402
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Chemical Characterization of Quality-Related Compounds in Cocoa Matrices: An Overview of Analytical Methods Applied for Their Analysis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 689-717 | Published online: 12 Sep 2021

References

  • Ríos, F.; Ruiz, A.; Lecaro, J.; Rehpani, C. Estrategias país Para la oferta de cacaos especiales- Políticas e iniciativas privadas exitosas en el Perú, Ecuador, Colombia y República Dominicana, 1st ed.; Fundación Swisscontact Colombia: Bogotá, DC, 2017.
  • ICCO.A Working Definition of Fine or Flavour Cocoa. April 21, 2018. https://www.icco.org/fine-or-flavor-cocoa/
  • Domínguez-Pérez, L. A.; Beltrán-Barrientos, L. M.; González-Córdova, A. F.; Hernández-Mendoza, A.; Vallejo-Cordoba, B. Artisanal Cocoa Bean Fermentation: From Cocoa Bean Proteins to Bioactive Peptides with Potential Health Benefits. J. Funct. Foods 2020, 73, 104134. DOI: 10.1016/j.jff.2020.104134.
  • Latif, R. Health Benefits of Cocoa. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 669–674.
  • Montagna, M. T.; Diella, G.; Triggiano, F.; Caponio, G. R.; De Giglio, O.; Caggiano, G.; Di Ciaula, A.; Portincasa, P. Chocolate, "Food of the Gods": History, Science, and Human Health. Int. J. Environ. Res. Public Health 2019, 16, 4960. DOI: 10.3390/ijerph16244960.
  • Kongor, J. E.; Hinneh, M.; de Walle, D. V.; Afoakwa, E. O.; Boeckx, P.; Dewettinck, K. Factors Influencing Quality Variation in Cocoa (Theobroma cacao) Bean Flavour Profile—A Review. Food Res. Int. 2016, 82, 44–52. DOI: 10.1016/j.foodres.2016.01.012.
  • Santander Muñoz, M.; Rodriguez Cortina, J.; Vaillant, F. E.; Parra, S. E. An Overview of the Physical and Biochemical Transformation of Cocoa Seeds to Beans and to Chocolate: Flavor Formation. Crit. Rev. Food Sci. Nutr. 2020, 60, 1593–1613.
  • Aprotosoaie, A. C.; Luca, S. V.; Miron, A. Flavor Chemistry of Cocoa and Cocoa Products—An Overview. Compr. Rev. Food Sci. Food Saf. 2016, 15, 73–91. DOI: 10.1111/1541-4337.12180.
  • van Boekel, M. A. J. S. Formation of Flavour Compounds in the Maillard Reaction. Biotechnol. Adv. 2006, 24, 230–233. DOI: 10.1016/j.biotechadv.2005.11.004.
  • Crafack, M.; Keul, H.; Eskildsen, C. E.; Petersen, M. A.; Saerens, S.; Blennow, A.; Skovmand-Larsen, M.; Swiegers, J. H.; Petersen, G. B.; Heimdal, H.; Nielsen, D. S. Impact of Starter Cultures and Fermentation Techniques on the Volatile Aroma and Sensory Profile of Chocolate. Food Res. Int. 2014, 63, 306–316. DOI: 10.1016/j.foodres.2014.04.032.
  • Braga, S. C. G. N.; Oliveira, L. F.; Hashimoto, J. C.; Gama, M. R.; Efraim, P.; Poppi, R. J.; Augusto, F. Study of Volatile Profile in Cocoa Nibs, Cocoa Liquor and Chocolate on Production Process Using GC × GC-QMS. Microchem. J. 2018, 141, 353–361. DOI: 10.1016/j.microc.2018.05.042.
  • Tran, P. D.; Van de Walle, D.; De Clercq, N.; De Winne, A.; Kadow, D.; Lieberei, R.; Messens, K.; Tran, D. N.; Dewettinck, K.; Van Durme, J. Assessing Cocoa Aroma Quality by Multiple Analytical Approaches. Food Res. Int. 2015, 77, 657–669. DOI: 10.1016/j.foodres.2015.09.019.
  • Castro-Alayo, E. M.; Idrogo-Vásquez, G.; Siche, R.; Cardenas-Toro, F. P. Formation of Aromatic Compounds Precursors during Fermentation of Criollo and Forastero Cocoa. Heliyon 2019, 5, e01157. DOI: 10.1016/j.heliyon.2019.e01157.
  • Megias-Perez, R.; Moreno-Zambrano, M.; Behrends, B.; Corno, M.; Kuhnert, N. Monitoring the Changes in Low Molecular Weight Carbohydrates in Cocoa Beans during Spontaneous Fermentation: A Chemometric and Kinetic Approach. Food Res. Int. 2020, 128, 108865. DOI: 10.1016/j.foodres.2019.108865.
  • Scollo, E.; Neville, D. C. A.; Oruna-Concha, M. J.; Trotin, M.; Umaharan, P.; Sukha, D.; Kalloo, R.; Cramer, R. Proteomic and Peptidomic UHPLC-ESI MS/MS Analysis of Cocoa Beans Fermented Using the Styrofoam-Box Method. Food Chem. 2020, 316, 126350. DOI: 10.1016/j.foodchem.2020.126350.
  • Rottiers, H.; Tzompa Sosa, D. A.; De Winne, A.; Ruales, J.; De Clippeleer, J.; De Leersnyder, I.; De Wever, J.; Everaert, H.; Messens, K.; Dewettinck, K. Dynamics of Volatile Compounds and Flavor Precursors during Spontaneous Fermentation of Fine Flavor Trinitario Cocoa Beans. Eur. Food Res. Technol. 2019, 245, 1917–1937. DOI: 10.1007/s00217-019-03307-y.
  • Fernández-Romero, E.; Chavez-Quintana, S. G.; Siche, R.; Castro-Alayo, E. M.; Cardenas-Toro, F. P. The Kinetics of Total Phenolic Content and Monomeric Flavan-3-Ols during the Roasting Process of Criollo Cocoa. Antioxidants 2020, 9, 146. DOI: 10.3390/antiox9020146.
  • Martini, S.; Conte, A.; Tagliazucchi, D. Comprehensive Evaluation of Phenolic Profile in Dark Chocolate and Dark Chocolate Enriched with Sakura Green Tea Leaves or Turmeric Powder. Food Res. Int. 2018, 112, 1–16. DOI: 10.1016/j.foodres.2018.06.020.
  • Oracz, J.; Nebesny, E.; Żyżelewicz, D. Identification and Quantification of Free and Bound Phenolic Compounds Contained in the High-Molecular Weight Melanoidin Fractions Derived from Two Different Types of Cocoa Beans by UHPLC-DAD-ESI-HR-MSn. Food Res. Int. 2019, 115, 135–149. DOI: 10.1016/j.foodres.2018.08.028.
  • Hoff, R. B.; Pizzolato, T. M. Combining Extraction and Purification Steps in Sample Preparation for Environmental Matrices: A Review of Matrix Solid Phase Dispersion (MSPD) and Pressurized Liquid Extraction (PLE) Applications. TrAC Trends Anal. Chem. 2018, 109, 83–96. DOI: 10.1016/j.trac.2018.10.002.
  • Karam, M. C.; Petit, J.; Zimmer, D.; Djantou, E. B.; Scher, J. Effects of Drying and Grinding in Production of Fruit and Vegetable Powders: A Review. J. Food Eng. 2016, 188, 32–49. DOI: 10.1016/j.jfoodeng.2016.05.001.
  • Murthy, C. T.; Bhattacharya, S. Cryogenic Grinding of Black Pepper. J. Food Eng. 2008, 85, 18–28. DOI: 10.1016/j.jfoodeng.2007.06.020.
  • Luque de Castro, M. D.; Priego-Capote, F. Soxhlet Extraction: Past and Present Panacea. J. Chromatogr. A. 2010, 1217, 2383–2389. DOI: 10.1016/j.chroma.2009.11.027.
  • ElKhori, S.; Paré, J. R. J.; Bélanger, J. M. R.; Pérez, E. The Microwave-Assisted Process (MAPTM1): Extraction and Determination of Fat from Cocoa Powder and Cocoa Nibs. J. Food Eng. 2007, 79, 1110–1114. DOI: 10.1016/j.jfoodeng.2006.01.089.
  • Fayeulle, N.; Meudec, E.; Boulet, J. C.; Vallverdu-Queralt, A.; Hue, C.; Boulanger, R.; Cheynier, V.; Sommerer, N. Fast Discrimination of Chocolate Quality Based on Average-Mass-Spectra Fingerprints of Cocoa Polyphenols. J. Agric. Food Chem. 2019, 67, 2723–2731. DOI: 10.1021/acs.jafc.8b06456.
  • Carrillo-Hormaza, L.; Ramírez, A. M.; Osorio, E.; Gil, A. Optimization of Ultrasound-Assisted Extraction and Rapid Resolution Analysis of Flavanols and Methylxanthines for the Quality Control of Cocoa-Derived Products. Food Anal. Methods 2017, 10, 497–507. DOI: 10.1007/s12161-016-0610-7.
  • Sajid, M.; Płotka-Wasylka, J. Combined Extraction and Microextraction Techniques: Recent Trends and Future Perspectives. TrAC Trends Anal. Chem. 2018, 103, 74–86. DOI: 10.1016/j.trac.2018.03.013.
  • Moreda-Piñeiro, J.; Moreda-Piñeiro, A. Combined Assisted Extraction Techniques as Green Sample Pre-Treatments in Food Analysis. TrAC Trends Anal. Chem. 2019, 118, 1–18. DOI: 10.1016/j.trac.2019.05.026.
  • Lefeber, T.; Janssens, M.; Camu, N.; Vuyst, L. D. Kinetic Analysis of Strains of Lactic Acid Bacteria and Acetic Acid Bacteria in Cocoa Pulp Simulation Media toward Development of a Starter Culture for Cocoa Bean Fermentation. Appl. Environ. Microbiol. 2010, 76, 7708–7716. DOI: 10.1128/AEM.01206-10.
  • Ardhana, M. M.; Fleet, G. H. The Microbial Ecology of Cocoa Bean Fermentations in Indonesia. Int. J. Food Microbiol. 2003, 86, 87–99. DOI: 10.1016/S0168-1605(03)00081-3.
  • Redgwell, R. J.; Trovato, V.; Curti, D. Cocoa Bean Carbohydrates: Roasting-Induced Changes and Polymer Interactions. Food Chem. 2003, 80, 511–516. DOI: 10.1016/S0308-8146(02)00320-5.
  • Megías-Pérez, R.; Grimbs, S.; D'Souza, R. N.; Bernaert, H.; Kuhnert, N. Profiling, Quantification and Classification of Cocoa Beans Based on Chemometric Analysis of Carbohydrates Using Hydrophilic Interaction Liquid Chromatography Coupled to Mass Spectrometry. Food Chem. 2018, 258, 284–294. DOI: 10.1016/j.foodchem.2018.03.026.
  • Megías-Pérez, R.; Ruiz-Matute, A. I.; Corno, M.; Kuhnert, N. Analysis of Minor Low Molecular Weight Carbohydrates in Cocoa Beans by Chromatographic Techniques Coupled to Mass Spectrometry. J. Chromatogr. A. 2019, 1584, 135–143. DOI: 10.1016/j.chroma.2018.11.033.
  • Afoakwa, E. O. Changes during Fermentation of Cocoa Beans. In Cocoa Production and Processing Technology; Emmanuel Afoakwa, Ed.; CRC Press: Boca Raton, 2014, pp 121–138.
  • Hoskin, J. C.; Dimick, P. S. Chemistry of Flavour Development in Chocolate. In Industrial Chocolate Manufacture and Use, Beckett, S. T., Ed.; Springer US: Boston, MA, 1994; p 102.
  • Afoakwa, E. O. Cocoa Production and Processing Technology; CRC Press: Boca Ratón, FL, 2014.
  • Hashim, L.; Chaveron, H. Extraction and Determination of Methylpyrazines in Cocoa Beans Using Coupled Steam Distillation-Microdistillator. Food Res. Int. 1994, 27, 537–544. DOI: 10.1016/0963-9969(94)90139-2.
  • Oberparleiter, S.; Ziegleder, G. Amadori-Verbindungen als Aromavorstufen in Kakao. Nahrung 1997, 41, 142–145. DOI: 10.1002/food.19970410305.
  • Andruszkiewicz, P. J.; D'Souza, R. N.; Corno, M.; Kuhnert, N. Novel Amadori and Heyns Compounds Derived from Short Peptides Found in Dried Cocoa Beans. Food Res. Int. 2020, 133, 109164. DOI: 10.1016/j.foodres.2020.109164.
  • Campbell-Platt, G. Food Science and Technology; Wiley-Blackwell: Chichester, UK, 2018.
  • Göncüoğlu Taş, N.; Gökmen, V. Maillard Reaction and Caramelization during Hazelnut Roasting: A Multiresponse Kinetic Study. Food Chem. 2017, 221, 1911–1922. DOI: 10.1016/j.foodchem.2016.11.159.
  • Misnawi; Jinap, S.; Jamilah, B.; Nazamid, S. Effect of Polyphenol Concentration on Pyrazine Formation during Cocoa Liquor Roasting. Food Chem. 2004, 85, 73. DOI: 10.1016/j.foodchem.2003.06.005.
  • Serra Bonvehí, J.; Ventura Coll, F. Factors Affecting the Formation of Alkylpyrazines during Roasting Treatment in Natural and Alkalinized Cocoa Powder. J. Agric. Food Chem. 2002, 50, 3743–3750. DOI: 10.1021/jf011597k.
  • Taş, N. G.; Gökmen, V. Effect of Alkalization on the Maillard Reaction Products Formed in Cocoa during Roasting. Food Res. Int. 2016, 89, 930–936. DOI: 10.1016/j.foodres.2015.12.021.
  • Zwingelstein, M.; Draye, M.; Besombes, J.-L.; Piot, C.; Chatel, G. Viticultural Wood Waste as a Source of Polyphenols of Interest: Opportunities and Perspectives through Conventional and Emerging Extraction Methods. Waste Manag. 2020, 102, 782–794. DOI: 10.1016/j.wasman.2019.11.034.
  • Soria, A. C.; Brokł, M.; Sanz, M. L.; and I. Martínez-Castro, 4.11—Sample Preparation for the Determination of Carbohydrates in Food and Beverages. In Comprehensive Sampling and Sample Preparation, Pawliszyn, J., Ed.; Academic Press: Oxford, 2012, p 213.
  • Gil, M.; Llano, S.; Jaramillo, Y.; Quijano, J.; Londono-Londono, J. Matrix Effect on Quantification of Sugars and Mannitol Developed during the Postharvest of Cocoa: An Alternative Method for Traceability of Aroma Precursors by Liquid Chromatography with an Evaporative Detector. J. Food Sci. Technol. 2020, 57, 210–221. DOI: 10.1007/s13197-019-04049-1.
  • Barrientos, L. D. P.; Oquendo, J. D. T.; Garzón, M. A. G.; Álvarez, O. L. M. Effect of the Solar Drying Process on the Sensory and Chemical Quality of Cocoa (Theobroma cacao L.) Cultivated in Antioquia, Colombia. Food Res. Int. 2019, 115, 259–267. DOI: 10.1016/j.foodres.2018.08.084.
  • Harvey, D. J. Derivatization of Carbohydrates for Analysis by Chromatography; Electrophoresis and Mass Spectrometry. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2011, 879, 1196–1225. DOI: 10.1016/j.jchromb.2010.11.010.
  • Miller, G. L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. DOI: 10.1021/ac60147a030.
  • Melander, C.; Andersson, E.; Axelsson, S.; Gorton, L. Determination of Reducing Ends with Flow Injection Analysis with Amperometric Detection: application to Enzyme-Hydrolysed Methyl Cellulose. Anal. Bioanal. Chem. 2007, 387, 2585–2593. DOI: 10.1007/s00216-006-1107-9.
  • Pérez-Mora, W.; Jorrin-Novo, J. V.; Melgarejo, L. M. Substantial Equivalence Analysis in Fruits from Three Theobroma Species through Chemical Composition and Protein Profiling. Food Chem. 2018, 240, 496–504. DOI: 10.1016/j.foodchem.2017.07.128.
  • Zzaman, W.; Bhat, R.; Yang, T. A.; Easa, A. M. Influences of Superheated Steam Roasting on Changes in Sugar, Amino Acid and Flavour Active Components of Cocoa Bean (Theobroma cacao). J. Sci. Food Agric. 2017, 97, 4429–4437. DOI: 10.1002/jsfa.8302.
  • Roe, J. H. The Determination of Sugar in Blood and Spinal Fluid with Anthrone Reagent. J. Biol. Chem. 1955, 212, 335–343. DOI: 10.1016/S0021-9258(18)71120-4.
  • Laurentin, A.; Edwards, C. A. A Microtiter Modification of the Anthrone-Sulfuric Acid Colorimetric Assay for Glucose-Based Carbohydrates. Anal. Biochem. 2003, 315, 143–145. DOI: 10.1016/S0003-2697(02)00704-2.
  • Leon-Roque, N.; Abderrahim, M.; Nunez-Alejos, L.; Arribas, S. M.; Condezo-Hoyos, L. Prediction of Fermentation Index of Cocoa Beans (Theobroma cacao L.) Based on Color Measurement and Artificial Neural Networks. Talanta 2016, 161, 31–39. DOI: 10.1016/j.talanta.2016.08.022.
  • DuBois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. DOI: 10.1021/ac60111a017.
  • Afoakwa, E. O.; Quao, J.; Budu, A. S.; Takrama, J.; Saalia, F. K. Effect of Pulp Preconditioning on Acidification, Proteolysis, Sugars and Free Fatty Acids Concentration during Fermentation of Cocoa (Theobroma cacao) Beans. Int. J. Food Sci. Nutr. 2011, 62, 755–764. DOI: 10.3109/09637486.2011.581224.
  • Lefeber, T.; Gobert, W.; Vrancken, G.; Camu, N.; Vuyst, L. D. Dynamics and Species Diversity of Communities of Lactic Acid Bacteria and Acetic Acid Bacteria during Spontaneous Cocoa Bean Fermentation in Vessels. Food Microbiol. 2011, 28, 457–464. DOI: 10.1016/j.fm.2010.10.010.
  • Krähmer, A.; Engel, A.; Kadow, D.; Ali, N.; Umaharan, P.; Kroh, L. W.; Schulz, H. Fast and Neat-Determination of Biochemical Quality Parameters in Cocoa Using Near Infrared Spectroscopy. Food Chem. 2015, 181, 152–159. DOI: 10.1016/j.foodchem.2015.02.084.
  • Ramos, C. L.; Dias, D. R.; Miguel, M. G. C. P.; Schwan, R. F. Impact of Different Cocoa Hybrids (Theobroma cacao L.) and S. cerevisiae UFLA CA11 Inoculation on Microbial Communities and Volatile Compounds of Cocoa Fermentation. Food Res. Int. 2014, 64, 908–918. DOI: 10.1016/j.foodres.2014.08.033.
  • Ho, V. T. T.; Zhao, J.; Fleet, G. Yeasts Are Essential for Cocoa Bean Fermentation. Int. J. Food Microbiol. 2014, 174, 72–87. DOI: 10.1016/j.ijfoodmicro.2013.12.014.
  • Moreira, I. M. D. V.; Miguel, M. G. D. C. P.; Duarte, W. F.; Dias, D. R.; Schwan, R. F. Microbial Succession and the Dynamics of Metabolites and Sugars during the Fermentation of Three Different Cocoa (Theobroma cacao L.) Hybrids. Food Res. Int. 2013, 54, 9–17. DOI: 10.1016/j.foodres.2013.06.001.
  • Lee, A. H.; Neilson, A. P.; O’Keefe, S. F.; Ogejo, J. A.; Huang, H.; Ponder, M.; Chu, H. S. S.; Jin, Q.; Pilot, G.; Stewart, A. C. A Laboratory-Scale Model Cocoa Fermentation Using Dried, Unfermented Beans and Artificial Pulp Can Simulate the Microbial and Chemical Changes of On-Farm Cocoa Fermentation. Eur. Food Res. Technol. 2019, 245, 511–519. DOI: 10.1007/s00217-018-3171-8.
  • Rodriguez-Campos, J.; Escalona-Buendía, H. B.; Orozco-Avila, I.; Lugo-Cervantes, E.; Jaramillo-Flores, M. E. Dynamics of Volatile and Non-Volatile Compounds in Cocoa (Theobroma cacao L.) during Fermentation and Drying Processes Using Principal Components Analysis. Food Res. Int. 2011, 44, 250–258. DOI: 10.1016/j.foodres.2010.10.028.
  • Romanens, E.; Näf, R.; Lobmaier, T.; Pedan, V.; Leischtfeld, S. F.; Meile, L.; Schwenninger, S. M. A Lab-Scale Model System for Cocoa Bean Fermentation. Appl. Microbiol. Biotechnol. 2018, 102, 3349–3362. DOI: 10.1007/s00253-018-8835-6.
  • Mohamed, R.; Abdullah, A.; Yap, K. C.; Mustapha, W. A. W. Comparative Study of Flavor Precursors, Volatile Compounds and Sensory between Malaysian and Ghanaian Cocoa Beans. JSM. 2019, 48, 589–598. DOI: 10.17576/jsm-2019-4803-11.
  • Hinneh, M.; Semanhyia, E.; Van de Walle, D.; De Winne, A.; Tzompa-Sosa, D. A.; Scalone, G. L. L.; De Meulenaer, B.; Messens, K.; Van Durme, J.; Afoakwa, E. O.; et al. Assessing the Influence of Pod Storage on Sugar and Free Amino Acid Profiles and the Implications on Some Maillard Reaction Related Flavor Volatiles in Forastero Cocoa Beans. Food Res. Int. 2018, 111, 607–620. DOI: 10.1016/j.foodres.2018.05.064.
  • Grillo, G.; Boffa, L.; Binello, A.; Mantegna, S.; Cravotto, G.; Chemat, F.; Dizhbite, T.; Lauberte, L.; Telysheva, G. Analytical Dataset of Ecuadorian Cocoa Shells and Beans. Data Brief. 2019, 22, 56–64. DOI: 10.1016/j.dib.2018.11.129.
  • Oracz, J.; Nebesny, E. Effect of Roasting Parameters on the Physicochemical Characteristics of High-Molecular-Weight Maillard Reaction Products Isolated from Cocoa Beans of Different Theobroma cacao L. groups. Eur. Food Res. Technol. 2019, 245, 111–128. DOI: 10.1007/s00217-018-3144-y.
  • Corradini, C.; Cavazza, A.; Bignardi, C. High-Performance Anion-Exchange Chromatography Coupled with Pulsed Electrochemical Detection as a Powerful Tool to Evaluate Carbohydrates of Food Interest: Principles and Applications. Int. J. Carbohydr. Chem. 2012, 2012, 1–13. DOI: 10.1155/2012/487564.
  • Ruiz-Matute, A. I.; Hernández-Hernández, O.; Rodríguez-Sánchez, S.; Sanz, M. L.; Martínez-Castro, I. Derivatization of Carbohydrates for GC and GC-MS Analyses. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 2011, 879, 1226–1240. DOI: 10.1016/j.jchromb.2010.11.013.
  • Zak, D. L.; Keeney, P. G. Extraction and Fractionation of Cocoa Proteins as Applied to Several Varieties of Cocoa Beans. J. Agric. Food Chem. 1976, 24, 479–483. DOI: 10.1021/jf60205a055.
  • Voigt, J.; Biehl, B.; Wazir, S. K. S. The Major Seed Proteins of Theobroma cacao L. Food Chem. 1993, 47, 145–151. DOI: 10.1016/0308-8146(93)90236-9.
  • Kochhar, S.; Gartenmann, K.; Juillerat, M. A. Primary Structure of the Abundant Seed Albumin of Theobroma cacao by Mass Spectrometry. J. Agric. Food Chem. 2000, 48, 5593–5599. DOI: 10.1021/jf0006067.
  • Spencer, M. E.; Hodge, R. Cloning and Sequencing of a cDNA Encoding the Major Storage Proteins of Theobroma cacao: Identification of the Proteins as Members of the Vicilin Class of Storage Proteins. Planta 1992, 186, 567–576. DOI: 10.1007/BF00198037.
  • Scollo, E.; Neville, D.; Oruna-Concha, M. J.; Trotin, M.; Cramer, R. Characterization of the Proteome of Theobroma cacao Beans by Nano-UHPLC-ESI MS/MS. Proteomics 2018, 18, 1700339. DOI: 10.1002/pmic.201700339.
  • Scollo, E.; Neville, D.; Oruna-Concha, M. J.; Trotin, M.; Cramer, R. UHPLC-MS/MS Analysis of Cocoa Bean Proteomes from Four Different Genotypes. Food Chem. 2020, 303, 125244. DOI: 10.1016/j.foodchem.2019.125244.
  • D’Souza, R. N.; Grimbs, A.; Grimbs, S.; Behrends, B.; Corno, M.; Ullrich, M. S.; Kuhnert, N. Degradation of Cocoa Proteins into Oligopeptides during Spontaneous Fermentation of Cocoa Beans. Food Res. Int. 2018, 109, 506–516. DOI: 10.1016/j.foodres.2018.04.068.
  • Kumari, N.; Grimbs, A.; D'Souza, R. N.; Verma, S. K.; Corno, M.; Kuhnert, N.; Ullrich, M. S. Origin and Varietal Based Proteomic and Peptidomic Fingerprinting of Theobroma cacao in Non-Fermented and Fermented Cocoa Beans. Food Res. Int. 2018, 111, 137–147. DOI: 10.1016/j.foodres.2018.05.010.
  • Voigt, J.; Biehl, B.; Heinrichs, H.; Kamaruddin, S.; Marsoner, G. G.; Hugi, A. In-Vitro Formation of Cocoa-Specific Aroma Precursors: Aroma-Related Peptides Generated from Cocoa-Seed Protein by Co-Operation of an Aspartic Endoprotease and a Carboxypeptidase. Food Chem. 1994, 49, 173–180. DOI: 10.1016/0308-8146(94)90155-4.
  • Kumari, N.; Kofi, K. J.; Grimbs, S.; D'Souza, R. N.; Kuhnert, N.; Vrancken, G.; Ullrich, M. S. Biochemical Fate of Vicilin Storage Protein during Fermentation and Drying of Cocoa Beans. Food Res. Int. 2016, 90, 53–65. DOI: 10.1016/j.foodres.2016.10.033.
  • Janek, K.; Niewienda, A.; Wöstemeyer, J.; Voigt, J. The Cleavage Specificity of the Aspartic Protease of Cocoa Beans Involved in the Generation of the Cocoa-Specific Aroma Precursors. Food Chem. 2016, 211, 320–328. DOI: 10.1016/j.foodchem.2016.05.033.
  • Bradford, M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. DOI: 10.1016/0003-2697(76)90527-3.
  • Lowry, O.; Rosebrough, N.; Farr, A. L.; Randall, R. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. DOI: 10.1016/S0021-9258(19)52451-6.
  • Kratzer, U.; Frank, R.; Kalbacher, H.; Biehl, B.; Wöstemeyer, J.; Voigt, J. Subunit Structure of the Vicilin-Like Globular Storage Protein of Cocoa Seeds and the Origin of Cocoa- and Chocolate-Specific Aroma Precursors. Food Chem. 2009, 113, 903–913. DOI: 10.1016/j.foodchem.2008.08.017.
  • Couvertier, S. M.; Zhou, Y.; Weerapana, E. Chemical-Proteomic Strategies to Investigate Cysteine Posttranslational Modifications. Biochim. Biophys. Acta 2014, 1844, 2315–2330. DOI: 10.1016/j.bbapap.2014.09.024.
  • Müller, T.; Winter, D. Systematic Evaluation of Protein Reduction and Alkylation Reveals Massive Unspecific Side Effects by Iodine-Containing Reagents. Mol. Cell Proteomics 2017, 16, 1173–1187. DOI: 10.1074/mcp.M116.064048.
  • Camerini, S.; Mauri, P. The Role of Protein and Peptide Separation before Mass Spectrometry Analysis in Clinical Proteomics. J. Chromatogr. A. 2015, 1381, 1–12. DOI: 10.1016/j.chroma.2014.12.035.
  • Jorrin-Novo, J. V.; Komatsu, S.; Sanchez-Lucas, R.; Rodríguez de Francisco, L. E. Gel Electrophoresis-Based Plant Proteomics: Past, Present, and Future. Happy 10th Anniversary Journal of Proteomics!. J. Proteomics 2019, 198, 1–10. DOI: 10.1016/j.jprot.2018.08.016.
  • Kastner, M. Protein Liquid Chromatography, Elsevier: Amsterdam, 2000.
  • Matthiesen, R. Mass Spectrometry Data Analysis in Proteomics, 2nd ed.; Humana Press: Totowa, New Jersey, 2013.
  • McMahon, G. P. Mass Spectrometry | Peptides and Proteins. In Encyclopedia of Analytical Sciencel, 2nd ed.; Worsfold, P., Townshend, A., Poole, C., Eds.; Elsevier: Oxford, 2005, p 501.
  • Washburn, M. P.; Wolters, D.; Yates, J. R. Large-Scale Analysis of the Yeast Proteome by Multidimensional Protein Identification Technology. Nat. Biotechnol. 2001, 19, 242–247. DOI: 10.1038/85686.
  • Woll, K. A.; Dailey, W. P.; and R. G. Eckenhoff, Chapter Twelve—Identification of General Anesthetic Target Protein-Binding Sites by Photoaffinity Labeling and Mass Spectrometry. In Methods in Enzymology; Eckenhoff, R. G.; Dmochowski, I. J., Eds.; Academic Press: Cambridge, Massachusetts, 2018, p 231.
  • Aebersold, R.; Mann, M. Mass Spectrometry-Based Proteomics. Nature 2003, 422, 198–207. DOI: 10.1038/nature01511.
  • Soares, R.; Franco, C.; Pires, E.; Ventosa, M.; Palhinhas, R.; Koci, K.; Martinho de Almeida, A.; Varela Coelho, A. Mass Spectrometry and Animal Science: Protein Identification Strategies and Particularities of Farm Animal Species. J. Proteomics 2012, 75, 4190–4206. DOI: 10.1016/j.jprot.2012.04.009.
  • Bertazzo, A.; Agnolin, F.; Comai, S.; Zancato, M.; Costa, C. V. L.; Seraglia, R.; Traldi, P. The Protein Profile of Theobroma cacao L. seeds as Obtained by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2011, 25, 2035–2042. DOI: 10.1002/rcm.5080.
  • Xie, F.; Smith, R. D.; Shen, Y. Advanced Proteomic Liquid Chromatography. J. Chromatogr. A. 2012, 1261, 78–90. DOI: 10.1016/j.chroma.2012.06.098.
  • Shi, Y.; Xiang, R.; Horváth, C.; Wilkins, J. A. The Role of Liquid Chromatography in Proteomics. J. Chromatogr. A. 2004, 1053, 27–36. DOI: 10.1016/S0021-9673(04)01204-X.
  • Ishihama, Y.; Katayama, H.; Asakawa, N. Surfactants Usable for Electrospray Ionization Mass Spectrometry. Anal. Biochem. 2000, 287, 45–54. DOI: 10.1006/abio.2000.4836.
  • Penno, M. A. S.; Ernst, M.; Hoffmann, P. Optimal Preparation Methods for Automated Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Profiling of Low Molecular Weight Proteins and Peptides. Rapid Commun. Mass Spectrom. 2009, 23, 2656–2662. DOI: 10.1002/rcm.4167.
  • Han, X.; Aslanian, A.; Yates, J. R. Mass Spectrometry for Proteomics. Curr. Opin. Chem. Biol. 2008, 12, 483–490. DOI: 10.1016/j.cbpa.2008.07.024.
  • Turewicz, M.; Kohl, M.; Ahrens, M.; Mayer, G.; Uszkoreit, J.; Naboulsi, W.; Bracht, T.; Megger, D. A.; Sitek, B.; Marcus, K.; Eisenacher, M. BioInfra.Prot: A Comprehensive Proteomics Workflow Including Data Standardization, Protein Inference, Expression Analysis and Data Publication. J. Biotechnol. 2017, 261, 116–125. DOI: 10.1016/j.jbiotec.2017.06.005.
  • Voigt, J.; Janek, K.; Textoris-Taube, K.; Niewienda, A.; Wöstemeyer, J. Partial Purification and Characterisation of the Peptide Precursors of the Cocoa-Specific Aroma Components. Food Chem. 2016, 192, 706–713. DOI: 10.1016/j.foodchem.2015.07.068.
  • John, W. A.; Böttcher, N. L.; Aßkamp, M.; Bergounhou, A.; Kumari, N.; Ho, P. W.; D'Souza, R. N.; Nevoigt, E.; Ullrich, M. S. Forcing Fermentation: Profiling Proteins, Peptides and Polyphenols in Lab-Scale Cocoa Bean Fermentation. Food Chem. 2019, 278, 786–794. DOI: 10.1016/j.foodchem.2018.11.108.
  • de Kok, P. M. T.; Rosing, E. A. E. Reactivity of Peptides in the Maillard Reaction. In Thermally Generated Flavors; Thomas H. Parliment, Michael J. Morello, Robert J. McGorrin, Eds.; American Chemical Society, 1993, ch. 13, p 158.
  • Kadam, S. U.; Tiwari, B. K.; Álvarez, C.; O'Donnell, C. P. Ultrasound Applications for the Extraction, Identification and Delivery of Food Proteins and Bioactive Peptides. Trends Food Sci. Technol. 2015, 46, 60–67. DOI: 10.1016/j.tifs.2015.07.012.
  • Afoakwa, E. O. The Chemistry of Flavour Development during Cocoa Processing and Chocolate Manufacture. In Chocolate Science and Technology; Emmanuel Afoakwa, Ed.; Wiley Blackwell: Oxford, 2016, p 154.
  • Perez-Locas, C.; Yaylayan, V. A. 3—The Maillard Reaction and Food Quality Deterioration. In Chemical Deterioration and Physical Instability of Food and Beverages, Skibsted, L. H., Risbo, J., Andersen, M. L., Eds.; Woodhead Publishing: Cambridge, 2010, p 70.
  • Barišić, V.; Kopjar, M.; Jozinović, A.; Flanjak, I.; Ačkar, Đ.; Miličević, B.; Šubarić, D.; Jokić, S.; Babić, J. The Chemistry behind Chocolate Production. Molecules 2019, 24, 3163. DOI: 10.3390/molecules24173163.
  • Pérez-Palacios, T.; Barroso, M. A.; Ruiz, J.; Antequera, T. A Rapid and Accurate Extraction Procedure for Analysing Free Amino Acids in Meat Samples by GC-MS. Int. J. Anal. Chem. 2015, 2015, 209214. DOI: 10.1155/2015/209214.
  • Jinap, S.; Lioe, H. N.; Yusep, I.; Nazamid, S.; Jamilah, B. Role of Carboxypeptidases to the Free Amino Acid Composition, Methylpyrazine Formation and Sensory Characteristic of under-Fermented Cocoa Beans. Int. Food Res. J. 2010, 17, 763.
  • Hue, C.; Gunata, Z.; Breysse, A.; Davrieux, F.; Boulanger, R.; Sauvage, F. X. Impact of Fermentation on Nitrogenous Compounds of Cocoa Beans (Theobroma cacao L.) from Various Origins. Food Chem. 2016, 192, 958–964. DOI: 10.1016/j.foodchem.2015.07.115.
  • Voigt, J.; Textoris-Taube, K.; Wöstemeyer, J. pH-Dependency of the Proteolytic Formation of Cocoa- and Nutty-Specific Aroma Precursors. Food Chem. 2018, 255, 209–215. DOI: 10.1016/j.foodchem.2018.02.045.
  • Caligiani, A.; Acquotti, D.; Cirlini, M.; Palla, G. 1H NMR Study of Fermented Cocoa (Theobroma cacao L.) Beans. J. Agric. Food Chem. 2010, 58, 12105–12111. DOI: 10.1021/jf102985w.
  • Callejón, R. M.; Troncoso, A. M.; Morales, M. L. Determination of Amino Acids in Grape-Derived Products: A Review. Talanta 2010, 81, 1143–1152. DOI: 10.1016/j.talanta.2010.02.040.
  • Cohen, S. A.; Strydom, D. J. Amino Acid Analysis Utilizing Phenylisothiocyanate Derivatives. Anal. Biochem. 1988, 174, 1–16. DOI: 10.1016/0003-2697(88)90512-X.
  • Hanczkó, R.; Molnár-Perl, I. Derivatization, Stability and Chromatographic Behavior Ofo-Phthaldialdehyde Amino Acid and Amine Derivatives:o-Phthaldialdehyde/2-Mercaptoethanol Reagent. Chromatographia 2003, 57, S103–S113. DOI: 10.1007/BF02492091.
  • Einarsson, S.; Josefsson, B.; Lagerkvist, S. Determination of Amino Acids with 9-Fluorenylmethyl Chloroformate and Reversed-Phase High-Performance Liquid Chromatography. J. Chromatogr. A. 1983, 282, 609–618. DOI: 10.1016/S0021-9673(00)91638-8.
  • Cohen, S. A.; Michaud, D. P. Synthesis of a Fluorescent Derivatizing Reagent, 6-Aminoquinolyl-N-Hydroxysuccinimidyl Carbamate, and Its Application for the Analysis of Hydrolysate Amino Acids via High-Performance Liquid Chromatography. Anal. Biochem. 1993, 211, 279–287. DOI: 10.1006/abio.1993.1270.
  • Pätzold, R.; Brückner, H. Gas Chromatographic Determination and Mechanism of Formation of D-Amino Acids Occurring in Fermented and Roasted Cocoa Beans, Cocoa Powder, Chocolate and Cocoa Shell. Amino Acids 2006, 31, 63–72. DOI: 10.1007/s00726-006-0330-1.
  • Caligiani, A.; Cirlini, M.; Palla, G.; Ravaglia, R.; Arlorio, M. GC-MS Detection of Chiral Markers in Cocoa Beans of Different Quality and Geographic Origin. Chirality 2007, 19, 329–334. DOI: 10.1002/chir.20380.
  • Brunetto, M. d R.; Gallignani, M.; Orozco, W.; Clavijo, S.; Delgado, Y.; Ayala, C.; Zambrano, A. The Effect of Fermentation and Roasting on Free Amino Acids Profile in Criollo Cocoa (Theobroma cacao L.) Grown in Venezuela. Braz. J. Food Technol. 2020, 23, 15019. DOI: 10.1590/1981-6723.15019.
  • Counet, C.; Collin, S. Effect of the Number of Flavanol Units on the Antioxidant Activity of Procyanidin Fractions Isolated from Chocolate. J. Agric. Food Chem. 2003, 51, 6816–6822. DOI: 10.1021/jf030349g.
  • Mazor Jolić, S.; Radojčić Redovniković, I.; Marković, K.; Ivanec Šipušić, Đ.; Delonga, K. Changes of Phenolic Compounds and Antioxidant Capacity in Cocoa Beans Processing. Int. J. Food Sci. Technol. 2011, 46, 1793–1800. DOI: 10.1111/j.1365-2621.2011.02670.x.
  • Pedan, V.; Weber, C.; Do, T.; Fischer, N.; Reich, E.; Rohn, S. HPTLC Fingerprint Profile Analysis of Cocoa Proanthocyanidins Depending on Origin and Genotype. Food Chem. 2018, 267, 277–287. DOI: 10.1016/j.foodchem.2017.08.109.
  • D'Souza, R. N.; Grimbs, S.; Behrends, B.; Bernaert, H.; Ullrich, M. S.; Kuhnert, N. Origin-Based Polyphenolic Fingerprinting of Theobroma cacao in Unfermented and Fermented Beans. Food Res Int. 2017, 99, 550–559. DOI: 10.1016/j.foodres.2017.06.007.
  • Carrillo, L. C.; Londoño-Londoño, J.; Gil, A. Comparison of Polyphenol, Methylxanthines and Antioxidant Activity in Theobroma cacao Beans from Different Cocoa-Growing Areas in Colombia. Food Res. Int. 2014, 60, 273–280. DOI: 10.1016/j.foodres.2013.06.019.
  • Eyamo Evina, V. J.; De Taeye, C.; Niemenak, N.; Youmbi, E.; Collin, S. Influence of Acetic and Lactic Acids on Cocoa Flavan-3-ol Degradation through Fermentation-Like Incubations. LWT Food Sci. Technol. 2016, 68, 514–522. DOI: 10.1016/j.lwt.2015.12.047.
  • Afoakwa, E. O.; Quao, J.; Takrama, J.; Budu, A. S.; Saalia, F. K. Chemical Composition and Physical Quality Characteristics of Ghanaian Cocoa Beans as Affected by Pulp Pre-Conditioning and Fermentation. J. Food Sci. Technol. 2013, 50, 1097–1105. DOI: 10.1007/s13197-011-0446-5.
  • Żyżelewicz, D.; Krysiak, W.; Oracz, J.; Sosnowska, D.; Budryn, G.; Nebesny, E. The Influence of the Roasting Process Conditions on the Polyphenol Content in Cocoa Beans, Nibs and Chocolates. Food Res. Int. 2016, 89, 918–929. DOI: 10.1016/j.foodres.2016.03.026.
  • Alean, J.; Chejne, F.; Rojano, B. Degradation of Polyphenols during the Cocoa Drying Process. J. Food Eng. 2016, 189, 99–105. DOI: 10.1016/j.jfoodeng.2016.05.026.
  • Urbańska, B.; Derewiaka, D.; Lenart, A.; Kowalska, J. Changes in the Composition and Content of Polyphenols in Chocolate Resulting from Pre-Treatment Method of Cocoa Beans and Technological Process. Eur. Food Res. Technol. 2019, 245, 2101–2112. DOI: 10.1007/s00217-019-03333-w.
  • Jalil, A.; Ismail, A. Polyphenols in Cocoa and Cocoa Products: Is There a Link between Antioxidant Properties and Health? Molecules 2008, 13, 2190–2219. DOI: 10.3390/molecules13092190.
  • Oracz, J.; Zyzelewicz, D.; Nebesny, E. The Content of Polyphenolic Compounds in Cocoa Beans (Theobroma cacao L.), Depending on Variety, Growing Region, and Processing Operations: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1176–1192. DOI: 10.1080/10408398.2012.686934.
  • Taranto, F.; Pasqualone, A.; Mangini, G.; Tripodi, P.; Miazzi, M. M.; Pavan, S.; Montemurro, C. Polyphenol Oxidases in Crops: Biochemical, Physiological and Genetic Aspects. Int. J. Mol. Sci. 2017, 18, 377. DOI: 10.3390/ijms18020377.
  • Albertini, B.; Schoubben, A.; Guarnaccia, D.; Pinelli, F.; Vecchia, M. D.; Ricci, M.; Di Renzo, G. C.; Blasi, P. Effect of Fermentation and Drying on Cocoa Polyphenols. J. Agric. Food Chem. 2015, 63, 9948–9953. DOI: 10.1021/acs.jafc.5b01062.]
  • Hurst, W. J.; Krake, S. H.; Bergmeier, S. C.; Payne, M. J.; Miller, K. B.; Stuart, D. A. Impact of Fermentation, Drying, Roasting and Dutch Processing on Flavan-3-ol Stereochemistry in Cacao Beans and Cocoa Ingredients. Chem. Cent. J. 2011, 5, 53. DOI: 10.1186/1752-153X-5-53.
  • Ioannone, F.; Di Mattia, C. D.; De Gregorio, M.; Sergi, M.; Serafini, M.; Sacchetti, G. Flavanols, Proanthocyanidins and Antioxidant Activity Changes during Cocoa (Theobroma cacao L.) Roasting as Affected by Temperature and Time of Processing. Food Chem. 2015, 174, 256–262. DOI: 10.1016/j.foodchem.2014.11.019.
  • Oracz, J.; Nebesny, E. Antioxidant Properties of Cocoa Beans (Theobroma cacao L.): Influence of Cultivar and Roasting Conditions. Int. J. Food Prop. 2016, 19, 1242–1258. DOI: 10.1080/10942912.2015.1071840.
  • Fayeulle, N.; Preys, S.; Roger, J.-M.; Boulanger, R.; Hue, C.; Cheynier, V.; Sommerer, N. Multiblock Analysis to Relate Polyphenol Targeted Mass Spectrometry and Sensory Properties of Chocolates and Cocoa Beans. Metabolites 2020, 10, 311. DOI: 10.3390/metabo10080311.
  • Stark, T.; Bareuther, S.; Hofmann, T. Sensory-Guided Decomposition of Roasted Cocoa Nibs (Theobroma cacao) and Structure Determination of Taste-Active Polyphenols. J. Agric Food Chem. 2005, 53, 5407–5418. DOI: 10.1021/jf050457y.
  • Pires, M. A.; Pastrana, L. M.; Fuciños, P.; Abreu, C. S.; Oliveira, S. M. Sensorial Perception of Astringency: Oral Mechanisms and Current Analysis Methods. Foods 2020, 9, 1124. DOI: 10.3390/foods9081124.
  • Panche, A. N.; Diwan, A. D.; Chandra, S. R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5, e47. DOI: 10.1017/jns.2016.41.
  • Bunzel, M.; Schendel, R. R. Determination of (Total) Phenolics and Antioxidant Capacity in Food and Ingredients. In Food Analysis; Nielsen, S. S., Ed.; Springer International Publishing: Cham, 2017, p 455.
  • Singleton, V. L.; Rossi, J. A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Viticult. 1965, 16, 144.
  • Zhishen, J.; Mengcheng, T.; Jianming, W. The Determination of Flavonoid Contents in Mulberry and Their Scavenging Effects on Superoxide Radicals. Food Chem. 1999, 64, 555–559. DOI: 10.1016/S0308-8146(98)00102-2.
  • Swain, T.; Hillis, W. E. The Phenolic Constituents of Prunus Domestica. I.—The Quantitative Analysis of Phenolic Constituents. J. Sci. Food Agric. 1959, 10, 63–68. DOI: 10.1002/jsfa.2740100110.
  • Butler, L. G.; Price, M. L.; Brotherton, J. E. Vanillin Assay for Proanthocyanidins (Condensed Tannins): Modification of the Solvent for Estimation of the Degree of Polymerization. J. Agric. Food Chem. 1982, 30, 1087–1089. DOI: 10.1021/jf00114a020.
  • Kumar, B. R. Application of HPLC and ESI-MS Techniques in the Analysis of Phenolic Acids and Flavonoids from Green Leafy Vegetables (GLVs). J. Pharm. Anal. 2017, 7, 349–364. DOI: 10.1016/j.jpha.2017.06.005.
  • Aleixandre-Tudo, J. L.; Du Toit, W. The Role of UV-Visible Spectroscopy for Phenolic Compounds Quantification in Winemaking. In Frontiers and New Trends in the Science of Fermented Food and Beverages, Solís-Oviedo, R. L., Pech-Canul, A., Eds.; IntechOpen, 2018, pp 1–16.
  • Shumow, L.; Bodor, A. An Industry Consensus Study on an HPLC Fluorescence Method for the Determination of (±)-Catechin and (±)-Epicatechin in Cocoa and Chocolate Products. Chem. Cent. J. 2011, 5, 39. DOI: 10.1186/1752-153X-5-39.
  • Payne, M. J.; Hurst, W. J.; Miller, K. B.; Rank, C.; Stuart, D. A. Impact of Fermentation, Drying, Roasting, and Dutch Processing on Epicatechin and Catechin Content of Cacao Beans and Cocoa Ingredients. J. Agric. Food Chem. 2010, 58, 10518–10527. DOI: 10.1021/jf102391q.
  • Cuyckens, F.; Claeys, M. Mass Spectrometry in the Structural Analysis of Flavonoids. J. Mass Spectrom. 2004, 39, 1–15. DOI: 10.1002/jms.585.
  • Ignat, I.; Volf, I.; Popa, V. I. Analytical Methods of Phenolic Compounds. In Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes, Ramawat, K. G., Mérillon, J.-M., Eds.; Springer: Berlin, 2013, p 2061.
  • Sunoj, S.; Igathinathane, C.; Visvanathan, R. Nondestructive Determination of Cocoa Bean Quality Using FT-NIR Spectroscopy. Comput. Electron. Agric. 2016, 124, 234–242. DOI: 10.1016/j.compag.2016.04.012.
  • Quelal-Vásconez, M. A.; Lerma-García, M. J.; Pérez-Esteve, É.; Arnau-Bonachera, A.; Barat, J. M.; Talens, P. Changes in Methylxanthines and Flavanols during Cocoa Powder Processing and Their Quantification by near-Infrared Spectroscopy. LWT 2020, 117, 108598. DOI: 10.1016/j.lwt.2019.108598.
  • Hue, C.; Brat, P.; Gunata, Z.; Samaniego, I.; Servent, A.; Morel, G.; Kapitan, A.; Boulanger, R.; Davrieux, F. Near Infra-Red Characterization of Changes in Flavan-3-ol Derivatives in Cocoa (Theobroma cacao L.) as a Function of Fermentation Temperature. J. Agric. Food Chem. 2014, 62, 10136–10142. DOI: 10.1021/jf501070d.
  • Álvarez, C.; Pérez, E.; Cros, E.; Lares, M.; Assemat, S.; Boulanger, R.; Davrieux, F. The Use of near Infrared Spectroscopy to Determine the Fat, Caffeine, Theobromine and (−)-Epicatechin Contents in Unfermented and Sun-Dried Beans of Criollo Cocoa. J. Near Infrared Spectrosc. 2012, 20, 307–315. DOI: 10.1255/jnirs.990.
  • Hu, Y.; Pan, Z. J.; Liao, W.; Li, J.; Gruget, P.; Kitts, D. D.; Lu, X. Determination of Antioxidant Capacity and Phenolic Content of Chocolate by Attenuated Total reflectance-Fourier Transformed-Infrared Spectroscopy. Food Chem. 2016, 202, 254–261. DOI: 10.1016/j.foodchem.2016.01.130.
  • Glavnik, V.; Simonovska, B.; Vovk, I.; Pavlović, D.; Ašperger, D.; Babić, S. Quantification of (-)-Epicatechin and Procyanidin B2 in Chocolates. J. Planar Chromatogr. Mod. TLC 2011, 24, 482–486. DOI: 10.1556/JPC.24.2011.6.5.
  • Li, L.; Zhang, S.; Cui, Y.; Li, Y.; Luo, L.; Zhou, P.; Sun, B. Preparative Separation of Cacao Bean Procyanidins by High-Speed Counter-Current Chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016, 1036-1037, 10–19. DOI: 10.1016/j.jchromb.2016.09.030.
  • Esatbeyoglu, T.; Wray, V.; Winterhalter, P. Isolation of Dimeric, Trimeric, Tetrameric and Pentameric Procyanidins from Unroasted Cocoa Beans (Theobroma cacao L.) Using Countercurrent Chromatography. Food Chem. 2015, 179, 278–289. DOI: 10.1016/j.foodchem.2015.01.130.
  • de Oliveira, D. N.; Camargo, A. C. B.; Melo, C. F. O. R.; Catharino, R. R. A Fast Semi-Quantitative Screening for Cocoa Content in Chocolates Using MALDI-MSI. Food Res Int. 2018, 103, 8–11. DOI: 10.1016/j.foodres.2017.10.035.
  • Katz, D. L.; Doughty, K.; Ali, A. Cocoa and Chocolate in Human Health and Disease. Antioxid. Redox Signal. 2011, 15, 2779–2811. DOI: 10.1089/ars.2010.3697.
  • Latif, R. Chocolate/Cocoa and Human Health: A Review. Neth. J. Med. 2013, 71, 63–68.
  • Martin, M. Á.; Ramos, S. Impact of Cocoa Flavanols on Human Health. Food Chem. Toxicol. 2021, 151, 112121. DOI: 10.1016/j.fct.2021.112121.
  • Zhang, H.; Tsao, R. Dietary Polyphenols, Oxidative Stress and Antioxidant and Anti-Inflammatory Effects. Curr. Opin. Food Sci. 2016, 8, 33–42. DOI: 10.1016/j.cofs.2016.02.002.
  • Jiang, H.; Li, D. Polyphenols as Reactive Carbonyl Species Scavengers—The Solution to the Current Puzzle of Polyphenols' Health Effects. Med. Hypotheses 2020, 142, 110144. DOI: 10.1016/j.mehy.2020.110144.
  • Apak, R.; Gorinstein, S.; Böhm, V.; Schaich, K. M.; Özyürek, M.; Güçlü, K. Methods of Measurement and Evaluation of Natural Antioxidant Capacity/Activity (IUPAC Technical Report). Pure Appl. Chem. 2013, 85, 957–998. DOI: 10.1351/PAC-REP-12-07-15.
  • Apak, R.; Özyürek, M.; Güçlü, K.; Çapanoğlu, E. Antioxidant Activity/Capacity Measurement. 1. Classification, Physicochemical Principles, Mechanisms, and Electron Transfer (ET)-Based Assays. J. Agric. Food Chem. 2016, 64, 997–1027. DOI: 10.1021/acs.jafc.5b04739.
  • Roginsky, V.; Lissi, E. A. Review of Methods to Determine Chain-Breaking Antioxidant Activity in Food. Food Chem. 2005, 92, 235–254. DOI: 10.1016/j.foodchem.2004.08.004.
  • Prior, R. L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. DOI: 10.1021/jf0502698.
  • Sun, Y.; Yang, C.; Tsao, R. Nomenclature and General Classification of Antioxidant Activity/Capacity Assays. In Measurement of Antioxidant Activity & Capacity; Apak, R., Capanoglu, E., Shahidi, F. Eds.; John Wiley & Sons Ltd.: New Jersey, 2018; pp 1.
  • Karadag, A.; Ozcelik, B.; Saner, S. Review of Methods to Determine Antioxidant Capacities. Food Anal. Methods 2009, 2, 41–60. DOI: 10.1007/s12161-008-9067-7.
  • Stratil, P.; Klejdus, B.; Kubán, V. Determination of Total Content of Phenolic Compounds and Their Antioxidant Activity in Vegetables-Evaluation of Spectrophotometric Methods. J. Agric. Food Chem. 2006, 54, 607–616. DOI: 10.1021/jf052334j.
  • Cádiz-Gurrea, M. L.; Lozano-Sanchez, J.; Contreras-Gámez, M.; Legeai-Mallet, L.; Fernández-Arroyo, S.; Segura-Carretero, A. Isolation, Comprehensive Characterization and Antioxidant Activities of Theobroma cacao Extract. J. Funct. Foods 2014, 10, 485–498. DOI: 10.1016/j.jff.2014.07.016.
  • Matissek, R. Evaluation of Xanthine Derivatives in Chocolate—Nutritional and Chemical Aspects. Z. Lebensmitteluntersuchung Forschung A 1997, 205, 175–184. DOI: 10.1007/s002170050148.
  • Caligiani, A.; Marseglia, A.; Palla, G. Cocoa: Production, Chemistry, and Use. In Encyclopedia of Food and Health; Caballero, B., Finglas, P. M., Toldrá, F., Eds.; Academic Press: Oxford, 2016, p 185.
  • Lemarcq, V.; Tuenter, E.; Bondarenko, A.; Van de Walle, D.; De Vuyst, L.; Pieters, L.; Sioriki, E.; Dewettinck, K. Roasting-Induced Changes in Cocoa Beans with Respect to the Mood Pyramid. Food Chem. 2020, 332, 127467. DOI: 10.1016/j.foodchem.2020.127467.
  • Stark, T.; Bareuther, S.; Hofmann, T. Molecular Definition of the Taste of roasted cocoa Nibs (Theobroma cacao) by Means of Quantitative Studies and Sensory Experiments. J. Agric. Food Chem. 2006, 54, 5530–5539. DOI: 10.1021/jf0608726.
  • Franco, R.; Oñatibia-Astibia, A.; Martínez-Pinilla, E. Health Benefits of Methylxanthines in Cacao and Chocolate. Nutrients 2013, 5, 4159–4173. DOI: 10.3390/nu5104159.
  • Ashihara, H.; Ludwig, I. A.; Katahira, R.; Yokota, T.; Fujimura, T.; Crozier, A. Trigonelline and Related Nicotinic Acid Metabolites: Occurrence, Biosynthesis, Taxonomic Considerations, and Their Roles in Planta and in Human Health. Phytochem. Rev. 2015, 14, 765–798. DOI: 10.1007/s11101-014-9375-z.
  • Monteiro, J.; Alves, M. G.; Oliveira, P. F.; Silva, B. M. Pharmacological Potential of Methylxanthines: Retrospective Analysis and Future Expectations. Crit. Rev. Food Sci. Nutr. 2019, 59, 2597–2625. DOI: 10.1080/10408398.2018.1461607.
  • Peralta-Jiménez, L.; Cañizares-Macías, M. P. Ultrasound-Assisted Method for Extraction of Theobromine and Caffeine from Cacao Seeds and Chocolate Products. Food Bioprocess Technol. 2013, 6, 3522–3529. DOI: 10.1007/s11947-012-1014-3.
  • Tan, J.; Li, R.; Jiang, Z. T.; Tang, S. H.; Wang, Y. Rapid and Non-Destructive Prediction of Methylxanthine and Cocoa Solid Contents in Dark Chocolate by Synchronous Front-Face Fluorescence Spectroscopy and PLSR. J. Food Compos. Anal. 2019, 77, 20–27. DOI: 10.1016/j.jfca.2019.01.001.
  • Júnior, P. C. G.; dos Santos, V. B.; Lopes, A. S.; de Souza, J. P. I.; Pina, J. R. S.; Chagas Júnior, G. C. A.; Marinho, P. S. B. Determination of Theobromine and Caffeine in Fermented and Unfermented Amazonian Cocoa (Theobroma cacao L.) Beans Using Square Wave Voltammetry after Chromatographic Separation. Food Control 2020, 108, 106887. DOI: 10.1016/j.foodcont.2019.106887.
  • Švorc, Ľ.; Haššo, M.; Sarakhman, O.; Kianičková, K.; Stanković, D. M.; Otřísal, P. A Progressive Electrochemical Sensor for Food Quality Control: Reliable Determination of Theobromine in Chocolate Products Using a Miniaturized Boron-Doped Diamond Electrode. Microchem. J. 2018, 142, 297–304. DOI: 10.1016/j.microc.2018.07.007.
  • Peng, Y.; Zhang, W.; Chang, J.; Huang, Y.; Chen, L.; Deng, H.; Huang, Z.; Wen, Y. A Simple and Sensitive Method for the Voltammetric Analysis of Theobromine in Food Samples Using Nanobiocomposite Sensor. Food Anal. Methods 2017, 10, 3375–3384. DOI: 10.1007/s12161-017-0867-5.
  • Oliveira, J. C. S.; Lima, L. S.; Medrado, H. H. S.; David, J. M.; Do Vale, A. E.; David, J. P.; Oliveira, L. L. D. S. S. Isolation of Methylxantines from Cacao Beans (Theobroma cacao) by Counter-Current Chromatography (CCC). J. Liq. Chromatogr. Related Technol. 2015, 38, 1448–1451. DOI: 10.1080/10826076.2015.1048875.
  • Chorti, P.; Ntousikou, M.; Economou, A. A Linear Gradient Sequential Injection Chromatography Method Exploiting Programmable Fluidics for the Determination of Three Methylxanthines. Talanta 2019, 202, 514–519. DOI: 10.1016/j.talanta.2019.04.046.
  • García-Rojas, N. S.; Moreno-Pedraza, A.; Rosas-Román, I.; Ramírez-Chávez, E.; Molina-Torres, J.; Winkler, R. Mass Spectrometry Imaging of Thin-Layer Chromatography Plates Using Laser Desorption/Low-Temperature Plasma Ionisation. Analyst 2020, 145, 3885–3891. DOI: 10.1039/d0an00446d.
  • Bartella, L.; Donna, L. D.; Napoli, A.; Siciliano, C.; Sindona, G.; Mazzotti, F. A Rapid Method for the Assay of Methylxanthines Alkaloids: Theobromine, Theophylline and Caffeine, in Cocoa Products and Drugs by Paper Spray Tandem Mass Spectrometry. Food Chem. 2019, 278, 261–266. DOI: 10.1016/j.foodchem.2018.11.072.
  • Rýdlová, L.; Prchalová, J.; Škorpilová, T.; Rohlík, B.-A.; Čížková, H.; Rajchl, A. Evaluation of Cocoa Products Quality and Authenticity by DART/TOF-MS. Int. J. Mass Spectrom. 2020, 454, 116358. DOI: 10.1016/j.ijms.2020.116358.
  • Mudenuti, N. V. D. R.; de Camargo, A. C.; Shahidi, F.; Madeira, T. B.; Hirooka, E. Y.; Grossmann, M. V. E. Soluble and Insoluble-Bound Fractions of Phenolics and Alkaloids and Their Antioxidant Activities in Raw and Traditional Chocolate: A Comparative Study. J. Funct. Foods 2018, 50, 164–171. DOI: 10.1016/j.jff.2018.10.003.
  • Grassia, M.; Salvatori, G.; Roberti, M.; Planeta, D.; Cinquanta, L. Polyphenols, Methylxanthines, Fatty Acids and Minerals in Cocoa Beans and Cocoa Products. Food Meas. 2019, 13, 1721–1728. DOI: 10.1007/s11694-019-00089-5.
  • Todorovic, V.; Redovnikovic, I. R.; Todorovic, Z.; Jankovic, G.; Dodevska, M.; Sobajic, S. Polyphenols, Methylxanthines, and Antioxidant Capacity of Chocolates Produced in Serbia. J. Food Compos. Anal. 2015, 41, 137–143. DOI: 10.1016/j.jfca.2015.01.018.
  • Baranowska, I.; Płonka, J. Simultaneous Determination of Biogenic Amines and Methylxanthines in Foodstuff—Sample Preparation with HPLC-DAD-FL Analysis. Food Anal. Methods 2015, 8, 963–972. DOI: 10.1007/s12161-014-9972-x.
  • Pereira-Caro, G.; Borges, G.; Nagai, C.; Jackson, M. C.; Yokota, T.; Crozier, A.; Ashihara, H. Profiles of Phenolic Compounds and Purine Alkaloids during the Development of Seeds of Theobroma cacao cv. Trinitario. J. Agric. Food Chem. 2013, 61, 427–434. DOI: 10.1021/jf304397m.
  • Rodríguez-Carrasco, Y.; Gaspari, A.; Graziani, G.; Santini, A.; Ritieni, A. Fast Analysis of Polyphenols and Alkaloids in Cocoa-Based Products by Ultra-High Performance Liquid Chromatography and Orbitrap High Resolution Mass Spectrometry (UHPLC-Q-Orbitrap-MS/MS). Food Res. Int. 2018, 111, 229–236. DOI: 10.1016/j.foodres.2018.05.032.
  • Ortega, N.; Romero, M. P.; Macià, A.; Reguant, J.; Anglès, N.; Morelló, J. R.; Motilva, M. J. Comparative Study of UPLC-MS/MS and HPLC-MS/MS to Determine Procyanidins and Alkaloids in Cocoa Samples. J. Food Compos. Anal. 2010, 23, 298–305. DOI: 10.1016/j.jfca.2009.10.005.
  • Li, Y.; Feng, Y.; Zhu, S.; Luo, C.; Ma, J.; Zhong, F. The Effect of Alkalization on the Bioactive and Flavor Related Components in Commercial Cocoa Powder. J. Food Compos. Anal. 2012, 25, 17–23. DOI: 10.1016/j.jfca.2011.04.010.
  • Müller, C.; Vetter, F.; Richter, E.; Bracher, F. Determination of Caffeine, Myosmine, and Nicotine in Chocolate by Headspace Solid-Phase Microextraction Coupled with Gas Chromatography-Tandem Mass Spectrometry. J. Food Sci. 2014, 79, T251–T255. DOI: 10.1111/1750-3841.12339.
  • Hajslova, J.; Cajka, T.; Vaclavik, L. Challenging Applications Offered by Direct Analysis in Real Time (DART) in Food-Quality and Safety Analysis. TrAC Trends Anal. Chem. 2011, 30, 204–218. DOI: 10.1016/j.trac.2010.11.001.
  • Pan, C.; Wang, L. Application of DART-MS in Foods and Agro-Products Analysis. In Direct Analysis in Real Time Mass Spectrometry; 2018, p 133.
  • Bucheli, P.; Rousseau, G.; Alvarez, M.; Laloi, M.; McCarthy, J. Developmental Variation of Sugars, Carboxylic Acids, Purine Alkaloids, Fatty Acids, and Endoproteinase Activity during Maturation of Theobroma cacao L. Seeds. J. Agric. Food Chem. 2001, 49, 5046–5051. DOI: 10.1021/jf010620z.
  • Mota-Gutierrez, J.; Botta, C.; Ferrocino, I.; Giordano, M.; Bertolino, M.; Dolci, P.; Cannoni, M.; Cocolin, L. Dynamics and Biodiversity of Bacterial and Yeast Communities during Fermentation of Cocoa Beans. Appl. Environ. Microbiol. 2018, 84, e01164-18. DOI: 10.1128/AEM.01164-18.
  • De Vuyst, L.; Weckx, S. The Cocoa Bean Fermentation Process: From Ecosystem Analysis to Starter Culture Development. J. Appl. Microbiol. 2016, 121, 5–17. DOI: 10.1111/jam.13045.
  • Kaneuchi, C.; Seki, M.; Komagata, K. Production of Succinic Acid from Citric Acid and Related Acids by Lactobacillus Strains. Appl. Environ. Microbiol. 1988, 54, 3053–3056. DOI: 10.1128/aem.54.12.3053-3056.1988.
  • Jinap, S.; Dimick, P. S. Effect of Roasting on Acidic Characteristics of Cocoa Beans. J. Sci. Food Agric. 1991, 54, 317–321. DOI: 10.1002/jsfa.2740540220.
  • Holm, C. S.; Aston, J. W.; Douglas, K. The Effects of the Organic Acids in Cocoa on the Flavour of Chocolate. J. Sci. Food Agric. 1993, 61, 65–71. DOI: 10.1002/jsfa.2740610111.
  • Chahardoli, A.; Jalilian, F.; Memariani, Z.; Farzaei, M. H.; and Y. Shokoohinia, Chapter 26—Analysis of Organic Acids. In Recent Advances in Natural Products Analysis; Sanches Silva, A., Nabavi, S. F., Saeedi, M., Nabavi, S. M., Eds.; Elsevier, 2020, p 767.
  • Caligiani, A.; Palla, L.; Acquotti, D.; Marseglia, A.; Palla, G. Application of 1H NMR for the Characterisation of Cocoa Beans of Different Geographical Origins and Fermentation Levels. Food Chem. 2014, 157, 94–99. DOI: 10.1016/j.foodchem.2014.01.116.
  • Roda, A.; Lambri, M. Changes in Antioxidants and Sensory Properties of Italian Chocolates and Related Ingredients under Controlled Conditions during an Eighteen-Month Storage Period. Nutrients 2019, 11, 2719. DOI: 10.3390/nu11112719.
  • Hannum, S. M.; Erdman, J. W. Emerging Health Benefits from Cocoa and Chocolate. J. Med. Food 2000, 3, 73–75. DOI: 10.1089/109662000416276.
  • Sirbu, D.; Corno, M.; Ullrich, M. S.; Kuhnert, N. Characterization of Triacylglycerols in Unfermented Cocoa Beans by HPLC-ESI Mass Spectrometry. Food Chem. 2018, 254, 232–240. DOI: 10.1016/j.foodchem.2018.01.194.
  • Lipp, M.; Simoneau, C.; Ulberth, F.; Anklam, E.; Crews, C.; Brereton, P.; de Greyt, W.; Schwack, W.; Wiedmaier, C. Composition of Genuine Cocoa Butter and Cocoa Butter Equivalents. J. Food Compos. Anal. 2001, 14, 399–408. DOI: 10.1006/jfca.2000.0984.
  • Tokede, O. A.; Gaziano, J. M.; Djoussé, L. Effects of Cocoa Products/Dark Chocolate on Serum Lipids: A Meta-Analysis. Eur. J. Clin. Nutr. 2011, 65, 879–886. DOI: 10.1038/ejcn.2011.64.
  • Torres-Moreno, M.; Torrescasana, E.; Salas-Salvadó, J.; Blanch, C. Nutritional Composition and Fatty Acids Profile in Cocoa Beans and Chocolates with Different Geographical Origin and Processing Conditions. Food Chem. 2015, 166, 125–132. DOI: 10.1016/j.foodchem.2014.05.141.
  • Servent, A.; Boulanger, R.; Davrieux, F.; Pinot, M.-N.; Tardan, E.; Forestier-Chiron, N.; Hue, C. Assessment of Cocoa (Theobroma cacao L.) Butter Content and Composition throughout Fermentations. Food Res Int. 2018, 107, 675–682. DOI: 10.1016/j.foodres.2018.02.070.
  • Żyżelewicz, D.; Budryn, G.; Krysiak, W.; Oracz, J.; Nebesny, E.; Bojczuk, M. Influence of Roasting Conditions on Fatty Acid Composition and Oxidative Changes of Cocoa Butter Extracted from Cocoa Bean of Forastero Variety Cultivated in Togo. Food Res. Int. 2014, 63, 328–343. DOI: 10.1016/j.foodres.2014.04.053.
  • Engeseth, N. J.; Ac Pangan, M. F. Current Context on Chocolate Flavor Development—A Review. Curr. Opin. Food Sci. 2018, 21, 84–91. DOI: 10.1016/j.cofs.2018.07.002.
  • Lipp, M.; Anklam, E. Review of Cocoa Butter and Alternative Fats for Use in Chocolate—Part A. Compositional Data. Food Chem. 1998, 62, 73–97. DOI: 10.1016/S0308-8146(97)00160-X.
  • Żyżelewicz, D.; Krysiak, W.; Budryn, G.; Oracz, J.; Nebesny, E. Tocopherols in Cocoa Butter Obtained from Cocoa Bean Roasted in Different Forms and under Various Process Parameters. Food Res. Int. 2014, 63, 390–399. DOI: 10.1016/j.foodres.2014.03.027.
  • Watanabe, S.; Yoshikawa, S.; Sato, K. Formation and Properties of Dark Chocolate Prepared Using Fat Mixtures of Cocoa Butter and Symmetric/Asymmetric Stearic-Oleic Mixed-Acid Triacylglycerols: Impact of Molecular Compound Crystals. Food Chem. 2021, 339, 127808. DOI: 10.1016/j.foodchem.2020.127808.
  • Afoakwa, E. O. Cocoa Processing Technology. In Chocolate Science and Technology; Afoakwa, E., Ed.; Wiley Blackwell: Oxford, 2016, ch. 6, p 102.
  • Mustiga, G. M.; Morrissey, J.; Stack, J. C.; DuVal, A.; Royaert, S.; Jansen, J.; Bizzotto, C.; Villela-Dias, C.; Mei, L.; Cahoon, E. B.; et al. Identification of Climate and Genetic Factors That Control Fat Content and Fatty Acid Composition of Theobroma cacao L. Beans. Front Plant Sci. 2019, 10, 1159. DOI: 10.3389/fpls.2019.01159.
  • Bottari, E.; Festa, M. R.; Mazzoni, S. Comparison between Cocoa and Chocolate: Characterisation and Fatty Acid Content. Nat. Prod. Res. 2019, 33, 2243–2252. DOI: 10.1080/14786419.2018.1499597.
  • Toker, O. S.; Palabiyik, I.; Pirouzian, H. R.; Aktar, T.; Konar, N. Chocolate Aroma: Factors, Importance and Analysis. Trends Food Sci. Technol. 2020, 99, 580–592. DOI: 10.1016/j.tifs.2020.03.035.
  • Jalili, V.; Barkhordari, A.; Ghiasvand, A. A Comprehensive Look at Solid-Phase Microextraction Technique: A Review of Reviews. Microchem. J. 2020, 152, 104319. DOI: 10.1016/j.microc.2019.104319.
  • Lord, H.; Pawliszyn, J. Evolution of Solid-Phase Microextraction Technology. J. Chromatogr. A. 2000, 885, 153–193. DOI: 10.1016/S0021-9673(00)00535-5.
  • Scalone, G. L. L.; Textoris-Taube, K.; De Meulenaer, B.; De Kimpe, N.; Wöstemeyer, J.; Voigt, J. Cocoa-Specific Flavor Components and Their Peptide Precursors. Food Res. Int. 2019, 123, 503–515. DOI: 10.1016/j.foodres.2019.05.019.
  • Jeleń, H.; Majcher, M.; and A. Gracka, Application of Solid Phase Microextraction in Food Analysis—Flavor and off-Flavor Sampling. In Solid Phase Microextraction, Ouyang, G., Jiang, R., Eds.; Springer-Verlag: Berlin, 2017, pp 223–246.
  • Deuscher, Z.; Gourrat, K.; Repoux, M.; Boulanger, R.; Labouré, H.; Quéré, J.-L. L. Key Aroma Compounds of Dark Chocolates Differing in Organoleptic Properties: A GC-O Comparative Study. Molecules 2020, 25, 1809. DOI: 10.3390/molecules25081809.
  • Liu, J.; Liu, M.; He, C.; Song, H.; Guo, J.; Wang, Y.; Yang, H.; Su, X. A Comparative Study of Aroma-Active Compounds between Dark and Milk Chocolate: relationship to Sensory Perception. J. Sci. Food Agric. 2015, 95, 1362–1372. DOI: 10.1002/jsfa.6831.
  • Liu, M.; Liu, J.; He, C.; Song, H.; Liu, Y.; Zhang, Y.; Wang, Y.; Guo, J.; Yang, H.; Su, X. Characterization and Comparison of Key Aroma-Active Compounds of Cocoa Liquors from Five Different Areas. Int. J. Food Prop. 2017, 20, 2396–2408. DOI: 10.1080/10942912.2016.1238929.
  • Chetschik, I.; Kneubuhl, M.; Chatelain, K.; Schluter, A.; Bernath, K.; Huhn, T. Investigations on the Aroma of Cocoa Pulp (Theobroma cacao L.) and Its Influence on the Odor of Fermented Cocoa Beans. J. Agric. Food Chem. 2018, 66, 2467–2472. DOI: 10.1021/acs.jafc.6b05008.
  • Seyfried, C.; Granvogl, M. Characterization of the Key Aroma Compounds in two Commercial Dark Chocolates with High Cocoa Contents by Means of the Sensomics Approach. J. Agric. Food Chem. 2019, 67, 5827–5837. DOI: 10.1021/acs.jafc.8b06183.
  • Suzuki, D.; Sato, Y.; Nishiura, H.; Harada, R.; Kamasaka, H.; Kuriki, T.; Tamura, H. A Novel Extraction Method for Aroma Isolation from Dark Chocolate Based on the Oiling-Out Effect. Food Anal. Methods 2019, 12, 2857–2869. DOI: 10.1007/s12161-019-01642-0.
  • Pico, J.; Gómez, M.; Bernal, J.; Bernal, J. L. Analytical Methods for Volatile Compounds in Wheat Bread. J. Chromatogr. A. 2016, 1428, 55–71. DOI: 10.1016/j.chroma.2015.09.045.
  • Humston, E. M.; Knowles, J. D.; McShea, A.; Synovec, R. E. Quantitative Assessment of Moisture Damage for Cacao Bean Quality Using Two-Dimensional Gas Chromatography Combined with Time-of-Flight Mass Spectrometry and Chemometrics. J. Chromatogr. A. 2010, 1217, 1963–1970. DOI: 10.1016/j.chroma.2010.01.069.
  • Oliveira, L. F.; Braga, S. C. G. N.; Filgueiras, P. R.; Augusto, F.; Poppi, R. J. Assessment of Robustness on Analysis Using Headspace Solid-Phase Microextraction and Comprehensive Two-Dimensional Gas Chromatography through Experimental Designs. Talanta 2014, 129, 303–308. DOI: 10.1016/j.talanta.2014.05.038.
  • Hibbert, D. B. 4.12—Chemometric Analysis of Sensory Data. In Comprehensive Chemometrics, Brown, S. D., Tauler, R., Walczak, B., Eds.; Elsevier: Oxford, 2009, p. 377.
  • Song, H.; Liu, J. GC-O-MS Technique and Its Applications in Food Flavor Analysis. Food Res. Int. 2018, 114, 187–198. DOI: 10.1016/j.foodres.2018.07.037.
  • Tan, J.; Xu, J. Applications of Electronic Nose (e-Nose) and Electronic Tongue (e-Tongue) in Food Quality-Related Properties Determination: A Review. Artif. Intell. Agric. 2020, 4, 104–115. DOI: 10.1016/j.aiia.2020.06.003.
  • Rottiers, H.; Tzompa Sosa, D. A.; Van de Vyver, L.; Hinneh, M.; Everaert, H.; De Wever, J.; Messens, K.; Dewettinck, K. Discrimination of Cocoa Liquors Based on Their Odor Fingerprint: A Fast GC Electronic Nose Suitability Study. Food Anal. Methods 2019, 12, 475–488. DOI: 10.1007/s12161-018-1379-7.
  • Gu, F.; Tan, L.; Wu, H.; Fang, Y.; Xu, F.; Chu, Z.; Wang, Q. Comparison of Cocoa Beans from China, Indonesia and Papua New Guinea. Foods 2013, 2, 183–197. DOI: 10.3390/foods2020183.
  • Tan, J.; Kerr, W. L. Determining Degree of Roasting in Cocoa Beans by Artificial Neural Network (ANN)-Based Electronic Nose System and Gas Chromatography/Mass Spectrometry (GC/MS). J. Sci. Food Agric. 2018, 98, 3851–3859. DOI: 10.1002/jsfa.8901.
  • Śliwińska, M.; Wiśniewska, P.; Dymerski, T.; Namieśnik, J.; Wardencki, W. Food Analysis Using Artificial Senses. J. Agric. Food Chem. 2014, 62, 1423–1448. DOI: 10.1021/jf403215y.
  • Acierno, V.; Fasciani, G.; Kiani, S.; Caligiani, A.; van Ruth, S. PTR-QiToF-MS and HSI for the Characterization of Fermented Cocoa Beans from Different Origins. Food Chem. 2019, 289, 591–602. DOI: 10.1016/j.foodchem.2019.03.095.
  • Huang, Y.; Barringer, S. A. Monitoring of Cocoa Volatiles Produced during Roasting by Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS). J. Food Sci. 2011, 76, C279–C286. DOI: 10.1111/j.1750-3841.2010.01984.x.
  • Deuscher, Z.; Andriot, I.; Sémon, E.; Repoux, M.; Preys, S.; Roger, J.-M.; Boulanger, R.; Labouré, H.; Le Quéré, J.-L. Volatile Compounds Profiling by Using Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS). The Case Study of Dark Chocolates Organoleptic Differences. J. Mass Spectrom. 2019, 54, 92–119. DOI: 10.1002/jms.4317.
  • Acierno, V.; Yener, S.; Alewijn, M.; Biasioli, F.; van Ruth, S. Factors Contributing to the Variation in the Volatile Composition of Chocolate: Botanical and Geographical Origins of the Cocoa Beans, and Brand-Related Formulation and Processing. Food Res. Int. 2016, 84, 86–95. DOI: 10.1016/j.foodres.2016.03.022.
  • Diab, J.; Hertz-Schünemann, R.; Streibel, T.; Zimmermann, R. Online Measurement of Volatile Organic Compounds Released during Roasting of Cocoa Beans. Food Res. Int. 2014, 63, 344–352. DOI: 10.1016/j.foodres.2014.04.047.
  • Materić, D.; Bruhn, D.; Turner, C.; Morgan, G.; Mason, N.; Gauci, V. Methods in Plant Foliar Volatile Organic Compounds Research. Appl. Plant Sci. 2015, 3, apps.1500044. DOI: 10.3732/apps.1500044.
  • Biasioli, F.; Yeretzian, C.; Märk, T. D.; Dewulf, J.; Van Langenhove, H. Direct-Injection Mass Spectrometry Adds the Time Dimension to (B)VOC Analysis. TrAC Trends Anal. Chem. 2011, 30, 1003–1017. DOI: 10.1016/j.trac.2011.04.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.