392
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

A Review on Electrochemical and Optical Sensing Platform Based on Ionic Liquids for Different Molecules Determination

ORCID Icon, ORCID Icon &
Pages 798-824 | Published online: 10 Oct 2021

References

  • Xue, Z.; Qin, L.; Jiang, J.; Mu, T.; Gao, G. Thermal, Electrochemical and Radiolytic Stabilities of Ionic Liquids. Phys. Chem. Chem. Phys. 2018, 20, 8382–8402. DOI: 10.1039/c7cp07483b.
  • Li, Q.; Jiang, J.; Li, G.; Zhao, W.; Zhao, X.; Mu, T. The Electrochemical Stability of Ionic Liquids and Deep Eutectic Solvents. Sci. China Chem. 2016, 59, 571–577. DOI: 10.1007/s11426-016-5566-3.
  • Gale, R. J.; Osteryoung, R. A. Potentiometric Investigation of Dialuminum Heptachloride Formation in Aluminum Chloride-1-Butylpyridinium Chloride Mixtures. Inorg. Chem. 1979, 18, 1603–1605. doi:10.1021/ic50196a044.
  • Wilkes, J. S.; Zaworotko, M. J. Air and Water Stable 1-Ethyl-3-Methylimidazolium Based Ionic Liquids. J. Chem. Soc, Chem. Commun. 1992, 965 doi:10.1039/c39920000965.
  • Beitollahi, H.; Tajik, S. S. J.; H, K. A Sensitive Electrochemical Sensor for Hydroxylamine Determination: Using Ionic Liquids and Magnetic Core–Shell Fe3O4@TiO2/MWCNT Nanocomposite and 2-(4-Oxo-3-Phenyl-3,4-Dihydroquinazolinyl)-N′-Phenyl- Hydrazinecarbothioamide as Mediator. Anal. Bioanal. Electrochem. 2017, 9, 806–818.
  • Roushani, M.; Mohammadi, F.; Valipour, A. Electroanalytical Sensing of Asulam Based on Nanocomposite Modified Glassy Carbon Electrode. J. Nanostructures 2020, 10, 128–139. DOI: 10.22052/JNS.2020.01.014.
  • Li, X.; Luo, G.; Xie, H.; Niu, Y.; Li, X.; Zou, R.; Xi, Y.; Xiong, Y.; Sun, W.; Li, G. Voltammetric Sensing Performances of a Carbon Ionic Liquid Electrode Modified with Black Phosphorene and Hemin. Microchim. Acta 2019, 186, 1–8. DOI: 10.1007/s00604-019-3421-x.
  • Benjamin, M.; Manoj, D.; Thenmozhi, K.; Bhagat, P. R.; Saravanakumar, D.; Senthilkumar, S. A Bioinspired Ionic Liquid Tagged Cobalt-Salophen Complex for Nonenzymatic Detection of Glucose. Biosens. Bioelectron. 2017, 91, 380–387. DOI: 10.1016/j.bios.2016.12.064.
  • Salman, M. S.; Hasan, M. N.; Kubra, K. T.; Hasan, M. M. Optical Detection and Recovery of Yb(III) from Waste Sample Using Novel Sensor Ensemble Nanomaterials. Microchem. J. 2021, 162, 105868. DOI: 10.1016/j.microc.2020.105868.
  • Sadeghi, S.; Olieaei, S. Capped Cadmium Sulfide Quantum Dots with a New Ionic Liquid as a Fluorescent Probe for Sensitive Detection of Florfenicol in Meat Samples. Spectrochim Acta A. Mol. Biomol. Spectrosc. 2019, 223, 117349. DOI: 10.1016/j.saa.2019.117349.
  • Borba, L. C.; Griebeler, C. H.; Bach, M. F.; Barboza, C. A.; Nogara, P. A.; da Rocha, J. B. T.; Amaral, S. S.; Rodembusch, F. S.; Schneider, P. H. Non-Traditional Intrinsic Luminescence of Amphiphilic-Based Ionic Liquids from Oxazolidines: Interaction Studies in Phosphatidylcholine-Composed Liposomes and BSA Optical Sensing in Solution. J. Mol. Liq. 2020, 313, 113525. DOI: 10.1016/j.molliq.2020.113525.
  • Dai, H.; Deng, Z.; Zeng, Y.; Zhang, J.; Yang, Y.; Ma, Q.; Hu, W.; Guo, L.; Li, L.; Wan, S.; et al. Highly Sensitive Determination of 4-Nitrophenol with Coumarin-Based Fluorescent Molecularly Imprinted Poly (Ionic Liquid). J. Hazard. Mater. 2020, 398, 122854. DOI: 10.1016/j.jhazmat.2020.122854.
  • Rama, R.; Meenakshi, S.; Pandian, K.; Gopinath, S. C. B. Room Temperature Ionic Liquids-Based Electrochemical Sensors: An Overview on Paracetamol Detection. Crit. Rev. Anal. Chem. 2021. DOI: 10.1080/10408347.2021.1882834.
  • Tiago, G. A. O.; Matias, I. A. S.; Ribeiro, A. P. C.; Martins, L. M. D. R. S. Application of Ionic Liquids in Electrochemistry—Recent Advances. Molecules. 2020, 25, 5812. DOI: 10.3390/molecules25245812.
  • Singh, S. K.; Savoy, A. W. Ionic Liquids Synthesis and Applications: An Overview. J. Mol. Liq. 2020, 297, 112038. DOI: 10.1016/j.molliq.2019.112038.
  • Rehman, A.; Zeng, X. Methods and Approaches of Utilizing Ionic Liquids as Gas Sensing Materials. RSC Adv. 2015, 5, 58371–58392. DOI: 10.1039/c5ra06754e.
  • Ghorbanizamani, F.; Timur, S. Ionic Liquids from Biocompatibility and Electrochemical Aspects toward Applying in Biosensing Devices. Anal. Chem. 2018, 90, 640–648. DOI: 10.1021/acs.analchem.7b03596.
  • Lei, Z.; Chen, B.; Koo, Y.-M.; MacFarlane, D. R. Introduction: Ionic Liquids. Chem. Rev. 2017, 117, 6633–6635. DOI: 10.1021/acs.chemrev.7b00246.
  • Trujillo-Rodr, J.; Nan, H.; Varona, M.; Emaus, M. N.; Souza, I. D.; Anderson, J. L. Advances of Ionic Liquids in Analytical Chemistry. Anal. Chem. 2019, 91, 505–531. DOI: 10.1021/acs.analchem.8b04710.
  • Tayyab, Z.; Safi, S. Z.; Rahim, A.; Khan, A. S.; Sharif, F.; Khan, Z. U. H.; Rehman, F.; Ullah, Z.; Iqbal, J.; Muhammad, N. Preparation of Cellulosic Ag-Nanocomposites Using an Ionic Liquid. J. Biomater. Sci. Polym. Ed. 2019, 30, 785–796. DOI: 10.1080/09205063.2019.1605869.
  • Mishra, P.; Pavelyev, V. S.; Patel, R.; Islam, S. S. Resistive Sensing of Gaseous Nitrogen Dioxide Using a Dispersion of Single-Walled Carbon Nanotubes in an Ionic Liquid. Mater. Res. Bull 2016, 78, 53–57. DOI: 10.1016/j.materresbull.2016.02.016.
  • Veerasingam, M.; Murugesan, B.; Mahalingam, S. Ionic Liquid Mediated Morphologically Improved Lanthanum Oxide Nanoparticles by Andrographis Paniculata Leaves Extract and Its Biomedical Applications. J. Rare Earths 2020, 38, 281–291. DOI: 10.1016/j.jre.2019.06.006.
  • El Seoud, O. A.; Keppeler, N.; Malek, N. I.; Galgano, P. D. Ionic Liquid-Based Surfactants: Recent Advances in Their Syntheses, Solution Properties, and Applications. Polymers (Basel), 2021, 13(7),1100. DOI: 10.3390/polym13071100.
  • Moghadam, F. H.; Taher, M. A.; Karimi-Maleh, H. A Sensitive and Fast Approach for Voltammetric Analysis of Bisphenol a as a Toxic Compound in Food Products Using a Pt-SWCNTs/Ionic Liquid Modified Sensor. Food Chem. Toxicol. 2021, 152, 112166. DOI: 10.1016/j.fct.2021.112166.
  • Ballester-Caudet, A.; Hakobyan, L.; Moliner-Martinez, Y.; Molins-Legua, C.; Campíns-Falcó, P. Ionic-Liquid Doped Polymeric Composite as Passive Colorimetric Sensor for Meat Freshness as a Use Case. Talanta 2021, 223, 121778. DOI: 10.1016/j.talanta.2020.121778.
  • Zandu, S. K.; Chopra, H.; Singh, I. Ionic Liquids for Therapeutic and Drug Delivery Applications. Curr. Drug Res. Rev. 2020, 12, 26–41. DOI: 10.2174/2589977511666191125103338.
  • Rashid, Z.; Wilfred, C. D.; Gnanasundaram, N.; Arunagiri, A.; Murugesan, T. A Comprehensive Review on the Recent Advances on the Petroleum Asphaltene Aggregation. J. Pet. Sci. Eng. 2019, 176, 249–268. DOI: 10.1016/j.petrol.2019.01.004.
  • Hajipour, A. R.; Rafiee, F. Recent Progress in Ionic Liquids and Their Applications in Organic Synthesis and Their Applications in Organic Synthesis. New J. Org. Synth 2015, 47, 249–308. DOI: 10.1080/00304948.2015.1052317.
  • Nasirpour, N.; Mohammadpourfard, M.; Zeinali Heris, S. Chemical Engineering Research and Design Ionic Liquids: Promising Compounds For. Chem. Eng. Res. Des. 2020, 160, 264–300. DOI: 10.1016/j.cherd.2020.06.006.
  • Jahromi, Z.; Shamspur, T.; Mostafavi, A.; Mohamadi, M. Separation and Preconcentration of Hemin from Serum Samples Followed by Voltammetric Determination. J. Mol. Liq. 2017, 242, 91–97. DOI: 10.1016/j.molliq.2017.07.008.
  • Lu, D.; Shomali, N.; Shen, A. Task Specific Ionic Liquid for Direct Electrochemistry of Metal Oxides. Electrochem. Commun. 2010, 12, 1214–1217. DOI: 10.1016/j.elecom.2010.06.022.
  • Niu, X.; Yang, X.; Li, H.; Liu, J.; Liu, Z.; Wang, K. Application of Chiral Materials in Electrochemical Sensors. Microchim. Acta 2020, 187, 676–694.
  • Maistrenko, V. N.; Zil’berg, R. A. Enantioselective Voltammetric Sensors on the Basis of Chiral Materials. J. Anal. Chem. 2020, 75, 1514–1526. DOI: 10.1134/S1061934820120102.
  • Wu, D.; Yang, J.; Peng, Y.; Yu, Y.; Zhang, J.; Guo, L.; Kong, Y.; Jiang, J. Highly Enantioselective Recognition of Various Acids Using Polymerized Chiral Ionic Liquid as Electrode Modifies. Sensors Actuators B. Chem. 2019, 282, 164–170. DOI: 10.1016/j.snb.2018.11.059.
  • Mohd Rasdi, F. L.; Mohamad, S.; Abdul Manan, N. S.; Nodeh, H. R. Electrochemical Determination of 2,4-Dichlorophenol at β-Cyclodextrin Functionalized Ionic Liquid Modified Chemical Sensor: Voltammetric and Amperometric Studies. RSC Adv. 2016, 6, 100186–100194. DOI: 10.1039/C6RA19816C.
  • Ohno, H.; Ito, K. Room-Temperature Molten Salt Polymers as a Matrix for Fast Ion Conduction. Chem. Lett. 1998, 27, 751–752. DOI: 10.1246/cl.1998.751.
  • Claus, J.; Sommer, F. O.; Kragl, U. Ionic Liquids in Biotechnology and Beyond. Solid State Ionics 2018, 314, 119–128. DOI: 10.1016/j.ssi.2017.11.012.
  • Teixeira, P. R.; Machado, T. R.; Machado, F.; Sodré, F. F.; Silva, J. G.; Neto, B. A. D.; Paterno, L. G. Au Nanoparticle-Poly(Ionic Liquid) Nanocomposite Electrode for the Voltammetric Detection of Triclosan in Lake Water and Toothpaste Samples. Microchem. J. 2020, 152, 104421. DOI: 10.1016/j.microc.2019.104421.
  • Liu, C.; Zhang, W.; Zhao, Y.; Lin, C.; Zhou, K.; Li, Y.; Li, G. Urea-Functionalized Poly(Ionic Liquid) Photonic Spheres for Visual Identification of Explosives with a Smartphone. ACS Appl. Mater. Interfaces 2019, 11, 21078–21085. DOI: 10.1021/acsami.9b04568.
  • Sadjadi, S. Magnetic (Poly) Ionic Liquids : A Promising Platform for Green Chemistry. J. Mol. Liq. 2021, 323, 114994. DOI: 10.1016/j.molliq.2020.114994.
  • Afzali, M.; Mostafavi, A.; Shamspur, T. Sensitive Detection of Colchicine at a Glassy Carbon Electrode Modified with Magnetic Ionic Liquid/CuO Nanoparticles/Carbon Nanofibers in Pharmaceutical and Plasma Samples. J. Iran. Chem. Soc. 2020, 17, 1753–1764. DOI: 10.1007/s13738-020-01894-2.
  • Jahromi, Z.; Mostafavi, A.; Shamspur, T.; Mohamadim, M. Magnetic Ionic Liquid Assisted Single-Drop Microextraction of Ascorbic Acid before Its Voltammetric Determination. J. Sep. Sci. 2017, 40, 4041–4049. DOI: 10.1002/jssc.201700664.
  • Singh, V. V.; Nigam, A. K.; Batra, A.; Boopathi, M.; Singh, B.; Vijayaraghavan, R. Applications of Ionic Liquids in Electrochemical Sensors and Biosensors. Int. J. Electrochem. 2012, 2012, 1–19. DOI: 10.1155/2012/165683.
  • Zheng, W.; Chen, W.; Weng, W.; Liu, L.; Li, G.; Wang, J.; Sun, W. Direct Electron Transfer of Horseradish Peroxidase at Co3O4–Graphene Nanocomposite Modified Electrode and Electrocatalysis. J. Iran. Chem. Soc. 2017, 14, 925–932. DOI: 10.1007/s13738-016-1042-4.
  • Haji-Hashemi, H.; Norouzi, P.; Safarnejad, M. R.; Larijani, B.; Habibi, M. M.; Raeisi, H.; Ganjali, M. R. Sensitive Electrochemical Immunosensor for Citrus Bacterial Canker Disease Detection Using Fast Fourier Transformation Square-Wave Voltammetry Method. J. Electroanal. Chem. 2018, 820, 111–117. DOI: 10.1016/j.jelechem.2018.04.062.
  • Shen, Y.; Shen, G.; Zhang, Y. Label-Free Electrochemical Immunosensor Based on Ionic Liquid Containing Dialdehyde as a Novel Linking Agent for the Antibody Immobilization. ACS Omega. 2018, 3, 11227–11232. DOI: 10.1021/acsomega.8b01298.
  • Niu, X.; Zheng, W.; Yin, C.; Weng, W.; Li, G.; Sun, W.; Men, Y. Electrochemical DNA Biosensor Based on Gold Nanoparticles and Partially Reduced Graphene Oxide Modified Electrode for the Detection of Listeria Monocytogenes Hly Gene Sequence. J. Electroanal. Chem. 2017, 806, 116–122. DOI: 10.1016/j.jelechem.2017.10.049.
  • Gomes, J. M.; Silva, S. S.; Reis, R. L. Biocompatible Ionic Liquids: Fundamental Behaviours and Applications. Chem. Soc. Rev. 2019, 48, 4317–4335. DOI: 10.1039/c9cs00016j.
  • Jiao, W.; Nong, C.; Li, X.; Feng, S.; Liu, X. Electrochemical Sensor Based on Aluminum Tetraaminophthalocyanine and Ionic Liquid Modified Glassy Carbon Electrode for Dopamine Detection in Drugs and Human Serum. Int. J. Electrochem. Sci. 2020, 15, 6748–6758. DOI: 10.20964/2020.07.69.
  • Zhang, S.; Zhuang, X.; Chen, D.; Luan, F.; He, T.; Tian, C.; Chen, L. Simultaneous Voltammetric Determination of Guanine and Adenine Using MnO2 Nanosheets and Ionic Liquid-Functionalized Graphene Combined with a Permeation-Selective Polydopamine Membrane. Microchim. Acta 2019, 186(7):450. DOI: 10.1007/s00604-019-3577-4.
  • Nagles, E.; García-Beltrán, O.; Calderón, J. A. Evaluation of the Usefulness of a Novel Electrochemical Sensor in Detecting Uric Acid and Dopamine in the Presence of Ascorbic Acid Using a Screen-Printed Carbon Electrode Modified with Single Walled Carbon Nanotubes and Ionic Liquids. Electrochim. Acta 2017, 258, 512–523. DOI: 10.1016/j.electacta.2017.11.093.
  • Kunpatee, K.; Chamsai, P.; Mehmeti, E.; Stankovic, D. M.; Ortner, A.; Kalcher, K.; Samphao, A. A Highly Sensitive Fenobucarb Electrochemical Sensor Based on Graphene Nanoribbons-Ionic Liquid-Cobalt Phthalocyanine Composites Modified on Screen-Printed Carbon Electrode Coupled with a Flow Injection Analysis. J. Electroanal. Chem. 2019, 855, 113630. DOI: 10.1016/j.jelechem.2019.113630.
  • Li, Y.; Li, Y.; Wang, Y.; Ma, G.; Liu, X.; Li, Y.; Soar, J. Application of Zeolitic Imidazolate Frameworks (ZIF-8)/Ionic Liquid Composites Modified Nano-Carbon Paste Electrode as Sensor for Electroanalytical Sensing of 1-Hydroxypyrene. Microchem. J. 2020, 159, 105433. DOI: 10.1016/j.microc.2020.105433.
  • Hernández-Vargas, S. G.; Alberto Cevallos-Morillo, C.; Aguilar-Cordero, J. C. Effect of Ionic Liquid Structure on the Electrochemical Response of Dopamine at Room Temperature Ionic Liquid-Modified Carbon Paste Electrodes (IL–CPE). Electroanalysis 2020, 32, 1938–1948. DOI: 10.1002/elan.201900701.
  • Hooshmand, S.; Es'haghi, Z. Microfabricated Disposable Nanosensor Based on CdSe Quantum Dot/Ionic Liquid-Mediated Hollow Fiber-Pencil Graphite Electrode for Simultaneous Electrochemical Quantification of Uric Acid and Creatinine in Human Samples. Anal. Chim. Acta. 2017, 972, 28–37. DOI: 10.1016/j.aca.2017.04.035.
  • Yaralı, E.; Erdem, A. Voltammetric Detection of Globulin with Ionic Liquid Modified Electrodes. Microchem. J. 2020, 153, 104331. DOI: 10.1016/j.microc.2019.104331.
  • Ding, S.; Lyu, Z.; Niu, X.; Zhou, Y.; Liu, D.; Falahati, M.; Du, D.; Lin, Y. Integrating Ionic Liquids with Molecular Imprinting Technology for Biorecognition and Biosensing: A Review. Biosens. Bioelectron. 2020, 149, 111830. DOI: 10.1016/j.bios.2019.111830.
  • Yarman, A.; Kurbanoglu, S.; Jetzschmann, K. J.; Ozkan, S. A.; Wollenberger, U.; Scheller, F. W. Electrochemical MIP-Sensors for Drugs. Curr. Med. Chem. 2018, 25, 4007–4019. DOI: 10.2174/0929867324666171005103712.
  • Yarman, A.; Kurbanoglu, S.; Zebger, I.; Scheller, F. W. Simple and Robust: The Claims of Protein Sensing by Molecularly Imprinted Polymers. Sensors Actuators B. Chem. 2021, 330, 129369. DOI: 10.1016/j.snb.2020.129369.
  • Liu, H.; Fang, G.; Zhu, H.; Li, C.; Liu, C.; Wang, S. A Novel Ionic Liquid Stabilized Molecularly Imprinted Optosensing Material Based on Quantum Dots and Graphene Oxide for Specific Recognition of Vitamin E. Biosens. Bioelectron. 2013, 47, 127–132. DOI: 10.1016/j.bios.2013.03.006.
  • Liang, Y.; Yu, L.; Yang, R.; Li, X.; Qu, L.; Li, J. High Sensitive and Selective Graphene Oxide/Molecularly Imprinted Polymer Electrochemical Sensor for 2,4-Dichlorophenol in Water. Sensors Actuators B. Chem. 2017, 240, 1330–1335. DOI: 10.1016/j.snb.2016.08.137.
  • Lu, Y.; Hu, J.; Zeng, Y.; Zhu, Y.; Wang, H.; Lei, X.; Huang, S.; Guo, L.; Li, L. Electrochemical Determination of Rutin Based on Molecularly Imprinted Poly (Ionic Liquid) with Ionic Liquid-Graphene as a Sensitive Element. Sensors Actuators, B. Chem. 2020, 311, 127911. DOI: 10.1016/j.snb.2020.127911.
  • Coldur, M.; Oguzlar, S.; Zeyrek Ongun, M.; Oter, O.; Yıldırım, S. Usage of Thiocyanate-Based Ionic Liquid as New Optical Sensor Reagent: Absorption and Emission Based Selective Determination of Fe (III) Ions. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2020, 224, 117385. DOI: 10.1016/j.saa.2019.117385.
  • Nishan, U.; Gul, R.; Muhammad, N.; Asad, M.; Rahim, A.; Shah, M.; Iqbal, J.; Uddin, J.; Ali Shah, A.; Ul, H.; Shujah, S. Colorimetric Based Sensing of Dopamine Using Ionic Liquid Functionalized Drug Mediated Silver Nanostructures. Microchem. J. 2020, 159, 105382. DOI: 10.1016/j.microc.2020.105382.
  • Waldiya, M.; Bhagat, D.; Narasimman, R.; Singh, S.; Kumar, A.; Ray, A.; Mukhopadhyay, I. Development of Highly Sensitive H2O2 Redox Sensor from Electrodeposited Tellurium Nanoparticles Using Ionic Liquid. Biosens. Bioelectron. 2019, 132, 319–325. DOI: 10.1016/j.bios.2019.02.050.
  • Liu, W.; Zhu, X. A Novel Fluorescence “Turn off-on” Sensor Based on N-Doped Graphene Quantum Dots in Amino Acid Ionic Liquid Medium and Its Application. Talanta 2019, 197, 59–67. DOI: 10.1016/j.talanta.2019.01.008.
  • Wei, J.; Yuan, X.; Zhang, Y.; Liu, H.; Sun, B. Ionic Liquid-Sensitized Molecularly Imprinted Polymers Based on Heteroatom Co-Doped Quantum Dots Functionalized Graphene for Sensitive Detection of λ-Cyhalothrin. Anal. Chim. Acta. 2020, 1136, 9–18. DOI: 10.1016/j.aca.2020.08.041.
  • Kühnel, R.-S.; Reber, D.; Remhof, A.; Figi, R.; Bleiner, D.; Battaglia, C. "Water-in-Salt" Electrolytes Enable the Use of Cost-Effective Aluminum Current Collectors for Aqueous High-Voltage Batteries. Chem Commun (Camb). 2016, 52, 10435–10438. DOI: 10.1039/c6cc03969c.
  • Kalambate, P. K.; Rao, Z.; Dhanjai; Wu, J.; Shen, Y.; Boddula, R.; Huang, Y. Electrochemical (Bio) Sensors Go Green. Biosens. Bioelectron. 2020, 163, 112270. DOI: 10.1016/j.bios.2020.112270.
  • Khoshroo, A.; Hosseinzadeh, L.; Sobhani-Nasab, A.; Rahimi-Nasrabadi, M.; Ahmadi, F. Silver Nanofibers/Ionic Liquid Nanocomposite Based Electrochemical Sensor for Detection of Clonazepam via Electrochemically Amplified Detection. Microchem. J 2019, 145, 1185–1190. DOI: 10.1016/j.microc.2018.12.049.
  • Negahban, S.; Fouladgar, M.; Amiri, G. Improve the Performance of Carbon Paste Electrodes for Determination of Dobutamine Using MnZnFe2O4 Nanoparticles and Ionic Liquid. J. Taiwan Inst. Chem. Eng. 2017, 78, 51–55. DOI: 10.1016/j.jtice.2017.05.032.
  • Ji, Y.; Li, Y.; Ren, B.; Liu, X.; Li, Y.; Soar, J. Nitrogen-Doped Graphene-Ionic Liquid-Glassy Carbon Microsphere Paste Electrode for Ultra-Sensitive Determination of Quercetin. Microchem. J. 2020, 155, 104689. DOI: 10.1016/j.microc.2020.104689.
  • He, S.; Ma, Y.; Zhou, J.; Zeng, J.; Liu, X.; Huang, Z.; Chen, X.; Chen, X. A Direct “Touch” Approach for Gold Nanoflowers Decoration on Graphene/Ionic Liquid Composite Modified Electrode with Good Properties for Sensing Bisphenol A. Talanta 2019, 191, 400–408. DOI: 10.1016/j.talanta.2018.08.093.
  • Bozal-Palabiyik, B.; Kurbanoglu, S.; Erkmen, C.; Uslu, B. Future Prospects and Concluding Remarks for Electroanalytical Applications of Quantum Dots; Elsevier Inc., 2021. pp 427–450. DOI: 10.1016/b978-0-12-821670-5.00008-7.
  • Zheng, A.; Guo, T.; Guan, F.; Chen, X.; Shu, Y.; Wang, J. Trends in Analytical Chemistry Ionic Liquid Mediated Carbon Dots : Preparations, Properties and Applications. Trends Anal. Chem. 2019, 119, 115638. DOI: 10.1016/j.trac.2019.115638.
  • Nasr-Esfahani, P.; Ensafi, A. A.; Rezaei, B. Fabrication of a Highly Sensitive and Selective Modified Electrode for Imidacloprid Determination Based on Designed Nanocomposite Graphene Quantum Dots/Ionic Liquid/Multiwall Carbon Nanotubes/Polyaniline. Sensors Actuators, B Chem. 2019, 296, 126682. DOI: 10.1016/j.snb.2019.126682.
  • Mao, H.; Zhang, H.; Jiang, W.; Liang, J.; Sun, Y.; Zhang, Y.; Wu, Q.; Zhang, G.; Song, X. M. Poly(Ionic Liquid) Functionalized Polypyrrole Nanotubes Supported Gold Nanoparticles: An Efficient Electrochemical Sensor to Detect Epinephrine. Mater. Sci. Eng. C. Mater. Biol. Appl. 2017, 75, 495–502. DOI: 10.1016/j.msec.2017.02.083.
  • Molaakbari, E.; Mostafavi, A.; Tohidiyan, Z.; Beitollahi, H. Synthesis and Application of Conductive Polymeric Ionic Liquid/Ni Nanocomposite to Construct a Nanostructure Based Electrochemical Sensor for Determination of Risperidone and Methylphenidate. J. Electroanal. Chem. 2017, 801, 198–205. DOI: 10.1016/j.jelechem.2017.07.001.
  • Molaakbari, E.; Mostafavi, A.; Beitollahi, H.; Tohidiyan, Z. Synthesis of Conductive Polymeric Ionic Liquid/Ni Nanocomposite and Its Application to Construct a Nanostructure Based Electrochemical Sensor for Determination of Warfarin in the Presence of Tramadol. Talanta 2017, 171, 25–31. DOI: 10.1016/j.talanta.2017.04.041.
  • Chen, D.; Zhuang, X.; Zhai, J.; Zheng, Y.; Lu, H.; Chen, L. Preparation of Highly Sensitive Pt Nanoparticles-Carbon Quantum Dots/Ionic Liquid Functionalized Graphene Oxide Nanocomposites and Application for H2O2 Detection. Sensors Actuators, B Chem. 2018, 255, 1500–1506. DOI: 10.1016/j.snb.2017.08.156.
  • Anusha, T.; Sai Bhavani, K.; Shanmukha Kumar, J. V.; Bonanni, A.; Brahman, P. K. Fabrication of Handmade Paper Sensor Based on Silver-Cobalt Doped Copolymer-Ionic Liquid Composite for Monitoring of Vitamin D3 Level in Real Samples. Microchem. J. 2021, 161, 105789. DOI: 10.1016/j.microc.2020.105789.
  • Boobphahom, S.; Ruecha, N.; Rodthongkum, N.; Chailapakul, O.; Remcho, V. T. A Copper Oxide-Ionic Liquid/Reduced Graphene Oxide Composite Sensor Enabled by Digital Dispensing: Non-Enzymatic Paper-Based Microfluidic Determination of Creatinine in Human Blood Serum. Anal. Chim. Acta. 2019, 1083, 110–118. DOI: 10.1016/j.aca.2019.07.029.
  • Chaiyo, S.; Mehmeti, E.; Siangproh, W.; Hoang, T. L.; Nguyen, H. P.; Chailapakul, O.; Kalcher, K. Non-Enzymatic Electrochemical Detection of Glucose with a Disposable Paper-Based Sensor Using a Cobalt Phthalocyanine-Ionic Liquid-Graphene Composite. Biosens. Bioelectron. 2018, 102, 113–120. DOI: 10.1016/j.bios.2017.11.015.
  • Cheng, L.; Fan, Y.; Shen, X.; Liang, H. Highly Sensitive Detection of Dopamine at Ionic Liquid Functionalized RGO/ZIF-8 Nanocomposite-Modified Electrode. J. Nanomater 2019, 2019, 1–9. DOI: 10.1155/2019/8936095.
  • Chen, W.; Niu, X.; Li, X.; Hu, A.; Ma, Q.; Xie, H.; He, B.; Sun, W. ZnWO4 Nanorod Modified Electrode for Uric Acid Electrocatalytic Sensing and Application. Int. J. Electrochem. Sci. 2017, 12, 8516–8525. DOI: 10.20964/2017.09.14.
  • Mohammadi, S. Z.; Beitollahi, H.; Hassanzadeh, M. Voltammetric Determination of Tryptophan Using a Carbon Paste Electrode Modified with Magnesium Core Shell Nanocomposite and Ionic Liquids. Anal. Bioanal. Chem. Res. 2018, 5, 55–65. DOI: 10.22036/abcr.2017.88326.1149.
  • Karimi, F.; Shojaei, A. F.; Tabatabaeian, K.; Shakeri, S. CoFe2O4 Nanoparticle/Ionic Liquid Modified Carbon Paste Electrode as an Amplified Sensor for Epirubicin Analysis as an Anticancer Drug. J. Mol. Liq. 2017, 242, 685–689. DOI: 10.1016/j.molliq.2017.07.067.
  • Abbasghorbani, M. Fe3O4 Loaded Single Wall Carbon Nanotubes and 1-Methyl-3-Octylimidazlium Chloride as Two Amplifiers for Fabrication of Highly Sensitive Voltammetric Sensor for Epirubicin Anticancer Drug Analysis. J. Mol. Liq 2018, 266, 176–180. DOI: 10.1016/j.molliq.2018.06.060.
  • Pourtaheri, E.; Taher, M. A.; Ali, G. A. M.; Agarwal, S.; Gupta, V. K. Electrochemical Detection of Gliclazide and Glibenclamide on ZnIn2S4 Nanoparticles-Modified Carbon Ionic Liquid Electrode. J. Mol. Liq 2019, 289, 111141. DOI: 10.1016/j.molliq.2019.111141.
  • Niu, X.; Li, X.; Chen, W.; Li, X.; Weng, W.; Yin, C.; Dong, R.; Sun, W.; Li, G. Three-Dimensional Reduced Graphene Oxide Aerogel Modified Electrode for the Sensitive Quercetin Sensing and Its Application. Mater. Sci. Eng. C. Mater. Biol. Appl. 2018, 89, 230–236. DOI: 10.1016/j.msec.2018.04.015.
  • Ensafi, A. A.; Rezaloo, F.; Rezaei, B. CoFe2O4/Reduced Graphene Oxide/Ionic Liquid Modified Glassy Carbon Electrode, a Selective and Sensitive Electrochemical Sensor for Determination of Methotrexate. J. Taiwan Inst. Chem. Eng. 2017, 78, 45–50. DOI: 10.1016/j.jtice.2017.05.031.
  • Pérez-Ortiz, M.; Pizarro, P.; Álvarez-Lueje, A. Carbon Nanotubes-Ionic Liquid Gel. Characterization and Application to Pseudoephedrine and Chlorpheniramine Determination in Pharmaceuticcals. J. Chil. Chem. Soc. 2019, 64, 4324–4331. DOI: 10.4067/s0717-97072019000104324.
  • Afshar, S.; Zamani, H. A. Electrochemical Determination of Sulfapyridine Using a New Approach of Modified Electrode Based on Amplification with Room Temperature Ionic Liquid and ZnO Nanoparticle. Anal. Bioanal. Electrochem. 2019, 11, 1781–1790.
  • Fouladgar, M. A Novel Electrochemical CuO-Nanostructure Platform for Simultaneous Determination of 6-Thioguanine and 5-Fluorouracil Anticancer Drugs. Acta Chim. Slov. 2020, 67, 701–709. DOI: 10.17344/acsi.2019.4986.
  • Ma, Y.; Cao, Z.; Wang, Y.; Xia, Y.; He, C.; Wang, L.; Bao, S.; Yin, P.; Wang, L.; Gao, J. Simultaneous Determination of Catechol and Hydroquinone Using N, P Co-Doped Carbon Derived from Ionic Liquid. Int. J. Electrochem. Sci. 2019, 14, 3916–3931. DOI: 10.20964/2019.04.64.
  • Salmanpour, S. An Electrochemical Sensitive Sensor for Determining Sulfamethoxazole Using a Modified Electrode Based on Biosynthesized NiO Nanoparticles Paste Electrode. Int. J. Electrochem. Sci. 2019, 14, 9552–9561. DOI: 10.20964/2019.10.03.
  • Ma, J. Y.; Hong, X. P. Simple Fabrication of Reduced Graphene Oxide-Ionic Liquid Composite Modified Electrode for Sensitive Detection of Sulfadiazine. Int. J. Electrochem. Sci. 2020, 15, 3729–3739. DOI: 10.20964/2020.05.76.
  • Shan, L. Electrochemical Determination of Methandrostenolone Using a Molecularly Imprinted Sensor. Int. J. Electrochem. Sci. 2020, 15, 12587–12598. DOI: 10.20964/2020.12.62.
  • Sadeghi, H.; Shahidi, S. A.; Raeisi, S. N.; Ghorbani-Hasan Saraei, A.; Karimi, F. Electrochemical Determination of Vitamin B6 in Water and Juice Samples Using an Electrochemical Sensor Amplified with NiO/CNTs and Ionic Liquid. Int. J. Electrochem. Sci. 2020, 15, 10488–10498. DOI: 10.20964/2020.10.51.
  • Mohammad Mehdi Forooghi, S. T.; Beitollahi, H. New Strategy for Determination of Levodopa Using Carbon SiO2@Fe3O4/GR Nanocomposite, Ionic Liquid and 2-(Ferrocenylethynyl)Fluoren-9-One. Anal. Bioanal. Electrochem. 2017, 9, 535–546.
  • Baezzat, M. R.; Banavand, F.; Fasihi, F. Highly Sensitive Determination of Zileuton Using TiO 2 Nanoparticles and the Ionic Liquid 1-Hexylpyridinium Hexafluorophosphate Nanocomposite Sensor. Ionics (Kiel), 2019, 25, 1835–1844. DOI: 10.1007/s11581-018-2699-8.
  • Chokkareddy, R.; Thondavada, N.; Kabane, B.; Redhi, G. G. A Novel Ionic Liquid Based Electrochemical Sensor for Detection of Pyrazinamide. J. Iran. Chem. Soc. 2021, 18, 621–629. DOI: 10.1007/s13738-020-02047-1.
  • Derakhshan, M.; Shamspur, T.; Molaakbari, E.; Mostafavi, A.; Saljooqi, A. Fabrication of a Novel Electrochemical Sensor for Determination of Riboflavin in Different Drink Real Samples. Russ. J. Electrochem. 2020, 56, 181–188. DOI: 10.1134/S1023193520030039.
  • Aflatoonian, M. R.; Tajik, S.; Aflatoonian, B.; Sheikhshoaie, M.; Beitollahi, H. Copper Oxide, Ionic Liquid and Mn(III) Salen Modified Carbon Paste Electrode as Selective Electrochemical Sensor for Determination of Droxidopa in the Presence of Carbidopa. Eurasian Chem. Commun. 2020, 2(3), 387–397. DOI: 10.33945/sami/ecc.2020.3.9.
  • Ferreira, T. A.; Rodríguez, J. A.; Galán-Vidal, C. A.; Castrillejo, Y.; Barrado, E. Flow Based Determination of Cr(VI) by Adsorptive Cathodic Stripping Voltammetry on an Immobilized Magnetic Poly(Ionic Liquid) Modified Electrode. Talanta 2018, 183, 172–176. DOI: 10.1016/j.talanta.2018.02.054.
  • Kardaş, F.; Beytur, M.; Akyıldırım, O.; Yüksek, H.; Yola, M. L.; Atar, N. Electrochemical Detection of Atrazine in Wastewater Samples by Copper Oxide (CuO) Nanoparticles Ionic Liquid Modified Electrode. J. Mol. Liq. 2017, 248, 360–363. DOI: 10.1016/j.molliq.2017.10.085.
  • Mulaba-Bafubiandi, A. F.; Karimi-Maleh, H.; Karimi, F.; Rezapour, M. A Voltammetric Carbon Paste Sensor Modified with NiO Nanoparticle and Ionic Liquid for Fast Analysis of P-Nitrophenol in Water Samples. J. Mol. Liq. 2019, 285, 430–435. DOI: 10.1016/j.molliq.2019.04.084.
  • Manusha, P.; Senthilkumar, S. Design and Synthesis of Phenothiazine Based Imidazolium Ionic Liquid for Electrochemical Nonenzymatic Detection of Sulfite in Food Samples. J. Mol. Liq. 2020, 301, 112412. DOI: 10.1016/j.molliq.2019.112412.
  • Zhan, T.; Tian, X.; Ding, G.; Liu, X.; Wang, L.; Teng, H. Quaternarization Strategy to Ultrathin Lamellar Graphitic C3N4 Ionic Liquid Nanostructure for Enhanced Electrochemical 2,4-Dichlorophenol Sensing. Sensors Actuators, B Chem. 2019, 283, 463–471. DOI: 10.1016/j.snb.2018.12.068.
  • Xiong, S.; Xu, J.; Xie, F.; Hu, X.; Gong, G.; Wu, Z.; Yao, L. Stripping Analysis of Pb(II), Cd(II), Hg(II) and Cu(II) Based on Irradiated Attapulgite/Ionic Liquid Composites. Chem. Eng. J. 2017, 316, 383–392. DOI: 10.1016/j.cej.2017.01.110.
  • Niu, X.; Zhang, W.; Huang, Y.; Wang, L.; Li, Z.; Sun, W. An Electrochemical Sensing Platform Amplified with a Au@Ag Nanoparticle-Decorated Three-Dimensional N-Doped Graphene Aerogel for Ultrasensitive Determination of Baicalein. New J. Chem. 2020, 44, 15975–15982. DOI: 10.1039/D0NJ03827J.
  • Cheng, H.; Liu, J.; Sun, Y.; Zhou, T.; Yang, Q.; Zhang, S.; Zhang, X.; Li, G.; Sun, W. A Fungus-Derived Biomass Porous Carbon-MnO2 Nanocomposite-Modified Electrode for the Voltammetric Determination of Rutin. RSC Adv. 2020, 10, 42340–42348. DOI: 10.1039/D0RA05739H.
  • Liu, J.; Cheng, H.; Xie, H.; Luo, G.; Niu, Y.; Zhang, S.; Li, G.; Sun, W. Platinum Nanoparticles Decorating a Biomass Porous Carbon Nanocomposite-Modified Electrode for the Electrocatalytic Sensing of Luteolin and Application. RSC Adv. 2019, 9, 33607–33616. DOI: 10.1039/C9RA06265C.
  • Akbari, S. A New Voltammetric Sensor according to Graphene Quantum Dots/Ionic Liquid Modified Carbon Paste Electrode for Amaranth Sensitive Determination. Int. J. Environ. Anal. Chem. 2020. DOI: 10.1080/03067319.2020.1726338.
  • Zarei, E.; Jamali, M. R.; Ahmadi, F. Highly Sensitive Electrocatalytic Determination of Formaldehyde Using a Ni/Ionic Liquid Modified Carbon Nanotube Paste Electrode. Bull. Chem. React. Eng. Catal. 2018, 13, 529–542. DOI: 10.9767/bcrec.13.3.2341.529-542.
  • Barthwal, S.; Singh, B.; Singh, N. B. A Novel Electrochemical Sensor Fabricated by Embedding ZnO Nano Particles on MWCNT for Morphine Detection. Mater. Today Proc 2018, 5, 9061–9066. DOI: 10.1016/j.matpr.2017.10.021.
  • Wang, X.; Tan, W.; Wang, Y.; Wu, D.; Kong, Y. Electrosynthesis of Poly(m-Phenylenediamine) on the Nanocomposites of Palygorskite and Ionic Liquid for Electrocatalytic Sensing of Gallic Acid. Sensors Actuators, B Chem 2019, 284, 63–72. DOI: 10.1016/j.snb.2018.12.133.
  • Mohammadi, N.; Najafi, M.; Adeh, N. B. Highly Defective Mesoporous Carbon – Ionic Liquid Paste Electrode as Sensitive Voltammetric Sensor for Determination of Chlorogenic Acid in Herbal Extracts. Sensors Actuators, B Chem. 2017, 243, 838–846. DOI: 10.1016/j.snb.2016.12.070.
  • Varmaghani, F.; Karimi, B.; Mallakpour, S. Stabilization of 4-Phenylurazole by Electrografting on a Nano-Fibrillated Mesoporous Carbon Modified Electrode. Reactivity of Anchored Triazolinedione Groups against Michael-Type Addition at Electrode/Electrolyte Interface. Electrochim. Acta 2018, 269, 312–320. DOI: 10.1016/j.electacta.2018.02.158.
  • Zhuang, X.; Chen, D.; Wang, S.; Liu, H.; Chen, L. Manganese Dioxide Nanosheet-Decorated Ionic Liquid-Functionalized Graphene for Electrochemical Theophylline Biosensing. Sensors Actuators, B Chem. 2017, 251, 185–191. DOI: 10.1016/j.snb.2017.05.049.
  • Kong, L.; Du, Z.; Xie, Z.; Chen, R.; Jia, S.; Dong, R.; Sun, Z.; Sun, W. Electrochemistry of Hemoglobin-Ionic Liquid-Graphene-SnO2 Nanosheet Composite Modified Electrode and Electrocatalysis. Int. J. Electrochem. Sci. 2017, 12, 2297–2305. DOI: 10.20964/2017.03.66.
  • Farzin, L.; Sadjadi, S.; Shamsipur, M.; Sheibani, S. Electrochemical Genosensor Based on Carbon Nanotube/Amine-Ionic Liquid Functionalized Reduced Graphene Oxide Nanoplatform for Detection of Human Papillomavirus (HPV16)-Related Head and Neck Cancer. J. Pharm. Biomed. Anal. 2020, 179, 112989. DOI: 10.1016/j.jpba.2019.112989.
  • Niu, Y.; Liu, J.; Chen, W.; Yin, C.; Weng, W.; Li, X.; Wang, X.; Li, G.; Sun, W. A Direct Electron Transfer Biosensor Based on a Horseradish Peroxidase and Gold Nanotriangle Modified Electrode and Electrocatalysis. Anal. Methods 2018, 10, 5297–5304. DOI: 10.1039/C8AY01980K.
  • Theyagarajan, K.; Yadav, S.; Satija, J.; Thenmozhi, K.; Senthilkumar, S. Gold Nanoparticle-Redox Ionic Liquid Based Nanoconjugated Matrix as a Novel Multifunctional Biosensing Interface. ACS Biomater. Sci. Eng. 2020, 6, 6076–6085. DOI: 10.1021/acsbiomaterials.0c00807.
  • Opallo, M.; Lesniewski, A. A Review on Electrodes Modified with Ionic Liquids. J. Electroanal. Chem. 2011, 656, 2–16. DOI: 10.1016/j.jelechem.2011.01.008.
  • Theyagarajan, K.; Saravanakumar, D.; Senthilkumar, S.; Thenmozhi, K. Rationally Designed Naphthyl Substituted Amine Functionalized Ionic Liquid Platform for Covalent Immobilization and Direct Electrochemistry of Hemoglobin. Sci. Rep. 2019, 9(1), 10428. 10.1038/s41598-019-46982-3.
  • Theyagarajan, K.; Elancheziyan, M.; Aayushi, P. S.; Thenmozhi, K. International Journal of Biological Macromolecules Facile Strategy for Immobilizing Horseradish Peroxidase on a Novel Acetate Functionalized Ionic Liquid/MWCNT Matrix for Electrochemical Biosensing. Int. J. Biol. Macromol. 2020, 163, 358–365. DOI: 10.1016/j.ijbiomac.2020.07.005.
  • Liu, J.; Xie, H.; Yones, H. A.; Deng, Y.; Ling, Z.; Zeng, T.; Li, G.; Sun, W. Titanate Nanofibers Modified Electrode for Electrochemistry of Hemoglobin and Its Electrocatalytic Application for Trichloroacetic Acid Determination. Int. J. Electrochem. Sci. 2019, 14, 8939–8948. DOI: 10.20964/2019.09.38.
  • Alizadeh, M.; Azar, P. A.; Mozaffari, S. A.; Karimi-Maleh, H.; Tamaddon, A. M. A DNA Based Biosensor Amplified with ZIF-8/Ionic Liquid Composite for Determination of Mitoxantrone Anticancer Drug: An Experimental/Docking Investigation. Front. Chem. 2020, 8, 814. DOI: 10.3389/fchem.2020.00814.
  • Shen, Y.; Shen, G.; Zhang, Y. Voltammetric Immunoassay for α-Fetoprotein by Using a Gold Nanoparticle/Dendrimer Conjugate and a Ferrocene Derived Ionic Liquid. Microchim. Acta 2018, 185, 346. DOI: 10.1007/s00604-018-2886-3.
  • Valipour, A.; Roushani, M. TiO2 Nanoparticles Doped with Celestine Blue as a Label in a Sandwich Immunoassay for the Hepatitis C Virus Core Antigen Using a Screen Printed Electrode. Microchim. Acta 2017, 184, 2015–2022. DOI: 10.1007/s00604-017-2190-7.
  • Yan, L. Electrochemical DNA Sensor for Hly Gene of Listeria Monocytogenes by Three-Dimensional Graphene and Gold Nanocomposite Modified Electrode. Int. J. Electrochem. Sci. 2017, 12, 4086–4095. DOI: 10.20964/2017.05.04.
  • Valipour, A.; Roushani, M. Immunoassay for Human Chorionic Gonadotropin Based on Glassy Carbon Electrode Modified with an Epitaxial Nanocomposite. Anal. Bioanal. Chem. Res. 2017, 4, 79–90. DOI: 10.22036/abcr.2016.55142.1099.
  • Soleimani, S.; Arkan, E.; Jalalvand, A. R.; Goicoechea, H. C. Fabrication of a Novel Electrochemical Aptasensor Assisted by a Novel Computerized Monitoring System for Real-Time Determination of the Prostate Specific Antigen: A Computerized Experimental Method Brought Elegancy. Microchem. J. 2020, 157, 104898. DOI: 10.1016/j.microc.2020.104898.
  • Niu, X.; Chen, W.; Wang, X.; Men, Y.; Wang, Q.; Sun, W.; Li, G. A Graphene Modified Carbon Ionic Liquid Electrode for Voltammetric Analysis of the Sequence of the Staphylococcus Aureus Nuc Gene. Microchim. Acta 2018, 185, 167. DOI: 10.1007/s00604-018-2719-4.
  • Ning, Y.-N.; Xiao, B.-L.; Niu, N.-N.; Moosavi-Movahedi, A.; Hong, J. Glucose Oxidase Immobilized on a Functional Polymer Modified Glassy Carbon Electrode and Its Molecule Recognition of Glucose. Polymers (Basel), 2019, 11, 115. DOI: 10.3390/polym11010115.
  • Sun, X.; Hui, N.; Luo, X. Reagentless and Label-Free Voltammetric Immunosensor for Carcinoembryonic Antigen Based on Polyaniline Nanowires Grown on Porous Conducting Polymer Composite. Microchim. Acta 2017, 184, 889–896. DOI: 10.1007/s00604-016-2068-0.
  • Dong, S.; Zhang, D.; Cui, H.; Huang, T. ZnO/Porous Carbon Composite from a Mixed-Ligand MOF for Ultrasensitive Electrochemical Immunosensing of C-Reactive Protein. Sensors Actuators, B Chem. 2019, 284, 354–361. DOI: 10.1016/j.snb.2018.12.150.
  • Deng, Y.; Wen, Z.; Cheng, H., Yan, L.; Shao, B.; Li, G.; Zhang, W. S. X. SnO2 Quantum Dots Functionalized 3D Graphene Composite for Enhanced Performance of Electrochemical Myoglobin Biosensor. Int. J. Electrochem. Sci. 2020, 15, 10412–10422. DOI: 10.20964/2020.10.50.
  • Zhu, L.; Li, X.; Deng, Y.; Zou, R.; Shao, B.; Yan, L.; Ruan, C.; Sun, W. Construction and Electrochemical Behavior of Hemoglobin Sensor Based on ZnO Doped Carbon Nanofiber Modified Electrode. J. Iran. Chem. Soc. 2020, 18 (5), 1027–1034 No. 0123456789. DOI: 10.1007/s13738-020-02088-6.
  • Kang, S. Electrochemical Behaviors of Myoglobin on Ionic Liquid- Graphene-Cobalt Oxide Nanoflower Composite Modified Electrode and Its Electrocatalytic Activity. Int. J. Electrochem. Sci. 2017, 2184–2193. doi:10.20964/2017.03.64.
  • Wen, Z.; Zhao, W.; Li, X.; Niu, X.; Wang, X.; Yan, L.; Zhang, X.; Li, G.; Sun, W. Electrodeposited ZnO@three-Dimensional Graphene Composite Modified Electrode for Electrochemistry and Electrocatalysis of Myoglobin. Int. J. Electrochem. Sci. 2017, 12, 2306–2314. DOI: 10.20964/2017.03.09.
  • Zhao, W.; Li, X.; Wen, Z.; Niu, X.; Shen, Q.; Sun, Z.; Dong, R.; Sun, W. Application of Ionic Liquid-Graphene-NiO Hollowsphere Composite Modified Electrode for Electrochemical Investigation on Hemoglobin and Electrocatalysis to Trichloroacetic Acid. Int. J. Electrochem. Sci. 2017, 12, 4025–4034. DOI: 10.20964/2017.05.06.
  • Chen, X.; Feng, M.; Yan, H.; Sun, W.; Shi, Z.; Lin, Q. Fabrication of Myoglobin-Sodium Alginate-Graphene Composite Modified Carbon Ionic Liquid Electrode via the Electrodeposition Method and Its Electrocatalysis toward Trichloroacetic Acid. Int. J. Electrochem. Sci. 2017, 12, 11633–11645. DOI: 10.20964/2017.12.65.
  • Xie, H. Preparation of Three-Dimensional Graphene and Myoglobin Modified Electrode for Electrocatalysis of Trichloroacetic Acid. Int. J. Electrochem. Sci. 2019, 14, 7663–7672. DOI: 10.20964/2019.08.40.
  • Luo, G.; Xie, H.; Yones, H. A.; Mi, S.; Li, B.; Wang, Y.; Chen, P.; Li, G.; Sun, W. Electrochemical Biosensor Based on Myoglobin for Trichloroacetic Acid and Nitrite Determination. Int. J. Electrochem. Sci. 2019, 14, 8419–8428. DOI: 10.20964/2019.09.37.
  • Liu, J.; Weng, W.; Xie, H.; Luo, G.; Li, G.; Sun, W.; Ruan, C.; Wang, X. Myoglobin- and Hydroxyapatite-Doped Carbon Nanofiber-Modified Electrodes for Electrochemistry and Electrocatalysis. ACS Omega. 2019, 4, 15653–15659. DOI: 10.1021/acsomega.9b02151.
  • Chen, X.; Yan, H.; Sun, W.; Chen, G.; Yu, C.; Feng, W.; Lin, Q. Construction of Myoglobin–Amphiphilic Alginate Caprylamide–Graphene Composite Modified Electrode for the Direct Electron Transfer between Redox Proteins and Electrode and Electrocatalysis of Myoglobin. RSC Adv. 2018, 8, 38003–38012. DOI: 10.1039/C8RA07117A.
  • Chen, X.; Yan, H.; Shi, Z.; Feng, Y.; Li, J.; Lin, Q.; Wang, X.; Sun, W. A Novel Biosensor Based on Electro-Co-Deposition of Sodium Alginate-Fe3O4-Graphene Composite on the Carbon Ionic Liquid Electrode for the Direct Electrochemistry and Electrocatalysis of Myoglobin. Polym. Bull. 2017, 74, 75–90. DOI: 10.1007/s00289-016-1698-z.
  • Yin, C.; Weng, W.; Gao, R.; Liu, J.; Niu, Y.; Li, G.; Sun, W. Investigation of the Direct Electrochemistry and Electrocatalysis of Myoglobin on Gold Nanorods Modified Electrode. J. Chin. Chem. Soc. 2019, 66, 1341–1346. DOI: 10.1002/jccs.201800415.
  • Niu, Y.; Zou, R.; Yones, H. A.; Li, X.; Li, X.; Niu, X.; Chen, Y.; Li, P.; Sun, W. Electrochemical Behavior of Horseradish Peroxidase on WS 2 Nanosheet-Modified Electrode and Electrocatalytic Investigation. J. Chin. Chem. Soc. 2018, 65, 1127–1135. DOI: 10.1002/jccs.201800054.
  • Niu, X.; Xie, H.; Luo, G.; Men, Y.; Zhang, W.; Sun, W. Platinum-3D Graphene Oxide Areogel Nanocomposite for Direct Electrochemistry and Electrocatalysis of Horseradish Peroxidase. J. Electrochem. Soc. 2018, 165, B713–B719. DOI: 10.1149/2.0671814jes.
  • Askim, J. R.; Suslick, K. S. Colorimetric and Fluorometric Sensor Arrays for Molecular Recognition. In Comprehensive Supramolecular Chemistry II; Atwood, J. L. B. T.-C. S. C. I. I., Ed.; Elsevier: Oxford, 2017; pp 37–88. DOI: 10.1016/B978-0-12-409547-2.12616-2.
  • Jerónimo, P. C. A.; Araújo, A. N.; Conceição, M. Optical Sensors and Biosensors Based on Sol-Gel Films. Talanta 2007, 72, 13–27. DOI: 10.1016/j.talanta.2006.09.029.
  • İlktaç, R.; Henden, E. Molecularly Imprinted Polymer-Based Optical Sensors for Pesticide Determination. In Molecular Imprinting for Nanosensors and Other Sensing Applications; Elsevier, 2021; pp 93–115. DOI: 10.1016/B978-0-12-822117-4.00005-8.
  • Li, H.; Sun, C.; Vijayaraghavan, R.; Zhou, F.; Zhang, X.; MacFarlane, D. R. Long Lifetime Photoluminescence in N, S Co-Doped Carbon Quantum Dots from an Ionic Liquid and Their Applications in Ultrasensitive Detection of Pesticides. Carbon N. Y 2016, 104, 33–39. DOI: 10.1016/j.carbon.2016.03.040.
  • Sun, X.; Qian, Y.; Jiao, Y.; Liu, J.; Xi, F.; Dong, X. Ionic Liquid-Capped Graphene Quantum Dots as Label-Free Fluorescent Probe for Direct Detection of Ferricyanide. Talanta 2017, 165, 429–435. DOI: 10.1016/j.talanta.2016.12.085.
  • Rostami, S.; Mehdinia, A.; Jabbari, A.; Kowsari, E.; Niroumand, R.; Booth, T. J. Colorimetric Sensing of Dopamine Using Hexagonal Silver Nanoparticles Decorated by Task-Specific Pyridinum Based Ionic Liquid. Sensors Actuators, B Chem. 2018, 271, 64–72. DOI: 10.1016/j.snb.2018.05.116.
  • Gao, L.; Yang, X.; Shu, Y.; Chen, X.; Wang, J. Ionic Liquid-Based Slab Optical Waveguide Sensor for the Detection of Ammonia in Human Breath. J. Colloid Interface Sci. 2018, 512, 819–825. DOI: 10.1016/j.jcis.2017.10.114.
  • Yuan, X.; Zhang, D.; Zhu, X.; Liu, H.; Sun, B. Triple-Dimensional Spectroscopy Combined with Chemometrics for the Discrimination of Pesticide Residues Based on Ionic Liquid-Stabilized Mn-ZnS Quantum Dots and Covalent Organic Frameworks. Food Chem. 2021, 342, 128299. DOI: 10.1016/j.foodchem.2020.128299.
  • Nishan, U.; Sabba, U.; Rahim, A.; Asad, M.; Shah, M.; Iqbal, A.; Iqbal, J.; Muhammad, N. Ionic Liquid Tuned Titanium Dioxide Nanostructures as an Efficient Colorimetric Sensing Platform for Dopamine Detection. Mater. Chem. Phys. 2021, 262, 124289. DOI: 10.1016/j.matchemphys.2021.124289.
  • Nishan, U.; Niaz, A.; Muhammad, N.; Asad, M.; Shah, A.; Ul, H. A.; Khan, N.; Khan, M.; Shujah, S.; Rahim, A. Non-Enzymatic Colorimetric Biosensor for Hydrogen Peroxide Using Lignin-Based Silver Nanoparticles Tuned with Ionic Liquid as a Peroxidase Mimic. Arab. J. Chem. 2021, 14, 103164. DOI: 10.1016/j.arabjc.2021.103164.
  • Zuo, Y.; Wang, X.; Gou, Z.; Lin, W. Enhancing Photostability of the Fluorescent Probe Using Polysiloxane-Based Imidazolium Ionic Liquid Prepared via Poly-Radziszewski Reaction for the Detection of SCN. Sensors Actuators, B Chem. 2020, 320, 128352. DOI: 10.1016/j.snb.2020.128352.
  • Zeng, Y.; Qiu, B.; Wang, F. F.; Zhou, L.; Li, Y. Transparent Films Based on Functionalized Poly(Ionic Liquids) Coordinating to Photoactive Lanthanide(Eu3+, Tb3+) and Poly(Methyl Methacrylate): Luminescence and Chemical Sensing. Opt. Mater. (Amst) 2020, 107, 110149. DOI: 10.1016/j.optmat.2020.110149.
  • Ni, Y.; Yin, M.; Dong, S.; Huang, F.; Zhao, Q. A Poly(Ionic Liquid)-Pillar[5]Arene Honeycombed Isoporous Membrane for High Performance Cu2+ Sensors. Appl. Surf. Sci 2020, 500, 144056. DOI: 10.1016/j.apsusc.2019.144056.
  • Zhuge, Y.; Xu, D.; Zheng, C.; Pu, S. An Ionic Liquid-Modified Diarylethene: Synthesis, Properties and Sensing Cyanide Ions. Anal. Chim. Acta. 2019, 1079, 153–163. DOI: 10.1016/j.aca.2019.06.039.
  • Ali, R.; Elshaarawy, R. F. M.; Saleh, S. M. Turn-on Ratiometric Fluorescence Sensor Film for Ammonia Based on Salicylaldehyde-Ionic Liquid. J. Environ. Chem. Eng. 2017, 5, 4813–4818. DOI: 10.1016/j.jece.2017.09.022.
  • Kaur, N.; Raj, P.; Singh, A.; Singh, N.; Kim, D. Y. A Facile Route to Ionic Liquids-Functionalized ZnO Nanorods for the Fluorometric Sensing of Thiabendazole Drug. J. Mol. Liq. 2018, 261, 137–145. DOI: 10.1016/j.molliq.2018.04.006.
  • Elshaarawy, R. F. M.; Ali, R.; Saleh, S. M.; Janiak, C. A Novel Water-Soluble Highly Selective “Switch-on” Ionic Liquid-Based Fluorescent Chemi-Sensor for Ca(II). J. Mol. Liq 2017, 241, 308–315. DOI: 10.1016/j.molliq.2017.06.016.
  • Wu, J.; Yin, M. j.; Seefeldt, K.; Dani, A.; Guterman, R.; Yuan, J.; Zhang, A. P.; Tam, H. Y. In Situ Μ-Printed Optical Fiber-Tip CO2 Sensor Using a Photocrosslinkable Poly(Ionic Liquid). Sensors Actuators, B Chem 2018, 259, 833–839. DOI: 10.1016/j.snb.2017.12.125.
  • Perez de Vargas-Sansalvador, I. M.; Erenas, M. M.; Diamond, D.; Quilty, B.; Capitan-Vallvey, L. F. Water Based-Ionic Liquid Carbon Dioxide Sensor for Applications in the Food Industry. Sensors Actuators, B Chem 2017, 253, 302–309. DOI: 10.1016/j.snb.2017.06.047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.