1,565
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Recent Advances in Silver and Gold Nanoparticles-Based Colorimetric Sensors for Heavy Metal Ions Detection: A Review

, , , , , , , & show all
Pages 718-750 | Published online: 12 Sep 2021

References

  • Dhumale, V. A.; Gangwar, R. K.; Pande, N. Importance of Gold Nanoparticles for Detection of Toxic Heavy Metal Ions and Vital Role in Biomedical Applications. Mater. Res. Innov. 2021, 25, 354–359. DOI: 10.1080/14328917.2020.1825770.
  • Roy, D.; Neogi, S.; De, S. Adsorptive Removal of Heavy Metals from Battery Industry Effluent Using MOF Incorporated Polymeric Beads: A Combined Experimental and Modeling Approach. J. Hazard. Mater. 2021, 403, 123624. DOI: 10.1016/j.jhazmat.2020.123624.
  • Briffa, J.; Sinagra, E.; Blundell, R. Heavy Metal Pollution in the Environment and Their Toxicological Effects on Humans. Heliyon 2020, 6, e04691. DOI: 10.1016/j.heliyon.2020.e04691.
  • Bendicho, C.; Lavilla, I.; Pena-Pereira, F.; de la Calle, I.; Romero, V. Nanomaterial-Integrated Cellulose Platforms for Optical Sensing of Trace Metals and Anionic Species in the Environment. Sensors 2021, 21, 604. DOI: 10.3390/s21020604.
  • Jinadasa, K. K.; Herbello-Hermelo, P.; Peña-Vázquez, E.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. Mercury Speciation in Edible Seaweed by Liquid Chromatography - Inductively Coupled Plasma Mass Spectrometry after Ionic Imprinted Polymer-Solid Phase Extraction. Talanta 2021, 224, 121841. DOI: 10.1016/j.talanta.2020.121841.
  • Li, K.; Yang, H.; Yuan, X.; Zhang, M. Recent Developments of Heavy Metals Detection in Traditional Chinese Medicine by Atomic Spectrometry. Microchem. J. 2021, 160, 105726. DOI: 10.1016/j.microc.2020.105726.
  • Mukherjee, S.; Bhattacharyya, S.; Ghosh, K.; Pal, S.; Halder, A.; Naseri, M.; Mohammadniaei, M.; Sarkar, S.; Ghosh, A.; Sun, Y.; Bhattacharyya, N. Sensory Development for Heavy Metal Detection: A Review on Translation from Conventional Analysis to Field-Portable Sensor. Trends Food Sci. Technol. 2021, 109, 674–689. DOI: 10.1016/j.tifs.2021.01.062.
  • Zamora-Ledezma, C.; Negrete-Bolagay, D.; Figueroa, F.; Zamora-Ledezma, E.; Ni, M.; Alexis, F.; Guerrero, V. H. Heavy Metal Water Pollution: A Fresh Look about Hazards, Novel and Conventional Remediation Methods. Environ. Technol. Innov. 2021, 22, 101504. DOI: 10.1016/j.eti.2021.101504.
  • Shi, Y.; Li, W.; Feng, X.; Lin, L.; Nie, P.; Shi, J.; Zou, X.; He, Y. Sensing of Mercury Ions in Porphyra by Copper @ Gold nanoclusters based ratiometric fluorescent aptasensor. Food Chem. 2021, 344, 128694. DOI: 10.1016/j.foodchem.2020.128694.
  • Yangli, X.; Liuwei, M.; Xiaojing, C.; Xi, C.; Laijin, S.; Leiming, Y.; Wen, S.; Huang, G. A Strategy to Significantly Improve the Classification Accuracy of LIBS Data: Application for the Determination of Heavy Metals in Tegillarca Granosa. Plasma Sci. Technol. 2021, 23, 085503. DOI: 10.1088/2058-6272/ac071b.
  • Su, L.; Shi, W.; Chen, X.; Meng, L.; Yuan, L.; Chen, X.; Huang, G. Simultaneously and Quantitatively Analyze the Heavy Metals in Sargassum Fusiforme by Laser-Induced Breakdown Spectroscopy. Food Chem. 2021, 338, 127797. DOI: 10.1016/j.foodchem.2020.127797.
  • Lai, C.; Liu, S.; Zhang, C.; Zeng, G.; Huang, D.; Qin, L.; Liu, X.; Yi, H.; Wang, R.; Huang, F.; et al. Electrochemical Aptasensor Based on Sulfur-Nitrogen Codoped Ordered Mesoporous Carbon and Thymine-Hg2+-Thymine Mismatch Structure for Hg2+ Detection. ACS Sens. 2018, 3, 2566–2573. DOI: 10.1021/acssensors.8b00926.
  • Kumar, K. S.; Ramakrishnappa, T. Green Synthesized Uncapped Ag Colloidal Nanoparticles for Selective Colorimetric Sensing of Divalent Hg and H2O2. J. Environ. Chem. Eng. 2021, 9, 105365. DOI: 10.1016/j.jece.2021.105365.
  • Qin, L.; Zeng, G.; Lai, C.; Huang, D.; Zhang, C.; Xu, P.; Hu, T.; Liu, X.; Cheng, M.; Liu, Y.; et al. A Visual Application of Gold Nanoparticles: Simple, Reliable and Sensitive Detection of Kanamycin Based on Hydrogen-Bonding Recognition. Sens. Actuators B 2017, 243, 946–954. DOI: 10.1016/j.snb.2016.12.086.
  • Fratoddi, I.; Cerra, S.; Salamone, T. A.; Fioravanti, R.; Sciubba, F.; Zampetti, E.; Macagnano, A.; Generosi, A.; Paci, B.; Scaramuzzo, F. A.; et al. Functionalized Gold Nanoparticles as an Active Layer for Mercury Vapor Detection at Room Temperature. ACS Appl. Nano Mater. 2021, 4, 2930–2940. DOI: 10.1021/acsanm.1c00074.
  • Mane, P.; Adhyapak, P.; Kadam, D.; Amalnerkar, D.; Kim, T.; Chaudhari, R. Selective and Sensitive Colorimetric Detection of Mercury Ions in Aqueous Solutions Using Silver Nanoparticles Synthesized in Innovative Biomaterial Matrix. Emerg. Mater. 2021, 1–9. DOI: 10.1007/s42247-021-00212-7.
  • Saenchoopa, A.; Boonta, W.; Talodthaisong, C.; Srichaiyapol, O.; Patramanon, R.; Kulchat, S. Colorimetric Detection of Hg(II) by γ-Aminobutyric Acid-Silver Nanoparticles in Water and the Assessment of Antibacterial Activities. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 251, 119433. DOI: 10.1016/j.saa.2021.119433.
  • Ramos, R. M. C. R.; Regulacio, M. D. Controllable Synthesis of Bimetallic Nanostructures Using Biogenic Reagents: A Green Perspective. ACS Omega. 2021, 6, 7212–7228. DOI: 10.1021/acsomega.1c00692.
  • Lopes, C. R. B.; Junior, D. S.; de Oliveira Silva, F. R.; Courrol, L. C. High-Sensitivity Hg 2+ Sensor Based on the Optical Properties of Silver Nanoparticles Synthesized with Aqueous Leaf Extract of Mimusops Coriacea. Appl. Phys. A 2021, 127, 1–13. DOI: 10.1007/s00339-021-04391-2.
  • Bhamore, J. R.; Gul, A. R.; Kailasa, S. K.; Kim, K.-W.; Lee, J. S.; Park, H.; Park, T. J. Functionalization of Gold Nanoparticles Using Guanidine Thiocyanate for Sensitive and Selective Visual Detection of Cd2+. Sens. Actuators B. 2021, 334, 129685. DOI: 10.1016/j.snb.2021.129685.
  • Restrepo, C. V.; Villa, C. C. Synthesis of Silver Nanoparticles, Influence of Capping Agents, and Dependence on Size and Shape: A Review. Environ. Nanotechnol. Monit. Manage. 2021, 15, 100428. DOI: 10.1016/j.enmm.2021.100428.
  • Hubert, C.; Chomette, C.; Désert, A.; Madeira, A.; Perro, A.; Florea, I.; Ihiawakrim, D.; Ersen, O.; Lombardi, A.; Pertreux, E.; et al. Versatile Template-Directed Synthesis of Gold Nanocages with a Predefined Number of Windows. Nanoscale Horiz. 2021, 6, 311–318. DOI: 10.1039/d0nh00620c.
  • Hyder, A.; Memon, S. S.; Memon, S.; Rajpar, D. B.; Shaikh, S. G.; Buledi, J. A. A Highly Discerning p-Tetranitrocalix [4] Arene (p-TNC4) Functionalized Copper Nanoparticles: A Smart Electrochemical Sensor for the Selective Determination of Diphenhydramine Drug. Microchem. J. 2021, 163, 105908. DOI: 10.1016/j.microc.2020.105908.
  • Ali, S.; Shah, M. R.; Hussain, S.; Khan, S.; Latif, A.; Ahmad, M.; Ali, M. A Facile Approach Based on Functionalized Silver Nanoparticles as a Chemosensor for the Detection of Paraquat. J. Cluster Sci. 2021, 1–8. DOI: 10.1007/s10876-021-01978-w
  • Singh, R.; Mehra, R.; Walia, A.; Gupta, S.; Chawla, P.; Kumar, H.; Thakur, A.; Kaushik, R.; Kumar, N. Colorimetric Sensing Approaches Based on Silver Nanoparticles Aggregation for Determination of Toxic Metal Ions in Water Sample: A Review. Int. J. Environ. Anal. Chem. 2021, 1–16. DOI: 10.1080/03067319.2021.1873315
  • Liu, X.; Huang, D.; Lai, C.; Zeng, G.; Qin, L.; Wang, H.; Yi, H.; Li, B.; Liu, S.; Zhang, M.; et al. Recent Advances in Covalent Organic Frameworks (COFs) as a Smart Sensing Material. Chem. Soc. Rev. 2019, 48, 5266–5302. DOI: 10.1039/c9cs00299e.
  • Idris, A. O.; Oseghe, E. O.; Msagati, T. A.; Kuvarega, A. T.; Feleni, U.; Mamba, B. Graphitic Carbon Nitride: A Highly Electroactive Nanomaterial for Environmental and Clinical Sensing. Sensors 2020, 20, 5743. DOI: 10.3390/s20205743.
  • Dai, D.; Yang, J.; Wang, Y.; Yang, Y. W. Recent Progress in Functional Materials for Selective Detection and Removal of Mercury (II) Ions. Adv. Funct. Mater. 2021, 31, 2006168. DOI: 10.1002/adfm.202006168.
  • Hasan, A.; Nanakali, N. M. Q.; Salihi, A.; Rasti, B.; Sharifi, M.; Attar, F.; Derakhshankhah, H.; Mustafa, I. A.; Abdulqadir, S. Z.; Falahati, M. Nanozyme-Based Sensing Platforms for Detection of Toxic Mercury Ions: An Alternative Approach to Conventional Methods. Talanta 2020, 215, 120939. DOI: 10.1016/j.talanta.2020.120939.
  • Lizundia, E.; Puglia, D.; Nguyen, T.-D.; Armentano, I. Cellulose Nanocrystal Based Multifunctional Nanohybrids. Prog. Mater. Sci. 2020, 112, 100668. DOI: 10.1016/j.pmatsci.2020.100668.
  • Sarikokba, S.; Tiwari, D.; Prasad, S. K.; Kim, D. J.; Choi, S. S.; Lee, S.-M. Bio-Composite Materials Precursor to Chitosan in the Development of Electrochemical Sensors: A Critical Overview of Its Use with Micro-Pollutants and Heavy Metals Detection. Appl. Chem. Eng. 2020, 31, 237–257.
  • Mustafa, F.; Andreescu, S. Nanotechnology-Based Approaches for Food Sensing and Packaging Applications. RSC Adv. 2020, 10, 19309–19336. DOI: 10.1039/D0RA01084G.
  • Li, W.; Fortner, J. D. (Super) Paramagnetic Nanoparticles as Platform Materials for Environmental Applications: From Synthesis to Demonstration. Front. Environ. Sci. Eng. 2020, 14, 1–9. DOI: 10.1007/s11783-020-1256-7.
  • Li, Y.-K.; Yang, T.; Chen, M.-L.; Wang, J.-H. Recent Advances in Nanomaterials for Analysis of Trace Heavy Metals. Crit. Rev. Anal. Chem. 2021, 51, 353–320.
  • Tyagi, D.; Wang, H.; Huang, W.; Hu, L.; Tang, Y.; Guo, Z.; Ouyang, Z.; Zhang, H. Recent Advances in Two-Dimensional-Material-Based Sensing Technology toward Health and Environmental Monitoring Applications. Nanoscale 2020, 12, 3535–3559. DOI: 10.1039/c9nr10178k.
  • Shah, M. R.; Ali, S.; Ateeq, M.; Perveen, S.; Ahmed, S.; Bertino, M. F.; Ali, M. Morphological Analysis of the Antimicrobial Action of Silver and Gold Nanoparticles Stabilized with Ceftriaxone on Escherichia coli Using Atomic Force Microscopy. New J. Chem. 2014, 38, 5633–5640. DOI: 10.1039/C4NJ00751D.
  • Ali, S.; Perveen, S.; Ali, M.; Jiao, T.; Sharma, A. S.; Hassan, H.; Devaraj, S.; Li, H.; Chen, Q. Bioinspired Morphology-Controlled Silver Nanoparticles for Antimicrobial Application. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 108, 110421. DOI: 10.1016/j.msec.2019.110421.
  • Islam, M. A.; Jacob, M. V.; Antunes, E. A Critical Review on Silver Nanoparticles: From Synthesis and Applications to Its Mitigation through Low-Cost Adsorption by Biochar. J. Environ. Manage. 2021, 281, 111918. DOI: 10.1016/j.jenvman.2020.111918.
  • Yan, K.; Xu, F.; Wei, W.; Yang, C.; Wang, D.; Shi, X. Electrochemical Synthesis of Chitosan/Silver Nanoparticles Multilayer Hydrogel Coating with pH-Dependent Controlled Release Capability and Antibacterial Property. Colloids Surf. B Biointerfaces 2021, 202, 111711. DOI: 10.1016/j.colsurfb.2021.111711.
  • Dheyab, M. A.; Aziz, A. A.; Jameel, M. S.; Khaniabadi, P. M.; Mehrdel, B. Sonochemical-Assisted Synthesis of Highly Stable Gold Nanoparticles Catalyst for Decoloration of Methylene Blue Dye. Inorg. Chem. Commun. 2021, 127, 108551. DOI: 10.1016/j.inoche.2021.108551.
  • Mahajan, J.; Jeevanandam, P. A Facile Thermal Decomposition Approach for the Synthesis of SiO2@ ZnS Core-Shell Nanoparticles and Their Application as Effective Adsorbent for the Removal of Congo Red. Mater. Today Commun. 2021, 26, 102085. DOI: 10.1016/j.mtcomm.2021.102085.
  • Patel, G. H.; Chaki, S. H.; Kannaujiya, R. M.; Parekh, Z. R.; Hirpara, A. B.; Khimani, A. J.; Deshpande, M. Sol-Gel Synthesis and Thermal Characterization of SnO2 Nanoparticles. Physica B. 2021, 613, 412987. DOI: 10.1016/j.physb.2021.412987.
  • Jahan, I.; Erci, F.; Isildak, I. Facile Microwave-Mediated Green Synthesis of Non-Toxic Copper Nanoparticles Using Citrus sinensis Aqueous Fruit Extract and Their Antibacterial Potentials. J. Drug Deliv. Sci. Technol. 2021, 61, 102172. DOI: 10.1016/j.jddst.2020.102172.
  • Nasaruddin, R. R.; Chen, T.; Yao, Q.; Zang, S.; Xie, J. Toward Greener Synthesis of Gold Nanomaterials: From Biological to Biomimetic Synthesis. Coord. Chem. Rev. 2021, 426, 213540. DOI: 10.1016/j.ccr.2020.213540.
  • Dutta, D.; Das, B. M. Scope of Green Nanotechnology towards Amalgamation of Green Chemistry for Cleaner Environment: A Review on Synthesis and Applications of Green Nanoparticles. Environ. Nanotechnol. Monit. Manage. 2021, 15, 100418. DOI: 10.1016/j.enmm.2020.100418.
  • Tan, K. B.; Sun, D.; Huang, J.; Odoom-Wubah, T.; Li, Q. State of Arts on the Bio-Synthesis of Noble Metal Nanoparticles and Their Biological Application. Chin. J. Chem. Eng. 2021, 30, 272–290. DOI: 10.1016/j.cjche.2020.11.010.
  • Ali, S.; Bacha, M.; Shah, M. R.; Shah, W.; Kubra, K.; Khan, A.; Ahmad, M.; Latif, A.; Ali, M. Green Synthesis of Silver and Gold Nanoparticles Using Crataegus Oxyacantha Extract and Their Urease Inhibitory Activities. Biotechnol. Appl. Biochem. 2020. DOI: 10.1002/bab.2018
  • El-Khatib, A. M.; Doma, A.; Abo-Zaid, G.; Badawi, M. S.; Mohamed, M. M.; Mohamed, A. S. Antibacterial Activity of Some Nanoparticles Prepared by Double Arc Discharge Method. Nano-Structures & Nano-Objects 2020, 23, 100473. DOI: 10.1016/j.nanoso.2020.100473.
  • Kwiczak-Yiğitbaşı, J.; Laçin, Ö.; Demir, M.; Ahan, R. E.; Şeker, U. Ö.; Baytekin, B. A Sustainable Preparation of Catalytically Active and Antibacterial Cellulose Metal Nanocomposites via Ball Milling of Cellulose. Green Chem. 2020, 22, 455–464. DOI: 10.1039/C9GC02781E.
  • Sadrolhosseini, A. R.; Krishnan, G.; Shafie, S.; Abdul Rashid, S.; Wadi Harun, S. Optical and Photoacoustic Properties of Laser-Ablated Silver Nanoparticles in a Carbon Dots Solution. Molecules 2020, 25, 5798. DOI: 10.3390/molecules25245798.
  • Noah, N. M. Design and Synthesis of Nanostructured Materials for Sensor Applications. J. Nanomater. 2020, 2020, 1–20. DOI: 10.1155/2020/8855321.
  • Ali, S.; Perveen, S.; Shah, M. R.; Zareef, M.; Arslan, M.; Basheer, S.; Ullah, S.; Ali, M. Bactericidal Potentials of Silver and Gold Nanoparticles Stabilized with Cefixime: A Strategy against Antibiotic-Resistant Bacteria. J. Nanopart. Res. 2020, 22, 1–12. DOI: 10.1007/s11051-020-04939-y.
  • Ali, S.; Sharma, A. S.; Ahmad, W.; Zareef, M.; Hassan, M. M.; Viswadevarayalu, A.; Jiao, T.; Li, H.; Chen, Q. Noble Metals Based Bimetallic and Trimetallic Nanoparticles: Controlled Synthesis, Antimicrobial and Anticancer Applications. Crit. Rev. Anal. Chem. 2021, 51, 454–428.
  • Amrutha, D.; Joseph, J.; Vineeth, C.; John, A.; Abraham, A. Green Synthesis of Cuminum Cyminum Silver Nanoparticles: Characterizations and Cytocompatibility with Lapine Primary Tenocytes. J. Biosci. 2021, 46, 1–14. DOI: 10.1007/s12038-021-00141-x.
  • Tawade, B. V.; Apata, I. E.; Singh, M.; Das, P.; Pradhan, N.; Al-Enizi, A. M.; Karim, A.; Raghavan, D. Recent Developments in the Synthesis of Chemically Modified Nanomaterials for Use in Dielectric and Electronics Applications. Nanotechnology 2021, 32, 142004. DOI: 10.1088/1361-6528/abcf6c.
  • El-Kurdi, R.; Patra, D. Gold and Silver Nanoparticles in Resonance Rayleigh Scattering Techniques for Chemical Sensing and Biosensing: A Review. Mikrochim. Acta 2019, 186, 667–618. DOI: 10.1007/s00604-019-3755-4.
  • Qiao, Z.; Zhang, J.; Hai, X.; Yan, Y.; Song, W.; Bi, S. Recent Advances in Templated Synthesis of Metal Nanoclusters and Their Applications in Biosensing, Bioimaging and Theranostics. Biosens. Bioelectron. 2021, 176, 112898. DOI: 10.1016/j.bios.2020.112898.
  • Rajesh, S.; Zhai, J.; Drummond, C. J.; Tran, N. Synthetic Ionizable Aminolipids Induce a pH Dependent Inverse Hexagonal to Bicontinuous Cubic Lyotropic Liquid Crystalline Phase Transition in Monoolein Nanoparticles. J. Colloid Interface Sci. 2021, 589, 85–95. DOI: 10.1016/j.jcis.2020.12.060.
  • Aminu, A.; Oladepo, S. A. Fast Orange Peel-Mediated Synthesis of Silver Nanoparticles and Use as Visual Colorimetric Sensor in the Selective Detection of Mercury (II) Ions. Arab. J. Sci. Eng. 2021, 46, 5477–5411. DOI: 10.1007/s13369-020-05030-3.
  • Desai, M. P.; Patil, R. V.; Harke, S. S.; Pawar, K. D. Bacterium Mediated Facile and Green Method for Optimized Biosynthesis of Gold Nanoparticles for Simple and Visual Detection of Two Metal Ions. J. Clust. Sci. 2021, 32, 341–310. DOI: 10.1007/s10876-020-01793-9.
  • Kadam, J.; Dhawal, P.; Barve, S.; Kakodkar, S. Green Synthesis of Silver Nanoparticles Using Cauliflower Waste and Their Multifaceted Applications in Photocatalytic Degradation of Methylene Blue Dye and Hg 2+ Biosensing. SN Appl. Sci. 2020, 2, 1–16. DOI: 10.1007/s42452-020-2543-4.
  • Zadvarzi, S. B.; Khavarpour, M.; Vahdat, S. M.; Baghbanian, S. M.; Rad, A. S. Synthesis of Fe3O4@chitosan@ZIF-8 towards Removal of Malachite Green from Aqueous Solution: Theoretical and Experimental Studies. Int. J. Biol. Macromol. 2021, 168, 428–441. DOI: 10.1016/j.ijbiomac.2020.12.067.
  • Puyo, M.; Lebon, E.; Vendier, L.; Kahn, M. L.; Fau, P.; Fajerwerg, K.; Lepetit, C. Topological Analysis of Ag-Ag and Ag-N Interactions in Silver Amidinate Precursor Complexes of Silver Nanoparticles. Inorg. Chem. 2020, 59, 4328–4339. DOI: 10.1021/acs.inorgchem.9b03166.
  • Liu, Y.; Fang, Z.; Kuai, L.; Geng, B. One-Pot Facile Synthesis of Reusable Tremella-Like M1@M2@M1(OH)2 (M1 = Co, Ni, M2 = Pt/Pd, Pt, Pd and Au) Three Layers Core-Shell Nanostructures as Highly Efficient Catalysts. Nanoscale 2014, 6, 9791–9797. DOI: 10.1039/c4nr01470g.
  • Wang, J.; Wu, J.; Zhang, Y.; Zhou, X.; Hu, Z.; Liao, X.; Sheng, B.; Yuan, K.; Wu, X.; Cai, H.; et al. Colorimetric and SERS Dual-Mode Sensing of Mercury (II) Based on Controllable Etching of Au@ Ag Core/Shell Nanoparticles. Sens. Actuators B 2021, 330, 129364. DOI: 10.1016/j.snb.2020.129364.
  • Meena, R.; Mehta, V. N.; Bhamore, J. R.; Rao, P. T.; Park, T.-J.; Kailasa, S. K. Diaminodiphenyl Sulfone as a Novel Ligand for Synthesis of Gold Nanoparticles for Simultaneous Colorimetric Assay of Three Trivalent Metal Cations (Al3+, Fe3+ and Cr3+). J. Mol. Liq. 2020, 312, 113409. DOI: 10.1016/j.molliq.2020.113409.
  • Wang, Q.; Peng, R.; Wang, Y.; Zhu, S.; Yan, X.; Lei, Y.; Sun, Y.; He, H.; Luo, L. Sequential Colorimetric Sensing of Cupric and Mercuric Ions by Regulating the Etching Process of Triangular Gold Nanoplates. Mikrochim. Acta 2020, 187, 205–209. DOI: 10.1007/s00604-020-4176-0.
  • Wang, X.; Wang, X.; Liu, J.; Wang, K.; Zhao, R.; Yang, S. Ingenious Aspartic Acid-Functionalized Gold Nanoparticles by One-Pot Protocol for the Sensitive Detection of Chromium (III) Ions. Microchem. J. 2020, 159, 105359. DOI: 10.1016/j.microc.2020.105359.
  • Siraj, M.; Shah, Z. A.; Ullah, S.; Bibi, H.; Suleman, M.; Zia, A.; Masood, T.; Iqbal, Z.; Iqbal, M. Biosynthesized Silver Nanoparticles from Shoot and Seed Extracts of Asphodelus Tenufolius for Heavy Metal Sensing. Scienceasia 2020, 46, 697–705. DOI: 10.2306/scienceasia1513-1874.2020.097.
  • Aletayeb, P.; Ghadam, P.; Mohammadi, P. Green Synthesis of AgCl/Ag3PO4 Nanoparticle using Cyanobacteria and Assessment of Its Antibacterial, Colorimetric Detection of Heavy Metals and Antioxidant Properties. IET Nanobiotechnol. 2020, 14, 707–713. DOI: 10.1049/iet-nbt.2020.0077.
  • Boruah, B. S.; Biswas, R. In-Situ Sensing of Hazardous Heavy Metal Ions through an Ecofriendly Scheme. Opt. Laser Technol. 2021, 137, 106813. DOI: 10.1016/j.optlastec.2020.106813.
  • Schiesaro, I.; Burratti, L.; Meneghini, C.; Fratoddi, I.; Prosposito, P.; Lim, J.; Scheu, C.; Venditti, I.; Iucci, G.; Battocchio, C. Hydrophilic Silver Nanoparticles for Hg (II) Detection in Water: Direct Evidence for Mercury–Silver Interaction. J. Phys. Chem. C 2020, 124, 25975–25983. DOI: 10.1021/acs.jpcc.0c06951.
  • Huang, Q.; Zhu, W.; Wang, Y.; Deng, Z.; Li, Z.; Peng, J.; Lyu, D.; Lewis, E.; Yang, M. Optical Fiber Plasmonic Sensor for the Ultrasensitive Detection of Copper (II) Ion Based on Trimetallic Au@ AgPt Core-Shell Nanospheres. Sens. Actuators B. 2020, 321, 128480. DOI: 10.1016/j.snb.2020.128480.
  • Sadalage, P. S.; Patil, R. V.; Padvi, M. N.; Pawar, K. D. Almond Skin Extract Mediated Optimally Biosynthesized Antibacterial Silver Nanoparticles Enable Selective and Sensitive Colorimetric Detection of Fe + 2 ions. Colloids Surf. B Biointerfaces 2020, 193, 111084. DOI: 10.1016/j.colsurfb.2020.111084.
  • Wu, S.; Li, K.; Dai, X.; Zhang, Z.; Ding, F.; Li, S. An Ultrasensitive Electrochemical Platform Based on Imprinted Chitosan/Gold Nanoparticles/Graphene Nanocomposite for Sensing Cadmium (II) Ions. Microchem. J. 2020, 155, 104710. DOI: 10.1016/j.microc.2020.104710.
  • Xie, M.-R.; Cai, Y.; Liu, Y.-Q.; Wu, Z.-Y. Sensitive Colorimetric Detection of Pb2+ by Geometric Field Amplification and Surface Plasmon Resonance Visualization. Talanta 2020, 212, 120749. DOI: 10.1016/j.talanta.2020.120749.
  • Zhao, J.; Liu, G.; Lu, Y.; Guan, Y.; Liu, Y. An Ultra-Sensitive Colorimetric Detection of Ag + Ions Based on Etching AuNP@ MnO2 Nanoparticles with Glutathione by Using Dark Field Optical Microscopy. Sens. Actuators B. 2021, 330, 129382. DOI: 10.1016/j.snb.2020.129382.
  • Yang, Y.; Ashraf, M. A.; Fakhri, A.; Gupta, V. K.; Zhang, D. Facile Synthesis of Gold-Silver/Copper Sulfide Nanoparticles for the Selective/Sensitive Detection of Chromium, Photochemical and Bactericidal Application. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 249, 119324. DOI: 10.1016/j.saa.2020.119324.
  • Prakashan, V.; George, G.; Sanu, M.; Sajna, M.; Saritha, A.; Sudarsanakumar, C.; Biju, P.; Joseph, C.; Unnikrishnan, N. Investigations on SPR Induced Cu@ Ag Core Shell Doped SiO2-TiO2-ZrO2 Fiber Optic Sensor for Mercury Detection. Appl. Surf. Sci. 2020, 507, 144957. DOI: 10.1016/j.apsusc.2019.144957.
  • Ju, P.; Wang, Z.; Zhang, Y.; Zhai, X.; Jiang, F.; Sun, C.; Han, X. Enhanced Oxidase-Like Activity of Ag@ Ag2WO4 Nanorods for Colorimetric Detection of Hg2+. Colloids Surf. A 2020, 603, 125203. DOI: 10.1016/j.colsurfa.2020.125203.
  • Nain, A.; Tseng, Y.-T.; Lin, Y.-S.; Wei, S.-C.; Mandal, R. P.; Unnikrishnan, B.; Huang, C.-C.; Tseng, F.-G.; Chang, H.-T. Tuning the Photoluminescence of Metal Nanoclusters for Selective Detection of Multiple Heavy Metal Ions. Sens. Actuators B. 2020, 321, 128539. DOI: 10.1016/j.snb.2020.128539.
  • Balasurya, S.; Syed, A.; Thomas, A. M.; Bahkali, A. H.; Al-Rashed, S.; Elgorban, A. M.; Raju, L. L.; Das, A.; Khan, S. S. Preparation of Ag-Cellulose Nanocomposite for the Selective Detection and Quantification of Mercury at Nanomolar Level and the Evaluation of Its Photocatalytic Performance. Int. J. Biol. Macromol. 2020, 164, 911–919. DOI: 10.1016/j.ijbiomac.2020.07.119.
  • Mao, M.-X.; Zheng, R.; Peng, C.-F.; Wei, X.-L. DNA–Gold Nanozyme-Modified Paper Device for Enhanced Colorimetric Detection of Mercury Ions. Biosensors 2020, 10, 211. DOI: 10.3390/bios10120211.
  • Chen, J.-K.; Zhao, S.-M.; Zhu, J.; Li, J.-J.; Zhao, J.-W. Colorimetric Determination and Recycling of Hg2+ Based on Etching-Induced Morphology Transformation from Hollow AuAg Nanocages to Nanoboxes. J. Alloys Compd. 2020, 828, 154392. DOI: 10.1016/j.jallcom.2020.154392.
  • Eskandari, L.; Andalib, F.; Fakhri, A.; Jabarabadi, M. K.; Pham, B.; Gupta, V. K. Facile Colorimetric Detection of Hg (II), Photocatalytic and Antibacterial Efficiency Based on Silver-Manganese Disulfide/Polyvinyl Alcohol-Chitosan Nanocomposites. Int. J. Biol. Macromol. 2020, 164, 4138–4145. DOI: 10.1016/j.ijbiomac.2020.09.015.
  • Ho, T. T.-T.; Dang, C.-H.; Huynh, T. K.-C.; Hoang, T. K.-D.; Nguyen, T.-D. In Situ Synthesis of Gold Nanoparticles on Novel Nanocomposite Lactose/Alginate: Recyclable Catalysis and Colorimetric Detection of Fe(III)). Carbohydr. Polym. 2021, 251, 116998. DOI: 10.1016/j.carbpol.2020.116998.
  • Janani, B.; Alarjani, K. M.; Raju, L. L.; Thomas, A. M.; Das, A.; Khan, S. S. A Potent Multifunctional Ag/Co-Polyvinylpyrrolidone Nanocomposite for Enhanced Detection of Cr(III) from Environmental Samples and Its Photocatalytic and Antibacterial Applications. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 243, 118766. DOI: 10.1016/j.saa.2020.118766.
  • Kokilavani, S.; Syed, A.; Raju, L. L.; Marraiki, N.; Al-Rashed, S.; Elgorban, A. M.; Thomas, A. M.; Khan, S. S. Highly Selective and Sensitive Tool for the Detection of Hg(II) using 3-(Trimethoxysilyl) Propyl Methacrylate Functionalized Ag-Ce Nanocomposite from Real Water Sample. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 242, 118738. DOI: 10.1016/j.saa.2020.118738.
  • Liu, Y.; Cai, Z.; Sheng, L.; Ma, M.; Wang, X. A Magnetic Relaxation Switching and Visual Dual-Mode Sensor for Selective Detection of Hg2+ based on Aptamers Modified Au@Fe3O4 Nanoparticles. J. Hazard. Mater. 2020, 388, 121728. DOI: 10.1016/j.jhazmat.2019.121728.
  • Liu, H.; Li, S.; Feng, L.; Hua, Y.; Cai, Y.; Yin, M.; Wan, Y.; Wang, H. A Selective Colorimetric and Efficient Removal Strategy for Mercury (II) Using Mesoporous Silver-Melamine Nanocomposites Synthesized by Controlled Supramolecular Self-Assembly. J. Hazard. Mater. 2020, 388, 121798. DOI: 10.1016/j.jhazmat.2019.121798.
  • Mane, P.; Chaudhari, R.; Qureshi, N.; Shinde, M.; Kim, T.; Amalnerkar, D. Silver Nanoparticles-Silk Fibroin Nanocomposite Based Colorimetric Bio-Interfacial Sensor for On-Site Ultra-Trace Impurity Detection of Mercury Ions. J. Nanosci. Nanotechnol. 2020, 20, 2122–2129. DOI: 10.1166/jnn.2020.17335.
  • Manivannan, S.; Park, S.; Jeong, J.; Kim, K. Aggregation-Free Optical and Colorimetric Detection of Hg(II) with M13 Bacteriophage-Templated Au Nanowires. Biosens. Bioelectron. 2020, 161, 112237. DOI: 10.1016/j.bios.2020.112237.
  • Mathaweesansurn, A.; Vittayakorn, N.; Detsri, E. Highly Sensitive and Selective Colorimetric Sensor of Mercury (II) Based on Layer–by–Layer Deposition of Gold/Silver Bimetallic Nanoparticles. Molecules 2020, 25, 4443. DOI: 10.3390/molecules25194443.
  • Migliorini, F. L.; Teodoro, K. B.; Correa, D. S. Green-Synthesized Gold Nanoparticles Supported on Cellulose Nanowhiskers for Easy-to-Interpret Colorimetric Detection of Cadmium (II). Cellulose Chem. Technol. 2020, 54, 407–413. DOI: 10.35812/CelluloseChemTechnol.2020.54.41.
  • Sett, A.; Bhattacharyya, T. K. Functionalized Gold Nanoparticles Decorated Reduced Graphene Oxide Sheets for Efficient Detection of Mercury. IEEE Sensors J. 2020, 20, 5712–5719. DOI: 10.1109/JSEN.2020.2973463.
  • Syed, A.; Marraiki, N.; Al-Rashed, S.; Elgorban, A. M.; Yassin, M. T. A Potent Multifunctional MnS/Ag-Polyvinylpyrrolidone Nanocomposite for Enhanced Detection of Hg2+ from Aqueous Samples and Its Photocatalytic and Antibacterial Applications. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 244, 118844. DOI: 10.1016/j.saa.2020.118844.
  • Wicaksono, W. P.; Kadja, G. T. M.; Amalia, D.; Uyun, L.; Rini, W. P.; Hidayat, A.; Fahmi, R. L.; Nasriyanti, D.; Leun, S. G. V.; Ariyanta, H. A.; et al. A Green Synthesis of Gold–Palladium Core–Shell Nanoparticles Using Orange Peel Extract through Two-Step Reduction Method and Its Formaldehyde Colorimetric Sensing Performance. Nano-Struct. Nano-Objects 2020, 24, 100535. DOI: 10.1016/j.nanoso.2020.100535.
  • Yadav, R.; Berlina, A. N.; Zherdev, A. V.; Gaur, M.; Dzantiev, B. Rapid and Selective Electrochemical Detection of pb 2+ Ions Using Aptamer-Conjugated Alloy Nanoparticles. SN Appl. Sci. 2020, 2, 1–11. DOI: 10.1007/s42452-020-03840-6.
  • Kołątaj, K.; Krajczewski, J.; Kudelski, A. Plasmonic Nanoparticles for Environmental Analysis. Environ. Chem. Lett. 2020, 18, 529–542. DOI: 10.1007/s10311-019-00962-1.
  • Zhu, A.; Ali, S.; Xu, Y.; Ouyang, Q.; Chen, Q. A SERS Aptasensor Based on AuNPs Functionalized PDMS Film for Selective and Sensitive Detection of Staphylococcus aureus. Biosens. Bioelectron. 2021, 172, 112806. DOI: 10.1016/j.bios.2020.112806.
  • Nguyen, V. P.; Qian, W.; Li, Y.; Liu, B.; Aaberg, M.; Henry, J.; Zhang, W.; Wang, X.; Paulus, Y. M. Chain-Like Gold Nanoparticle Clusters for Multimodal Photoacoustic Microscopy and Optical Coherence Tomography Enhanced Molecular Imaging. Nat. Commun. 2021, 12, 34–14. DOI: 10.1038/s41467-020-20276-z.
  • Liebig, F.; Sarhan, R. M.; Prietzel, C.; Thünemann, A. F.; Bargheer, M.; Koetz, J. Undulated Gold Nanoplatelet Superstructures: In Situ Growth of Hemispherical Gold Nanoparticles onto the Surface of Gold Nanotriangles. Langmuir 2018, 34, 4584–4594. DOI: 10.1021/acs.langmuir.7b02898.
  • Alp, E.; İmamoğlu, R.; Savacı, U.; Turan, S.; Kazmanlı, M. K.; Genç, A. Plasmon-Enhanced Photocatalytic and Antibacterial Activity of Gold Nanoparticles-Decorated Hematite Nanostructures. J. Alloys Compd. 2021, 852, 157021. DOI: 10.1016/j.jallcom.2020.157021.
  • Park, S. I.; Song, H.-M. Several Shapes of Single Crystalline Gold Nanomaterials Prepared in the Surfactant Mixture of CTAB and Pluronics. ACS Omega. 2021, 6, 3625–3636. DOI: 10.1021/acsomega.0c05166.
  • Fu, Q.; Fu, C.; Teng, L.; Li, W.; Sheng, Y.; Handschuh-Wang, S. Rapid Synthesis and Growth Process Deconvolution of Au Nanoflowers with Ultrahigh Catalytic Activity Based on Microfluidics. J. Mater. Sci. 2021, 56, 6315–6326.DOI: 10.1007/s10853-020-05641-z
  • Tapia-Arellano, A.; Gallardo-Toledo, E.; Ortiz, C.; Henríquez, J.; Feijóo, C. G.; Araya, E.; Sierpe, R.; Kogan, M. J. Functionalization with PEG/Angiopep-2 Peptide to Improve the Delivery of Gold Nanoprisms to Central Nervous System: In Vitro and In Vivo Studies. Mater. Sci. Eng. C 2021, 121, 111785. DOI: 10.1016/j.msec.2020.111785.
  • Zaheer, T. Fabrication of Ultra-Pure Anisotropic Nanoparticles, Spectroscopic Studies and Biological Applications. Nanomater. Spectrosc. Appl. 2021, 173,1–18.
  • Ali, S.; Perveen, S.; Ali, M.; Shah, M. R.; Khan, E.; Sharma, A. S.; Li, H.; Chen, Q. Nano-Conjugates of Cefadroxil as Efficient Antibacterial Agent against Staphylococcus aureus ATCC 11632. J. Clust. Sci. 2020, 31, 811. DOI: 10.1007/s10876-019-01688-4.
  • Bhattacharjee, R. R.; Dasgupta, U. Seed-Mediated Synthesis of Silver Nanoparticles: Tunable Surface Plasmon and Their Facile Fabrication. Mater. Today: Proc. 2021, 43, 1342–1347. DOI: 10.1016/j.matpr.2020.09.167.
  • Wu, W.; Wu, M.; Sun, Z.; Li, G.; Ma, Y.; Liu, X.; Wang, X.; Chen, X. Morphology Controllable Synthesis of Silver Nanoparticles: Optical Properties Study and SERS Application. J. Alloys Compd. 2013, 579, 117–123. DOI: 10.1016/j.jallcom.2013.05.044.
  • Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications. Chem. Rev. 2011, 111, 3669–3712. DOI: 10.1021/cr100275d.
  • Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B. 2003, 107, 668–677. DOI: 10.1021/jp026731y
  • Amirjani, A.; Haghshenas, D. F. Ag Nanostructures as the Surface Plasmon Resonance (SPR)˗Based Sensors: A Mechanistic Study with an Emphasis on Heavy Metallic Ions Detection. Sens. Actuators B. 2018, 273, 1768–1779. DOI: 10.1016/j.snb.2018.07.089.
  • Boken, J.; Khurana, P.; Thatai, S.; Kumar, D.; Prasad, S. Plasmonic Nanoparticles and Their Analytical Applications: A Review. Appl. Spectrosc. Rev. 2017, 52, 774–820. DOI: 10.1080/05704928.2017.1312427.
  • Wang, Z.; Lu, Y.; Pang, J.; Sun, J.; Yang, F.; Li, H.; Liu, Y. Iodide-Assisted Silver Nanoplates for Colorimetric Determination of Chromium(III) and Copper(II) via an Aggregation/Fusion/Oxidation Etching Strategy. Mikrochim. Acta 2019, 187, 19–10. DOI: 10.1007/s00604-019-3982-8.
  • Xue, Q.; Li, X.; Peng, Y.; Liu, P.; Peng, H.; Niu, X. Polyethylenimine-Stabilized Silver Nanoclusters Act as an Oxidoreductase Mimic for Colorimetric Determination of Chromium(VI) ). Mikrochim. Acta 2020, 187, 263–268. DOI: 10.1007/s00604-020-04232-8.
  • Sakthivel, P.; Sekar, K. A Sensitive Isoniazid Capped Silver Nanoparticles - Selective Colorimetric Fluorescent Sensor for Hg2+ Ions in Aqueous Medium. J. Fluoresc. 2020, 30, 91–101. DOI: 10.1007/s10895-019-02473-2.
  • Koochak, N. N.; Rahbarimehr, E.; Amirjani, A.; Haghshenas, D. F. Detection of Cobalt Ion Based on Surface Plasmon Resonance of L-Cysteine Functionalized Silver Nanotriangles. Plasmonics 2020, 16, 315–322. DOI: 10.1007/s11468-020-01289-2
  • Uzunoğlu, D.; Ergüt, M.; Kodaman, C. G.; Özer, A. Biosynthesized Silver Nanoparticles for Colorimetric Detection of Fe 3+ Ions. Arab. J. Sci. Eng. 2020, 1–12.
  • Akhondi, M.; Jafari, A. H.; Jamalizadeh, E. Selective Colorimetric Detection of HgII Using Silver Nanoparticles Modified with Apple and Nigella Sativa Seed Extracts and β-Cyclodextrin. J. Environ. Chem. Eng. 2020, 8, 103566. DOI: 10.1016/j.jece.2019.103566.
  • Ghodake, G.; Shinde, S.; Kadam, A.; Saratale, R. G.; Saratale, G. D.; Syed, A.; Shair, O.; Alsaedi, M.; Kim, D.-Y. Gallic Acid-Functionalized Silver Nanoparticles as Colorimetric and Spectrophotometric Probe for Detection of Al3+ in Aqueous Medium. J. Ind. Eng. Chem. 2020, 82, 243–253. DOI: 10.1016/j.jiec.2019.10.019.
  • Li, Y.; Li, Y.; Duan, J.; Hou, J.; Hou, Q.; Yang, Y.; Li, H.; Ai, S. Rapid and Ultrasensitive Detection of Mercury Ion (II) by Colorimetric and SERS Method Based on Silver Nanocrystals. Microchem. J. 2021, 161, 105790. DOI: 10.1016/j.microc.2020.105790.
  • Sangaonkar, G. M.; Desai, M. P.; Dongale, T. D.; Pawar, K. D. Selective Interaction between Phytomediated Anionic Silver Nanoparticles and Mercury Leading to Amalgam Formation Enables Highly Sensitive, Colorimetric and Memristor-Based Detection of Mercury. Sci. Rep. 2020, 10, 2037. DOI: 10.1038/s41598-020-58844-4.
  • Minh, P. N.; Hoang, V.-T.; Dinh, N. X.; Van Hoang, O.; Van Cuong, N.; Hop, D. T. B.; Tuan, T. Q.; Khi, N. T.; Huy, T. Q.; Le, A.-T. Reduced Graphene Oxide-Wrapped Silver Nanoparticles for Applications in Ultrasensitive Colorimetric Detection of Cr (vi) Ions and the Carbaryl Pesticide. New J. Chem. 2020, 44, 7611–7620. DOI: 10.1039/D0NJ00947D.
  • Sharma, S.; Jaiswal, A.; Uttam, K. Colorimetric and Surface Enhanced Raman Scattering (SERS) Detection of Metal Ions in Aqueous Medium Using Sensitive, Robust and Novel Pectin Functionalized Silver Nanoparticles. Anal. Lett. 2020, 53, 2355–2378. DOI: 10.1080/00032719.2020.1743715.
  • Sharma, S.; Jaiswal, A.; Uttam, K. Synthesis of Sensitive and Robust Lignin Capped Silver Nanoparticles for the Determination of Cobalt (II), Chromium (III), and Manganese (II) Ions by Colorimetry and Manganese (II) Ions by Surface-Enhanced Raman Scattering (SERS) in Aqueous Media. Anal. Lett. 2021, 54, 2051–2019. DOI: 10.1080/00032719.2020.1837855.
  • De, A.; Kumari, A.; Jain, P.; Manna, A. K.; Bhattacharjee, G. Plasmonic Sensing of Hg (II), Cr (III), and Pb (II) Ions from Aqueous Solution by Biogenic Silver and Gold Nanoparticles. Inorgan. Nano-Metal Chem. 2020, 51, 1214-1225. DOI: 10.1080/24701556.2020.1826523
  • Lopez, E. C. R.; Zafra, M. A.; Gavan, J. N. L.; Villena, E. D. A.; Almaquer, F. E. P.; Perez, J. V. D. Humic Acid Functionalized-Silver Nanoparticles as Nanosensor for Colorimetric Detection of Copper (II) Ions in Aqueous Solutions. KEM. 2020, 831, 142–150. DOI: 10.4028/www.scientific.net/KEM.831.142.
  • Mandal, P.; Maji, S. Colorimetric Sensing of Hg2+ and Fe3+ Ions in Aqueous Solution Using Green Synthesized Silver Nanoparticles. Int. J. Life Sci. Pharma Res. 2020, 10, 76–82.
  • Ahmed, F.; Kabir, H.; Xiong, H. Dual Colorimetric Sensor for Hg2+/Pb2+ and an Efficient Catalyst Based on Silver Nanoparticles Mediating by the Root Extract of Bistorta Amplexicaulis. Front. Chem. 2020, 8, 591958. DOI: 10.3389/fchem.2020.591958.
  • Ardianrama, A. D.; Pradyasti, A.; Woo, H.-C.; Kim, M. H. Colorimetric Sensing of Barium Ion in Water Based on Polyelectrolyte-Induced Chemical Etching of Silver Nanoprisms. Dyes Pigm. 2020, 181, 108578. DOI: 10.1016/j.dyepig.2020.108578.
  • Ayodhya, D.; Veerabhadram, G. One-Pot, Aqueous Synthesis of Multifunctional Biogenic Ag NPs for Efficient 4-NP Reduction, Hg2+ Detection, Bactericidal, and Antioxidant Activities. Inorgan. Nano-Metal Chem. 2020, 1–11.
  • Balasurya, S.; Syed, A.; Thomas, A. M.; Marraiki, N.; Al-Rashed, S.; Elgorban, A. M.; Raju, L. L.; Das, A.; Khan, S. S. Colorimetric Detection of Mercury Ions from Environmental Water Sample by Using 3-(Trimethoxysilyl)Propyl Methacrylate Functionalized Ag NPs-Tryptophan Nanoconjugate. J. Photochem. Photobiol. B 2020, 207, 111888. DOI: 10.1016/j.jphotobiol.2020.111888.
  • Bindhu, M.; Umadevi, M.; Esmail, G. A.; Al-Dhabi, N. A.; Arasu, M. V. Green Synthesis and Characterization of Silver Nanoparticles from Moringa Oleifera Flower and Assessment of Antimicrobial and Sensing Properties. J. Photochem. Photobiol. B 2020, 205, 111836. DOI: 10.1016/j.jphotobiol.2020.111836.
  • Ghosh, S.; Mondal, A. Aggregation Chemistry of Green Silver Nanoparticles for Sensing of Hg2+ and Cd2+ Ions. Colloids Surf. A. 2020, 605, 125335. DOI: 10.1016/j.colsurfa.2020.125335.
  • Handayani, W.; Pratiwi, N.; Imawan, C. Detection of Mercury Ions using Unmodified Silver Nanoparticles as Colorimetric Indicator. J. Phys.: Conf. Ser. 2020, 528, 012055. DOI: 10.1088/1742-6596/1528/1/012055.
  • Janani, B.; Syed, A.; Thomas, A. M.; Bahkali, A. H.; Elgorban, A. M.; Raju, L. L.; Khan, S. S. UV–Vis Spectroscopic Method for the Sensitive and Selective Detection of Mercury by Silver Nanoparticles in Presence of Alanine. Optik 2020, 204, 164160. DOI: 10.1016/j.ijleo.2019.164160.
  • Janani, B.; Syed, A.; Thomas, A. M.; Marraiki, N.; Al-Rashed, S.; Elgorban, A. M.; Raju, L. L.; Das, A.; Khan, S. S. Enhanced SPR Signals Based on Methylenediphosphonic Acid Functionalized Ag NPs for the Detection of Hg (II) in the Presence of an Antioxidant Glutathione. J. Mol. Liq. 2020, 311, 113281. DOI: 10.1016/j.molliq.2020.113281.
  • Janani, B.; Syed, A.; Raju, L. L.; Marraiki, N.; Elgorban, A. M.; Zaghloul, N. S.; Thomas, A. M.; Das, A.; Khan, S. S. Highly Selective and Effective Environmental Mercuric Ion Detection Method Based on Starch Modified Ag NPs in Presence of Glycine. Opt. Commun. 2020, 465, 125564. DOI: 10.1016/j.optcom.2020.125564.
  • Kokilavani, S.; Syed, A.; Thomas, A. M.; Marraiki, N.; Al-Rashed, S.; Elgorban, A. M.; Raju, L. L.; Das, A.; Khan, S. S. Polyethylene Glycol Functionalised Ag NPs Based Optical Probe for the Selective and Sensitive Detection of Hg (II). J. Mol. Liq. 2020, 307, 112978. DOI: 10.1016/j.molliq.2020.112978.
  • Memon, R.; Memon, A. A.; Sirajuddin, Balouch, A.; Memon, K.; Sherazi, S. T. H.; Chandio, A. A.; Kumar, R. Ultrasensitive Colorimetric Detection of Hg2+ in Aqueous Media via Green Synthesis by Ziziphus mauritiana Leaf Extract-Based Silver Nanoparticles. Int. J. Environ. Anal. Chem. 2020, 1–16. DOI: 10.1080/03067319.2020.1822353
  • Modrzejewska-Sikorska, A.; Konował, E. Silver and Gold Nanoparticles as Chemical Probes of the Presence of Heavy Metal Ions. J. Mol. Liq. 2020, 302, 112559. DOI: 10.1016/j.molliq.2020.112559.
  • Minhaz, A.; Khan, N.; Jamila, N.; Javed, F.; Imran, M.; Shujah, S.; Khan, S. N.; Atlas, A.; Shah, M. R. Schiff Base Stabilized Silver Nanoparticles as Potential Sensor for Hg (II) Detection, and Anticancer and Antibacterial Agent. Arabian J. Chem. 2020, 13, 8898–8908. DOI: 10.1016/j.arabjc.2020.10.016.
  • Wang, Y.; Dong, X.; Zhao, L.; Xue, Y.; Zhao, X.; Li, Q.; Xia, Y. Facile and Green Fabrication of Carrageenan-Silver Nanoparticles for Colorimetric Determination of Cu2+ and S2−. Nanomaterials 2020, 10, 83. DOI: 10.3390/nano10010083.
  • Poosinuntakul, N.; Parnklang, T.; Sitiwed, T.; Chaiyo, S.; Kladsomboon, S.; Chailapakul, O.; Apilux, A. Colorimetric Assay for Determination of Cu (II) Ions Using l-Cysteine Functionalized Silver Nanoplates. Microchem. J. 2020, 158, 105101. DOI: 10.1016/j.microc.2020.105101.
  • Yuniarni, D. R.; Pratiwi, N. I.; Umar, A.; Imawan, C. Synthesis of Silver Nanoparticles (AgNPs) Using Sodium Chloride (NaCl) for Iron (III) Ions Detection Based on Colorimetric and Optical Changes. J. Phys: Conf. Ser. 2020, 1528, 012062. DOI: 10.1088/1742-6596/1528/1/012062.
  • Santhosh, A.; Theertha, V.; Prakash, P.; Chandran, S. S. From Waste to a Value Added Product: Green Synthesis of Silver Nanoparticles from Onion Peels Together with Its Diverse Applications. Mater. Today: Proc. 2021, 46, 4460–4463. DOI: 10.1016/j.matpr.2020.09.680.
  • Tsegay, M.; Gebretinsae, H.; Sackey, J.; Maaza, M.; Nuru, Z. Green Synthesis of Khat Mediated Silver Nanoparticles for Efficient Detection of Mercury Ions. Mater. Today: Proc. 2021, 36, 368–373. DOI: 10.1016/j.matpr.2020.04.217.
  • Zannotti, M.; Vicomandi, V.; Rossi, A.; Minicucci, M.; Ferraro, S.; Petetta, L.; Giovannetti, R. Tuning of Hydrogen Peroxide Etching during the Synthesis of Silver Nanoparticles. An Application of Triangular Nanoplates as Plasmon Sensors for Hg2+ in Aqueous Solution. J. Mol. Liq. 2020, 309, 113238. DOI: 10.1016/j.molliq.2020.113238.
  • Kaviya, S. Synthesis, Self-Assembly, Sensing Methods and Mechanism of Bio-Source Facilitated Nanomaterials: A Review with Future Outlook. Nano-Struct. Nano-Objects 2020, 23, 100498. DOI: 10.1016/j.nanoso.2020.100498.
  • Yu, L.; Song, Z.; Peng, J.; Yang, M.; Zhi, H.; He, H. Progress of Gold Nanomaterials for Colorimetric Sensing Based on Different Strategies. TrAC Trends Anal. Chem. 2020, 127, 115880. DOI: 10.1016/j.trac.2020.115880.
  • He, M.-Q.; Yu, Y.-L.; Wang, J.-H. Biomolecule-Tailored Assembly and Morphology of Gold Nanoparticles for LSPR Applications. Nano Today 2020, 35, 101005. DOI: 10.1016/j.nantod.2020.101005.
  • Yao, J.-Y.; Santos, E. B. An Improved Method for Fabrication of Patterned Composites Made of Silver or Gold Nanoparticles Embedded in PDMS Structures and Their Colorimetric Characterization. Nano-Struct. Nano-Objects 2020, 23, 100510. DOI: 10.1016/j.nanoso.2020.100510.
  • Pastoriza-Santos, I.; Liz-Marzán, L. M. Colloidal Silver Nanoplates. State of the Art and Future Challenges. J. Mater. Chem. 2008, 18, 1724–1737. DOI: 10.1039/b716538b.
  • Usman, A. I.; Aziz, A. A. Photometric Detection of Heavy Metals Using Biosynthesized Gold Nanoparticles. SSP. 2020, 301, 118–123. DOI: 10.4028/www.scientific.net/SSP.301.118.
  • Prosposito, P.; Burratti, L.; Venditti, I.; Battocchio, C.; Casciardi, S. Silver Nanoparticles with Different Thiol Functionalization: An Opposite Optical Behaviour in Presence of Hg (II). Mater. Res. Proc. 2020, 16, 6–15. DOI: 10.21741/9781644900710-2
  • Kateshiya, M. R.; George, G.; Rohit, J. V.; Malek, N. I.; Kailasa, S. K. Ractopamine as a Novel Reagent for the Fabrication of Gold Nanoparticles: Colorimetric Sensing of Cysteine and Hg2+ Ion with Different Spectral Characteristics. Microchem. J. 2020, 158, 105212. DOI: 10.1016/j.microc.2020.105212.
  • Gan, Y.; Liang, T.; Hu, Q.; Zhong, L.; Wang, X.; Wan, H.; Wang, P. In-Situ Detection of Cadmium with Aptamer Functionalized Gold Nanoparticles Based on Smartphone-Based Colorimetric System. Talanta 2020, 208, 120231. DOI: 10.1016/j.talanta.2019.120231.
  • Pomal, N. C.; Bhatt, K. D.; Modi, K. M.; Desai, A. L.; Patel, N. P.; Kongor, A.; Kolivoška, V. Functionalized Silver Nanoparticles as Colorimetric and Fluorimetric Sensor for Environmentally Toxic Mercury Ions: An Overview. J. Fluoresc. 2021, 31, 635–615. DOI: 10.1007/s10895-021-02699-z.
  • Gautam, A.; Komal, P.; Gautam, P.; Sharma, A.; Kumar, N.; Jung, J. P. Recent Trends in Noble Metal Nanoparticles for Colorimetric Chemical Sensing and Micro-Electronic Packaging Applications. Metals 2021, 11, 329. DOI: 10.3390/met11020329.
  • Unnikrishnan, B.; Lien, C.-W.; Chu, H.-W.; Huang, C.-C. A Review on Metal Nanozyme-Based Sensing of Heavy Metal Ions: Challenges and Future Perspectives. J. Hazard. Mater. 2021, 401, 123397. DOI: 10.1016/j.jhazmat.2020.123397.
  • Maghsoudi, A. S.; Hassani, S.; Mirnia, K.; Abdollahi, M. Recent Advances in Nanotechnology-Based Biosensors Development for Detection of Arsenic, Lead, Mercury, and Cadmium. Int. J. Nanomed. 2021, 16, 803–832. DOI: 10.2147/IJN.S294417.
  • Thakkar, S.; Dumée, L. F.; Gupta, M.; Singh, B. R.; Yang, W. Nano-Enabled Sensors for Detection of Arsenic in Water. Water Res. 2021, 188, 116538. DOI: 10.1016/j.watres.2020.116538.
  • Mukherjee, S.; Shah, M.; Chaudhari, K.; Jana, A.; Sudhakar, C.; Srikrishnarka, P.; Islam, M. R.; Philip, L.; Pradeep, T. Smartphone-Based Fluoride-Specific Sensor for Rapid and Affordable Colorimetric Detection and Precise Quantification at Sub-Ppm Levels for Field Applications. ACS Omega. 2020, 5, 25253–25263. DOI: 10.1021/acsomega.0c03465.
  • Bian, J.; Li, Y.; Zhu, C.; Liu, X.; Liu, Y. Graphene Oxide‐Hyperbranched Polyethyleneimine Fabricated and Stabilized AuNPs Nanocomposites for Colorimetric Detection of Silver Ions Based on a Non‐Aggregation Mechanism. ChemNanoMat 2021, 7, 85–94. DOI: 10.1002/cnma.202000593.
  • Wu, H.; Wang, S.; Li, S. F. Y.; Bao, Q.; Xu, Q. A label-free lead(II) Ion Sensor based on Surface Plasmon Resonance and DNAzyme-Gold Nanoparticle Conjugates. Anal. Bioanal. Chem. 2020, 412, 7525–7533. DOI: 10.1007/s00216-020-02887-z.
  • Seth, R. L-Cysteine Functionalized Gold Nanoparticles as a Colorimetric Sensor for Ultrasensitive Detection of Toxic Metal Ion Cadmium. Mater. Today: Proc. 2020, 24, 2375–2382. DOI: 10.1016/j.matpr.2020.03.767.
  • Garg, N.; Bera, S.; Ballal, A. SPR Responsive Xylenol Orange Functionalized Gold Nanoparticles - Optical Sensor for Estimation of Al3+ in Water. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 228, 117701. DOI: 10.1016/j.saa.2019.117701.
  • Amourizi, F.; Dashtian, K.; Ghaedi, M. Electrostatically Controlled Plasmonic Effects of Gold Nanoparticles with Indigo-Carmine Functionation for Rapid and Straightforward Colorimetric Detection of Cu2+ Ions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 230, 118026. DOI: 10.1016/j.saa.2020.118026.
  • Al Washahi, K. K. O.; Alkende, N. S. M.; Reddy, G. B.; Seku, K. Frankincense Resin Mediated Green Method for Optimized Biosynthesis of Gold Nanoparticles for Simple and Visual Detection of Cu2+ Ions. Mater. Today: Proc. 2021, 43, 1376-1382. DOI: 10.1016/j.matpr.2020.09.172.
  • Chen, N.; Pan, B. A Preliminary Exploration on Au Nanoparticles-Mediated Colorimetric Analysis of Cr (III)-Carboxyl Complexes in Synthetic and Authentic Water Samples. Chem. Eng. J. 2020, 387, 124079. DOI: 10.1016/j.cej.2020.124079.
  • Halawa, M. I.; Wu, G.; Li, B. S. Development of Luminol-Based Chemiluminescence Approach for Ultrasensitive Sensing of Hg(II) Using Povidone-I2 Protected Gold Nanoparticles as an Efficient Coreactant. Anal. Bioanal. Chem. 2021, 413, 649–611. DOI: 10.1007/s00216-020-03035-3.
  • Li, J.; Zheng, B.; Zheng, Z.; Li, Y.; Wang, J. Highly Sensitive and Selective Colorimetric and SERS Dual-Mode Detection of Arsenic (III) Based on Glutathione Functionalized Gold Nanoparticles. Sens. Actuators Rep. 2020, 2, 100013. DOI: 10.1016/j.snr.2020.100013.
  • Nadav, L.; Tsion, O.-R.; Offer, Z. Improving the Properties of a Gold Nanoparticle Barium Sensor through Mixed-Ligand Shells. Talanta 2020, 208, 120370. DOI: 10.1016/j.talanta.2019.120370.
  • Sengan, M.; Kamlekar, R. K.; Veerappan, A. Highly Selective Rapid Colorimetric Sensing of Pb2+ Ion in Water Samples and Paint Based on Metal Induced Aggregation of N-Decanoyltromethamine Capped Gold Nanoparticles. Spectrochim. Acta Part A 2020, 239, 118485. DOI: 10.1016/j.saa.2020.118485.
  • Silva-De Hoyos, L. E.; Sanchez-Mendieta, V.; Camacho-Lopez, M. A.; Trujillo-Reyes, J.; Vilchis-Nestor, A. R. Plasmonic and Fluorescent Sensors of Metal Ions in Water Based on Biogenic Gold Nanoparticles. Arabian J. Chem. 2020, 13, 1975–1985. DOI: 10.1016/j.arabjc.2018.02.016.
  • Wang, Y.; Xue, Y.; Gao, P.; Dou, B.-X.; Xin, J.-Y. Visual Detection of Cu (II) Ions in Water Environment Using Gold Nanoparticles Modified with Methanobactin. Mat. Express 2020, 10, 190–198. DOI: 10.1166/mex.2020.1627.
  • Wang, R.; Zhang, H.; Zhang, X.; Li, Z.; Yang, Y.; Zheng, R.; Qu, Y. Colorimetric Detection of Hg2+ using Gold Nanoparticles Synthesized by Trichosporon montevideense WIN. Biotechnol. Lett. 2020, 42, 1691–1697. DOI: 10.1007/s10529-020-02885-2.
  • Zhang, Z.; Ye, X.; Liu, Q.; Liu, Y.; Liu, R. Colorimetric Detection of Cr 3+ Based on Gold Nanoparticles Functionalized with 4-Mercaptobenzoic Acid. J. Anal. Sci. Technol. 2020, 11, 7. DOI: 10.1186/s40543-020-00209-7.
  • Zheng, B.; Li, J.; Zheng, Z.; Zhang, C.; Huang, C.; Hong, J.; Li, Y.; Wang, J. Rapid Colorimetric Detection of Arsenic (III) by Glutathione Functionalized Gold Nanoparticles Based on RGB Extracting System. Opt. Laser Technol. 2021, 133, 106522. DOI: 10.1016/j.optlastec.2020.106522.
  • Aldewachi, H.; Chalati, T.; Woodroofe, M.; Bricklebank, N.; Sharrack, B.; Gardiner, P. Gold Nanoparticle-Based Colorimetric Biosensors. Nanoscale 2017, 10, 18–33. DOI: 10.1039/c7nr06367a.
  • Mao, L.; Wang, Q.; Luo, Y.; Gao, Y. Detection of Ag + Ions via an Anti-Aggregation Mechanism Using Unmodified Gold Nanoparticles in the Presence of Thiamazole. Talanta 2021, 222, 121506. DOI: 10.1016/j.talanta.2020.121506.
  • Guo, Y.; Li, D.; Zheng, S.; Xu, N.; Deng, W. Utilizing Ag-Au Core-Satellite Structures for Colorimetric and Surface-Enhanced Raman Scattering Dual-Sensing of Cu (II). Biosens. Bioelectron. 2020, 159, 112192. DOI: 10.1016/j.bios.2020.112192.
  • Zeng, J.; Zhang, Y.; Zeng, T.; Aleisa, R.; Qiu, Z.; Chen, Y.; Huang, J.; Wang, D.; Yan, Z.; Yin, Y. Anisotropic Plasmonic Nanostructures for Colorimetric Sensing. Nano Today 2020, 32, 100855. DOI: 10.1016/j.nantod.2020.100855.
  • Jouyban, A.; Rahimpour, E. Optical Sensors Based on Silver Nanoparticles for Determination of Pharmaceuticals: An Overview of Advances in the Last Decade. Talanta 2020, 217, 121071. DOI: 10.1016/j.talanta.2020.121071.
  • Bukkitgar, S. D.; Kumar, S.; Singh, S.; Singh, V.; Reddy, K. R.; Sadhu, V.; Bagihalli, G. B.; Shetti, N. P.; Reddy, C. V.; Ravindranadh, K. Functional Nanostructured Metal Oxides and Its Hybrid Electrodes–Recent Advancements in Electrochemical Biosensing Applications. Microchem. J. 2020, 105522. DOI: 10.1016/j.microc.2020.105522.
  • Wang, L.; He, K.; Sadak, O.; Wang, X.; Wang, Q.; Xu, X. Visual Detection of In Vitro Nucleic Acid Replication by Submicro- and Nano-Sized Materials. Biosens. Bioelectron. 2020, 169, 112602. DOI: 10.1016/j.bios.2020.112602.
  • Zeiri, O. Metallic-Nanoparticle-Based Sensing: Utilization of Mixed-Ligand Monolayers. ACS Sens. 2020, 5, 3806–3820. DOI: 10.1021/acssensors.0c02124.
  • Fan, P.; He, S.; Cheng, J.; Hu, C.; Liu, C.; Yang, S.; Liu, J. L-Cysteine Modified Silver Nanoparticles-Based Colorimetric Sensing for the Sensitive Determination of Hg2+ in Aqueous Solutions. Luminescence 2021, 36, 698–704. DOI: 10.1002/bio.3990.
  • Li, F.-M.; Liu, J.-M.; Wang, X.-X.; Lin, L.-P.; Cai, W.-L.; Lin, X.; Zeng, Y.-N.; Li, Z.-M.; Lin, S.-Q. Non-Aggregation Based Label Free Colorimetric Sensor for the Detection of Cr (VI) Based on Selective Etching of Gold Nanorods. Sens. Actuators B 2011, 155, 817–822. DOI: 10.1016/j.snb.2011.01.054.
  • Balasurya, S.; Ahmad, P.; Thomas, A. M.; Raju, L. L.; Das, A.; Khan, S. S. Rapid Colorimetric and Spectroscopy Based Sensing of Mercury by Surface Functionalized Silver Nanoparticles in the Presence of Tyrosine. Opt. Commun. 2020, 464, 125512. DOI: 10.1016/j.optcom.2020.125512.
  • Shrivas, K.; Patel, S.; Sinha, D.; Thakur, S. S.; Patle, T. K.; Kant, T.; Dewangan, K.; Satnami, M. L.; Nirmalkar, J.; Kumar, S. Colorimetric and Smartphone-Integrated Paper Device for on-Site Determination of Arsenic (III) Using Sucrose Modified Gold Nanoparticles as a Nanoprobe. Microchim. Acta 2020, 187, 1–9. DOI: 10.1007/s00604-020-4129-7.
  • Wang, Y.; Min, Y. Manipulating Bimetallic Nanostructures with Tunable Localized Surface Plasmon Resonance and Their Applications for Sensing. Front. Chem. 2020, 8, 411. DOI: 10.3389/fchem.2020.00411.
  • Sharma, D.; Wangoo, N.; Sharma, R. K. Sensing Platform for Pico-Molar Level Detection of Ethyl Parathion using Au-Ag Nanoclusters based Enzymatic Strategy. Talanta 2021, 221, 121267. DOI: 10.1016/j.talanta.2020.121267.
  • Balasurya, S.; Al Farraj, D. A.; Thomas, A. M.; Alkubaisi, N. A.; Raju, L. L.; Das, A.; Khan, S. S. Sensitive and Robust Colorimetric Assay for the Detection of Hg2+ at Nanomolar Level from Real Samples by TMPM Functionalized Ag-Fe NCs and It's Photocatalytic and Antimicrobial Activities. J. Environ. Chem. Eng. 2020, 8, 104305. DOI: 10.1016/j.jece.2020.104305.
  • Gao, Y.; Hu, Z.; Wu, J.; Ning, Z.; Jian, J.; Zhao, T.; Liang, X.; Yang, X.; Yang, Z.; Zhao, Q.; et al. Size-Tunable Au@Ag Nanoparticles for Colorimetric and SERS Dual-Mode Sensing of Palmatine in Traditional Chinese Medicine. J. Pharm. Biomed. Anal. 2019, 174, 123–133. DOI: 10.1016/j.jpba.2019.05.045.
  • Dang, X.; Zhao, H. Bimetallic Fe/Mn Metal-Organic-Frameworks and Au Nanoparticles Anchored Carbon Nanotubes as a Peroxidase-Like Detection Platform with Increased Active Sites and Enhanced Electron Transfer. Talanta 2020, 210, 120678. DOI: 10.1016/j.talanta.2019.120678.
  • Mahajan, P. G.; Shin, J. S.; Dige, N. C.; Vanjare, B. D.; Han, Y.; Choi, N. G.; Kim, S. J.; Seo, S. Y.; Lee, K. H. Chelation Enhanced Fluorescence of Rhodamine Based Novel Organic Nanoparticles for Selective Detection of Mercury Ions in Aqueous Medium and Intracellular Cell Imaging. J. Photochem. Photobiol. A. 2020, 397, 112579. DOI: 10.1016/j.jphotochem.2020.112579.
  • Felscia, U. R.; Rajkumar, B. J.; Sankar, P.; Philip, R.; Mary, M. B. Theoretical and Experimental Investigations of Nitropyrene on Silver for Nonlinear Optical and Metal Ion Sensing Applications. Mater. Chem. Phys. 2020, 243, 122466. DOI: 10.1016/j.matchemphys.2019.122466.
  • Chen, X.; Ji, J.; Wang, D.; Gou, S.; Xue, Z.; Zhao, L.; Feng, S. Highly Sensitive and Selective Colorimetric Sensing of Histidine by NAC Functionalized AuNPs in Aqueous Medium with Real Sample Application. Microchem. J. 2021, 160, 105661. DOI: 10.1016/j.microc.2020.105661.
  • Scroccarello, A.; Della Pelle, F.; Ferraro, G.; Fratini, E.; Tempera, F.; Dainese, E.; Compagnone, D. Plasmonic Active Film Integrating Gold/Silver Nanostructures for H2O2 Readout. Talanta 2021, 222, 121682. DOI: 10.1016/j.talanta.2020.121682.
  • Nishan, U.; Gul, R.; Muhammad, N.; Asad, M.; Rahim, A.; Shah, M.; Iqbal, J.; Uddin, J.; Ali Shah, A.-u.-H.; Shujah, S. Colorimetric Based Sensing of Dopamine Using Ionic Liquid Functionalized Drug Mediated Silver Nanostructures. Microchem. J. 2020, 159, 105382. DOI: 10.1016/j.microc.2020.105382.
  • Shah, A. A Novel Electrochemical Nanosensor for the Simultaneous Sensing of Two Toxic Food Dyes. ACS Omega. 2020, 5, 6187–6193. DOI: 10.1021/acsomega.0c00354.
  • Huang, L.; Wang, L.; Nie, Z.; Wang, Y. Simultaneous Quantitative Measurements of Tl + and Pb2+ in Drinking Water Based on Nanoplasmonic Probe. Food Chem. 2020, 319, 126543. DOI: 10.1016/j.foodchem.2020.126543.
  • Mudarikwa, L. V.; Nyoni, M. S.; Munyuki, G.; Nyoni, S. Development of a Colorimetric Probe for the Semi-Quantitative Detection of Mercury Levels in Water. Results Chem. 2020, 2, 100076. DOI: 10.1016/j.rechem.2020.100076.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.