403
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Effect of Synthesis Methods and Conditions on Properties and Applications of Carbon Dots for the Detection of Potential Water Contaminants: A Review

ORCID Icon, , , , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 751-774 | Published online: 03 Oct 2021

References

  • Lin, H. S.; Jeon, I.; Xiang, R.; Seo, S.; Lee, J. W.; Li, C.; Pal, A.; Manzhos, S.; Goorsky, M. S.; Yang, Y.; et al. Achieving High Efficiency in Solution-Processed Perovskite Solar Cells Using C60/C70 Mixed Fullerenes. ACS Appl. Mater. Interfaces 2018, 10, 39590–39598. DOI: 10.1021/acsami.8b11049.
  • Rao, R.; Pint, C. L.; Islam, A. E.; Weatherup, R. S.; Hofmann, S.; Meshot, E. R.; Wu, F.; Zhou, C.; Dee, N.; Amama, P. B.; et al. Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications. ACS Nano. 2018, 12, 11756–11784. DOI: 10.1021/acsnano.8b06511.
  • Georgakilas, V.; Perman, J. A.; Tucek, J.; Zboril, R. Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chem. Rev. 2015, 115, 4744–4822. DOI: 10.1021/cr500304f.
  • Bradshaw, M. J.; Bhattacharyya, S.; Venna, N.; Cahill, J. F. Neurologic Manifestations of Systemic Rheumatologic Diseases. Curr. Clin. Neurol. 2020, 2020, 321–342. DOI: 10.1007/978-3-030-24436-1_17.
  • Rao, L.; Tang, Y.; Li, Z.; Ding, X.; Liang, G.; Lu, H.; Yan, C.; Tang, K.; Yu, B. Efficient Synthesis of Highly Fluorescent Carbon Dots by Microreactor Method and Their Application in Fe3 + Ion Detection. Mater. Sci. Eng. C. 2017, 81, 213–223. DOI: 10.1016/j.msec.2017.07.046.
  • Chen, J.; Liu, J.; Li, J.; Xu, L.; Qiao, Y. One-Pot Synthesis of Nitrogen and Sulfur Co-Doped Carbon Dots and Its Application for Sensor and Multicolor Cellular Imaging. J. Colloid Interface Sci. 2017, 485, 167–174. DOI: 10.1016/j.jcis.2016.09.040.
  • Ju, J.; Chen, W. In Situ Growth of Surfactant-Free Gold Nanoparticles on Nitrogen-Doped Graphene Quantum Dots for Electrochemical Detection of Hydrogen Peroxide in Biological Environments. Anal. Chem. 2015, 87, 1903–1910. DOI: 10.1021/ac5041555.
  • Cao, L.; Wang, X.; Meziani, M. J.; Lu, F.; Wang, H.; Luo, P. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D.; et al. Carbon Dots for Multiphoton Bioimaging. J. Am. Chem. Soc. 2007, 129, 11318–11319. DOI: 10.1021/ja073527l.
  • Xu, X.; Ray, R.; Gu, Y.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737. DOI: 10.1021/ja040082h.
  • Sun, Y.-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H.; et al. Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757. DOI: 10.1021/ja062677d.
  • Richardson, S. D.; Kimura, S. Y. Emerging Environmental Contaminants: Challenges Facing Our Next Generation and Potential Engineering Solutions. Environ. Technol. Innov. 2017, 8, 40–56. DOI: 10.1016/j.eti.2017.04.002.
  • Molaei, M. J. Principles, Mechanisms, and Application of Carbon Quantum Dots in Sensors: A Review. Anal. Methods 2020, 12, 1266–1287. DOI: 10.1039/C9AY02696G.
  • Yao, B.; Huang, H.; Liu, Y.; Kang, Z. Carbon Dots: A Small Conundrum. Trends Chem. 2019, 1, 235–246. DOI: 10.1016/j.trechm.2019.02.003.
  • Liu, M.; Xu, Y.; Niu, F.; Gooding, J. J.; Liu, J. Carbon Quantum Dots Directly Generated from Electrochemical Oxidation of Graphite Electrodes in Alkaline Alcohols and the Applications for Specific Ferric Ion Detection and Cell Imaging. Analyst 2016, 141, 2657–2664. DOI: 10.1039/c5an02231b.
  • Wang, Y.; Zheng, J.; Wang, J.; Yang, Y.; Liu, X. Rapid Microwave-Assisted Synthesis of Highly Luminescent Nitrogen-Doped Carbon Dots for White Light-Emitting Diodes. Opt. Mater. (Amst.) 2017, 73, 319–329. DOI: 10.1016/j.optmat.2017.08.032.
  • Wang, Z.; Xu, C.; Lu, Y.; Chen, X.; Yuan, H.; Wei, G.; Ye, G.; Chen, J. Fluorescence Sensor Array Based on Amino Acid Derived Carbon Dots for Pattern-Based Detection of Toxic Metal Ions. Sens. Actuat., B. Chem. 2017, 241, 1324–1330. DOI: 10.1016/j.snb.2016.09.186.
  • Ming, F.; Hou, J.; Hou, C.; Yang, M.; Wang, X.; Li, J.; Huo, D.; He, Q. One-Step Synthesized Fluorescent Nitrogen Doped Carbon Dots from Thymidine for Cr (VI) Detection in Water. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2019, 222, 117165. DOI: 10.1016/j.saa.2019.117165.
  • Pooja, D.; Saini, S.; Thakur, A.; Kumar, B.; Tyagi, S.; Nayak, M. K. A “Turn-On” Thiol Functionalized Fluorescent Carbon Quantum Dot Based Chemosensory System for Arsenite Detection. J. Hazard. Mater. 2017, 328, 117–126. DOI: 10.1016/j.jhazmat.2017.01.015.
  • Atchudan, R.; Jebakumar Immanuel Edison, T. N.; Perumal, S.; Lee, Y. R. Indian Gooseberry-Derived Tunable Fluorescent Carbon Dots as a Promise for in Vitro/in Vivo Multicolor Bioimaging and Fluorescent Ink. ACS Omega 2018, 3, 17590–17601. DOI: 10.1021/acsomega.8b02463.
  • Liu, H.; Li, Z.; Sun, Y.; Geng, X.; Hu, Y.; Meng, H.; Ge, J.; Qu, L. Synthesis of Luminescent Carbon Dots with Ultrahigh Quantum Yield and Inherent Folate Receptor-Positive Cancer Cell Targetability. Sci. Rep. 2018, 8, 1–8. DOI: 10.1038/s41598-018-19373-3.
  • Li, H.; Xu, Y.; Ding, J.; Zhao, L.; Zhou, T.; Ding, H.; Chen, Y.; Ding, L. Microwave-Assisted Synthesis of Highly Luminescent N- and S-Co-Doped Carbon Dots as a Ratiometric Fluorescent Probe for Levofloxacin. Microchim. Acta 2018, 185, 1–7. DOI: 10.1007/s00604-017-2619-z.
  • Zhang, C.; Cui, Y.; Song, L.; Liu, X.; Hu, Z. Microwave Assisted One-Pot Synthesis of Graphene Quantum Dots as Highly Sensitive Fluorescent Probes for Detection of Iron Ions and PH Value. Talanta 2016, 150, 54–60. DOI: 10.1016/j.talanta.2015.12.015.
  • Jiang, Y.; Wang, B.; Meng, F.; Cheng, Y.; Zhu, C. Microwave-Assisted Preparation of N-Doped Carbon Dots as a Biosensor for Electrochemical Dopamine Detection. J. Colloid Interface Sci. 2015, 452, 199–202. DOI: 10.1016/j.jcis.2015.04.016.
  • Pham-Truong, T. N.; Petenzi, T.; Ranjan, C.; Randriamahazaka, H.; Ghilane, J. Microwave Assisted Synthesis of Carbon Dots in Ionic Liquid as Metal Free Catalyst for Highly Selective Production of Hydrogen Peroxide. Carbon N. Y. 2018, 130, 544–552. DOI: 10.1016/j.carbon.2018.01.070.
  • Tammina, S. K.; Yang, D.; Li, X.; Koppala, S.; Yang, Y. High Photoluminescent Nitrogen and Zinc Doped Carbon Dots for Sensing Fe3+ Ions and Temperature. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2019, 222, 117141. DOI: 10.1016/j.saa.2019.117141.
  • Baig, M. M. F.; Chen, Y. C.; Muhammad, M.; Baig, F.; Chen, Y. C. Bright Carbon Dots as Fluorescence Sensing Agents for Bacteria and Curcumin. J. Colloid Interface Sci. 2017, 501, 341–349. DOI: 10.1016/j.jcis.2017.04.045.
  • Liu, X.; Pang, J.; Xu, F.; Zhang, X. Simple Approach to Synthesize Amino-Functionalized Carbon Dots by Carbonization of Chitosan. Sci. Rep. 2016, 6, 1–8. DOI: 10.1038/srep31100.
  • Alam, A. M.; Park, B. Y.; Ghouri, Z. K.; Park, M.; Kim, H. Y. Synthesis of Carbon Quantum Dots from Cabbage with down- and up-Conversion Photoluminescence Properties: Excellent Imaging Agent for Biomedical Applications. Green Chem. 2015, 17, 3791–3797. DOI: 10.1039/C5GC00686D.
  • Hu, S.; Liu, J.; Yang, J.; Wang, Y.; Cao, S. Laser Synthesis and Size Tailor of Carbon Quantum Dots. J. Nanopart. Res. 2011, 13, 7247–7252. DOI: 10.1007/s11051-011-0638-y.
  • Liu, C.; Zhao, Z.; Zhang, R.; Yang, L.; Wang, Z.; Yang, J.; Jiang, H.; Han, M. Y.; Liu, B.; Zhang, Z. Strong Infrared Laser Ablation Produces White-Light-Emitting Materials via the Formation of Silicon and Carbon Dots in Silica Nanoparticles. J. Phys. Chem. C. 2015, 119, 8266–8272. DOI: 10.1021/jp512918h.
  • Sidorov, A. I.; Lebedev, V. F.; Kobranova, A. A.; Nashchekin, A. V. Formation of Carbon Quantum Dots and Nanodiamonds in Laser Ablation of a Carbon Film. Quantum Electron. 2018, 48, 45–48. DOI: 10.1070/QEL16456.
  • Hu, S.; Wei, Z.; Chang, Q.; Trinchi, A.; Yang, J. A Facile and Green Method towards Coal-Based Fluorescent Carbon Dots with Photocatalytic Activity. Appl. Surf. Sci. 2016, 378, 402–407. DOI: 10.1016/j.apsusc.2016.04.038.
  • Shen, L.; Zhang, L.; Chen, M.; Chen, X.; Wang, J. The Production of PH-Sensitive Photoluminescent Carbon Nanoparticles by the Carbonization of Polyethylenimine and Their Use for Bioimaging. Carbon N. Y. 2013, 55, 343–349. DOI: 10.1016/j.carbon.2012.12.074.
  • T, S.; D, R. S. Green Synthesis of Highly Fluorescent Carbon Quantum Dots from Sugarcane Bagasse Pulp. Appl. Surf. Sci. 2016, 390, 435–443. DOI: 10.1016/j.apsusc.2016.08.106.
  • Li, H.; He, X.; Kang, Z.; Huang, H.; Liu, Y.; Liu, J.; Lian, S.; Tsang, C. H. A.; Yang, X.; Lee, S. T. Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design. Angew. Chem. Int. Ed. Engl. 2010, 49, 4430–4434. DOI: 10.1002/anie.200906154.
  • Park, S. Y.; Lee, H. U.; Park, E. S.; Lee, S. C.; Lee, J. W.; Jeong, S. W.; Kim, C. H.; Lee, Y. C.; Huh, Y. S.; Lee, J. Photoluminescent Green Carbon Nanodots from Food-Waste-Derived Sources: Large-Scale Synthesis, Properties, and Biomedical Applications. ACS Appl. Mater. Interfaces 2014, 6, 3365–3370. DOI: 10.1021/am500159p.
  • Dang, H.; Huang, L. K.; Zhang, Y.; Wang, C. F.; Chen, S. Large-Scale Ultrasonic Fabrication of White Fluorescent Carbon Dots. Ind. Eng. Chem. Res. 2016, 55, 5335–5341. DOI: 10.1021/acs.iecr.6b00894.
  • Huang, H.; Cui, Y.; Liu, M.; Chen, J.; Wan, Q.; Wen, Y.; Deng, F.; Zhou, N.; Zhang, X.; Wei, Y. A One-Step Ultrasonic Irradiation Assisted Strategy for the Preparation of Polymer-Functionalized Carbon Quantum Dots and Their Biological Imaging. J. Colloid Interface Sci. 2018, 532, 767–773. DOI: 10.1016/j.jcis.2018.07.099.
  • Wang, J.; Qiu, F.; Li, X.; Wu, H.; Xu, J.; Niu, X.; Pan, J.; Zhang, T.; Yang, D. A Facile One-Pot Synthesis of Fluorescent Carbon Dots from Degrease Cotton for the Selective Determination of Chromium Ions in Water and Soil Samples. J. Lumin. 2017, 188, 230–237. DOI: 10.1016/j.jlumin.2017.04.035.
  • Jana, J.; Lee, H. J.; Chung, J. S.; Kim, M. H.; Hur, S. H. Blue Emitting Nitrogen-Doped Carbon Dots as a Fluorescent Probe for Nitrite Ion Sensing and Cell-Imaging. Anal. Chim. Acta. 2019, 1079, 212–219. DOI: 10.1016/j.aca.2019.06.064.
  • Zheng, Y.; Yang, D.; Wu, X.; Yan, H.; Zhao, Y.; Feng, B.; Duan, K.; Weng, J.; Wang, J. A Facile Approach for the Synthesis of Highly Luminescent Carbon Dots Using Vitamin-Based Small Organic Molecules with Benzene Ring Structure as Precursors. RSC Adv. 2015, 5, 90245–90254. DOI: 10.1039/C5RA14720D.
  • Liao, J.; Cheng, Z.; Zhou, L. Nitrogen-Doping Enhanced Fluorescent Carbon Dots: Green Synthesis and Their Applications for Bioimaging and Label-Free Detection of Au3+ Ions. ACS Sustainable Chem. Eng. 2016, 4, 3053–3061. DOI: 10.1021/acssuschemeng.6b00018.
  • Barati, A.; Shamsipur, M.; Arkan, E.; Hosseinzadeh, L.; Abdollahi, H. Synthesis of Biocompatible and Highly Photoluminescent Nitrogen Doped Carbon Dots from Lime: Analytical Applications and Optimization Using Response Surface Methodology. Mater. Sci. Eng. C. 2015, 47, 325–332. DOI: 10.1016/j.msec.2014.11.035.
  • Wang, L.; Zhou, H. S. Green Synthesis of Luminescent Nitrogen-Doped Carbon Dots from Milk and Its Imaging Application. Anal. Chem. 2014, 86, 8902–8905. DOI: 10.1021/ac502646x.
  • Lu, W.; Qin, X.; Liu, S.; Chang, G.; Zhang, Y.; Luo, Y. M.; Asiri, A. O.; Al-Youbi, A.; Sun, X. Economical, Green Synthesis of Fluorescent Carbon Nanoparticles and Their Use as Probes for Sensitive and Selective Detection of Mercury(II) Ions. Anal. Chem. 2012, 84, 5351–5357. DOI: 10.1021/ac3007939.
  • Liu, Y.; Liu, Y.; Park, S. J.; Zhang, Y.; Kim, T.; Chae, S.; Park, M.; Kim, H. Y. One-Step Synthesis of Robust Nitrogen-Doped Carbon Dots: Acid-Evoked Fluorescence Enhancement and Their Application in Fe 3+ Detection. J. Mater. Chem. A. 2015, 3, 17747–17754. DOI: 10.1039/C5TA05189D.
  • Lan, M.; Zhao, S.; Wei, X.; Zhang, K.; Zhang, Z.; Wu, S.; Wang, P.; Zhang, W. Pyrene-Derivatized Highly Fluorescent Carbon Dots for the Sensitive and Selective Determination of Ferric Ions and Dopamine. Dye. Pigment 2019, 170, 107574. DOI: 10.1016/j.dyepig.2019.107574.
  • Han, Z.; Nan, D.; Yang, H.; Sun, Q.; Pan, S.; Liu, H.; Hu, X. Carbon Quantum Dots Based Ratiometric Fluorescence Probe for Sensitive and Selective Detection of Cu2+ and Glutathione. Sens. Actuat., B. Chem. 2019, 298, 126842. DOI: 10.1016/j.snb.2019.126842.
  • Sahu, S.; Behera, B.; Maiti, T. K.; Mohapatra, S. Simple One-Step Synthesis of Highly Luminescent Carbon Dots from Orange Juice: Application as Excellent Bio-Imaging Agents. Chem. Commun. (Camb.) 2012, 48, 8835–8837. DOI: 10.1039/c2cc33796g.
  • Li, Z.; Zhang, Y.; Niu, Q.; Mou, M.; Wu, Y.; Liu, X.; Yan, Z.; Liao, S. A Fluorescence Probe Based on the Nitrogen-Doped Carbon Dots Prepared from Orange Juice for Detecting Hg2+ in Water. J. Lumin. 2017, 187, 274–280. DOI: 10.1016/j.jlumin.2017.03.023.
  • Zhu, S.; Meng, Q.; Wang, L.; Zhang, J.; Song, Y.; Jin, H.; Zhang, K.; Sun, H.; Wang, H.; Yang, B. Highly Photoluminescent Carbon Dots for Multicolor Patterning. Angew. Chem. Int. Ed. Engl. 2013, 52, 3953–3957. DOI: 10.1002/anie.201300519.
  • Li, H.; Shao, F. Q.; Zou, S. Y.; Yang, Q. J.; Huang, H.; Feng, J. J.; Wang, A. J. Microwave-Assisted Synthesis of N,P-Doped Carbon Dots for Fluorescent Cell Imaging. Microchim. Acta 2016, 183, 821–826. DOI: 10.1007/s00604-015-1714-2.
  • Dong, Y.; Pang, H.; Yang, H.; Bin; Guo, C.; Shao, J.; Chi, Y.; Li, C. M.; Yu, T. Carbon-Based Dots Co-Doped with Nitrogen and Sulfur for High Quantum Yield and Excitation-Independent Emission. Angew. Chem. Int. Ed. Engl. 2013, 52, 7800–7804. DOI: 10.1002/anie.201301114.
  • Zhang, Y.; Yang, X.; Gao, Z. In Situ Polymerization of Aniline on Carbon Quantum Dots: A New Platform for Ultrasensitive Detection of Glucose and Hydrogen Peroxide. RSC Adv. 2015, 5, 21675–21680. DOI: 10.1039/C5RA00146C.
  • Raveendran, V.; Suresh Babu, A. R.; Renuka, N. K. Mint Leaf Derived Carbon Dots for Dual Analyte Detection of Fe(III) and Ascorbic Acid. RSC Adv. 2019, 9, 12070–12077. DOI: 10.1039/C9RA02120E.
  • Dang, D. K.; Sundaram, C.; Ngo, Y. L. T.; Choi, W. M.; Chung, J. S.; Kim, E. J.; Hur, S. H. Pyromellitic Acid-Derived Highly Fluorescent N-Doped Carbon Dots for the Sensitive and Selective Determination of 4-Nitrophenol. Dye. Pigment 2019, 165, 327–334. DOI: 10.1016/j.dyepig.2019.02.029.
  • Liu, Y.; Zhou, Q.; Li, J.; Lei, M.; Yan, X. Selective and Sensitive Chemosensor for Lead Ions Using Fluorescent Carbon Dots Prepared from Chocolate by One-Step Hydrothermal Method. Sens. Actuat., B. Chem. 2016, 237, 597–604. DOI: 10.1016/j.snb.2016.06.092.
  • Kumar, A.; Chowdhuri, A. R.; Laha, D.; Mahto, T. K.; Karmakar, P.; Sahu, S. K. Green Synthesis of Carbon Dots from Ocimum Sanctum for Effective Fluorescent Sensing of Pb2+ Ions and Live Cell Imaging. Sens. Actuat., B. Chem. 2017, 242, 679–686. DOI: 10.1016/j.snb.2016.11.109.
  • Radhakrishnan, K.; Panneerselvam, P. Green Synthesis of Surface-Passivated Carbon Dots from the Prickly Pear Cactus as a Fluorescent Probe for the Dual Detection of Arsenic(III) and Hypochlorite Ions from Drinking Water. RSC Adv. 2018, 8, 30455–30467. DOI: 10.1039/C8RA05861J.
  • Fang, J.; Zhuo, S.; Zhu, C. Fluorescent Sensing Platform for the Detection of P-Nitrophenol Based on Cu-Doped Carbon Dots. Opt. Mater. (Amst.) 2019, 97, 109396. DOI: 10.1016/j.optmat.2019.109396.
  • Wang, F.; Hao, Q.; Zhang, Y.; Xu, Y.; Lei, W. Fluorescence Quenchometric Method for Determination of Ferric Ion Using Boron-Doped Carbon Dots. Microchim. Acta 2016, 183, 273–279. DOI: 10.1007/s00604-015-1650-1.
  • Lin, B.; Yan, Y.; Guo, M.; Cao, Y.; Yu, Y.; Zhang, T.; Huang, Y.; Wu, D. Modification-Free Carbon Dots as Turn-on Fluorescence Probe for Detection of Organophosphorus Pesticides. Food Chem. 2018, 245, 1176–1182. DOI: 10.1016/j.foodchem.2017.11.038.
  • Huang, S. W.; Lin, Y. F.; Li, Y. X.; Hu, C. C.; Chiu, T. C. Synthesis of Fluorescent Carbon Dots as Selective and Sensitive Probes for Cupric Ions and Cell Imaging. Molecules 2019, 24, 1784. DOI: 10.3390/molecules24091785.
  • Lai, Z.; Guo, X.; Cheng, Z.; Ruan, G.; Du, F. Green Synthesis of Fluorescent Carbon Dots from Cherry Tomatoes for Highly Effective Detection of Trifluralin Herbicide in Soil Samples. ChemistrySelect 2020, 5, 1956–1960. DOI: 10.1002/slct.201904517.
  • Wu, X.; Wu, L.; Cao, X.; Li, Y.; Liu, A.; Liu, S. Nitrogen-Doped Carbon Quantum Dots for Fluorescence Detection of Cu2+ and Electrochemical Monitoring of Bisphenol A. RSC Adv. 2018, 8, 20000–20006. DOI: 10.1039/C8RA03180K.
  • Gedda, G.; Lee, C. Y.; Lin, Y. C.; Wu, H. F. Green Synthesis of Carbon Dots from Prawn Shells for Highly Selective and Sensitive Detection of Copper Ions. Sens. Actuat., B. Chem. 2016, 224, 396–403. DOI: 10.1016/j.snb.2015.09.065.
  • Xu, Q.; Liu, Y.; Gao, C.; Wei, J.; Zhou, H.; Chen, Y.; Dong, C.; Sreeprasad, T. S.; Li, N.; Xia, Z. Synthesis, Mechanistic Investigation, and Application of Photoluminescent Sulfur and Nitrogen Co-Doped Carbon Dots. J. Mater. Chem. C. 2015, 3, 9885–9893. DOI: 10.1039/C5TC01912E.
  • Liu, Y.; Duan, W.; Song, W.; Liu, J.; Ren, C.; Wu, J.; Liu, D.; Chen, H. Red Emission B, N, S-Co-Doped Carbon Dots for Colorimetric and Fluorescent Dual Mode Detection of Fe3+ Ions in Complex Biological Fluids and Living Cells. ACS Appl. Mater. Interfaces 2017, 9, 12663–12672. DOI: 10.1021/acsami.6b15746.
  • Shangguan, J.; Huang, J.; He, D.; He, X.; Wang, K.; Ye, R.; Yang, X.; Qing, T.; Tang, J. Highly Fe3+-Selective Fluorescent Nanoprobe Based on Ultra-Bright N/P Co-Doped Carbon Dots and Its Application in Biological Samples. Anal. Chem. 2017, 89, 7477–7484. acs.analchem.7b01053. DOI: 10.1021/acs.analchem.7b01053.
  • Li, Y.; Lin, H.; Luo, C.; Wang, Y.; Jiang, C.; Qi, R.; Huang, R.; Travas-Sejdic, J.; Peng, H. Aggregation Induced Red Shift Emission of Phosphorus Doped Carbon Dots. RSC Adv. 2017, 7, 32225–32228. DOI: 10.1039/C7RA04781A.
  • Shen, J.; Shang, S.; Chen, X.; Wang, D.; Cai, Y. Facile Synthesis of Fluorescence Carbon Dots from Sweet Potato for Fe3+ Sensing and Cell Imaging. Mater. Sci. Eng. C. 2017, 76, 856–864. DOI: 10.1016/j.msec.2017.03.178.
  • Yang, Q.; Wei, L.; Zheng, X.; Xiao, L. Single Particle Dynamic Imaging and Fe3+ Sensing with Bright Carbon Dots Derived from Bovine Serum Albumin Proteins. Sci. Rep. 2015, 5, 1–12. DOI: 10.1038/srep17727.
  • Atchudan, R.; Edison, T. N. J. I.; Lee, Y. R. Nitrogen-Doped Carbon Dots Originating from Unripe Peach for Fluorescent Bioimaging and Electrocatalytic Oxygen Reduction Reaction. J. Colloid Interface Sci. 2016, 482, 8–18. DOI: 10.1016/j.jcis.2016.07.058.
  • Gong, Y.; Yu, B.; Yang, W.; Zhang, X. Phosphorus, and Nitrogen Co-Doped Carbon Dots as a Fluorescent Probe for Real-Time Measurement of Reactive Oxygen and Nitrogen Species inside Macrophages. Biosens. Bioelectron. 2016, 79, 822–828. DOI: 10.1016/j.bios.2016.01.022.
  • Ensafi, A. A.; Hghighat Sefat, S.; Kazemifard, N.; Rezaei, B.; Moradi, F. A Novel One-Step and Green Synthesis of Highly Fluorescent Carbon Dots from Saffron for Cell Imaging and Sensing of Prilocaine. Sens. Actuat., B. Chem. 2017, 253, 451–460. DOI: 10.1016/j.snb.2017.06.163.
  • Zhang, M.; Wang, W.; Yuan, P.; Chi, C.; Zhang, J.; Zhou, N. Synthesis of Lanthanum Doped Carbon Dots for Detection of Mercury Ion, Multi-Color Imaging of Cells and Tissue, and Bacteriostasis. Chem. Eng. J. 2017, 330, 1137–1147. DOI: 10.1016/j.cej.2017.07.166.
  • Mitra, S.; Chandra, S.; Kundu, T.; Banerjee, R.; Pramanik, P.; Goswami, A. Rapid Microwave Synthesis of Fluorescent Hydrophobic Carbon Dots. RSC Adv. 2012, 2, 12129–12131. DOI: 10.1039/c2ra21048g.
  • Simões, E. F. C.; Leitão, J. M. M.; Esteves da Silva, J. C. G. C. Sulfur and Nitrogen Co-Doped Carbon Dots Sensors for Nitric Oxide Fluorescence Quantification. Anal. Chim. Acta. 2017, 960, 117–122. DOI: 10.1016/j.aca.2017.01.007.
  • Guo, L.; Li, L.; Liu, M.; Wan, Q.; Tian, J.; Huang, Q.; Wen, Y.; Liang, S.; Zhang, X.; Wei, Y. Bottom-up Preparation of Nitrogen Doped Carbon Quantum Dots with Green Emission under Microwave-Assisted Hydrothermal Treatment and Their Biological Imaging. Mater. Sci. Eng. C. 2018, 84, 60–66. DOI: 10.1016/j.msec.2017.11.034.
  • Gu, D.; Hong, L.; Zhang, L.; Liu, H.; Shang, S. Nitrogen and Sulfur Co-Doped Highly Luminescent Carbon Dots for Sensitive Detection of Cd (II) Ions and Living Cell Imaging Applications. J. Photochem. Photobiol. B Biol. 2018, 186, 144–151. DOI: 10.1016/j.jphotobiol.2018.07.012.
  • Kiran, S.; Misra, R. D. K. Mechanism of Intracellular Detection of Glucose through Nonenzymatic and Boronic Acid Functionalized Carbon Dots. J. Biomed. Mater. Res. 2015, 103, 2888–2897. DOI: 10.1002/jbm.a.35421.
  • Liu, Q.; Zhang, N.; Shi, H.; Ji, W.; Guo, X.; Yuan, W.; Hu, Q. One-Step Microwave Synthesis of Carbon Dots for Highly Sensitive and Selective Detection of Copper Ions in Aqueous Solution. New J. Chem. 2018, 42, 3097–3101. DOI: 10.1039/C7NJ05000C.
  • Hu, Y.; Gao, Z. Sewage Sludge in Microwave Oven: A Sustainable Synthetic Approach toward Carbon Dots for Fluorescent Sensing of Para-Nitrophenol. J. Hazard. Mater. 2019, 2020, 121048. DOI: 10.1016/j.jhazmat.2019.121048.
  • Feng, J.; Wang, W. J.; Hai, X.; Yu, Y. L.; Wang, J. H. Green Preparation of Nitrogen-Doped Carbon Dots Derived from Silkworm Chrysalis for Cell Imaging. J. Mater. Chem. B. 2016, 4, 387–393. DOI: 10.1039/c5tb01999k.
  • Yang, W.; Zhang, H.; Lai, J.; Peng, X.; Hu, Y.; Gu, W.; Ye, L. Carbon Dots with Red-Shifted Photoluminescence by Fluorine Doping for Optical Bio-Imaging. Carbon N. Y. 2018, 128, 78–85. DOI: 10.1016/j.carbon.2017.11.069.
  • Wang, F.; Wang, S.; Sun, Z.; Zhu, H. Study on Ultrasonic Single-Step Synthesis and Optical Properties of Nitrogen-Doped Carbon Fluorescent Quantum Dots. Full. Nanotub. Carbon Nanostruct. 2015, 23, 769–776. DOI: 10.1080/1536383X.2014.996287.
  • Siddique, A. B.; Pramanick, A. K.; Chatterjee, S.; Ray, M. Amorphous Carbon Dots and Their Remarkable Ability to Detect 2,4,6-Trinitrophenol. Sci. Rep. 2018, 8, 1–10. DOI: 10.1038/s41598-018-28021-9.
  • Zhang, Y.; Fang, X.; Zhao, H.; Li, Z. A Highly Sensitive and Selective Detection of Cr(VI) and Ascorbic Acid Based on Nitrogen-Doped Carbon Dots. Talanta 2018, 181, 318–325. DOI: 10.1016/j.talanta.2018.01.027.
  • De, B.; Karak, N. A Green and Facile Approach for the Synthesis of Water Soluble Fluorescent Carbon Dots from Banana Juice. RSC Adv. 2013, 3, 8286–8290. DOI: 10.1039/c3ra00088e.
  • Talib, A.; Pandey, S.; Thakur, M.; Wu, H. F. Synthesis of Highly Fluorescent Hydrophobic Carbon Dots by Hot Injection Method Using Paraplast as Precursor. Mater. Sci. Eng. C. 2015, 48, 700–703. DOI: 10.1016/j.msec.2014.11.058.
  • Basu, A.; Suryawanshi, A.; Kumawat, B.; Dandia, A.; Guin, D.; Ogale, S. B. Starch (Tapioca) to Carbon Dots: An Efficient Green Approach to an on-off-on Photoluminescence Probe for Fluoride Ion Sensing. Analyst 2015, 140, 1837–1841. DOI: 10.1039/C4AN02340D.
  • Cheng, F.; An, X.; Zheng, C.; Cao, S. Green Synthesis of Fluorescent Hydrophobic Carbon Quantum Dots and Their Use for 2,4,6-Trinitrophenol Detection. RSC Adv. 2015, 5, 93360–93363. DOI: 10.1039/C5RA19029K.
  • Li, H.; Kong, W.; Liu, J.; Liu, N.; Huang, H.; Liu, Y.; Kang, Z. Fluorescent N-Doped Carbon Dots for Both Cellular Imaging and Highly-Sensitive Catechol Detection. Carbon N. Y. 2015, 91, 66–75. DOI: 10.1016/j.carbon.2015.04.032.
  • Jones, S. S.; Sahatiya, P.; Badhulika, S. One Step, High Yield Synthesis of Amphiphilic Carbon Quantum Dots Derived from Chia Seeds: A Solvatochromic Study. New J. Chem. 2017, 41, 13130–13139. DOI: 10.1039/C7NJ03513F.
  • Jiang, K.; Sun, S.; Zhang, L.; Wang, Y.; Cai, C.; Lin, H. Bright-Yellow-Emissive N-Doped Carbon Dots: Preparation, Cellular Imaging, and Bifunctional Sensing. ACS Appl. Mater. Interfaces 2015, 7, 23231–23238. DOI: 10.1021/acsami.5b07255.
  • Han, C.; Wang, R.; Wang, K.; Xu, H.; Sui, M.; Li, J.; Xu, K. Highly Fluorescent Carbon Dots as Selective and Sensitive “On-Off-On” Probes for Iron(III) Ion and Apoferritin Detection and Imaging in Living Cells. Biosens. Bioelectron. 2016, 83, 229–236. DOI: 10.1016/j.bios.2016.04.066.
  • Li, H.; Ming, H.; Liu, Y.; Yu, H.; He, X.; Huang, H.; Pan, K.; Kang, Z.; Lee, S. T. Fluorescent Carbon Nanoparticles: Electrochemical Synthesis and Their PH Sensitive Photoluminescence Properties. New J. Chem. 2011, 35, 2666–2670. DOI: 10.1039/c1nj20575g.
  • Mao, Q. X.; Wang, W. J.; Hai, X.; Shu, Y.; Chen, X. W.; Wang, J. H. The Regulation of Hydrophilicity and Hydrophobicity of Carbon Dots via a One-Pot Approach. J. Mater. Chem. B. 2015, 3, 6013–6018. DOI: 10.1039/C5TB00963D.
  • Afrooz, M.; Dehghani, H. Effects of Triphenyl Phosphate as an Inexpensive Additive on the Photovoltaic Performance of Dye-Sensitized Nanocrystalline TiO2 Solar Cells. RSC Adv. 2015, 5, 50483–50493. DOI: 10.1039/C5RA06849E.
  • Kainth, S.; Maity, B.; Basu, S. Deciphering the Interaction of Solvents with Dual Emissive Carbon Dots: A Photoluminescence Study and Its Response for Different Metal Ions. Mater. Sci. Eng. C. 2019, 110443. DOI: 10.1016/j.msec.2019.110443.
  • Çalhan, S. D.; Alaş, M. Ö.; Aşık, M.; Kaya, F. N. D.; Genç, R. One-Pot Synthesis of Hydrophilic and Hydrophobic Fluorescent Carbon Dots Using Deep Eutectic Solvents as Designer Reaction Media. J. Mater. Sci. 2018, 53, 15362–15375. DOI: 10.1007/s10853-018-2723-4.
  • Ming, H.; Ma, Z.; Liu, Y.; Pan, K.; Yu, H.; Wang, F.; Kang, Z. Large Scale Electrochemical Synthesis of High Quality Carbon Nanodots and Their Photocatalytic Property. Dalton Trans. 2012, 41, 9526–9531. DOI: 10.1039/c2dt30985h.
  • Krysmann, M. J.; Kelarakis, A.; Dallas, P.; Giannelis, E. P. Formation Mechanism of Carbogenic Nanoparticles with Dual Photoluminescence Emission. J. Am. Chem. Soc. 2012, 134, 747–750. DOI: 10.1021/ja204661r.
  • Hamilton, G.; Sanabria, H. Multiparameter Fluorescence Spectroscopy of Single Molecules; Elsevier Inc.: New York, 2019. DOI: 10.1016/b978-0-12-816463-1.00006-7.
  • Fei, H.; Ye, R.; Ye, G.; Gong, Y.; Peng, Z.; Fan, X.; Samuel, E. L. G.; Ajayan, P. M.; Tour, J. Boron- and Nitrogen-Doped Graphene Quantum Dots/Graphene Hybrid Nanoplatelets as Efficient Electrocatalysts for Oxygen Reduction. ACS Nano. 2014, 8, 10837–10843. DOI: 10.1021/nn504637y.
  • Hong, G.; Diao, S.; Antaris, A. L.; Dai, H. Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy. Chem. Rev. 2015, 115, 10816–10906. DOI: 10.1021/acs.chemrev.5b00008.
  • Hu, Y.; Geng, X.; Zhang, L.; Huang, Z.; Ge, J.; Li, Z. Nitrogen-Doped Carbon Dots Mediated Fluorescent on-off Assay for Rapid and Highly Sensitive Pyrophosphate and Alkaline Phosphatase Detection. Sci. Rep. 2017, 7, 5849. DOI: 10.1038/s41598-017-06356-z.
  • Reckmeier, C. J.; Schneider, J.; Susha, A. S.; Rogach, A. L. Luminescent Colloidal Carbon Dots: Optical Properties and Effects of Doping [Invited]. Opt. Express 2016, 24, A312. DOI: 10.1364/OE.24.00A312.
  • Gao, X.; Lu, Y.; Zhang, R.; He, S.; Ju, J.; Liu, M.; Li, L.; Chen, W. One-Pot Synthesis of Carbon Nanodots for Fluorescence Turn-on Detection of Ag + Based on the Ag+-Induced Enhancement of Fluorescence. J. Mater. Chem. C. 2015, 3, 2302–2309. DOI: 10.1039/C4TC02582B.
  • Ju, J.; Zhang, R.; He, S.; Chen, W. Nitrogen-Doped Graphene Quantum Dots-Based Fluorescent Probe for the Sensitive Turn-on Detection of Glutathione and Its Cellular Imaging. RSC Adv. 2014, 4, 52583–52589. DOI: 10.1039/C4RA10601F.
  • Gao, X.; Du, C.; Zhuang, Z.; Chen, W. Carbon Quantum Dot-Based Nanoprobes for Metal Ion Detection. J. Mater. Chem. C. 2016, 4, 6927–6945. DOI: 10.1039/C6TC02055K.
  • Yu, C.; Wu, Y.; Zeng, F.; Wu, S. A Fluorescent Ratiometric Nanosensor for Detecting NO in Aqueous Media and Imaging Exogenous and Endogenous NO in Live Cells. J. Mater. Chem. B. 2013, 1, 4152–4159. DOI: 10.1039/c3tb20686f.
  • Zu, F.; Yan, F.; Bai, Z.; Xu, J.; Wang, Y.; Huang, Y.; Zhou, X. The Quenching of the Fluorescence of Carbon Dots: A Review on Mechanisms and Applications. Microchim. Acta 2017, 184, 1899–1914. DOI: 10.1007/s00604-017-2318-9.
  • Gong, J.; Lu, X.; An, X. Carbon Dots as Fluorescent off-on Nanosensors for Ascorbic Acid Detection. RSC Adv. 2015, 5, 8533–8536. DOI: 10.1039/C4RA13576H.
  • Song, Y.; Zhu, S.; Xiang, S.; Zhao, X.; Zhang, J.; Zhang, H.; Fu, Y.; Yang, B. Investigation into the Fluorescence Quenching Behaviors and Applications of Carbon Dots. Nanoscale 2014, 6, 4676–4682. DOI: 10.1039/c4nr00029c.
  • Zhang, Y.; Cui, P.; Zhang, F.; Feng, X.; Wang, Y.; Yang, Y.; Liu, X. Fluorescent Probes for “Off-On” Highly Sensitive Detection of Hg2+ and L-Cysteine Based on Nitrogen-Doped Carbon Dots. Talanta 2016, 152, 288–300. DOI: 10.1016/j.talanta.2016.02.018.
  • Wahba, M. E. K.; El-Enany, N.; Belal, F. Application of the Stern-Volmer Equation for Studying the Spectrofluorimetric Quenching Reaction of Eosin with Clindamycin Hydrochloride in Its Pure Form and Pharmaceutical Preparations. Anal. Methods 2015, 7, 10445–10451. DOI: 10.1039/C3AY42093K.
  • Salinas-Castillo, A.; Ariza-Avidad, M.; Pritz, C.; Camprubí-Robles, M.; Fernández, B.; Ruedas-Rama, M. J.; Megia-Fernández, A.; Lapresta-Fernández, A.; Santoyo-Gonzalez, F.; Schrott-Fischer, A.; et al. Carbon Dots for Copper Detection with down and Upconversion Fluorescent Properties as Excitation Sources. Chem. Commun. (Camb.) 2013, 49, 1103–1105. DOI: 10.1039/c2cc36450f.
  • Chan, K. K.; Yap, S. H. K.; Yong, K. T. Biogreen Synthesis of Carbon Dots for Biotechnology and Nanomedicine Applications. Nano-Micro Lett. 2018, 10, 72. DOI: 10.1007/s40820-018-0223-3.
  • Lan, M.; Di, Y.; Zhu, X.; Ng, T. W.; Xia, J.; Liu, W.; Meng, X.; Wang, P.; Lee, C. S.; Zhang, W. A Carbon Dot-Based Fluorescence Turn-on Sensor for Hydrogen Peroxide with a Photo-Induced Electron Transfer Mechanism. Chem. Commun. (Camb.) 2015, 51, 15574–15577. DOI: 10.1039/c5cc05835j.
  • Chen, S.; Yu, Y. L.; Wang, J. H. Inner Filter Effect-Based Fluorescent Sensing Systems: A Review. Anal. Chim. Acta. 2018, 999, 13–26. DOI: 10.1016/j.aca.2017.10.026.
  • Chatzimarkou, A.; Chatzimitakos, T. G.; Kasouni, A.; Sygellou, L.; Avgeropoulos, A.; Stalikas, C. D. Selective FRET-Based Sensing of 4-Nitrophenol and Cell Imaging Capitalizing on the Fluorescent Properties of Carbon Nanodots from Apple Seeds. Sens. Actuat., B. Chem. 2018, 258, 1152–1160. DOI: 10.1016/j.snb.2017.11.182.
  • Liang, Z.; Kang, M.; Payne, G. F.; Wang, X.; Sun, R. Probing Energy and Electron Transfer Mechanisms in Fluorescence Quenching of Biomass Carbon Quantum Dots. ACS Appl. Mater. Interfaces 2016, 8, 17478–17488. DOI: 10.1021/acsami.6b04826.
  • Dai, Y.; Liu, Z.; Bai, Y.; Chen, Z.; Qin, J.; Feng, F. A Novel Highly Fluorescent S, N, O Co-Doped Carbon Dots for Biosensing and Bioimaging of Copper Ions in Live Cells. RSC Adv. 2018, 8, 42246–42252. DOI: 10.1039/C8RA09298B.
  • Zhang, H. Y.; Wang, Y.; Xiao, S.; Wang, H.; Wang, J. H.; Feng, L. Rapid Detection of Cr(VI) Ions Based on Cobalt(II)-Doped Carbon Dots. Biosens. Bioelectron. 2017, 87, 46–52. DOI: 10.1016/j.bios.2016.08.010.
  • Xu, X.; Ren, D.; Chai, Y.; Cheng, X.; Mei, J.; Bao, J.; Wei, F.; Xu, G.; Hu, Q.; Cen, Y. Dual-Emission Carbon Dots-Based Fluorescent Probe for Ratiometric Sensing of Fe(III) and Pyrophosphate in Biological Samples. Sens. Actuat., B. Chem. 2019, 298, 126829. DOI: 10.1016/j.snb.2019.126829.
  • Gong, X.; Lu, W.; Paau, M. C.; Hu, Q.; Wu, X.; Shuang, S.; Dong, C.; Choi, M. M. F. Facile Synthesis of Nitrogen-Doped Carbon Dots for Fe3+ Sensing and Cellular Imaging. Anal. Chim. Acta 2015, 861, 74–84. DOI: 10.1016/j.aca.2014.12.045.
  • Ma, Y.; Zhang, Z.; Xu, Y.; Ma, M.; Chen, B.; Wei, L.; Xiao, L. A Bright Carbon-Dot-Based Fluorescent Probe for Selective and Sensitive Detection of Mercury Ions. Talanta 2016, 161, 476–481. DOI: 10.1016/j.talanta.2016.08.082.
  • Liu, W.; Wang, X.; Wang, Y.; Li, J.; Shen, D.; Kang, Q.; Chen, L. Ratiometric Fluorescence Sensor Based on Dithiothreitol Modified Carbon Dots-Gold Nanoclusters for the Sensitive Detection of Mercury Ions in Water Samples. Sens. Actuat., B. Chem. 2018, 262, 810–817. DOI: 10.1016/j.snb.2018.01.222.
  • Zhang, R.; Chen, W. Nitrogen-Doped Carbon Quantum Dots: Facile Synthesis and Application as a “Turn-Off” Fluorescent Probe for Detection of Hg2+ Ions. Biosens. Bioelectron. 2014, 55, 83–90. DOI: 10.1016/j.bios.2013.11.074.
  • Wu, Q.; Wang, X.; Rasaki, S. A.; Thomas, T.; Wang, C.; Zhang, C.; Yang, M. Yellow-Emitting Carbon-Dots-Impregnated Carboxy Methyl Cellulose/Poly-Vinyl-Alcohol and Chitosan: Stable, Freestanding, Enhanced-Quenching Cu2+-Ions Sensor. J. Mater. Chem. C. 2018, 6, 4508–4515. DOI: 10.1039/C8TC00660A.
  • Jing, R. Z.; Yin, J. M.; Zeng, X. R.; Zhao, S. R.; Xue, Y. N.; Liu, J. K.; Zhang, X. M.; Yang, X. H. Assembly and Copper Ions Detection of Highly Sensible and Stable Carbon Dots/Hydroxyapatite Fluorescence Probe. Mater. Technol. 2019, 34, 674–682. DOI: 10.1080/10667857.2019.1613293.
  • Aman, H. K. A. Critical Review on Arsenic Exposure and Its Toxicopathophysiology. Int. J. Sci. Res. 2017, 6, 1236–1242.
  • Yang, D.; Liu, X.; Zhou, Y.; Luo, L.; Zhang, J.; Huang, A.; Mao, Q.; Chen, X.; Tang, L. Aptamer-Based Biosensors for Detection of Lead(II) Ion: A Review. Anal. Methods 2017, 9, 1976–1990. DOI: 10.1039/C7AY00477J.
  • Liu, Y.; Zhou, Q.; Yuan, Y.; Wu, Y. Hydrothermal Synthesis of Fluorescent Carbon Dots from Sodium Citrate and Polyacrylamide and Their Highly Selective Detection of Lead and Pyrophosphate. Carbon N. Y. 2017, 115, 550–560. DOI: 10.1016/j.carbon.2017.01.035.
  • Lin, L.; Wang, Y.; Xiao, Y.; Liu, W. Hydrothermal Synthesis of Carbon Dots Codoped with Nitrogen and Phosphorus as a Turn-on Fluorescent Probe for Cadmium(II). Microchim. Acta 2019, 186, 5–11. DOI: 10.1007/s00604-019-3264-5.
  • Ju, J.; Chen, W. Synthesis of Highly Fluorescent Nitrogen-Doped Graphene Quantum Dots for Sensitive, Label-Free Detection of Fe (III) in Aqueous Media. Biosens. Bioelectron. 2014, 58, 219–225. DOI: 10.1016/j.bios.2014.02.061.
  • Yu, J.; Xu, C.; Tian, Z.; Lin, Y.; Shi, Z. Facilely Synthesized N-Doped Carbon Quantum Dots with High Fluorescent Yield for Sensing Fe3+. New J. Chem. 2016, 40, 2083–2088. DOI: 10.1039/C5NJ03252K.
  • Jayaweera, S.; Yin, K.; Hu, X.; Ng, W. J. Facile Preparation of Fluorescent Carbon Dots for Label-Free Detection of Fe3+. J. Photochem. Photobiol. A Chem. 2019, 370, 156–163. DOI: 10.1016/j.jphotochem.2018.10.052.
  • Li, H.; Sun, C.; Vijayaraghavan, R.; Zhou, F.; Zhang, X.; MacFarlane, D. R. Long Lifetime Photoluminescence in N, S Co-Doped Carbon Quantum Dots from an Ionic Liquid and Their Applications in Ultrasensitive Detection of Pesticides. Carbon N. Y. 2016, 104, 33–39. DOI: 10.1016/j.carbon.2016.03.040.
  • Yan, X.; Song, Y.; Zhu, C.; Li, H.; Du, D.; Su, X.; Lin, Y. MnO2 Nanosheet-Carbon Dots Sensing Platform for Sensitive Detection of Organophosphorus Pesticides. Anal. Chem. 2018, 90, 2618–2624. DOI: 10.1021/acs.analchem.7b04193.
  • Chapin, R. E.; Adams, J.; Boekelheide, K.; Gray, L. E.; Hayward, S. W.; Lees, P. S. J.; McIntyre, B. S.; Portier, K. M.; Schnorr, T. M.; Selevan, S. G.; et al. NTP-CERHR Expert Panel Report on the Reproductive and Developmental Toxicity of Bisphenol A. Birth Defects Res. Part B - Dev. Reprod. Toxicol. 2008, 83, 157–395. DOI: 10.1002/bdrb.20147.
  • Li, L.; Yu, B.; Zhang, X.; You, T. A Novel Electrochemiluminescence Sensor Based on Ru(Bpy)32+/N-Doped Carbon Nanodots System for the Detection of Bisphenol A. Anal. Chim. Acta 2015, 895, 104–111. DOI: 10.1016/j.aca.2015.08.055.
  • Amjadi, M.; Manzoori, J. L.; Hallaj, T. A Novel Chemiluminescence Method for Determination of Bisphenol a Based on the Carbon Dot-Enhanced HCO3- - H2O2 System. J. Lumin. 2015, 158, 160–164. DOI: 10.1016/j.jlumin.2014.09.045.
  • Liu, G.; Chen, Z.; Jiang, X.; Feng, D. Q.; Zhao, J.; Fan, D.; Wang, W. In-Situ Hydrothermal Synthesis of Molecularly Imprinted Polymers Coated Carbon Dots for Fluorescent Detection of Bisphenol A. Sens. Actuat., B. Chem. 2016, 228, 302–307. DOI: 10.1016/j.snb.2016.01.010.
  • Ahmed, G. H. G.; Laíño, R. B.; Calzón, J. A. G.; García, M. E. D. Highly Fluorescent Carbon Dots as Nanoprobes for Sensitive and Selective Determination of 4-Nitrophenol in Surface Waters. Microchim. Acta 2015, 182, 51–59. DOI: 10.1007/s00604-014-1302-x.
  • Hao, T.; Wei, X.; Nie, Y.; Xu, Y.; Yan, Y.; Zhou, Z. An Eco-Friendly Molecularly Imprinted Fluorescence Composite Material Based on Carbon Dots for Fluorescent Detection of 4-Nitrophenol. Microchim. Acta 2016, 183, 2197–2203. DOI: 10.1007/s00604-016-1851-2.
  • Xiao, N.; Liu, S. G.; Mo, S.; Li, N.; Ju, Y. J.; Ling, Y.; Li, N. B.; Luo, H. Q. Highly Selective Detection of P-Nitrophenol Using Fluorescence Assay Based on Boron, Nitrogen Co-Doped Carbon Dots. Talanta 2018, 184, 184–192. DOI: 10.1016/j.talanta.2018.02.114.
  • Sheardy, A. T.; Arvapalli, D. M.; Wei, J. Experimental and Time-Dependent Density Functional Theory Modeling Studies on the Optical Properties of Carbon Nanodots. J. Phys. Chem. C. 2020, 124, 4684–4692. DOI: 10.1021/acs.jpcc.9b10373.
  • Margraf, J. T.; Strauss, V.; Guldi, D. M.; Clark, T. The Electronic Structure of Amorphous Carbon Nanodots. J. Phys. Chem. B. 2015, 119, 7258–7265. DOI: 10.1021/jp510620j.
  • Arroyave, J. M.; Ambrusi, R. E.; Robein, Y.; Pronsato, M. E.; Brizuela, G.; Di Nezio, M. S.; Centurión, M. E. Carbon Dots Structural Characterization by Solution-State NMR and UV-Visible Spectroscopy and DFT Modeling. Appl. Surf. Sci. 2021, 564, 150195. DOI: 10.1016/j.apsusc.2021.150195.
  • Thongsai, N.; Jaiyong, P.; Kladsomboon, S.; In, I.; Paoprasert, P. Utilization of Carbon Dots from Jackfruit for Real-Time Sensing of Acetone Vapor and Understanding the Electronic and Interfacial Interactions Using Density Functional Theory. Appl. Surf. Sci. 2019, 487, 1233–1244. DOI: 10.1016/j.apsusc.2019.04.269.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.