 10.1002/adem.201700270.
  • Pal, K. Bio-manufactured Nanomaterials; Springer: Cham, 2021
  • Eze, F. N.; Nwabor, O. F. Valorization of Pichia Spent Medium via One-Pot Synthesis of Biocompatible Silver Nanoparticles with Potent Antioxidant, Antimicrobial, Tyrosinase Inhibitory and Reusable Catalytic Activities. Mater. Sci. Eng. C. Mater. Biol. Appl. 2020, 115, 111104. DOI: 10.1016/j.msec.2020.111104.
  • Adil, S. F.; Assal, M. E.; Khan, M.; Al-Warthan, A.; Siddiqui, M. R. H.; Liz-Marzán, L. M. Biogenic Synthesis of Metallic Nanoparticles and Prospects toward Green Chemistry. Dalton Trans. 2015, 44, 9709–9717. DOI: 10.1039/c4dt03222e.
  • Duan, H.; Wang, D.; Li, Y. Green Chemistry for Nanoparticle Synthesis. Chem. Soc. Rev. 2015, 44, 5778–5792. DOI: 10.1039/c4cs00363b.
  • Al-Hakkani, M. F.; Gouda, G. A.; Hassan, S. H. A Review of Green Methods for Phyto-Fabrication of Hematite (α-Fe2O3) Nanoparticles and Their Characterization, Properties, and Applications. Heliyon 2021, 7, e05806. DOI: 10.1016/j.heliyon.2020.e05806.
  • Ikram, M.; Javed, B.; Raja, N. I.; Mashwani, Z. U. R. Biomedical Potential of Plant-Based Selenium Nanoparticles: A Comprehensive Review on Therapeutic and Mechanistic Aspects. Int. J. Nanomedicine. 2021, 16, 249–268. DOI: 10.2147/IJN.S295053.
  • Peralta-Videa, J. R.; Huang, Y.; Parsons, J. G.; Zhao, L.; Lopez-Moreno, L.; Hernandez-Viezcas, J. A.; Gardea-Torresdey, J. L. Plant-Based Green Synthesis of Metallic Nanoparticles: Scientific Curiosity or a Realistic Alternative to Chemical Synthesis? Nanotechnol. Environ. Eng. 2016, 1, 1–29. DOI: 10.1007/s41204-016-0004-5.
  • Hulkoti, N. I.; Taranath, T. C. Biosynthesis of Nanoparticles Using Microbes - A Review. Colloids Surf. B Biointerfaces 2014, 121, 474–483. DOI: 10.1016/j.colsurfb.2014.05.027.
  • Roy, A.; Bulut, O.; Some, S.; Mandal, A. K.; Yilmaz, M. D. Green Synthesis of Silver Nanoparticles: Biomolecule-Nanoparticle Organizations Targeting Antimicrobial Activity. RSC Adv. 2019, 9, 2673–2702. DOI: 10.1039/C8RA08982E.
  • Saratale, R. G.; Saratale, G. D.; Shin, H. S.; Jacob, J. M.; Pugazhendhi, A.; Bhaisare, M.; Kumar, G. New Insights on the Green Synthesis of Metallic Nanoparticles Using Plant and Waste Biomaterials: Current Knowledge, Their Agricultural and Environmental Applications. Environ. Sci. Pollut. Res. Int. 2018, 25, 10164–10183. DOI: 10.1007/s11356-017-9912-6.
  • Thirugnanasambandan, T.; Pal, K.; Sidhu, A.; Elkodous, M. A.; Prasath, H.; Kulasekarapandian, K.; Ayeshamariam, A.; Jeevanandam, J. Aggrandize Efficiency of Ultra-Thin Silicon Solar Cell via Topical Clustering of Silver Nanoparticles. Nano-Struct. Nano-Objects 2018, 16, 224–233. DOI: 10.1016/j.nanoso.2018.07.003.
  • Suresh, G.; Gunasekar, P. H.; Kokila, D.; Prabhu, D.; Dinesh, D.; Ravichandran, N.; Ramesh, B.; Koodalingam, A.; Siva, G. V. Green Synthesis of Silver Nanoparticles Using Delphinium denudatum Root Extract Exhibits Antibacterial and Mosquito Larvicidal Activities. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 127, 61–66. DOI: 10.1016/j.saa.2014.02.030.
  • Cruz, D.; Falé, P. L.; Mourato, A.; Vaz, P. D.; Serralheiro, M. L.; Lino, A. R. L. Preparation and Physicochemical Characterization of Ag Nanoparticles Biosynthesized by Lippia citriodora (Lemon Verbena). Colloids Surf. B Biointerfaces 2010, 81, 67–73. DOI: 10.1016/j.colsurfb.2010.06.025.
  • Minhas, F. T.; Arslan, G.; Gubbuk, I. H.; Akkoz, C.; Ozturk, B. Y.; Asıkkutlu, B.; Arslan, U.; Ersoz, M. Evaluation of Antibacterial Properties on Polysulfone Composite Membranes Using Synthesized Biogenic Silver Nanoparticles with Ulva compressa (L.) Kütz. and Cladophora glomerata (L.) Kütz. extracts. Int. J. Biol. Macromol. 2018, 107, 157–165. DOI: 10.1016/j.ijbiomac.2017.08.149.
  • Aziz, N.; Faraz, M.; Pandey, R.; Shakir, M.; Fatma, T.; Varma, A.; Barman, I.; Prasad, R. Facile Algae-Derived Route to Biogenic Silver Nanoparticles: Synthesis, Antibacterial, and Photocatalytic Properties. Langmuir 2015, 31, 11605–11612. DOI: 10.1021/acs.langmuir.5b03081.
  • Neethu, S.; Midhun, S. J.; Radhakrishnan, E. K.; Jyothis, M. Green Synthesized Silver Nanoparticles by Marine Endophytic Fungus Penicillium polonicum and Its Antibacterial Efficacy against Biofilm Forming, Multidrug-Resistant Acinetobacter baumanii. Microb. Pathog. 2018, 116, 263–272. DOI: 10.1016/j.micpath.2018.01.033.
  • Eugenio, M.; Müller, N.; Frasés, S.; Almeida-Paes, R.; Lima, L. M. T.; Lemgruber, L.; Farina, M.; de Souza, W.; Sant'Anna, C. Yeast-Derived Biosynthesis of Silver/Silver Chloride Nanoparticles and Their Antiproliferative Activity against Bacteria. RSC Adv. 2016, 6, 9893–9904. DOI: 10.1039/C5RA22727E.
  • Jo, J. H.; Singh, P.; Kim, Y. J.; Wang, C.; Mathiyalagan, R.; Jin, C. G.; Yang, D. C. Pseudomonas deceptionensis DC5-Mediated Synthesis of Extracellular Silver Nanoparticles. Artif. Cells. Nanomed. Biotechnol. 2016, 44, 1576–1581. DOI: 10.3109/21691401.2015.1068792.
  • Gan, L.; Zhang, S.; Zhang, Y.; He, S.; Tian, Y. Biosynthesis, Characterization and Antimicrobial Activity of Silver Nanoparticles by a Halotolerant Bacillus endophyticus SCU-L. Prep. Biochem. Biotechnol. 2018, 48, 582–588. DOI: 10.1080/10826068.2018.1476880.
  • El-Rafie, M. H.; El-Naggar, M. E.; Ramadan, M. A.; Fouda, M. M.; Al-Deyab, S. S.; Hebeish, A. Environmental Synthesis of Silver Nanoparticles Using Hydroxypropyl Starch and Their Characterization. Carbohydr. Polym. 2011, 86, 630–635. DOI: 10.1016/j.carbpol.2011.04.088.
  • Kemp, M. M.; Kumar, A.; Mousa, S.; Dyskin, E.; Yalcin, M.; Ajayan, P.; Linhardt, R. J.; Mousa, S. A. Gold and Silver Nanoparticles Conjugated with Heparin Derivative Possess Anti-Angiogenesis Properties. Nanotechnology 2009, 20, 455104. DOI: 10.1088/0957-4484/20/45/455104.
  • De, A.; Kumari, A.; Jain, P.; Manna, A. K.; Bhattacharjee, G. Plasmonic Sensing of Hg (II), Cr (III), and Pb (II) Ions from Aqueous Solution by Biogenic Silver and Gold Nanoparticles. Inorg. Nano-Met. Chem. 2020, 51, 1214–1225. DOI: 10.1080/24701556.2020.1826523.
  • Menon, S.; Rajeshkumar, S.; Kumar, V. A Review on Biogenic Synthesis of Gold Nanoparticles, Characterization, and Its Applications. Resour-Effic. Technol. 2017, 3, 516–527. DOI: 10.1016/j.reffit.2017.08.002.
  • Venkatesan, J.; Manivasagan, P.; Kim, S. K.; Kirthi, A. V.; Marimuthu, S.; Rahuman, A. A. Marine Algae-Mediated Synthesis of Gold Nanoparticles Using a Novel Ecklonia Cava. Bioprocess Biosyst. Eng. 2014, 37, 1591–1597. DOI: 10.1007/s00449-014-1131-7.
  • Castro, L.; Blázquez, M. L.; Muñoz, J. A.; González, F.; Ballester, A. Biological Synthesis of Metallic Nanoparticles Using Algae. IET Nanobiotechnol. 2013, 7, 109–116. DOI: 10.1049/iet-nbt.2012.0041.
  • Vijayaraghavan, K.; Ashokkumar, T. Plant-Mediated Biosynthesis of Metallic Nanoparticles: A Review of Literature, Factors Affecting Synthesis, Characterization Techniques and Applications. J. Environ. Chem. Eng. 2017, 5, 4866–4883. DOI: 10.1016/j.jece.2017.09.026.
  • Bhagat, S.; Shaikh, H.; Nafady, A.; Sherazi, S. T. H.; Bhanger, M. I.; Shah, M. R.; Abro, M. I.; Memon, R.; Bhagat, R. Trace Level Colorimetric Hg2+ Sensor Driven by Citrus japonica Leaf Extract Derived Silver Nanoparticles: Green Synthesis and Application. J. Clust. Sci. 2021. DOI: 10.1007/s10876-021-02109-1.
  • Manik, U. P.; Nande, A.; Raut, S.; Dhoble, S. J. Green Synthesis of Silver Nanoparticles Using Plant Leaf Extraction of Artocarpus heterophylus and Azadirachta indica. Results Mat. 2020, 6, 100086. DOI: 10.1016/j.rinma.2020.100086.
  • Amooaghaie, R.; Saeri, M. R.; Azizi, M. Synthesis, Characterization and Biocompatibility of Silver Nanoparticles Synthesized from Nigella sativa Leaf Extract in Comparison with Chemical Silver Nanoparticles. Ecotoxicol. Environ. Saf. 2015, 120, 400–408. DOI: 10.1016/j.ecoenv.2015.06.025.
  • Maiti, S.; Barman, G.; Laha, J. K. Detection of Heavy Metals (Cu2+, Hg2+) by Biosynthesized Silver Nanoparticles. Appl. Nanosci. 2016, 6, 529–538. DOI: 10.1007/s13204-015-0452-4.
  • Aravind, A.; Sebastian, M.; Mathew, B. Green Silver Nanoparticles as a Multifunctional Sensor for Toxic Cd (ii) Ions. New J. Chem. 2018, 42, 15022–15031. DOI: 10.1039/C8NJ03696A.
  • Jayaprakash, N.; Vijaya, J. J.; Kaviyarasu, K.; Kombaiah, K.; Kennedy, L. J.; Ramalingam, R. J.; Munusamy, M. A.; Al-Lohedan, H. A. Green Synthesis of Ag Nanoparticles Using Tamarind Fruit Extract for the Antibacterial Studies. J. Photochem. Photobiol. B. 2017, 169, 178–185. DOI: 10.1016/j.jphotobiol.2017.03.013.
  • Singh, K.; Kumar, V.; Kukkar, B.; Kim, K. H.; Sharma, T. R. Facile and Efficient Colorimetric Detection of Cadmium Ions in Aqueous Systems Using Green-Synthesized Gold Nanoparticles. Int. J. Environ. Sci. Technol. 2021. DOI: 10.1007/s13762-021-03331-0.
  • Das, J.; Das, M. P.; Velusamy, P. Sesbania grandiflora Leaf Extract Mediated Green Synthesis of Antibacterial Silver Nanoparticles against Selected Human Pathogens. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 104, 265–270. DOI: 10.1016/j.saa.2012.11.075.
  • Harisha, K. S.; Narayana, B.; Sangappa, Y. Highly Selective and Sensitive Colorimetric Detection of Arsenic (III) in Aqueous Solution Using Green Synthesized Unmodified Gold Nanoparticles. J. Dispers. Sci. Technol. 2021. DOI: 10.1080/01932691.2021.1931286.
  • Padalia, H.; Moteriya, P.; Chanda, S. Green Synthesis of Silver Nanoparticles from Marigold Flower and Its Synergistic Antimicrobial Potential. AJC 2015, 8, 732–741. DOI: 10.1016/j.arabjc.2014.11.015.
  • Rajiv, P.; Bavadharani, B.; Kumar, M. N.; Vanathi, P. Synthesis and Characterization of Biogenic Iron Oxide Nanoparticles Using Green Chemistry Approach and Evaluating Their Biological Activities. Biocatal. Agric. Biotechnol. 2017, 12, 45–49. https://doi.org/10.1016/j.jphotobiol.2018.06.009. DOI: 10.1016/j.bcab.2017.08.015.
  • Ghosh, S. K.; Pal, T. Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications. Chem. Rev. 2007, 107, 4797–4862. DOI: 10.1021/cr0680282.
  • Lee, K. S.; El-Sayed, M. A. Dependence of the Enhanced Optical Scattering Efficiency Relative to That of Absorption for Gold Metal Nanorods on Aspect Ratio, Size, End-Cap Shape, and Medium Refractive Index. J. Phys. Chem. B. 2005, 109, 20331–20338. DOI: 10.1021/jp054385p.
  • Nehl, C. L.; Hafner, J. H. Shape-Dependent Plasmon Resonances of Gold Nanoparticles. J. Mater. Chem. 2008, 18, 2415–2419. DOI: 10.1039/b714950f.
  • Hussain, C. M.; KeçIli, R. Modern Environmental Analysis Techniques for Pollutants; Elsevier: Amsterdam, Netherlands, 2019.
  • Pum, J. A Practical Guide to Validation and Verification of Analytical Methods in the Clinical Laboratory. Adv. Clin. Chem. 2019, 90, 215–281. DOI: 10.1016/bs.acc.2019.01.006.
  • Sharma, R.; Dhillon, A.; Kumar, D. Mentha-Stabilized Silver Nanoparticles for High-Performance Colorimetric Detection of Al (III) in Aqueous Systems. Sci. Rep. 2018, 8, 1, 1–13. DOI: 10.1038/s41598-018-23469-1.
  • Joshi, P.; Nair, M.; Kumar, D. pH-Controlled Sensitive and Selective Detection of Cr (III) and Mn (II) by Using Clove (S. aromaticum) Reduced and Stabilized Silver Nanospheres. Anal. Methods 2016, 8, 1359–1366. DOI: 10.1039/C5AY03217B.
  • Ahmed, F.; Kabir, H.; Xiong, H. Dual Colorimetric Sensor for Hg2+/Pb2+ and an Efficient Catalyst Based on Silver Nanoparticles Mediating by the Root Extract of Bistorta amplexicaulis. Front. Chem. 2020, 8, 591958. DOI: 10.3389/fchem.2020.591958.
  • Annadhasan, M.; Muthukumarasamyve, T.; Sankar Babu, V. R.; Rajendiran, N. Green Synthesized Silver and Gold Nanoparticles for Colorimetric Detection of Hg2+, Pb2+, and Mn2+ in Aqueous Medium. ACS Sustain. Chem. Eng. 2014, 2, 887–896. DOI: 10.1021/sc400500z.
  • Basiri, S.; Mehdinia, A.; Jabbari, A. A Sensitive Triple Colorimetric Sensor Based on Plasmonic Response Quenching of Green Synthesized Silver Nanoparticles for Determination of Fe2+, Hydrogen Peroxide, and Glucose. Colloids Surf. A Physicochem. Eng. Asp. 2018, 545, 138–146. DOI: 10.1016/j.colsurfa.2018.02.053.
  • Cheon, J. Y.; Park, W. H. Green Synthesis of Silver Nanoparticles Stabilized with Mussel-Inspired Protein and Colorimetric Sensing of Lead(II) and Copper(II) Ions. Int. J. Mol. Sci. 2016, 17, 2006. DOI: 10.3390/ijms17122006.
  • Balavigneswaran, C. K.; Kumar, T. S. J.; Packiaraj, R. M.; Prakash, S. Rapid Detection of Cr(VI) by AgNPs Probe Produced by Anacardium occidentale Fresh Leaf Extracts. Appl. Nanosci. 2014, 4, 367–378. DOI: 10.1007/s13204-013-0203-3.
  • Bindhu, M. R.; Umadevi, M.; Esmail, G. A.; Al-Dhabi, N. A.; Arasu, M. V. Green Synthesis and Characterization of Silver Nanoparticles from Moringa oleifera Flower and Assessment of Antimicrobial and Sensing Properties. J. Photochem. Photobiol. B. 2020, 205, 111836. DOI: 10.1016/j.jphotobiol.2020.111836.
  • Das, S.; Bera, S.; Maji, A.; Nayim, S.; Jana, G.; Ch.; Hossain, M. A. Compact Prospective Investigation on the Colorimetric Recognition of Hg2+ Ion and Photostimulated Degradation of Discharged Toxic Organic Dyes Motivated by H. mutabilis Directed Silver Nanoparticles. New J. Chem. 2019, 43, 17188–17199. DOI: 10.1039/C9NJ04326H.
  • Farhadi, K.; Forough, M.; Molaei, R.; Hajizadeh, S.; Rafipour, A. Highly Selective Hg2+ Colorimetric Sensor Using Green Synthesized and Unmodified Silver Nanoparticles. Sens. Actuators B 2012, 161, 880–885. DOI: 10.1016/j.snb.2011.11.052.
  • Zayed, M. F.; Eisa, W. H.; El-Kousy, S. M.; Mleha, W. K.; Kamal, N. Ficus retusa-Stabilized Gold and Silver Nanoparticles: Controlled Synthesis, Spectroscopic Characterization, and Sensing Properties. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2019, 214, 496–512. DOI: 10.1016/j.saa.2019.02.042.
  • Chandraker, S. K.; Ghosh, M. K.; Lal, M.; Ghorai, T. K.; Shukla, R. Colorimetric Sensing of Fe3+ and Hg2+ and Photocatalytic Activity of Green Synthesized Silver Nanoparticles from the Leaf Extract of Sonchus arvensis L. New J. Chem. 2019, 43, 18175–18183. DOI: 10.1039/C9NJ01338E.
  • Ghosh, S.; Maji, S.; Mondal, A. Study of Selective Sensing of Hg2+ Ions by Green Synthesized Silver Nanoparticles Suppressing the Effect of Fe3+ Ions. Colloids Surf. A Physicochem. Eng. Asp. 2018, 555, 324–331. DOI: 10.1016/j.colsurfa.2018.07.012.
  • Uddin, I.; Ahmad, K.; Khan, A. A.; Kazmi, M. A. Synthesis of Silver Nanoparticles Using Matricaria recutita (Babunah) Plant Extract and Its Study as Mercury Ions Sensor. Sens. Biosens. Res. 2017, 16, 62–67. DOI: 10.1016/j.sbsr.2017.11.005.
  • Jabariyan, S.; Zanjanchi, M. A. Colorimetric Detection of Cadmium Ions Using Modified Silver Nanoparticles. Appl. Phys. A. 2019, 125, 872. DOI: 10.1007/s00339-019-3167-7.
  • Kadam, J.; Dhawal, P.; Barve, S.; Kakodkar, S. Green Synthesis of Silver Nanoparticles Using Cauliflower Waste and Their Multifaceted Applications in Photocatalytic Degradation of Methylene Blue Dye and Hg2+ Biosensing. SN Appl. Sci. 2020, 2, 738. DOI: 10.1007/s42452-020-2543-4.
  • Khwannimit, D.; Jaikrajang, N.; Dokmaisrijan, S.; Rattanakit, P. Biologically Green Synthesis of Silver Nanoparticles from Citrullus lanatus Extract with L-Cysteine Addition and Investigation of Colorimetric Sensing of Nickel(II) Potential. Mater. Today 2019, 17, 2028–2038. DOI: 10.1016/j.matpr.2019.06.251.
  • Kumar, V.; Singh, D. K.; Mohan, S.; Bano, D.; Gundampati, R. K.; Hasan, S. H. Green Synthesis of Silver Nanoparticle for the Selective and Sensitive Colorimetric Detection of Mercury (II) Ion. J. Photochem. Photobiol. B. 2017, 168, 67–77. DOI: 10.1016/j.jphotobiol.2017.01.022.
  • Manjari, G.; Parthiban, A.; Saran, S. Sustainable Utilization of Molasses towards Green Synthesis of Silver Nanoparticles for Colorimetric Heavy Metal Sensing and Catalytic Applications. J. Clust. Sci. 2020, 31, 1137–1145. DOI: 10.1007/s10876-019-01721-6.
  • Memon, R.; Memon, A. A.; Sirajuddin, Balouch, A.; Memon, K.; Sherazi, S. T. H.; Chandio, A. A.; Kumar, R. Ultrasensitive Colorimetric Detection of Hg2+ in Aqueous Media via Green Synthesis by Ziziphus mauritiana Leaf Extract-Based Silver Nanoparticles. Int. J. Environ. Anal. Chem. 2020. DOI: 10.1080/03067319.2020.1822353.
  • Aminu, A.; Oladepo, S. A. Fast Orange Peel-Mediated Synthesis of Silver Nanoparticles and Use as Visual Colorimetric Sensor in the Selective Detection of Mercury(II) Ions. Arab. J. Sci. Eng. 2021, 46, 5477–5487. DOI: 10.1007/s13369-020-05030-3.
  • Desai, M. P.; Patil, R. V.; Pawar, K. D. Selective and Sensitive Colorimetric Detection of Platinum Using Pseudomonas stutzeri Mediated Optimally Synthesized Antibacterial Silver Nanoparticles. Biotechnol. Rep. (Amst.) 2020, 25, e00404. DOI: 10.1016/j.btre.2019.e00404.
  • Kumar, D.; Nair, M.; Painuli, R. Highly Responsive Bioinspired AgNPs Probe for the Precise Colorimetric Detection of the Mn(II) in Aqueous Systems. Plasmonics 2019, 14, 303–311. DOI: 10.1007/s11468-018-0805-4.
  • Marimuthu, V.; Chandirasekar, S.; Rajendiran, N. Green Synthesis of Sodium Cholate Stabilized Silver Nanoparticles: An Effective Colorimetric Sensor for Hg2+ and Pb2+ Ions. ChemistrySelect 2018, 3, 3918–3924. DOI: 10.1002/slct.201800219.
  • Wang, Y.; Dong, X.; Zhao, L.; Xue, Y.; Zhao, X.; Li, Q.; Xia, Y. Facile and Green Fabrication of Carrageenan-Silver Nanoparticles for Colorimetric Determination of Cu2+ and S2−. Nanomaterials 2020, 10, 83. DOI: 10.3390/nano10010083.
  • Oluwafemi, O. S.; Anyik, J. L.; Zikalala, N. E.; Sakho, E. H. M. Biosynthesis of Silver Nanoparticles from Water Hyacinth Plant Leaves Extract for Colourimetric Sensing of Heavy Metals. Nano-Struct. Nano-Objects 2019, 20, 100387. DOI: 10.1016/j.nanoso.2019.100387.
  • Khan, N. A.; Niaz, A.; Zaman, M. I.; Khan, F. A.; Nisar-Ul-Haq, M.; Tariq, M. Sensitive and Selective Colorimetric Detection of Pb2+ by Silver Nanoparticles Synthesized from Aconitum violaceum Plant Leaf Extract. Mater. Res. Bull. 2018, 102, 330–336. DOI: 10.1016/j.materresbull.2018.02.050.
  • Puente, C.; Gomez, I.; Kharisov, B.; Lopez, I. Selective Colorimetric Sensing of Zn(II) Ions Using Green-Synthesized Silver Nanoparticles: Ficus benjamina Extract as Reducing and Stabilizing Agent. Mater. Res. Bull. 2019, 112, 1–8. DOI: 10.1016/j.materresbull.2018.11.045.
  • Sangaonkar, G. M.; Desai, M. P.; Dongale, T. D.; Pawar, K. D. Selective Interaction between Phytomediated Anionic Silver Nanoparticles and Mercury Leading to Amalgam Formation Enables Highly Sensitive, Colorimetric and Memristor-Based Detection of Mercury. Sci. Rep. 2020, 10, 2037. DOI: 10.1038/s41598-020-58844-4.
  • Santhosh, A. S.; Sandeep, S.; Swamy, N. K. Green Synthesis of Nano Silver from Euphorbia geniculata Leaf Extract: Investigations on Catalytic Degradation of Methyl Orange Dye and Optical Sensing of Hg2+. Surf. Interfaces 2019, 14, 50–53. DOI: 10.1016/j.surfin.2018.11.004.
  • Sithara, R.; Selvakumar, P.; Arun, C.; Anandan, S.; Sivashanmugam, P. Economical Synthesis of Silver Nanoparticles Using Leaf Extract of Acalypha hispida and Its Application in the Detection of Mn(II) ions. J. Adv. Res. 2017, 8, 561–568. DOI: 10.1016/j.jare.2017.07.001.
  • Ihsan, M.; Niaz, A.; Rahim, A.; Zaman, M. I.; Arain, M. B.; Sirajuddin; Sharif, T.; Najeeb, M. Biologically Synthesized Silver Nanoparticle-Based Colorimetric Sensor for the Selective Detection of Zn2+. RSC Adv. 2015, 5, 91158–91165. DOI: 10.1039/C5RA17055A.
  • Li, M.; Gou, H.; Al-Ogaidi, I.; Wu, N. Nanostructured Sensors for Detection of Heavy Metals: A Review. ACS Sustain. Chem. Eng. 2013, 1, 713–723. DOI: 10.1021/sc400019a.
  • Gangapuram, B. R.; Bandi, R.; Dadigala, R.; Kotu, G. M.; Guttena, V. Facile Green Synthesis of Gold Nanoparticles with Carboxymethyl Gum Karaya, Selective and Sensitive Colorimetric Detection of Copper (II) Ions. J. Clust. Sci. 2017, 28, 2873–2890. DOI: 10.1007/s10876-017-1264-3.
  • Mahajan, P. G.; Dige, N. C.; Vanjare, B. D.; Hong, S.-K.; Lee, K. H. Gallotannin Functionalized Gold Nanoparticles for Rapid, Selective and Sensitive Colorimetric Detection of Ag + in Aqueous Medium: Approach to Eco-Friendly Water Analysis. Sens. Actuat. B. Chem. 2019, 281, 720–729. DOI: 10.1016/j.snb.2018.10.116.
  • Annadhasan, M.; Kasthuri, J.; Rajendiran, N. Green Synthesis of Gold Nanoparticles under Sunlight Irradiation and Their Colorimetric Detection of Ni2+ and Co2+ Ions. RSC Adv. 2015, 5, 11458–11468. DOI: 10.1039/C4RA14034F.
  • Chen, X.; Ji, J.; Shi, G.; Xue, Z.; Zhou, X.; Zhao, L.; Feng, S. Formononetin in Radix hedysari Extract-Mediated Green Synthesis of Gold Nanoparticles for Colorimetric Detection of Ferrous Ions in Tap Water. RSC Adv. 2020, 10, 32897–32905. DOI: 10.1039/D0RA05660J.
  • Bindhu, M. R.; Umadevi, M. Green Synthesized Gold Nanoparticles as a Probe for the Detection of Fe3+ Ions in Water. J. Clust. Sci. 2014, 25, 969–978. DOI: 10.1007/s10876-013-0679-8.
  • Zhang, X.; Qu, Y.; Shen, W.; You, S.; Pei, X.; Li, S.; Wang, J.; Zhou, J. Colorimetric Response of Biogenetic Gold Nanoparticles to Mercury (II) Ions. Colloids Surf. A Physicochem. Eng. Asp. 2016, 508, 360–365. DOI: 10.1016/j.colsurfa.2016.08.072.
  • Park, H.; Kim, W.; Kim, M.; Lee, G.; Lee, W.; Park, J. Eco-Friendly and Enhanced Colorimetric Detection of Aluminum Ions Using Pectin-Rich Apple Extract-Based Gold Nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 245, 118880. DOI: 10.1016/j.saa.2020.118880.
  • Singh, K.; Kukkar, D.; Singh, R.; Kukkar, P.; Kim, K.-H. Exceptionally Stable Green-Synthesized Gold Nanoparticles for Highly Sensitive and Selective Colorimetric Detection of Trace Metal Ions and Volatile Aromatic Compounds. J. Ind. Eng. Chem. 2018, 68, 33–41. DOI: 10.1016/j.jiec.2018.07.026.
  • Kaviya, S.; Prasad, E. Sequential Detection of Fe3+ and As3+ Ions by Naked Eye through Aggregation and Disaggregation of Biogenic Gold Nanoparticles. Anal. Methods 2015, 7, 168–174. DOI: 10.1039/C4AY02342K.
  • Niaz, A.; Bibi, A.; Huma; Zaman, M. I.; Khan, M.; Rahim, A. Highly Selective and Ecofriendly Colorimetric Method for the Detection of Iodide Using Green Tea Synthesized Silver Nanoparticles. J. Mol. Liq. 2018, 249, 1047–1051. DOI: 10.1016/j.molliq.2017.11.151.
  • Ismail, M.; Khan, M. I.; Akhtar, K.; Khan, M. A.; Asiri, A. M.; Khan, S. B. Biosynthesis of Silver Nanoparticles: A Colorimetric Optical Sensor for Detection of Hexavalent Chromium and Ammonia in Aqueous Solution. Phys. E. 2018, 103, 367–376. DOI: 10.1016/j.physe.2018.06.015.
  • Pourreza, N.; Golmohammadi, H.; Naghdi, T.; Yousefi, H. Green in-Situ Synthesized Silver Nanoparticles Embedded in Bacterial Cellulose Nanopaper as a Bionanocomposite Plasmonic Sensor. Biosens. Bioelectron. 2015, 74, 353–359. DOI: 10.1016/j.bios.2015.06.041.
  • Shanmugaraj, K.; Ilanchelian, M. Colorimetric Determination of Sulfide Using Chitosan-Capped Silver Nanoparticles. Microchim. Acta 2016, 183, 1721–1728. DOI: 10.1007/s00604-016-1802-y.
  • Amanulla, B.; Palanisamy, S.; Chen, S. M.; Chiu, T. W.; Velusamy, V.; Hall, J. M.; Chen, T. W.; Ramaraj, S. K. Selective Colorimetric Detection of Nitrite in Water Using Chitosan Stabilized Gold Nanoparticles Decorated Reduced Graphene Oxide. Sci. Rep. 2017, 7, 14182–14189. DOI: 10.1038/s41598-017-14584-6.
  • Kanchi, S. Inamuddin, One-Pot Biosynthesis of Silver Nanoparticle Using Colocasia esculenta Extract: Colorimetric Detection of Melamine in Biological Samples. J. Photochem. Photobiol. A 2020, 391, 112310. DOI: 10.1016/j.jphotochem.2019.112310.
  • Chetia, L.; Kalita, D.; Ahmed, G. A. Synthesis of Ag Nanoparticles Using Diatom Cells for Ammonia Sensing. Sens. Bio-Sens. Res 2017, 16, 55–61. DOI: 10.1016/j.sbsr.2017.11.004.
  • Srikhao, N.; Kasemsiri, P.; Lorwanishpaisarn, N.; Okhawilai, M. Green Synthesis of Silver Nanoparticles Using Sugarcane Leaves Extract for Colorimetric Detection of Ammonia and Hydrogen Peroxide. Res. Chem. Intermed. 2021, 47, 1269–1283. DOI: 10.1007/s11164-020-04354-x.
  • Yu, Z.; Hu, C.; Guan, L.; Zhang, G.; Gu, J. Green Synthesis of Cellulose Nanofibrils Decorated with Ag Nanoparticles and Their Application in Colorimetric Detection of L-Cysteine. ACS Sustain. Chem. Eng. 2020, 8, 12713–12721. DOI: 10.1021/acssuschemeng.0c04842.
  • Omole, R. K.; Torimiro, N.; Alayande, S. O.; Ajenifuja, E. Silver Nanoparticles Synthesized from Bacillus subtilis for Detection of Deterioration in the Post-Harvest Spoilage of Fruit. Sustain. Chem. Pharm. 2018, 10, 33–40. DOI: 10.1016/j.scp.2018.08.005.
  • Yu, T.; Xu, C.; Qiao, J.; Zhang, R.; Qi, L. Green Synthesis of Gold Nanoclusters Using Papaya Juice for Detection of L-Lysine. Chin. Chem. Lett. 2019, 30, 660–663. DOI: 10.1016/j.cclet.2018.10.001.
  • Zhou, M.; Yin, J.; Zhao, X.; Fu, Y.; Jin, X.; Liu, X.; Jiao, T. Green Synthesis of Gold Nanoparticles Using Sargassum carpophyllum Extract and Its Application in Visual Detection of Melamine. Colloids Surf. A Physicochem. Eng. Asp. 2020, 603, 125293. DOI: 10.1016/j.colsurfa.2020.125293.
  • Kaviya, S. Rapid Naked Eye Detection of Arginine by Pomegranate Peel Extract Stabilized Gold Nanoparticles. J. King Saud. Univ. Sci. 2019, 31, 864–868. DOI: 10.1016/j.jksus.2017.12.001.
  • Malarkodi, C.; Rajeshkumar, S.; Annadurai, G. Detection of Environmentally Hazardous Pesticide in Fruit and Vegetable Samples Using Gold Nanoparticles. Food Control 2017, 80, 11–18. DOI: 10.1016/j.foodcont.2017.04.023.
  • Hussain, M.; Nafady, A.; Avcı, A.; Pehlivan, E.; Nisar, J.; Sherazi, S. T. H.; Balouch, A.; Shah, M. R.; Almaghrabi, O. A.; Ul-Haq, M. A, Biogenic Silver Nanoparticles for Trace Colorimetric Sensing of Enzyme Disrupter Fungicide Vinclozolin. Nanomaterials (Basel) 2019, 9, 1604. DOI: 10.3390/nano9111604.
  • Mane, P. C.; Shinde, M. D.; Varma, S.; Chaudhari, B. P.; Fatehmulla, A.; Shahabuddin, M.; Amalnerkar, D. P.; Aldhafiri, A. M.; Chaudhari, R. D. Highly Sensitive Label-Free Bio-Interfacial Colorimetric Sensor Based on Silk Fibroin-Gold Nanocomposite for Facile Detection of Chlorpyrifos Pesticide. Sci. Rep. 2020, 10, 1–14. DOI: 10.1038/s41598-020-61130-y.
  • Grün, A.-L.; Straskraba, S.; Schulz, S.; Schloter, M.; Emmerling, C. Long-Term Effects of Environmentally Relevant Concentrations of Silver Nanoparticles on Microbial Biomass, Enzyme Activity, and Functional Genes Involved in the Nitrogen Cycle of Loamy Soil. J. Environ. Sci. (China) 2018, 69, 12–22. DOI: 10.1016/j.jes.2018.04.013.
  • Gioria, S.; Urbán, P.; Hajduch, M.; Barboro, P.; Cabaleiro, N.; Spina, R. L.; Chassaigne, H. Proteomics Study of Silver Nanoparticles on Caco-2 Cells. Toxicol. In Vitro 2018, 50, 347–372. DOI: 10.1016/j.tiv.2018.03.015.
  • Amiri, S.; Yousefi-Ahmadipour, A.; Hosseini, M.-J.; Haj-Mirzaian, A.; Momeny, M.; Hosseini-Chegeni, H.; Mokhtari, T.; Kharrazi, S.; Hassanzadeh, G.; Amini, S. M.; et al. Maternal Exposure to Silver Nanoparticles Are Associated with Behavioral Abnormalities in Adulthood: Role of Mitochondria and Innate Immunity in Developmental Toxicity. Neurotoxicology 2018, 66, 66–77. DOI: 10.1016/j.neuro.2018.03.006.
  • Zhang, W.; Xiao, B.; Fang, T. Chemical Transformation of Silver Nanoparticles in Aquatic Environments: Mechanism, Morphology and Toxicity. Chemosphere 2018, 191, 324–334. DOI: 10.1016/j.chemosphere.2017.10.016.
  • Zaheer, T.; Imran, M.; Aqib, A. I.; Pal, K.; Tahir, A.; Zaheer, I.; Abbas, R. Z. Key Challenges and Scopes of Biomaterials Commercialization: Therapeutic Delivery. In Bio-Manufactured Nanomaterials; Kaushik Pal, Ed.; Springer: Cham, 2021; pp 321–337.
  • Zhu, D.; Liu, B.; Wei, G. Two-Dimensional Material-Based Colorimetric Biosensors: A Review. Biosensors 2021, 11, 259. DOI: 10.3390/bios11080259.
  • Gayda, G. Z.; Demkiv, O. M.; Stasyuk, N. Y.; Serkiz, R. Y.; Lootsik, M. D.; Errachid, A.; Gonchar, M. V.; Nisnevitch, M. Metallic Nanoparticles Obtained via “Green” Synthesis as a Platform for Biosensor Construction. Appl. Sci. 2019, 9, 720. DOI: 10.3390/app9040720.
  • Chen, H.; Zhou, K.; Zhao, G. Gold Nanoparticles: From Synthesis, Properties to Their Potential Application as Colorimetric Sensors in Food Safety Screening. Trends Food Sci. Technol. 2018, 78, 83–94. DOI: 10.1016/j.tifs.2018.05.027.
  • Chah, S.; Hammond, M. R.; Zare, R. N. Gold Nanoparticles as a Colorimetric Sensor for Protein Conformational Changes. Chem. Biol. 2005, 12, 323–328. DOI: 10.1016/j.chembiol.2005.01.013.
  • Gan, Y.; Liang, T.; Hu, Q.; Zhong, L.; Wang, X.; Wan, H.; Wang, P. In-Situ Detection of Cadmium with Aptamer Functionalized Gold Nanoparticles Based on Smartphone-Based Colorimetric System. Talanta 2020, 208, 120231. DOI: 10.1016/j.talanta.2019.120231.
  • Zhao, Y.; Liu, X.; Li, J.; Qiang, W.; Sun, L.; Li, H.; Xu, D. Microfluidic Chip-Based Silver Nanoparticles Aptasensor for Colorimetric Detection of Thrombin. Talanta 2016, 150, 81–87. DOI: 10.1016/j.talanta.2015.09.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.