286
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Conditional Equilibrium Constants Reviewed

ORCID Icon, &
Pages 775-797 | Published online: 03 Oct 2021

References

  • Schwarzenbach, G. Complexometric Titrations. Interscience Publishers Inc.: New York, 1957.
  • Ringbom, A. Complexation Reactions. In: Treatise on Analytical Chemistry, Part I, Vol I; Kolthoff, M., Elving, P. J., Sandell, E. B., Eds.; Interscience: New York; 1959, pp. 543–628.
  • Kelly, J.; Sutton, D. C. Prediction and Measurement of Effect of Chelating Selectivity on Precipitation Reactions. Talanta 1966, 13, 1573–1585. DOI: 10.1016/0039-9140(66)80106-6.
  • Hulanicki, A. Complexation Reactions of Dithiocarbamates. Talanta 1967, 14, 1371–1392. DOI: 10.1016/0039-9140(67)80159-0.
  • Wänninen, E. Essays on Analytical Chemistry: In Memory of Professor Anders Ringbom. Pergamon Press Ltd: Oxford, 1977.
  • Aaseth, J.; Crisponi, G.; Anderson, O. Chelation Therapy in the Treatment of Metal Intoxication; Academic Press: Oxford, 2016.
  • Birdi, K. S. Handbook of Surface and Colloid Chemistry, 3rd ed.; CRC Press: Boca Raton, 2009.
  • Elder, J. F. Complexation Side Reactions Involving Trace Metals in Natural Water Systems. Limnol. Oceanogr. 1975, 20, 96–102. DOI: 10.4319/lo.1975.20.1.0096.
  • Rojas, A.; González, I. Relationship of Two-Dimensional Predominance-Zone Diagrams with Conditional Constants for Complexation Equilibria. Anal. Chim. Acta 1986, 187, 279–285. DOI: 10.1016/S0003-2670(00)82919-0.
  • Högfeldt, E. Graphical Presentation of Equilibrium Data. In: Treatise on Analytical Chemistry, Part I, Vol. 2, 2nd ed.; Kolthoff, I. M., Elving, P. J. Eds.; John Wiley and Sons Inc: New York, 1979; pp 1–61.
  • Freiser, H. Concepts & Calculations in Analytical Chemistry a Spreadsheet Approach; CRC Press: Boca Ratón, 1992.
  • Pardue, H. L. Chemical Equilibria: Exact Equations and Spreadsheet Programs to Solve Them, 1st ed.; CRC Press: Boca Ratón, 2018.
  • Ringbom, A. Complexation in Analytical Chemistry. A Guide for the Critical Selection of Analytical Methods Based on Complexation Reactions; Interscience Publishers: New York, 1963.
  • Perrin, D. D. Masking and Demasking of Chemical Reactions. Theoretical Aspects and Practical Applications; Wiley-Interscience: New York, 1970.
  • Sudakov, F. P. The Masking of Reactions. Usp. Khim. 1968, 37, 296–323. DOI: 10.1070/RC1968v037n02ABEH001620.
  • Garcés, J.; Mas, F.; Puy, J. Conditional Equilibrium Constants in Multicomponent Heterogeneous Adsorption: The Conditional Affinity Spectrum. J. Chem. Phys. 2006, 124, 044710. DOI: 10.1063/1.2162876.
  • Sanna, G.; Alberti, G.; Castaldi, P.; Melis, P. Determination of Conditional Stability Constants of Metal-Trichoderma Viride Complexes by the Potentiometric Titration Method. Fresenius Environ. Bull. 2002, 11, 636–641.
  • Zavalishin, M. N.; Gamov, G. A.; Khokhlova, A. Y.; Gashnikova, A. V.; Sharnin, V. A. Stability of Co(III), Ni(II), and Cu(II) Complexes with 2-Furan- and 2-Thiophenecarboxyhydrazones of Pyridoxal 5-Phosphate in Neutral Aqueous Solutions. Russ. J. Inorg. Chem. 2020, 65, 119–125. DOI: 10.1134/S0036023620010209.
  • Maiwald, M. M.; Fellhauer, D.; Skerencak-Frech, A.; Panak, P. J. The Complexation of Neptunium(V) with Fluoride at Elevated Temperatures: Speciation and Thermodynamics. Appl. Geochem. 2019, 104, 10–18. DOI: 10.1016/j.apgeochem.2019.03.004.
  • Koke, C.; Skerencak-Frech, A.; Panak, P. J. Thermodynamics of the Complexation of Curium(III) with Chloride in Alkali and Alkali Earth Metal Solutions at Elevated Temperatures. J. Chem. Thermodyn. 2019, 131, 219–224. DOI: 10.1016/j.jct.2018.10.031.
  • Vishnikin, A.; Vishnikina, O.; Miekh, Y.; Lykholat, O. Assessment of Influence of Various Factors on Stability of Molybdenum Heteropoly Anions with Keggin Structure. J. Chem. Tech. 2019, 27, 71–78. DOI: 10.15421/081908.
  • Jamil, L.; Rahim, S. Spectrophotometric Determination of Calcium with 1-(2-Pyridylazo)-2-Napthol Sensitized by Tween 80 Application to Various Samples. IOP Conf. Ser: Mater. Sci. Eng. 2018, 454, 012089. DOI: 10.1088/1757-899X/454/1/012089.
  • Tekade, P.; Bajaj, S.; Tale, B.; Authankar, N.; Sadmake, S. Stability Constants of Complexes of Cr(II) and Sr(II) with Quinazoline and Dihydropyridine in Dioxane–Water Mixture on Spectrophotometric Data. Russ. J. Phys. Chem. 2018, 92, 2187–2190. DOI: 10.1134/S0036024418110419.
  • Cegłowski, M.; Balcerzak, P.; Frański, R.; Schroeder, G. Determination of Conditional Stability Constants for Phytic Acid Complexes with Mg2+, Ca2+ and Zn2+ Ions Using Electrospray Ionization Mass Spectrometry. Eur. J. Mass Spectrom. (Chichester) 2016, 22, 245–252. DOI: 10.1255/ejms.1444.
  • Zhang, L.; Liu, R.; Gung, B. W.; Tindall, S.; Gonzalez, J. M.; Halvorson, J. J.; Hagerman, A. E. Polyphenol-Aluminum Complex Formation: Implications for Aluminum Tolerance in Plants. J. Agric. Food Chem. 2016, 64, 3025–3033. DOI: 10.1021/acs.jafc.6b00331.
  • Hamzi, I.; Khaled, E.; Francoise, A.-N.; Vicens, J.; Abidi, R. Lanthanide Ion Complexes of Deprotonated p-Isopropylcalix[n]Arenes in Dipolar Aprotic Solvents. J. Incl. Phenom. Macrocycl. Chem. 2016, 85, 69–82. DOI: 10.1007/s10847-016-0606-3.
  • Kiefer, C.; Wagner, A. T.; Beele, B. B.; Geist, A.; Panak, P. J.; Roesky, P. W. A Complexation Study of 2,6-Bis(1-(p-Tolyl)-1H-1,2,3-Triazol-4-yl)Pyridine Using Single-Crystal X-Ray Diffraction and TRLFS. Inorg. Chem. 2015, 54, 7301–7308. DOI: 10.1021/acs.inorgchem.5b00803.
  • Kratsch, J.; Beele, B. B.; Koke, C.; Denecke, M. A.; Geist, A.; Panak, P. J.; Roesky, P. W. 6-(Tetrazol-5-yl)-2,2′-bipyridine: A Highly Selective Ligand for the Separation of Lanthanides(III) and Actinides(III). Inorg. Chem. 2014, 53, 8949–8958. DOI: 10.1021/ic5007549.
  • Wilden, A.; Modolo, G.; Lange, S.; Sadowski, F.; Beele, B.; Skerencak, A.; Panak, P.; Iqbal, M.; Verboom, W.; Geist, A.; Bosbach, D. Modified Diglycolamides for the an(III) + Ln(III) Co- Separation: Evaluation by Solvent Extraction and Time- Resolved Laser Fluorescence Spectroscopy. Solvent Extr. Ion Exch. 2014, 32, 119–137. DOI: 10.1080/07366299.2013.833791.
  • Rojo, H.; Tits, J.; Gaona, X.; Garcia-Gutiérrez, M.; Missana, T.; Wieland, E. Thermodynamics of Np(IV) Complexes with Gluconic Acid under Alkaline Conditions: Sorption Studies. Radiochim. Acta 2013, 101, 133–138. DOI: 10.1524/ract.2013.2022.
  • Gao, Z.-Q.; Cai, X.; Ling, K. Studies on the Coordination Reaction of VO2+ and Tannic Acid in the Tannin Extract Desulfurization. AMM 2012, 239-240, 1573–1576. DOI: 10.4028/www.scientific.net/AMM.239-240.1573.
  • Ogden, M.; Sinkov, S.; Meier, G.; Lumetta, G.; Nash, K. Complexation of N4-Tetradentate Ligands with Nd(III) and Am(III). J. Solution Chem. 2012, 41, 2138–2153. DOI: 10.1007/s10953-012-9928-y.
  • Begum, Z. A.; Rahman, I. M. M.; Tate, Y.; Egawa, Y.; Maki, T.; Hasegawa, H. Formation and Stability of Binary Complexes of Divalent Ecotoxic Ions (Ni, Cu, Zn, Cd, Pb) with Biodegradable Aminopolycarboxylate Chelants (DL-2-(2-Carboxymethyl)Nitrilotriacetic Acid, GLDA, and 3-Hydroxy-2,2′-Iminodisuccinic Acid, HIDS) in Aqueous Solutions. J. Solution Chem. 2012, 41, 1713–1728. DOI: 10.1007/s10953-012-9901-9.
  • Goveia, D.; Pinheiro, J. P.; Milkova, V.; Rosa, A. H.; van Leeuwen, H. P. Dynamics and Heterogeneity of Pb(II) Binding by SiO2 Nanoparticles in an Aqueous Dispersion. Langmuir 2011, 27, 7877–7883. DOI: 10.1021/la2008182.
  • Dong, W.; Bian, Y.; Liang, L.; Gu, B. Binding Constants of Mercury and Dissolved Organic Matter Determined by a Modified Ion Exchange Technique. Environ. Sci. Technol. 2011, 45, 3576–3583. DOI: 10.1021/es104207g.
  • Kantar, C.; Gillow, J. B.; Harper-Arabie, R.; Honeyman, B. D.; Francis, A. J. Determination of Stability Constants of U(VI)−Fe(III)−Citrate Complexes. Environ. Sci. Technol. 2005, 39, 2161–2168. DOI: 10.1021/es048852c.
  • Omanović, D.; Garnier, C.; Louis, Y.; Lenoble, V.; Mounier, S.; Pižeta, I. Significance of Data Treatment and Experimental Setup on the Determination of Copper Complexing Parameters by Anodic Stripping Voltammetry. Anal. Chim. Acta. 2010, 664, 136–143. DOI: 10.1016/j.aca.2010.02.008.
  • Xing, L.; Beauchemin, D. Determination of Stability Constants of Metal Complexes with IC-ICP-MS. J. Anal. At. Spectrom. 2009, 24, 336–339. DOI: 10.1039/b816385e.
  • Skold, M. E.; Thyne, G. D.; Drexler, J. W.; Macalady, D. L.; McCray, J. E. Enhanced Solubilization of a Metal-Organic Contaminant Mixture (Pb, Sr, Zn, and Perchloroethylene) by Cyclodextrin. Environ. Sci. Technol. 2008, 42, 8930–8934. DOI: 10.1021/es801835x.
  • Afkhami, A.; Khalafi, L. Investigation of the Effect of Inclusion of Eriochrome Black T with β-Cyclodextrin on Its Complexation Reaction with Ca2+ and Mg2+ Using Rank Annihilation Factor Analysis. Supramol. Chem. 2008, 20, 579–586. DOI: 10.1080/10610270701522906.
  • Fan, X.; Lü, C. Y.; Liu, Y. M.; Wang, Z. X.; Ning, L.; He, Y. W. Determination of Trace Malachite Green by Resonance Rayleigh Scattering Method with I - 3 and Its Effect Analysis. Fenxi Huaxue/Chinese J. Anal. Chem. 2007, 35, 1207.
  • Gasper, J. D.; Aiken, G. R.; Ryan, J. N. A Critical Review of Three Methods Used for the Measurement of Mercury (Hg2+)-Dissolved Organic Matter Stability Constants. Appl. Geochem. 2007, 22, 1583–1597. DOI: 10.1016/j.apgeochem.2007.03.018.
  • Huang, C.; Beauchemin, D. Simultaneous Determination of Two Conditional Stability Constants by IC-ICP-MS. J. Anal. At. Spectrom. 2006, 21, 1419–1422. DOI: 10.1039/b608140a.
  • Huang, C.; Beauchemin, D. A Simple Method Based on IC-ICP-MS to Determine Conditional Stability Constants. J. Anal. At. Spectrom. 2006, 21, 317–320. DOI: 10.1039/b506878a.
  • Hays, M. D.; Ryan, D. K.; Pennell, S. A Modified Multisite Stern-Volmer Equation for the Determination of Conditional Stability Constants and Ligand Concentrations of Soil Fulvic Acid with Metal Ions. Anal. Chem. 2004, 76, 848–854. DOI: 10.1021/ac0344135.
  • Koudelková, M.; Vinšová, H.; Jedináková-Křı́žová, V. Isotachophoretic Determination of Stability Constants of Ho and Y Complexes with Diethylenetriaminepentaacetic Acid and 1,4,7,10-tetraazadodecane-N,N′,N″,N‴-Tetraacetic Acid. J. Chromatogr. A. 2003, 990, 311–316. DOI: 10.1016/S0021-9673(02)01703-X.
  • Nicholson, K. N.; Wood, S. A. Aqueous Geochemistry of Rare Earth Elements and Yttrium. XII: Potentiometric Stability Constant Determination of Bis-Tris Complexes with La, Nd, Eu, Gd, Yb, Dy, Er, Lu, and Y. J. Solution Chem. 2002, 31, 703–717. DOI: 10.1023/A:1021128907144.
  • Luther, G.; Rozan, T.; Witter, A.; Lewis, B. Metal-Organic Complexation in the Marine Environment. Geochem. Trans. 2001, 2, 65. DOI: 10.1186/1467-4866-2-65.
  • Nifant'eva, T. I.; Burba, P.; Fedorova, O.; Shkinev, V. M.; Spivakov, B. Y. Ultrafiltration and Determination of Zn- and Cu-Humic Substances Complexes Stability Constants. Talanta 2001, 53, 1127–1131. DOI: 10.1016/S0039-9140(00)00492-6.
  • Itabashi, H.; Shigeta, Y.; Kawamoto, H.; Akaiwa, H. Simultaneous Determination of the Complexing Capacity and Conditional Stability Constant of Soluble Copper(II) Complexes in Natural-Water Samples by Using a Chelate Extraction Technique. Anal. Sci. 2000, 16, 1179–1182. DOI: 10.2116/analsci.16.1179.
  • van Middlesworth, J. M.; Wood, S. A. The Stability of Palladium(II) Hydroxide and Hydroxy–Chloride Complexes: An Experimental Solubility Study at 25–85 °C and 1 Bar. Geochim. Cosmochim. Acta 1999, 63, 1751–1765. DOI: 10.1016/S0016-7037(99)00058-7.
  • Smith, D. S.; Kramer, J. R. Multi-Site Aluminum Speciation with Natural Organic Matter Using Multiresponse Fluorescence Data. Anal. Chim. Acta 1998, 363, 21–29. DOI: 10.1016/S0003-2670(98)00048-8.
  • Teresa, M.; Vasconcelos, S. D.; Gomes, C. A. R. Complexation Properties of Natural and Synthetic Polymers of Environmental and Biological Interest in Presence of Copper(II) at Neutral pH. Eur. Polym. J. 1997, 33, 631–639. DOI: 10.1016/S0014-3057(96)00238-8.
  • Hirose, K. The Relationship between Particulate Uranium and Thorium-Complexing Capacity of Oceanic Particulate Matter. Sci. Total Environ. 1995, 173-174, 195–201. DOI: 10.1016/0048-9697(95)04744-1.
  • Fukushima, M.; Tanaka, S.; Taga, M. Effect of Ionic Strength on Complexing Equilibrium between Copper (II) and Humic Acid. Int. J. Environ. Anal. Chem. 1994, 56, 229–237. DOI: 10.1080/03067319408034103.
  • Labuda, J.; Vaníčková, M. The Effect of Complexation Equilibria on the Response of Chemically Modified Electrodes for the Determination of Silver. Electroanalysis 1993, 5, 141–144. DOI: 10.1002/elan.1140050208.
  • Wan, D.; Sharma, V. K.; Liu, L.; Zuo, Y.; Chen, Y. Mechanistic Insight into the Effect of Metal Ions on Photogeneration of Reactive Species from Dissolved Organic Matter. Environ. Sci. Technol. 2019, 53, 5778–5786. DOI: 10.1021/acs.est.9b00538.
  • Begum, Z. A.; Rahman, I. M. M.; Tate, Y.; Ichijo, T.; Hasegawa, H. Binding of Proton and Iron to Lignite Humic Acid Size-Fractions in Aqueous Matrix. J. Mol. Liq. 2018, 254, 241–247. DOI: 10.1016/j.molliq.2018.01.104.
  • Dinu, M. I. Mechanisms for Reduction of Natural Waters Technogenic Pollution by Metals Due to Complexions with Humus Substances (Zoning: Western Siberia and the European Territory of Russia). IOP Conf. Ser.: Mater. Sci. Eng. 2017, 262, 012194. DOI: 10.1088/1757-899X/262/1/012194.
  • Eivazihollagh, A.; Tejera, J.; Svanedal, I.; Edlund, H.; Blanco, A.; Norgren, M. Removal of Cd2+, Zn2+, and Sr2+ by Ion Flotation, Using a Surface-Active Derivative of DTPA (C12-DTPA). Ind. Eng. Chem. Res. 2017, 56, 10605–10614. DOI: 10.1021/acs.iecr.7b03100.
  • Begum, Z. A.; Rahman, I. M. M.; Hasegawa, H. Complexation Behavior of SrII and Geochemically-Related Elements (MgII, CaII, BaII, and YIII) with Biodegradable Aminopolycarboxylate Chelators (GLDA and HIDS). J. Mol. Liq. 2017, 242, 1123–1130. DOI: 10.1016/j.molliq.2017.07.126.
  • Karak, T.; Paul, R. K.; Das, D. K.; Boruah, R. K. Complexation of DTPA and EDTA with Cd2+: Stability Constants and Thermodynamic Parameters at the Soil-Water Interface. Environ. Monit. Assess. 2016, 188, 670. DOI: 10.1007/s10661-016-5685-5.
  • Al-Farawati, R.; El Sayed, M. A.; Shaban, Y. A.; Turki, A. J. Occurrence of Copper-Complexing Ligands in the Coastal Sediments of Eastern Red Sea. Arab. J. Geosci. 2016, 9, 250. DOI: 10.1007/s12517-015-2283-8.
  • Buck, K. N.; Gerringa, L. J. A.; Rijkenberg, M. J. A. An Intercomparison of Dissolved Iron Speciation at the Bermuda Atlantic Time-Series Study (BATS) Site: Results from GEOTRACES Crossover Station A. Front. Mar. Sci. 2016, 3, 262. DOI: 10.3389/fmars.2016.00262.
  • Gerringa, L. J. A.; Rijkenberg, M. J. A.; Bown, J.; Margolin, A. R.; Laan, P.; de Baar, H. J. W. Fe-Binding Dissolved Organic Ligands in the Oxic and Suboxic Waters of the Black Sea. Front. Mar. Sci. 2016, 3, 84. DOI: 10.3389/fmars.2016.00084.
  • Su, H.; Yang, R.; Pižeta, I.; Omanović, D.; Wang, S.; Li, Y. Distribution and Speciation of Dissolved Iron in Jiaozhou Bay (Yellow Sea, China). Front. Mar. Sci. 2016, 3, 99. DOI: 10.3389/fmars.2016.00099.
  • Li, Y.; Hu, X.; Song, X.; Hou, Y.; Guo, Q. Removal of Potentially Toxic Metals from Soil by Para-Sulphonato-Thiacalix[4]Arene: Competitive Extraction and Selectivity Sequence. RSC Adv. 2015, 5, 75033–75043. DOI: 10.1039/C5RA12722J.
  • Guo, X-j.; Zhu, N-m.; Chen, L.; Yuan, D-h.; He, L-s. Characterizing the Fluorescent Properties and Copper Complexation of Dissolved Organic Matter in Saline-Alkali Soils Using Fluorescence Excitation-Emission Matrix and Parallel Factor Analysis. J. Soils Sediments 2015, 15, 1473–1482. DOI: 10.1007/s11368-015-1113-7.
  • Bundy, R. M.; Abdulla, H. A. N.; Hatcher, P. G.; Biller, D. V.; Buck, K. N.; Barbeau, K. A. Iron-Binding Ligands and Humic Substances in the San Francisco Bay Estuary and Estuarine-Influenced Shelf Regions of Coastal California. Mar. Chem. 2015, 173, 183–194. DOI: 10.1016/j.marchem.2014.11.005.
  • Hassler, C. S.; Norman, L.; Mancuso Nichols, C. A.; Clementson, L. A.; Robinson, C.; Schoemann, V.; Watson, R. J.; Doblin, M. A. Iron Associated with Exopolymeric Substances is Highly Bioavailable to Oceanic Phytoplankton. Mar. Chem. 2015, 173, 136–147. DOI: 10.1016/j.marchem.2014.10.002.
  • Kleint, C.; Kuzmanovski, S.; Powell, Z.; Bühring, S. I.; Sander, S. G.; Koschinsky, A. Organic Cu-Complexation at the Shallow Marine Hydrothermal Vent Fields off the Coast of Milos (Greece), Dominica (Lesser Antilles) and the Bay Of Plenty (New Zealand). Mar. Chem. 2015, 173, 244–252. DOI: 10.1016/j.marchem.2014.10.012.
  • Chislock, M. F.; Sharp, K. L.; Wilson, A. E. Cylindrospermopsis Raciborskii Dominates under Very Low and High Nitrogen-to-Phosphorus Ratios. Water Res. 2014, 49, 207–214. DOI: 10.1016/j.watres.2013.11.022.
  • Wupuer, R.; Liu, Y.; Mu, S.; Wenjuan, S.; Yang, X.; Zhang, D.; Pan, X. Interaction of Dissolved Organic Matter with Hg(II) along Salinity Gradient in Boston Lake. Geochem. Int. 2014, 52, 1072–1077. DOI: 10.1134/S001670291412009X.
  • Bundy, R. M.; Barbeau, K. A.; Buck, K. N. Sources of Strong Copper-Binding Ligands in Antarctic Peninsula Surface Waters. Deep Sea Research Part II: Top. Stud. Oceanogr. 2013, 90, 134–146. DOI: 10.1016/j.dsr2.2012.07.023.
  • Chen, W. B.; Smith, D. S.; Guéguen, C. Influence of Water Chemistry and Dissolved Organic Matter (DOM) Molecular Size on Copper and Mercury Binding Determined by Multiresponse Fluorescence Quenching. Chemosphere 2013, 92, 351–359. DOI: 10.1016/j.chemosphere.2012.12.075.
  • Craven, A.; Aiken, G.; Ryan, J. Copper(II) Binding by Dissolved Organic Matter: Importance of the Copper-to-Dissolved Organic Matter Ratio and Implications for the Biotic Ligand Model. Environ. Sci. Technol. 2012, 46, 9948–9955. DOI: 10.1021/es301015p.
  • Guo, X-j.; Jiang, J.; Xi, B.; He, X.-S.; Zhang, H.; Deng, Y. Study on the Spectral and Cu(II) Binding Characteristics of DOM Leached from Soils and Lake Sediments in the Hetao Region. Environ. Sci. Pollut. Res. Int. 2012, 19, 2079–2087. DOI: 10.1007/s11356-011-0704-0.
  • Merdy, P.; Bonnefoy, A.; Martias, C.; Garnier, C.; Huclier, S. Use of Fluorescence Spectroscopy and Voltammetry for the Analysis of Metal-Organic Matter Interactions in the New Caledonia Lagoon. Int. J. Environ. Anal. Chem. 2012, 92, 868–893. DOI: 10.1080/03067319.2010.520317.
  • Pan, X.; Yang, J.; Zhang, D.; Mu, S. Lead Complexation Behaviour of Root Exudates of Salt Marsh Plant Salicornia Europaea L. Chem. Speciat. Bioavailab. 2012, 24, 60–63. DOI: 10.3184/095422912X13257863158575.
  • Yan, H.; Yang, L.; Wang, Q. Evaluation of Cadmium Species Lability Using Ion-Pair Reversed Phase HPLC Coupled on-Line with Inductively Coupled Plasma Mass Spectrometry. Talanta 2011, 84, 287–292. DOI: 10.1016/j.talanta.2011.01.019.
  • Pan, X.; Yang, J.; Zhang, D.; Chen, X.; Mu, S. Cu(II) Complexation of High Molecular Weight (HMW) Fluorescent Substances in Root Exudates from a Wetland Halophyte (Salicornia europaea L.). J. Biosci. Bioeng. 2011, 111, 193–197. DOI: 10.1016/j.jbiosc.2010.09.017.
  • Ohno, T.; Amirbahman, A.; Bro, R. Parallel Factor Analysis of Excitation-Emission Matrix Fluorescence Spectra of Water Soluble Soil Organic Matter as Basis for the Determination of Conditional Metal Binding Parameters. Environ. Sci. Technol. 2008, 42, 186–192. DOI: 10.1021/es071855f.
  • Skold, M. E.; Thyne, G. D.; Drexler, J. W.; McCray, J. E. Determining Conditional Stability Constants for Pb Complexation by Carboxymethyl-Beta-Cyclodextrin (CMCD). J. Contam. Hydrol. 2007, 93, 203–215. DOI: 10.1016/j.jconhyd.2007.02.004.
  • Witt, M.; Skrabal, S.; Kieber, R.; Willey, J. Copper Complexation in Coastal Rainwater, Southeastern USA. Atmos. Environ. 2007, 41, 3619–3630. DOI: 10.1016/j.atmosenv.2006.12.038.
  • Buck, K. N.; Bruland, K. W. The Physicochemical Speciation of Dissolved Iron in the Bering Sea. Limnol. Oceanogr. 2007, 52, 1800–1808. DOI: 10.4319/lo.2007.52.5.1800.
  • Cao, J.; Xue, H.; Sigg, L. Effects of pH and Ca Competition on Complexation of Cadmium by Fulvic Acids and by Natural Organic Ligands from a River and a Lake. Aquat. Geochem. 2006, 12, 375–387. DOI: 10.1007/s10498-006-9004-6.
  • Brooks, M. L.; Boese, C. J.; Meyer, J. S. Complexation and Time-Dependent Accumulation of Copper by Larval Fathead Minnows (Pimephales Promelas): Implications for Modeling Toxicity. Aquat. Toxicol. 2006, 78, 42–49. DOI: 10.1016/j.aquatox.2006.02.002.
  • Hassler, C. S.; Twiss, M. R. Bioavailability of Iron Sensed by a Phytoplanktonic Fe-Bioreporter. Environ. Sci. Technol. 2006, 40, 2544–2551. DOI: 10.1021/es051795i.
  • Parekh, P.; Follows, M. J.; Boyle, E. A. Decoupling of Iron and Phosphate in the Global Ocean. Global Biogeochem. Cycles 2005, 19, n/a–n/a. DOI: 10.1029/2004GB002280.
  • Kantar, C.; Demiray, H.; Dogan, N. M.; Dodge, C. J. Role of Microbial Exopolymeric Substances (EPS) on Chromium Sorption and Transport in Heterogeneous Subsurface Soils: I. Cr(III) Complexation with EPS in Aqueous Solution. Chemosphere 2011, 82, 1489–1495. DOI: 10.1016/j.chemosphere.2011.01.009.
  • Ghatak, H.; Mukhopadhyay, S. K.; Jana, T. K.; Sen, B. K.; Sen, S. Interactions of Cu (II) and Fe (III) with Mangal Humic Substances Studied by Synchronous Fluorescence Spectroscopy and Potentiometric Titration. Wetl. Ecol. Manag. 2004, 12, 145–155. DOI: 10.1023/B:WETL.0000034068.68049.a3.
  • Rose, A.; Waite, T. Kinetics of Iron Complexation by Dissolved Natural Organic Matter in Coastal Waters. Mar. Chem. 2003, 84, 85–103. DOI: 10.1016/S0304-4203(03)00113-0.
  • Lorenzo, J. I.; Nieto, O.; Beiras, R. Effect of Humic Acids on Speciation and Toxicity of Copper to Paracentrotus Lividus Larvae in Seawater. Aquat. Toxicol. 2002, 58, 27–41. DOI: 10.1016/S0166-445X(01)00219-3.
  • Ellwood, M. J.; Ellwood, M. J.; Hunter, K. A.; Hunter, K. A.; Kim, J. P.; Kim, J. P. Zinc Speciation in Lakes Manapouri and Hayes, New Zealand. Mar. Freshwater Res. 2001, 52, 217–222. DOI: 10.1071/MF00073.
  • Vasconcelos, M. T. S. D.; Leal, M. F. C. Seasonal Variability in the Kinetics of Cu, Pb, Cd and Hg Accumulation by Macroalgae. Mar. Chem. 2001, 74, 65–85. DOI: 10.1016/S0304-4203(00)00096-7.
  • Benoit, J. M.; Mason, R. P.; Gilmour, C. C.; Aiken, G. R. Constants for Mercury Binding by Dissolved Organic Matter Isolates from the Florida Everglades. Geochim. Cosmochim. Acta 2001, 65, 4445–4451. DOI: 10.1016/S0016-7037(01)00742-6.
  • MacRae, R. K.; Smith, D. E.; Swoboda-Colberg, N.; Meyer, J. S.; Bergman, H. L. Copper Binding Affinity of Rainbow Trout (Oncorhynchus mykiss) and Brook Trout (Salvelinus Fontinalis) Gills: Implications for Assessing Bioavailable Metal. Environ. Toxicol. Chem. 1999, 18, 1180–1189. DOI: 10.1002/etc.5620180616.
  • Midorikawa, T.; Tanoue, E. Vertical Distribution and Potential Sources of Strong Ligands for Copper(II) in the North Pacific. Fresenius' Journal of Anal. Chem. 1999, 363, 584–586. DOI: 10.1007/s002160051253.
  • Vilks, P.; Bachinski, D. B. Characterization of Organics in Whiteshell Research Area Groundwater and the Implications for Radionuclide Transport. Appl. Geochem. 1996, 11, 387–402. DOI: 10.1016/0883-2927(96)00002-9.
  • Leermakers, M.; Meuleman, C.; Baeyens, W. Mercury Speciation in the Scheldt Estuary. Water. Air. Soil Pollut. 1995, 80, 641–652. DOI: 10.1007/BF01189717.
  • Adam, N.; Adam, C.; Keskitalo, M.; Pfeuffer-Rooschüz, J.; Panak, P. J. Interaction of Cm(III) with Human Serum Albumin Studied by Time-Resolved Laser Fluorescence Spectroscopy and NMR. J. Inorg. Biochem. 2019, 192, 45–51. DOI: 10.1016/j.jinorgbio.2018.12.007.
  • Dömötör, O.; Rathgeb, A.; Kuhn, P.-S.; Popović-Bijelić, A.; Bačić, G.; Enyedy, E. A.; Arion, V. B. Investigation of the Binding of cis/trans-[MCl4(1H-indazole)(NO)](-) (M = Ru, Os) Complexes to Human Serum Albumin. J. Inorg. Biochem. 2016, 159, 37–44. DOI: 10.1016/j.jinorgbio.2016.02.003.
  • Sajan, A.; Birke, R. L. The Reductive Cleavage Mechanism and Complex Stability of Glutathionyl-Cobalamin in Acidic Media. Electroanalysis 2016, 28, 2743–2753. DOI: 10.1002/elan.201600341.
  • Harty, M.; Bearne, S. L. Measuring Benzohydroxamate Complexation with Mg2+, Mn2+, Co2+, and Ni2+ Using Isothermal Titration Calorimetry. J. Therm. Anal. Calorim. 2016, 123, 2573–2582. DOI: 10.1007/s10973-016-5290-4.
  • Makowska, J.; Żamojć, K.; Wyrzykowski, D.; Uber, D.; Wierzbicka, M.; Wiczk, W.; Chmurzyński, L. Binding of Cu(II) Ions to Peptides Studied by Fluorescence Spectroscopy and Isothermal Titration Calorimetry. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2016, 153, 451–456. DOI: 10.1016/j.saa.2015.08.016.
  • Wu, Q.; Zhai, F.; Liu, Y.; Yuan, L.; Chai, Z.; Shi, W. Interactions between Uranium(VI) and Phosphopeptide: Experimental and Theoretical Investigations. Dalton Trans. 2016, 45, 14988–14997. DOI: 10.1039/C6DT03009B.
  • Makowska, J.; Wyrzykowski, D.; Hirniak, P.; Uber, D.; Chmurzyński, L. Investigations of Copper(II) Complexation by Fragments of the FBP28 Protein Using Isothermal Titration (ITC) and Differential Scanning Calorimetry (DSC). J. Therm. Anal. Calorim. 2015, 121, 263–268. DOI: 10.1007/s10973-015-4660-7.
  • Nedzhib, A.; Stoykova, S.; Atanasov, V.; Pantcheva, I.; Antonov, L. Pd(II) Complexes of Acetylcholinesterase Reactivator Obidoxime. Interdiscip. Toxicol. 2014, 7, 139–145. DOI: 10.2478/intox-2014-0019.
  • Ma, X.; Li, L.; Xu, C.; Wei, H.; Wang, X.; Yang, X. Spectroscopy and Speciation Studies on the Interactions of Aluminum (III) with Ciprofloxacin and β-Nicotinamide Adenine Dinucleotide Phosphate in Aqueous Solutions. Molecules 2012, 17, 9379–9396. DOI: 10.3390/molecules17089379.
  • Magdalena, S.; Molinero, A.; Chałupa, A.; Hepel, M. Mercury/Homocysteine Ligation-Induced on/off-Switching of a T-T Mismatch-Based Oligonucleotide Molecular Beacon. Anal. Chem. 2012, 84, 4970–4978. DOI: 10.1021/ac300632u.
  • Rijstenbil, J. W.; Gerringa, L. J. A. Interactions of Algal Ligands, Metal Complexation and Availability, and Cell Responses of the Diatom Ditylum Brightwellii with a Gradual Increase in Copper. Aquat. Toxicol. 2002, 56, 115–131. DOI: 10.1016/S0166-445X(01)00188-6.
  • Witkowski, R. T.; Ratnaswamy, G.; Larkin, K.; McLendon, G.; Hattman, S. Equilibrium Metal Binding of the Translational Activating Protein, COM. Inorg. Chem. 1998, 37, 3326–3330. DOI: 10.1021/ic960743e.
  • Güray, T.; Uysal, Ü. D. Validated UV-Vis Spectrophotometric Method for the Determination of Copper Using 2,3,4,6/-Tetrahydroxy-3/-Sulfoazobenzene in Real Samples. J. Chem. Soc. Pak. 2018, 40, 529–535.
  • Moety, M. M.; Elwy, H. M. Determination of Ketoconazole and Trimetazidine Hydrochloride through Ionpair Formation with Tetraiodobismuthate. Der. Pharma Chem. 2015, 7, 6–12.
  • El-Didamony, A.; Hafeez, S.; Ali, I. Extractive Spectrophotometric Method for the Determination of Some Antipsychotic Drugs Using Eriochrome Black T. J. App. Pharm. Sci. 2015, 5, 026–033. DOI: 10.7324/JAPS.2015.50605.
  • Xavier, C.; Kanakapura, B.; Swamy, N.; Murthy, G. K. Sensitive and Selective Extraction Free Ion-Pair Complexometric Determination of Metformin in Bulk Drug and Pharmaceutical Formulations. Int. J. Pharm. Technol. 2015, 6, 7691–7706. DOI: 10.4067/S0717-97072011000200021.
  • Swamy, N.; Basavaiah, K.; Vinay, K. B. Extraction-Free Spectrophotometric Determination of Pyrantel Pamoate in Pharmaceuticals. Proc. Indian Natl. Sci. Acad. 2014, 80, 597–608. DOI: 10.16943/ptinsa/2014/v80i3/47913.
  • Devi, O. Z.; Basavaiah, K.; Vinay, K. B. Quantitative Determination of Lansoprozole in Capsules and Spiked Human Urine by Spectrophotometry through Ion-Pair Complex Formation Reaction. J. Saudi Chem. Soc. 2013, 17, 387–396. DOI: 10.1016/j.jscs.2011.04.018.
  • Raghu, M. S.; Basavaiah, K. Rapid and Sensitive Extraction-Free Spectrophotometric Methods for the Determination of Pheniramine Maleate Using Three Sulphonthalein Dyes. Proc. Natl. Acad. Sci, India, Sect. A Phys. Sci. 2012, 82, 187–196. DOI: 10.1007/s40010-012-0019-7.
  • Saber, A.; El-Sayed, G. Extractive Spectrophotometric Determination of anti-Inflammatory Drug Nimesulide in Pharmaceutical Formulations and Human Plasma. J. Food Drug Anal. 2011, 19, 429–436. DOI: 10.38212/2224-6614.2208.
  • El-Didamony, A. M.; Moustafa, M. A. Spectrophotometric Determination of Diphenhydramine Hydrochloride in Pharmaceutical Preparations and Biological Fluids via Ion-Pair Formation. Arab. J. Chem. 2010, 3, 265–270. DOI: 10.1016/j.arabjc.2010.06.014.
  • Al-Ghannam, S. M. A Simple Spectrophotometric Method for the Determination of β-Blockers in Dosage Forms. J. Pharm. Biomed. Anal. 2006, 40, 151–156. DOI: 10.1016/j.jpba.2001.12.001.
  • Zagorka, K.; Tatijana, J.; Jelena, P.; Minić, D. Spectrophotometric Investigation of famotidine-Pd(II) Complex and Its Analytical Application in Drug Analysis. J. Serb. Chem. Soc. 2004, 69, 485–492. DOI: 10.2298/JSC0406485K.
  • Abdel-Gawad, F. M. Ion-Pair Formation of Bi(III)–Iodide with Some Nitrogenous Drugs and Its Application to Pharmaceutical Preparations. J. Pharmaceut. Biomed. 1998, 16, 793–799. DOI: 10.1016/S0731-7085(97)00123-4.
  • Jovanović, T.; Stanović, B.; Korićanac, Z. Spectrophotometric Investigation on Complex Formation of Captopril with Palladium(II) and Its Analytical Application. J. Pharmaceut. Biomed. 1995, 13, 213–217. DOI: 10.1016/0731-7085(95)01040-R.
  • Eivazihollagh, A.; Bäckström, J.; Norgren, M.; Edlund, H. Influences of the Operational Variables on Electrochemical Treatment of Chelated Cu(II) in Alkaline Solutions Using a Membrane Cell. J. Chem. Technol. Biotechnol. 2017, 92, 1436–1445. DOI: 10.1002/jctb.5141.
  • Hogan, D. E.; Curry, J. E.; Pemberton, J. E.; Maier, R. M. Rhamnolipid Biosurfactant Complexation of Rare Earth Elements. J. Hazard. Mater. 2017, 340, 171–178. DOI: 10.1016/j.jhazmat.2017.06.056.
  • Sosa, G. L.; Zalts, A.; Ramírez, S. A. Complexing Capacity of Electroplating Rinsing Baths—A Twist to the Resolution of Two Ligand Families of Similar Strength. J. Anal. Sci. Technol. 2016, 7, 7. DOI: 10.1186/s40543-016-0088-3.
  • Steczek, Ł.; Rejnis, M.; Narbutt, J.; Charbonnel, M.-C.; Moisy, P. On the Stoichiometry and Stability of Americium(III) Complexes with a Hydrophilic SO3-Ph-BTP Ligand, Studied by Liquid-Liquid Extraction. J. Radioanal. Nucl. Chem. 2016, 309, 891–897. DOI: 10.1007/s10967-015-4663-7.
  • Li, X.; He, X.-S.; Guo, X-j.; Chen, L.; Guo, N. Changes in Spectral Characteristics and Copper (II)-Binding of Dissolved Organic Matter in Leachate from Different Water-Treatment Processes. Arch. Environ. Contam. Toxicol. 2014, 66, 270–276. DOI: 10.1007/s00244-013-9969-2.
  • Xu, J.; Sheng, G.-P. Spectral Approach to Binding between Metals and Dissolved Organic Matter from a Biological Wastewater Treatment Plant. In: Functions of Natural Organic Matter in Changing Environment; Xu, J., Wu, J., He, Y., Eds.; Zhejiang University Press and Springer Science + Business Media: Dordrecht, 2013; pp 949–954. DOI: 10.1007/978-94-007-5634-2_174.
  • Holakoo, L.; Nakhla, G.; Yanful, E. K.; Bassi, A. S. Chelating Properties and Molecular Weight Distribution of Soluble Microbial Products from an Aerobic Membrane Bioreactor. Water Res. 2006, 40, 1531–1538. DOI: 10.1016/j.watres.2006.02.002.
  • Perret, S.; Morlay, C.; Cromer, M.; Vittori, O. Polarographic Study of the Removal of Cadmium(II) and Lead(II) from Dilute Aqueous Solution by a Synthetic Flocculant. Comparison with Copper(II) and Nickel(II). Water Res. 2000, 34, 3614–3620. DOI: 10.1016/S0043-1354(00)00112-3.
  • Xu, K.; Xu, N.; Zhang, B.; Tang, W.; Ding, Y.; Hu, A. Gadolinium Complexes of Macrocyclic diethylenetriamine-N-Oxide Pentaacetic Acid-Bisamide as Highly Stable MRI Contrast Agents with High Relaxivity. Dalton Trans. 2020, 49, 8927–8932. DOI: 10.1039/D0DT00248H.
  • Arda, K.; Akay, S.; Erisken, C. Effect of Gadolinium Concentration on Temperature Change under Magnetic Field. PLoS One. 2019, 14, e0214910. DOI: 10.1371/journal.pone.0214910.
  • Marszałek, I.; Goch, W.; Bal, W. Ternary Zn(II) Complexes of FluoZin-3 and the Low Molecular Weight Component of the Exchangeable Cellular Zinc Pool. Inorg. Chem. 2018, 57, 9826–9838. DOI: 10.1021/acs.inorgchem.8b00489.
  • Dömötör, O.; de Almeida, R. F. M.; Côrte-Real, L.; Matos, C. P.; Marques, F.; Matos, A.; Real, C.; Kiss, T.; Enyedy, É. A.; Helena Garcia, M.; Tomaz, A. I. Studies on the Mechanism of Action of Antitumor Bis(aminophenolate) Ruthenium(III) Complexes. J. Inorg. Biochem. 2017, 168, 27–37. DOI: 10.1016/j.jinorgbio.2016.12.008.
  • Endrizzi, F.; Di Bernardo, P.; Zanonato, P. L.; Tisato, F.; Porchia, M.; Ahmed Isse, A.; Melchior, A.; Tolazzi, M. Cu(I) and Ag(I) complex Formation with the Hydrophilic Phosphine 1,3,5-Triaza-7-Phosphadamantane in Different Ionic Media. How to Estimate the Effect of a Complexing Medium. Dalton Trans. 2017, 46, 1455–1466. DOI: 10.1039/C6DT04221J.
  • Jeremić, M. S.; Wadepohl, H.; Kojić, V. V.; Jakimov, D. S.; Jelić, R.; Popović, S.; Matović, Z. D.; Comba, P. Synthesis, Structural Analysis, Solution Equilibria and Biological Activity of Rhodium(III) Complexes with a Quinquedentate Polyaminopolycarboxylate. RSC Adv. 2017, 7, 5282–5296. DOI: 10.1039/C6RA26199J.
  • Gałȩzowska, J.; Czapor-Irzabek, H.; Janicki, R.; Chmielewska, E.; Janek, T. New Aspects of Coordination Chemistry and Biological Activity of NTMP-Related Diphosphonates Containing a Heterocyclic Ring. New J. Chem. 2017, 41, 10731–10741. DOI: 10.1039/C7NJ02415K.
  • Ashe, S.; Nayak, D.; Kumari, M.; Nayak, B. Ameliorating Effects of Green Synthesized Silver Nanoparticles on Glycated End Product Induced Reactive Oxygen Species Production and Cellular Toxicity in Osteogenic Saos-2 Cells. ACS Appl. Mater. Interfaces 2016, 8, 30005–30016. DOI: 10.1021/acsami.6b10639.
  • Enyedy, É. A.; Dömötör, O.; Bali, K.; Hetényi, A.; Tuccinardi, T.; Keppler, B. K. Interaction of the Anticancer Gallium(III) Complexes of 8-Hydroxyquinoline and Maltol with Human Serum Proteins. J. Biol. Inorg. Chem. 2015, 20, 77–88. DOI: 10.1007/s00775-014-1211-9.
  • Dömötör, O.; Hartinger, C. G.; Bytzek, A. K.; Kiss, T.; Keppler, B. K.; Enyedy, E. A. Characterization of the Binding Sites of the Anticancer Ruthenium(III) Complexes KP1019 and KP1339 on Human Serum Albumin via Competition Studies. J. Biol. Inorg. Chem. 2013, 18, 9–17. DOI: 10.1007/s00775-012-0944-6.
  • Tomaz, A. I.; Jakusch, T.; Morais, T. S.; Marques, F.; de Almeida, R. F. M.; Mendes, F.; Enyedy, E. A.; Santos, I.; Pessoa, J. C.; Kiss, T.; Garcia, M. H. [RuII(η5-C5H5)(bipy)(PPh3)]+, a Promising Large Spectrum Antitumor Agent: Cytotoxic Activity and Interaction with Human Serum Albumin. J. Inorg. Biochem. 2012, 117, 261–269. DOI: 10.1016/j.jinorgbio.2012.06.016.
  • Frenzel, T.; Lengsfeld, P.; Schirmer, H.; Hütter, J.; Weinmann, H.-J. Stability of Gadolinium-Based Magnetic Resonance Imaging Contrast Agents in Human Serum at 37 °C. Investig. Radiol. 2008, 43, 817–828. DOI: 10.1097/RLI.0b013e3181852171.
  • Moriggi, L.; Cannizzo, C.; Prestinari, C.; Berrière, F.; Helm, L. Physicochemical Properties of the High-Field MRI-Relevant [Gd(DTTA-Me)(H2O)2]− Complex. Inorg. Chem. 2008, 47, 8357–8366. DOI: 10.1021/ic800512k.
  • Dutta, S.; Park, J.-A.; Jung, J.-C.; Chang, Y.; Kim, T.-J. Gd-Complexes of DTPA-Bis(Amide) Conjugates of Tranexamic Acid and Its Esters with High Relaxivity and Stability for Magnetic Resonance Imaging. Dalton Trans. 2008, 2008, 2199–2206. DOI: 10.1039/B719440D.
  • Dutta, S.; Kim, S.-K.; Patel, D. B.; Kim, T.-J.; Chang, Y. Some New DTPA-N,N″-Bis(Amides) Functionalized by Alkyl Carboxylates: Synthesis, Complexation and Stability Properties. Polyhedron 2007, 26, 3799–3809. DOI: 10.1016/j.poly.2007.04.027.
  • Rózga, M.; Sokołowska, M.; Protas, A. M.; Bal, W. Human Serum Albumin Coordinates Cu(II) at Its N-Terminal Binding Site with 1 pM Affinity. J. Biol. Inorg. Chem. 2007, 12, 913–918. DOI: 10.1007/s00775-007-0244-8.
  • Ferrada, E.; Arancibia, V.; Loeb, B.; Norambuena, E.; Olea-Azar, C.; Huidobro-Toro, J. P. Stoichiometry and Conditional Stability Constants of Cu(II) or Zn(II) Clioquinol Complexes; Implications for Alzheimer’s and Huntington’s Disease Therapy. Neurotoxicology 2007, 28, 445–449. DOI: 10.1016/j.neuro.2007.02.004.
  • Comby, S.; Imbert, D.; Vandevyver, C.; Bünzli, J.-C. G. A Novel Strategy for the Design of 8-Hydroxyquinolinate-Based Lanthanide Bioprobes That Emit in the near Infrared Range. Chemistry 2007, 13, 936–944. DOI: 10.1002/chem.200600964.
  • Zhu, D.; White, R.; Hardy, P.; Weerapreeyakul, N.; Sutthanut, K.; Jay, M. Biocompatible Nanotemplate-Engineered Nanoparticles Containing Gadolinium: Stability and Relaxivity of a Potential MRI Contrast Agent. J. Nanosci. Nanotechnol. 2006, 6, 996–1003. DOI: 10.1166/jnn.2006.169.
  • Wagner, M.; Ruloff, R.; Hoyer, E.; Gründer, W. New Gadolinium Complexes as Magnetic Resonance Imaging - Contrast Agents. Z. Naturforsch. C. J. Biosci. 1997, 52, 508–515. DOI: 10.1515/znc-1997-7-814.
  • Magnier, A.; Fekete, V.; Van Loco, J.; Bolle, F.; Elskens, M. Speciation Study of Aluminium in Beverages by Competitive Ligand Exchange-Adsorptive Stripping Voltammetry. Talanta 2014, 122, 30–35. DOI: 10.1016/j.talanta.2013.12.051.
  • Li, H.-X.; Yang, W.; Zhai, R.; Chen, L.-Z. Synthesis and Antibacterial Activity of Dihydromyricetin-Co(II). Asian J. Chem. 2014, 26, 6309–6312. DOI: 10.14233/ajchem.2014.16358.
  • Liu, Y.; Vijver, M. G.; Peijnenburg, W. J. G. M. Impacts of Major Cations (K(+), Na (+), Ca (2+), Mg (2+)) and Protons on Toxicity Predictions of Nickel and Cadmium to Lettuce (Lactuca sativa L.) Using Exposure Models. Ecotoxicology 2014, 23, 385–395. DOI: 10.1007/s10646-014-1202-1.
  • Luo, X.-S.; Li, L.-Z.; Zhou, D.-M. Effect of Cations on Copper Toxicity to Wheat Root: Implications for the Biotic Ligand Model. Chemosphere 2008, 73, 401–406. DOI: 10.1016/j.chemosphere.2008.05.031.
  • Esparza, I.; Santamaría, C.; García-Mina, J. M.; Fernández, J. M. Complexing Capacity Profiles of Naturally Occurring Ligands in Tempranillo Wines for Cu and Zn: An Electroanalytical Approach for Cupric Casse. Anal. Chim. Acta 2007, 599, 67–75. DOI: 10.1016/j.aca.2007.07.063.
  • Pesavento, M.; Biesuz, R.; Alberti, G. Determination of the Metal Complexation Capacity of Natural Waters by Ligand Titration in the Presence of Complexing Resins. J. Phys. IV (Paris) 2003, 107, 1045–1048. DOI: 10.1051/jp4:20030478.
  • Bury, N. R.; Hogstrand, C. Influence of Chloride and Metals on Silver Bioavailability to Atlantic Salmon (Salmo Salar) and Rainbow Trout (Oncorhynchus mykiss) Yolk-Sac Fry. Environ. Sci. Technol. 2002, 36, 2884–2888. DOI: 10.1021/es010302g.
  • Azenha, M. A. G. O.; Vasconcelos, M. T. S. D. Pb and Cu Speciation and Bioavailability in Port Wine. J. Agric. Food Chem. 2000, 48, 5740–5749. DOI: 10.1021/jf991167i.
  • Esteves da Silva, J. C. G.; Herrero, A. I.; Machado, A. A. S. C.; Barrado, E. Effect of the pH on the Complexation of Cu(II), Ni(II) and Fe(III) Ions by a Vine Leaf Litter Extract by Fluorescence Quenching. Mikrochim. Acta 1998, 130, 63–69. DOI: 10.1007/BF01254592.
  • Jin, W.; Wang, J. Investigations on Adsorption Potentiometry: Part 4. Derivative Adsorption Chronopotentiometry of the Bismuth-2-(5′-Bromo-2′-Pyridyeazo)-5-Diethylaminophenol System. Electroanalysis 1994, 6, 882–886. DOI: 10.1002/elan.1140061013.
  • Ringbom, A. The Analyst and the Inconstant Constants. J. Chem. Educ. 1958, 35, 282–288. DOI: 10.1021/ed035p282.
  • Reilley, C. N.; Schmid, R. W. Chelometric Titrations with Potentiometric End Point Detection. Anal. Chem. 1958, 30, 947–953. DOI: 10.1021/ac60137a021.
  • Salvatore, M.; Salvatore, F. Understanding Complexometric Titrations of Metal Cations with Aminopolycarboxylic Acids (EDTA and Analogs) within the Frame of the Notion of Reactions between Groups of Chemical Species. WJCE 2015, 3, 5–21. DOI: 10.12691/wjce-3-1-2.
  • Burgot, J. L. Ionic Equilibria in Analytical Chemistry; Springer: New York, 2012.
  • Davidge, J.; Thomas, C. P.; Williams, D. R. Conditional Formation Constants or Chemical Speciation Data? Chem. Spec. Bioavailab. 2001, 13, 129–134. DOI: 10.3184/095422901782775390.
  • Inczedy, J. Analytical Chemistry of Complex Equilibria. Ellis Horwood: Chichester, 1976.
  • Budevsky, O. Foundations of Chemical Analysis; Ellis Horwood: Chichester, 1980.
  • Rojas-Hernández, A.; Ramírez, M. T.; Ibáñez, J. G.; González, I. Relationship of Multidimensional Predominance-Zone Diagrams with Multiconditional Constants for Complexation Equilibria. Anal. Chim. Acta 1991, 246, 435–442. DOI: 10.1016/S0003-2670(00)80983-6.
  • Hyperquad Definitions and Explanations. http://www.hyperquad.co.uk (accessed May 30, 2020).
  • Rodríguez de San Miguel, E, Departamento de Química Analítica, Facultad de Química, UNAM, Ciudad Universitaria 04510 CDMX, México A New Model for the Full Inclusion of Precipitation Reactions in the General Ionic Equilibrium Framework of Homogeneous Solutions Based on the Fraction of Species Concept in Heterogeneous Systems. J. Appl. Sol. Chem. Model 2018, 7, 39–51. DOI: 10.6000/1929-5030.2018.07.05.
  • Sanvito, F.; Monticelli, D. Fast Iron Speciation in Seawater by Catalytic Competitive Ligand Equilibration-Cathodic Stripping Voltammetry with Tenfold Sample Size Reduction. Anal. Chim. Acta 2020, 1113, 9–17. DOI: 10.1016/j.aca.2020.04.002.
  • Bundy, R. M.; Biller, D. V.; Buck, K. N.; Bruland, K. W.; Barbeau, K. A. Distinct Pools of Dissolved Iron-Binding Ligands in the Surface and Benthic Boundary Layer of the California Current. Limnol. Oceanogr. 2014, 59, 769–787. DOI: 10.4319/lo.2014.59.3.0769.
  • Gledhill, M.; Gerringa, L. J. A. The Effect of Metal Concentration on the Parameters Derived from Complexometric Titrations of Trace Elements in Seawater—A Model Study. Front. Mar. Sci. 2017, 4, 254. DOI: 10.3389/fmars.2017.00254.
  • Li, L.; Wang, X.; Liu, J.; Shi, X. Dissolved Trace Metal (Cu, Cd, Co, Ni, Ag) Distribution and Cu Speciation in the Southern Yellow Sea and Bohai Sea. J. Geophys. Res. Oceans 2017, 122, 1190–1205. DOI: 10.1002/2016JC012500.
  • Monticelli, D.; Dossi, C.; Castelletti, A. Assessment of Accuracy and Precision in Speciation Analysis by Competitive Ligand Equilibration-Cathodic Stripping Voltammetry (CLE-CSV) and Application to Antarctic Samples. Anal. Chim. Acta 2010, 675, 116–124. DOI: 10.1016/j.aca.2010.07.009.
  • Granholm, K.; Harju, L.; Ivaska, A. Desorption of Metal Ions from Kraft Pulps. Part 1. Chelation of Hardwood and Softwood Kraft Pulp with EDTA. BioResources 2010, 5, 206–226. DOI: 10.15376/biores.5.1.206-226.
  • Alberti, G.; Biesuz, R.; D'Agostino, G.; Scarponi, G.; Pesavento, M. Strong Copper(II) Species in Estuarine and Sea Waters Investigated by a Method with High Detection Window. Talanta 2007, 71, 706–714. DOI: 10.1016/j.talanta.2006.05.027.
  • Biesuz, R.; Alberti, G.; D'Agostino, G.; Magi, E.; Pesavento, M. Determination of Cadmium(II), Copper(II), Manganese(II) and Nickel(II) Species in Antarctic Seawater with Complexing Resins. Mar. Chem. 2006, 101, 180–189. DOI: 10.1016/j.marchem.2006.02.006.
  • Alberti, G.; Biesuz, R.; Profumo, A.; Pesavento, M. Determination and Speciation of Al(III) in Tea Infusions. J. Inorg. Biochem. 2003, 97, 79–88. DOI: 10.1016/S0162-0134(03)00247-2.
  • Rozan, T. F.; Luther, G. W.; Ridge, D.; Robinson, S. Determination of Pb Complexation in Oxic and Sulfidic Waters Using Pseudovoltammetry. Environ. Sci. Technol. 2003, 37, 3845–3852. DOI: 10.1021/es034014r.
  • Pesavento, M.; Biesuz, R.; Profumo, A.; Soldi, T. Investigation of the Complexation of Metal-Ions by Strong Ligands in Fresh and Marine Water. Environ. Sci. Pollut. Res. Int. 2003, 10, 317–320. DOI: 10.1065/espr2001.12.104.5.
  • Pesavento, M.; Biesuz, R.; Palet, C. Study of Aluminium Speciation in Freshwaters by Sorption on a Chelating Resin. Analyst 1998, 123, 1295–1301. DOI: 10.1039/a708887f.
  • Granholm, K.; Su, P.; Harju, L.; Ivaska, A. Study on Desorption of Mn, Fe, and Mg from TMP and Evaluation of the Complexing Strength of Different Chelating Agents Using Side Reaction Coefficients 10(th) EWLP, Stockholm, Sweden, August 25-28, 2008. Holzforschung 2009, 63, 785–790. DOI: 10.1515/HF.2009.105.
  • Pesavento, M.; Biesuz, R.; Baffi, F.; Gnecco, C. Determination of Metal Ions Concentration and Speciation in Seawater by Titration with an Iminodiacetic Resin. Anal. Chim. Acta 1999, 401, 265–276. DOI: 10.1016/S0003-2670(99)00506-1.
  • Pesavento, M.; Alberti, G.; Biesuz, R. Investigation of the Speciation of Aluminium in Drinking Waters by Sorption on a Strong Anionic-Exchange Resin AG1X8. Anal. Chim. Acta 1998, 367, 215–222. DOI: 10.1016/S0003-2670(98)00177-9.
  • Rojas-Hernández, A.; Ramírez, M. T.; González, I.; Ibáñez, J. G. Multidimensional Predominance-Zone Diagrams for Polynuclear Chemical Species. Anal. Chim. Acta 1992, 259, 95–104. DOI: 10.1016/0003-2670(92)85080-P.
  • Rojas-Hernández, A.; Ramírez, M. T.; González, I. Equilibria among Condensed Phases and a Multi-Component Solution Using the Concept of Generalized Species: Part I. Systems with Mixed Complexes. Anal. Chim. Acta 1993, 278, 321–333. DOI: 10.1016/0003-2670(93)85116-2.
  • Páez-Hernández, M. E.; Ramírez, M. T.; Rojas-Hernández, A. Predominance Zone Diagrams and Their Application to Solvent Extraction Techniques. Talanta 2000, 51, 107–121. DOI: 10.1016/S0039-9140(99)00276-3.
  • Meloun, M.; Cermák, J. Multiparametric Curve fitting-I Computer-Assisted Evaluation of Chelatometric Titrations with Metallochromic Indicators. Talanta 1976, 23, 15–25. DOI: 10.1016/0039-9140(76)80003-3.
  • Douglas, A.; Skoog, F.; Holler, J. Mathcad Applications for Analytical Chemistry; Saunders College Publishing: San Diego, 1994.
  • de Levie, R. Explicit Expressions of the General Form of the Titration Curve in Terms of Concentration. J. Chem. Educ. 1993, 70, 209–217. DOI: 10.1021/ed070p209.
  • de Levie, R. The Formalism of Titration Theory. Chem. Educator 2001, 6, 272–276. DOI: 10.1007/s00897010507a.
  • Asuero, A. G. Buffer Capacity of a Polyprotic Acid: First Derivative of the Buffer Capacity and pKa Values of Single and Overlapping Equilibria. Crit. Rev. Anal. Chem. 2007, 37, 269–301. DOI: 10.1080/10408340701266238.
  • Asuero, A. G.; Michałowski, T. Comprehensive Formulation of Titration Curves for Complex Acid-Base Systems and Its Analytical Implications. Crit. Rev. Anal. Chem. 2011, 41, 151–187. DOI: 10.1080/10408347.2011.559440.
  • de Levie, R. How to Compute Labile Metal-Ligand Equilibria. J. Chem. Educ. 2007, 84, 136–141. DOI: 10.1021/ed084p136.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.