532
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Application of UV-Vis and Infrared Spectroscopy on Wild Edible Bolete Mushrooms Discrimination and Evaluation: A Review

, , , &
Pages 852-868 | Published online: 10 Oct 2021

References

  • Wu, F.; Zhou, L. W.; Yang, Z. L.; Bau, T.; Li, T. H.; Dai, Y. C. Resource Diversity of Chinese Macrofungi: Edible, Medicinal and Poisonous Species. Fungal Diver. 2019, 98, 1–76. DOI: 10.1007/s13225-019-00432-7.
  • Jacinto-Azevedo, B.; Valderrama, N.; Henríquez, K.; Aranda, M.; Aqueveque, P. Nutritional Value and Biological Properties of Chilean Wild and Commercial Edible Mushrooms. Food Chem. 2021, 356, 129651. DOI: 10.1016/j.foodchem.2021.129651.
  • Pandey, A. T.; Pandey, I.; Hachenberger, Y.; Krause, B.; Haidar, R.; Laux, P.; Luch, A.; Singh, M. P.; Singh, A. V. Emerging Paradigm against Global Antimicrobial Resistance via Bioprospecting of Mushroom into Novel Nanotherapeutics Development. Trends Food Sci. Tech. 2020, 106, 333–344. DOI: 10.1016/j.tifs.2020.10.025.
  • Sitta, N.; Floriani, M. Nationalization and Globalization Trends in the Wild Mushroom Commerce of Italy with Emphasis on Porcini (Boletus edulis and Allied Species). Econ. Bot. 2008, 62, 307–322. DOI: 10.1007/s12231-008-9037-4.
  • Kalač, P. Chemical Composition and Nutritional Value of European Species of Wild Growing Mushrooms: A Review. Food Chem. 2009, 113, 9–16. DOI: 10.1016/j.foodchem.2008.07.077.
  • Hao, F.; Su, J. L.; Wang, L. Resource Situation and Optimized Export Countermeasures for Yunnan Boletus. J. Southwest Forest. Univ. 2017, 1, 59–66.
  • Wu, G.; Feng, B.; Xu, J. P.; Zhu, X. T.; Li, Y. C.; Zeng, N. K.; Hosen, M. I.; Yang, Z. L. Molecular Phylogenetic Analyses Redefine Seven Major Clades and Reveal 22 New Generic Clades in the Fungal Family Boletaceae. Fungal Diver. 2014, 69, 93–115. DOI: 10.1007/s13225-014-0283-8.
  • Wang, X. M.; Zhang, J.; Wu, L. H.; Zhao, Y. L.; Li, T.; Li, J. Q.; Wang, Y. Z.; Liu, H. G. A Mini-Review of Chemical Composition and Nutritional Value of Edible Wild-Grown Mushroom from China. Food Chem. 2014, 151, 279–285. DOI: 10.1016/j.foodchem.2013.11.062.
  • Sun, L. P.; Liu, Q. M.; Bao, C. J.; Fan, J. Comparison of Free Total Amino Acid Compositions and Their Functional Classifications in 13 Wild Edible Mushrooms. Molecules. 2017, 22, 22. DOI: 10.3390/molecules22030350.
  • Pedneault, K.; Angers, P.; Gosselin, A.; Tweddell, R. J. Fatty Acid Composition of Lipids from Mushrooms Belonging to the Family Boletaceae. Mycol. Res. 2006, 110, 1179–1183. DOI: 10.1016/j.mycres.2006.05.006.
  • Wang, D.; Sun, S. Q.; Wu, W. Z.; Yang, S. L.; Tan, J. M. Characterization of a Water-Soluble Polysaccharide from Boletus Edulis and Its Antitumor and Immunomodulatory Activities on Renal Cancer in Mice. Carbohydr. Polym. 2014, 105, 127–134. DOI: 10.1016/j.carbpol.2013.12.085.
  • Zhang, L.; Hu, Y.; Duan, X. Y.; Tang, T. T.; Shen, Y. B.; Hu, B.; Liu, A. P.; Chen, H.; Li, C.; Liu, Y. T. Characterization and Antioxidant Activities of Polysaccharides from Thirteen Boletus Mushrooms. Int. J. Biol. Macromol. 2018, 113, 1–7. DOI: 10.1016/j.ijbiomac.2018.02.084.
  • Liu, Y. T.; Chen, D.; You, Y. X.; Zeng, S. Q.; Li, Y. W.; Tang, Q. Q.; Han, G. Q.; Liu, A. P.; Feng, C. H.; Li, C.; et al. Nutritional Composition of Boletus Mushrooms from Southwest China and Their Antihyperglycemic and Antioxidant Activities. Food Chem. 2016, 211, 83–91. DOI: 10.1016/j.foodchem.2016.05.032.
  • Luo, A. X.; Luo, A. S.; Huang, J. D.; Fan, Y. J. Purification, Characterization and Antioxidant Activities in Vitro and in Vivo of the Polysaccharides from Boletus edulis Bull. Molecules. 2012, 17, 8079–8090. DOI: 10.3390/molecules17078079.
  • Kaewnarin, K.; Suwannarach, N.; Kumla, J.; Lumyong, S. Phenolic Profile of Various Wild Edible Mushroom Extracts from Thailand and Their Antioxidant Properties, anti-Tyrosinase and Hyperglycaemic Inhibitory Activities. J. Funct. Foods. 2016, 27, 352–364. DOI: 10.1016/j.jff.2016.09.008.
  • Kumla, J.; Hobbie, E. A.; Suwannarach, N.; Lumyong, S. The Ectomycorrhizal Status of a Tropical Black Bolete, Phlebopus portentosus, Assessed Using Mycorrhizal Synthesis and Isotopic Analysis. Mycorrhiza. 2016, 26, 333–343. DOI: 10.1007/s00572-015-0672-1.
  • Wu, G.; Li, Y. C.; Zhu, X. T.; Zhao, K.; Han, L. H.; Cui, Y. Y.; Li, F.; Xu, J. P.; Yang, Z. L. One Hundred Noteworthy Boletes from China. Fungal Divers 2016, 81, 25–188. DOI: 10.1007/s13225-016-0375-8.
  • Zhang, J. X.; Chen, Q.; Huang, C. Y.; Gao, W.; Qu, J. B. History, Current Situation and Trend of Edible Mushroom Industry Development. Mycosystema 2015, 34, 524–540. DOI: 10.13346/j.mycosystema.150076.
  • Yang, R.; Bao, D.; Guo, T.; Li, Y.; Ji, G.; Ji, K.; Tan, Q. Bacterial Profiling and Dynamic Succession Analysis of Phlebopus portentosus Casing Soil Using Miseq Sequencing. Front. Microbiol. 2019, 10, 1927 DOI: 10.3389/fmicb.2019.01927.
  • Ji, K. P.; Cao, Y.; Zhang, C. X.; He, M. X.; Liu, J.; Wang, W. B.; Wang, Y. Cultivation of Phlebopus portentosus in Southern China. Mycol. Progress. 2011, 10, 293–300. DOI: 10.1007/s11557-010-0700-7.
  • Sun, L. P.; Chang, W. D.; Bao, C. J.; Su, X. J.; Sun, Y. Nutritive Components and Antioxidative Characteristics of Six Wild Edible Boletus Mushrooms from Yunnan Province. Modern Food Sci. Technol. 2016, 32, 279–286. DOI: 10.13982/j.mfst.1673-9078.2016.12.043.
  • Cai, M.; Pettenella, D.; Vidale, E. Income Generation from Wild Mushrooms in Marginal Rural Areas. Forest Policy Econ. 2011, 13, 221–226. DOI: 10.1016/j.forpol.2010.10.001.
  • Yao, S.; Li, T.; Liu, H. G.; Li, J. Q.; Wang, Y. Z. Traceability of Boletaceae Mushrooms Using Data Fusion of UV-Visible and FTIR Combined with Chemometrics Methods. J. Sci. Food Agric. 2018, 98, 2215–2222. DOI: 10.1002/jsfa.8707.
  • Dentinger, B. T. M.; Suz, L. M. What’s for Dinner? Undescribed Species of Porcini in a Commercial Packet. PeerJ. 2014, 2, e570 DOI: 10.7717/peerj.570.
  • Zhuang, J. D.; Xiao, Q.; Feng, T.; Huang, Q. R.; Ho, C. T.; Song, S. Q. Comparative Flavor Profile Analysis of Four Different Varieties of Boletus Mushrooms by Instrumental and Sensory Techniques. Food Res. Int. 2020, 136, 109485 DOI: 10.1016/j.foodres.2020.109485.
  • Palacios, I.; Lozano, M.; Moro, C.; D Arrigo, M.; Rostagno, M. A.; Martínez, J. A.; García-Lafuente, A.; Guillamón, E.; Villares, A. Antioxidant Properties of Phenolic Compounds Occurring in Edible Mushrooms. Food Chem. 2011, 128, 674–678. DOI: 10.1016/j.foodchem.2011.03.085.
  • Yi, T.; Zhu, L.; Peng, W. L.; He, X. C.; Chen, H. L.; Li, J.; Yu, T.; Liang, Z. T.; Zhao, Z. Z.; Chen, H. B. Comparison of Ten Major Constituents in Seven Types of Processed Tea Using HPLC-DAD-Ms Followed by Principal Component and Hierarchical Cluster Analysis. LWT-Food Sci. Technol. 2015, 62, 194–201. DOI: 10.1016/j.lwt.2015.01.003.
  • Tsai, S.; Tsai, H.; Mau, J. Non-Volatile Taste Components of Agaricus blazei, Agrocybe cylindracea and Boletus edulis. Food Chem. 2008, 107, 977–983. DOI: 10.1016/j.foodchem.2007.07.080.
  • Meenu, M.; Xu, B. Application of Vibrational Spectroscopy for Classification, Authentication and Quality Analysis of Mushroom: A Concise Review. Food Chem. 2019, 289, 545–557. DOI: 10.1016/j.foodchem.2019.03.091.
  • Chen, F. X.; Yang, T. W.; Li, J. Q.; Liu, H. G.; Fan, M. P.; Wang, Y. Z. Traceability of Boletus edulis Origin by Multispectral Analysis Combined with Mineral Elements from Different Parts. Spectrosc. Spect. Anal. 2020, 40, 3839–3846. DOI: 10.3964/j.issn.1000-0593(2020)12-3839-08.
  • Hall, D. L.; Llinas, J. An Introduction to Multisensor Data Fusion. Proc. IEEE. 1997, 85, 6–23. DOI: 10.1109/5.554205.
  • Li, X. P.; Li, J. Q.; Li, T.; Liu, H. G.; Wang, Y. Z. Species Discrimination and Total Polyphenol Prediction of Porcini Mushrooms by Fourier Transform Mid-Infrared (FT-MIR) Spectrometry Combined with Multivariate Statistical Analysis. Food Sci. Nutr. 2020, 8, 754–766. DOI: 10.1002/fsn3.1313.
  • Casale, M.; Bagnasco, L.; Zotti, M.; Di Piazza, S.; Sitta, N.; Oliveri, P. A NIR Spectroscopy-Based Efficient Approach to Detect Fraudulent Additions within Mixtures of Dried Porcini Mushrooms. Talanta. 2016, 160, 729–734. DOI: 10.1016/j.talanta.2016.08.004.
  • Yin, L. H.; Zhou, J. M.; Chen, D. D.; Han, T. T.; Zheng, B. S.; Younis, A.; Shao, Q. S. A Review of the Application of near-Infrared Spectroscopy to Rare Traditional Chinese Medicine. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2019, 221, 117208 DOI: 10.1016/j.saa.2019.117208.
  • Uríčková, V.; Sádecká, J. Determination of Geographical Origin of Alcoholic Beverages Using Ultraviolet, Visible and Infrared Spectroscopy: A Review. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2015, 148, 131–137. DOI: 10.1016/j.saa.2015.03.111.
  • Yi, T.; Chen, Q. L.; He, X. C.; So, S. W.; Lo, Y. L.; Fan, L. L.; Xu, J.; Tang, Y. N.; Zhang, J. Y.; Zhao, Z. Z.; Chen, H. B. Chemical Quantification and Antioxidant Assay of Four Active Components in Ficus hirta Root Using UPLC-PAD-MS Fingerprinting Combined with Cluster Analysis. Chem. Cent. J. 2013, 7, 115 DOI: 10.1186/1752-153X-7-115.
  • Yi, T.; Fan, L. L.; Chen, H. L.; Zhu, G. Y.; Suen, H. M.; Tang, Y. N.; Zhu, L.; Chu, C.; Zhao, Z. Z.; Chen, H. B. Comparative Analysis of Diosgenin in Dioscorea Species and Related Medicinal Plants by UPLC-DAD-MS. BMC Biochem. 2014, 15, 19. DOI: 10.1186/1471-2091-15-19.
  • Qi, L. M.; Li, J. Q.; Liu, H. G.; Li, T.; Wang, Y. Z. An Additional Data Fusion Strategy for the Discrimination of Porcini Mushrooms from Different Species and Origins in Combination with Four Mathematical Algorithms. Food Funct. 2018, 9, 5903–5911. DOI: 10.1039/c8fo01376d.
  • Wang, Y. Y.; Li, J. Q.; Li, T.; Liu, H. G.; Wang, Y. Z. A Review on the Application of Spectral Analysis Techniques in Research on Wild-Grown Bolete Mushrooms. Food Sci. 2019, 40, 300–306. DOI: 10.7506/spkx1002-6630-20180830-350.
  • Wu, X. Y.; Bian, X. H.; Lin, E.; Wang, H. T.; Guo, Y. G.; Tan, X. Y. Weighted Multiscale Support Vector Regression for Fast Quantification of Vegetable Oils in Edible Blend Oil by Ultraviolet-Visible Spectroscopy. Food Chem. 2021, 342, 128245 DOI: 10.1016/j.foodchem.2020.128245.
  • Tian, W. F.; Chen, G. J.; Gui, Y.; Zhang, G. R.; Li, Y. H. Rapid Quantification of Total Phenolics and Ferulic Acid in Whole Wheat Using UV-Vis Spectrophotometry. Food Control. 2021, 123, 107691. DOI: 10.1016/j.foodcont.2020.107691.
  • Fang, J. Y.; Zhu, L.; Yi, T.; Zhang, J. Y.; Yi, L.; Liang, Z. T.; Xia, L.; Feng, J. F.; Xu, J.; Tang, Y. N.; et al. Fingerprint Analysis of Processed Rhizoma Chuanxiong by High-Performance Liquid Chromatography Coupled with Diode Array Detection. Chin. Med. 2015, 10, 2 DOI: 10.1186/s13020-015-0031-3.
  • Yi, T.; Fang, J. Y.; Zhu, L.; Tang, Y. N.; Ji, H.; Zhang, Y. Z.; Yu, J. C.; Zhang, X. J.; Yu, Z. L.; Zhao, Z. Z.; Chen, H. B. The Variation in the Major Constituents of the Dried Rhizome of Ligusticum chuanxiong (Chuanxiong) after Herbal Processing. Chin. Med. 2016, 11, 26 DOI: 10.1186/s13020-016-0098-5.
  • Chen, Q. L.; Zhu, L.; Tang, Y. N.; Kwan, H. Y.; Zhao, Z. Z.; Chen, H. B.; Yi, T. Comparative Evaluation of Chemical Profiles of Three Representative 'Snow Lotus' Herbs by UPLC-DAD-QTOF-MS Combined with Principal Component and Hierarchical Cluster analyses. Drug Test Anal. 2017, 9, 1105–1115. DOI: 10.1002/dta.2123.
  • Yi, T.; Zhu, L.; Zhu, G. Y.; Tang, Y. N.; Xu, J.; Fan, J. Y.; Zhao, Z. Z.; Chen, H. B. HSCCC-Based Strategy for Preparative Separation of in Vivo Metabolites after Administration of an Herbal Medicine: Saussurea laniceps, a Case Study. Sci. Rep. 2016, 6, 33036. DOI: 10.1038/srep33036.
  • Jakubikova, M.; Sadecka, J.; Kleinova, A. On the Use of the Fluorescence, Ultraviolet-Visible and near Infrared Spectroscopy with Chemometrics for the Discrimination between Plum Brandies of Different Varietal Origins. Food Chem. 2018, 239, 889–897. DOI: 10.1016/j.foodchem.2017.07.008.
  • Zhang, Y.; Li, J. Q.; Li, T.; Liu, H. G.; Wang, Y. Z. Research on Identification of Boletus tomentipes with Different Storage Period by UV and FT-IR Combined with Data Fusion. Modern Food Sci. Technol. 2018, 34, 218–224. DOI: 10.13982/j.mfst.1673-9078.2018.2.034.
  • Yang, T. W.; Cui, B. K.; Zhang, J.; Li, T.; Li, J. Q.; Liu, H. G.; Wang, Y. Z. Identification of Different Parts of Edible Bolete Mushrooms by UV Fingerprint. Mycosystema. 2014, 33, 262–272. DOI: 10.13346/j.mycosystema.130262.
  • Manley, M. Near-Infrared Spectroscopy and Hyperspectral Imaging: Non-Destructive Analysis of Biological Materials. Chem. Soc. Rev. 2014, 43, 8200–8214. DOI: 10.1039/c4cs00062e.
  • Yu, J.; Wang, H.; Zhan, J. C.; Huang, W. D. Review of Recent UV-Vis and Infrared Spectroscopy Researches on Wine Detection and Discrimination. Appl. Spectrosc. Rev. 2018, 53, 65–86. DOI: 10.1080/05704928.2017.1352511.
  • Viscarra Rossel, R. A.; Walvoort, D. J. J.; McBratney, A. B.; Janik, L. J.; Skjemstad, J. O. Visible, near Infrared, Mid Infrared or Combined Diffuse Reflectance Spectroscopy for Simultaneous Assessment of Various Soil Properties. Geoderma. 2006, 131, 59–75. DOI: 10.1016/j.geoderma.2005.03.007.
  • Pinho, P. G. D.; Ribeiro, B.; Gonçalves, R. F.; Baptista, P.; Valentão, P.; Seabra, R. M.; Andrade, P. B. Correlation between the Pattern Volatiles and the Overall Aroma of Wild Edible Mushrooms. J. Agric. Food Chem. 2008, 56, 1704–1712. DOI: 10.1021/jf073181y.
  • Wang, L.; Li, J. Q.; Li, T.; Liu, H. G.; Wang, Y. Z. Two-Dimensional Correlation Spectroscopy Combined with Deep Learning Method and HPLC Method to Identify the Storage Duration of Porcini. Microchem. J. 2021, 170, 106670. DOI: 10.1016/j.microc.2021.106670.
  • Huang, Y. C.; Chapman, J.; Deng, Y. F.; Cozzolino, D. Rapid Measurement of Microplastic Contamination in Chicken Meat by Mid Infrared Spectroscopy and Chemometrics: A Feasibility Study. Food Control. 2020, 113, 107187. DOI: 10.1016/j.foodcont.2020.107187.
  • Lohumi, S.; Lee, S.; Lee, H.; Cho, B. A Review of Vibrational Spectroscopic Techniques for the Detection of Food Authenticity and Adulteration. Trends Food Sci. Tech. 2015, 46, 85–98. DOI: 10.1016/j.tifs.2015.08.003.
  • Wang, Y.; Li, J.; Liu, H. G.; Fan, M. P.; Wang, Y. Z. Species and Geographical Origins Discrimination of Porcini Mushrooms Based on FT-IR Spectroscopy and Mineral Elements Combined with Sparse Partial Least Square-Discriminant Analysis. J. Food Sci. 2019, 84, 2112–2120. DOI: 10.1111/1750-3841.14715.
  • Noda, I. Frontiers of Two-Dimensional Correlation Spectroscopy. Part 2. Perturbation Methods, Fields of Applications, and Types of Analytical Probes. J. Mol. Struct. 2014, 1069, 23–49. DOI: 10.1016/j.molstruc.2014.01.016.
  • Noda, I. Techniques of Two-Dimensional (2D) Correlation Spectroscopy Useful in Life Science Research. Biomed. Spectrosc. Imag. 2015, 4, 109–127. DOI: 10.3233/BSI-150105.
  • Dong, J. E.; Zhang, J.; Zuo, Z. T.; Wang, Y. Z. Deep Learning for Species Identification of Bolete Mushrooms with Two-Dimensional Correlation Spectral (2DCOS) Images. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2021, 249, 119211 DOI: 10.1016/j.saa.2020.119211.
  • Dong, J. E.; Zuo, Z. T.; Zhang, J.; Wang, Y. Z. Geographical Discrimination of Boletus edulis Using Two Dimensional Correlation Spectral or Integrative Two Dimensional Correlation Spectral Image with Resnet. Food Control. 2021, 129, 108132. DOI: 10.1016/j.foodcont.2021.108132.
  • Ding, Y. G.; Zhang, Q. Z.; Wang, Y. Z. A Fast and Effective Way for Authentication of Dendrobium Species: 2DCOS Combined with Resnet Based on Feature Bands Extracted by Spectrum Standard Deviation. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2021, 261, 120070 DOI: 10.1016/j.saa.2021.120070.
  • Yue, J. Q.; Huang, H. Y.; Wang, Y. Z. A Practical Method Superior to Traditional Spectral Identification: Two-Dimensional Correlation Spectroscopy Combined with Deep Learning to Identify Paris Species. Microchem. J. 2021, 160, 105731. DOI: 10.1016/j.microc.2020.105731.
  • Yue, J. Q.; Li, Z. M.; Zuo, Z. T.; Zhao, Y. L.; Zhang, J.; Wang, Y. Z. Study on the Identification and Evaluation of Growth Years for Paris polyphylla Var. Yunnanensis Using Deep Learning Combined with 2DCOS. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2021, 261, 120033 DOI: 10.1016/j.saa.2021.120033.
  • Liu, Z. M.; Yang, S. B.; Wang, Y. Z.; Zhang, J. Y. Discrimination of the Fruits of Amomum Tsao-Ko according to Geographical Origin by 2DCOS Image with RGB and Resnet Image Analysis Techniques. Microchem. J. 2021, 169, 106545. DOI: 10.1016/j.microc.2021.106545.
  • Zhang, Z. P.; Ding, J. L.; Zhu, C. M.; Wang, J. Z. Combination of Efficient Signal Pre-Processing and Optimal Band Combination Algorithm to Predict Soil Organic Matter through Visible and near-Infrared Spectra. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2020, 240, 118553 DOI: 10.1016/j.saa.2020.118553.
  • Rinnan, Å.; Berg, F. V. D.; Engelsen, S. B. Review of the Most Common Pre-Processing Techniques for near-Infrared Spectra. TrAC-Trend. Anal. Chem. 2009, 28, 1201–1222. DOI: 10.1016/j.trac.2009.07.007.
  • Yao, D. P.; Hui, B. X.; Fang, W. Z.; Wei, L. Study on the Selection of Spectral Preprocessing Methods. Spectrosc. Spect. Anal. 2019, 39, 2800–2806. DOI: 10.3964/j.issn.1000-0593(2019)09-2800-07.
  • Engel, J.; Gerretzen, J.; Szymańska, E.; Jansen, J. J.; Downey, G.; Blanchet, L.; Buydens, L. M. C. Breaking with Trends in Pre-Processing? TrAC-Trend. Anal. Chem. 2013, 50, 96–106. DOI: 10.1016/j.trac.2013.04.015.
  • Liu, Z. I.; Yang, M. Q.; Zuo, Y. M.; Wang, Y. Z.; Zhang, J. Y. Fraud Detection of Herbal Medicines Based on Modern Analytical Technologies Combine with Chemometrics Approach: A Review. Crit. Rev. Anal. Chem. 2021, 1–18. DOI: 10.1080/10408347.2021.1905503.
  • Zhou, L.; Zhang, C.; Qiu, Z.; He, Y. Information Fusion of Emerging Non-Destructive Analytical Techniques for Food Quality Authentication: A Survey. TrAC-Trend Anal. Chem. 2020, 127, 115901. DOI: 10.1016/j.trac.2020.115901.
  • Li, Y.; Shen, Y.; Yao, C. L.; Guo, D. A. Quality Assessment of Herbal Medicines Based on Chemical Fingerprints Combined with Chemometrics Approach: A Review. J. Pharm. Biomed. Anal. 2020, 185, 113215 DOI: 10.1016/j.jpba.2020.113215.
  • Mishra, P.; Passos, D. A Synergistic Use of Chemometrics and Deep Learning Improved the Predictive Performance of near-Infrared Spectroscopy Models for Dry Matter Prediction in Mango Fruit. Chemometr. Intell. Lab. 2021, 212, 104287. DOI: 10.1016/j.chemolab.2021.104287.
  • Borràs, E.; Ferré, J.; Boqué, R.; Mestres, M.; Aceña, L.; Busto, O. Data Fusion Methodologies for Food and Beverage Authentication and Quality assessment - a review. Anal. Chim. Acta. 2015, 891, 1–14. DOI: 10.1016/j.aca.2015.04.042.
  • Meng, T.; Jing, X. Y.; Yan, Z.; Pedrycz, W. A Survey on Machine Learning for Data Fusion. Inform. Fusion. 2020, 57, 115–129. DOI: 10.1016/j.inffus.2019.12.001.
  • Naes, T.; Tomic, O.; Mevik, B.-H.; Martens, H. Path Modelling by Sequential PLS Regression. J. Chemometrics. 2011, 25, 28–40. DOI: 10.1002/cem.1357.
  • Liu, Z. M.; Yang, S. B.; Wang, Y. Z.; Zhang, J. Y. Multi-Platform Integration Based on NIR and UV-Vis Spectroscopies for the Geographical Traceability of the Fruits of Amomum Tsao-Ko. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2021, 258, 119872 DOI: 10.1016/j.saa.2021.119872.
  • Qi, L. M.; Liu, H. G.; Li, J. Q.; Li, T.; Wang, Y. Z. Feature Fusion of ICP-AES, UV-Vis and FT-MIR for Origin Traceability of Boletus Edulis Mushrooms in Combination with Chemometrics. Sensors-Basel. 2018, 18, 241. DOI: 10.3390/s18010241.
  • Hu, Y. R.; Li, J. Q.; Liu, H. G.; Fan, M. P.; Wang, Y. Z. Identify Different Species in Yunnan Wild Edible Bolete by Infrared Spectrum Based on Support Vector Machine. Food Sci. 2019, 42, 248–256. DOI: 10.7506/spkx1002-6630-20191016-151.
  • Bosque-Sendra, J. M.; Cuadros-Rodríguez, L.; Ruiz-Samblás, C.; de la Mata, A. P. Combining Chromatography and Chemometrics for the Characterization and Authentication of Fats and Oils from Triacylglycerol Compositional Data-A Review. Anal. Chim. Acta. 2012, 724, 1–11. DOI: 10.1016/j.aca.2012.02.041.
  • Qi, L. M.; Zhang, J.; Liu, H. G.; Li, T.; Wang, Y. Z. Fourier Transform Mid-Infrared Spectroscopy and Chemometrics to Identify and Discriminate Boletus edulis and Boletus tomentipes Mushrooms. Int. J. Food Prop. 2017, 20, S56–S68. DOI: 10.1080/10942912.2017.1289387.
  • Lazzari, E.; Schena, T.; Marcelo, M. C. A.; Primaz, C. T.; Silva, A. N.; Ferrão, M. F.; Bjerk, T.; Caramão, E. B. Classification of Biomass through Their Pyrolytic Bio-Oil Composition Using FTIR and PCA Analysis. Ind. Crop. Prod. 2018, 111, 856–864. DOI: 10.1016/j.indcrop.2017.11.005.
  • Machado, J. C.; Faria, M. A.; Ferreira, I. M. P. L.; Páscoa, R. N. M. J.; Lopes, J. A. Varietal Discrimination of Hop Pellets by near and Mid Infrared Spectroscopy. Talanta (Oxford). 2018, 180, 69–75. DOI: 10.1016/j.talanta.2017.12.030.
  • Zhang, Y.; Li, J. Q.; Li, T.; Liu, H. G.; Wang, Y. Z. Application of 17 Classification Algorithms for Authentication Research of Various Boletus. Spectrosc. Spect. Anal 2019, 39, 448–453. DOI:
  • Wold, S.; Sjöström, M. SIMCA: A Method for Analyzing Chemical Data in Terms of Similarity and Analogy; American Chemical Society: Washington, DC, 1977.
  • Derde, M. P.; Massart, D. L. UNEQ: A Disjoint Modelling Technique for Pattern Recognition Based on Normal Distribution. Anal. Chim. Acta. 1986, 184, 33–51. DOI: 10.1016/S0003-2670(00)86468-5.
  • Oliveri, P.; López, M. I.; Casolino, M. C.; Ruisánchez, I.; Callao, M. P.; Medini, L.; Lanteri, S. Partial Least Squares Density Modeling (PLS-DM) – A New Class-Modeling Strategy Applied to the Authentication of Olives in Brine by Near-Infrared Spectroscopy. Anal. Chim. Acta. 2014, 851, 30–36. DOI: 10.1016/j.aca.2014.09.013.
  • Li, X. P.; Li, J. Q.; Li, T.; Liu, H. G.; Wang, Y. Z. The Identification of Edible Boletus Based on Heterogeneous Multi-Spectral Information Fusion. Spectrosc. Spect. Anal. 2018, 38, 3897–3904. DOI: 10.3964/j.issn.1000-0593(2018)12-3897-08.
  • Li, Q. Q.; Huang, Y.; Zhang, J. X.; Min, S. G. A Fast Determination of Insecticide Deltamethrin by Spectral Data Fusion of UV-Vis and NIR Based on Extreme Learning Machine. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2021, 247, 119119. DOI: 10.1016/j.saa.2020.119119.
  • Xie, J.; Pan, Q. N.; Li, F. L.; Tang, Y. Y.; Hou, S. W.; Xu, C. H. Simultaneous Detection of Trace Adulterants in Food Based on Multi-Molecular Infrared (MM-IR) Spectroscopy. Talanta. 2021, 222, 121325 DOI: 10.1016/j.talanta.2020.121325.
  • Johnson, J.; Mani, J.; Ashwath, N.; Naiker, M. Potential for Fourier Transform Infrared (FTIR) Spectroscopy toward Predicting Antioxidant and Phenolic Contents in Powdered Plant Matrices. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2020, 233, 118228 DOI: 10.1016/j.saa.2020.118228.
  • Bekiaris, G.; Tagkouli, D.; Koutrotsios, G.; Kalogeropoulos, N.; Zervakis, G. I. Pleurotus Mushrooms Content in Glucans and Ergosterol Assessed by ATR-FTIR Spectroscopy and Multivariate Analysis. Foods. 2020, 9, 535. DOI: 10.3390/foods9040535.
  • Tsujikawa, K.; Kanamori, T.; Iwata, Y.; Ohmae, Y.; Sugita, R.; Inoue, H.; Kishi, T. Morphological and Chemical Analysis of Magic Mushrooms in Japan. Forensic Sci. Int. 2003, 138, 85–90. DOI: 10.1016/j.forsciint.2003.08.009.
  • Bau, T.; Bao, H. Y.; Li, Y. A Revised Checklist of Poisonous Mushrooms in China. Mycosystema. 2014, 33, 517–548. DOI: 10.13346/j.mycosystema.130256.
  • Cervellin, G.; Comelli, I.; Rastelli, G.; Sanchis-Gomar, F.; Negri, F.; De Luca, C.; Lippi, G. Epidemiology and Clinics of Mushroom Poisoning in Northern Italy: A 21-Year Retrospective Analysis. Hum. Exp. Toxicol. 2018, 37, 697–703. DOI: 10.1177/0960327117730882.
  • Mello, A.; Ghignone, S.; Vizzini, A.; Sechi, C.; Ruiu, P.; Bonfante, P. ITS Primers for the Identification of Marketable Boletus. J. Biotechnol. 2006, 121, 318–329. DOI: 10.1016/j.jbiotec.2005.08.022.
  • Hou, W. G.; Lian, B.; Dong, H. L.; Jiang, H. C.; Wu, X. L. Distinguishing Ectomycorrhizal and Saprophytic Fungi Using Carbon and Nitrogen Isotopic Compositions. Geosci. Front. 2012, 3, 351–356. DOI: 10.1016/j.gsf.2011.12.005.
  • Li, Y.; Zhang, J.; Li, T.; Yang, T. W.; Wang, Y. Z.; Liu, H. G.; Ahmed, K. Ultraviolet Spectroscopy Used to Fingerprint Five Wild-Grown Edible Mushrooms (Boletaceae) Collected from Yunnan. China. J. Spectrosc. 2016, 2016, 1–8. DOI: 10.1155/2016/7813405.
  • Ma, D. X.; Liu, G.; Ou, Q. H.; Yu, H. C.; Li, H. M.; Liu, Y. Discrimination of Seven Species of Boletus with Fourier Transform Infrared Spectroscopy. Spectrosc. Spect. Anal. 2016, 36, 2479–2486. DOI: 10.3964/j.issn.1000-0593(2016)08-2479-08.
  • Ma, D. X.; Liu, G.; Ou, Q. H.; Yu, H. C.; Li, H. M.; Shi, Y. M. Discrimination of Common Wild Mushrooms by FTIR and Two-Dimensional Correlation Infrared RSpectroscopy. Spectrosc. Spect. Anal. 2018, 38, 2113–2122. DOI: 10.3964/j.issn.1000-0593(2018)07-2113-10.
  • Chen, Y.; Zhu, S. B.; Xie, M. Y.; Nie, S. P.; Liu, W.; Li, C.; Gong, X. F.; Wang, Y. X. Quality Control and Original Discrimination of Ganoderma lucidum Based on High-Performance Liquid Chromatographic Fingerprints and Combined Chemometrics Methods. Anal. Chim. Acta. 2008, 623, 146–156. DOI: 10.1016/j.aca.2008.06.018.
  • Zhang, J. S.; Zhong, X.; Li, S. S.; Zhang, G. R.; Liu, X. Metabolic Characterization of Natural and Cultured Ophicordyceps sinensis from Different Origins by 1H NMR Spectroscopy. J. Pharm. Biomed. Anal. 2015, 115, 395–401. DOI: 10.1016/j.jpba.2015.07.035.
  • Kojta, A. K.; Falandysz, J. Metallic Elements (Ca, Hg, Fe, K, Mg, Mn, Na, Zn) in the Fruiting Bodies of Boletus badius. Food Chem. 2016, 200, 206–214. DOI: 10.1016/j.foodchem.2016.01.006.
  • Karabagias, I. K. Advances of Spectrometric Techniques in Food Analysis and Food Authentication Implemented with Chemometrics. Foods. 2020, 9, 1550. DOI: 10.3390/foods9111550.
  • Yang, T. W.; Zhang, J.; Li, T.; Wang, Y. Z.; Liu, H. G. Discrimination of Boletus tomentipes from Different Regions Based on Infrared Spectrum Combined with Principal Component Analysis and Cluster Analysis. Spectrosc. Spect. Anal. 2016, 36, 1726–1730. DOI: 10.3964/j.issn.1000-0593(2016)06-1726-05.
  • Yao, S.; Li, T.; Liu, H. G.; Li, J. Q.; Wang, Y. Z. Geographic Characterization of Leccinum Rugosiceps by Ultraviolet and Infrared Spectral Fusion. Anal. Lett. 2017, 50, 2257–2269. DOI: 10.1080/00032719.2017.1279172.
  • Yao, S.; Li, T.; Li, J. Q.; Liu, H. G.; Wang, Y. Z. Geographic Identification of Boletus Mushrooms by Data Fusion of FT-IR and UV Spectroscopies Combined with Multivariate Statistical Analysis. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2018, 198, 257–263. DOI: 10.1016/j.saa.2018.03.018.
  • R, H. Y.; Li, J. Q.; Liu, H. G.; Fan, M. P.; Wang, Y. Z. The Origin Identification Study of Boletus edulis Based on the Infrared Spectrum Data Fusion Strategy. Spectrosc. Spect. Anal. 2020, 40, 1276–1282. DOI: 10.3964/j.issn.1000-0593(2020)04-1276-07.
  • Hu, Y. R.; Li, J. Q.; Liu, H. G.; Fan, M. P.; Wang, Y. Z. Infrared Spectral Study on the Origin Identification of Boletus tomentipes Based on the Random Forest Algorithm and Data Fusion Strategy. Spectrosc. Spect. Anal. 2020, 40, 1495–1502. DOI: 10.3964/j.issn.1000-0593(2020)05-1495-08.
  • Chen, F. X.; Yang, T. W.; Li, J. Q.; Fan, M. P.; Wang, Y. Z. Study on Enrichment Ability of Mineral Elements and Identification of Producing Area of Boletus edulis. Food Science 2020, 42, 290–296. DOI: 10.7506/spkx1002-6630-20191104-039.
  • Schnurer, J.; Olsson, J.; Borjesson, T. Fungal Volatiles as Indicators of Food and Feeds Spoilage. Fungal. Genet. Biol. 1999, 27, 209–217. DOI: 10.1006/fgbi.1999.1139.
  • Atkinson, R.; Arey, J. Gas-Phase Tropospheric Chemistry of Biogenic Volatile Organic Compounds: A Review. Atmos. Environ. 2003, 37, 197–219. DOI: 10.1016/S1352-2310(03)00391-1.
  • Jaworska, G.; Pogoń, K.; Bernaś, E.; Skrzypczak, A. Effect of Different Drying Methods and 24-Month Storage on Water Activity, Rehydration Capacity, and Antioxidants in Boletus edulis Mushrooms. Dry. Technol. 2014, 32, 291–300. DOI: 10.1080/07373937.2013.824895.
  • Yang, T. W.; Li, T.; Li, J. Q.; Zhang, X.; Wang, Y. Z.; Liu, H. G. Study on the Discrimination of Boletus edulis from Different Years and Origins with FTIR. Spectrosc. Spect. Anal. 2016, 36, 2117–2123. DOI: 10.3964/j.issn.1000-0593(2016)07-2117-07.
  • Wang, L.; Li, J. Q.; Li, T.; Liu, H. G.; Wang, Y. Z. Method Superior to Traditional Spectral Identification: FT-NIR Two-Dimensional Correlation Spectroscopy Combined with Deep Learning to Identify the Shelf Life of Fresh Phlebopus portentosus. Acs Omega. 2021, 6, 19665–19674. DOI: 10.1021/acsomega.1c02317.
  • Zhang, M. Q.; Zhao, C.; Shao, Q. J.; Yang, Z. D.; Zhang, X. F.; Xu, X. F.; Hassan, M. Determination of Water Content in Corn Stover Silage Using Near-Infrared Spectroscopy. Int. J. Agr. Biol. Eng. 2019, 12, 143–148. DOI: 10.25165/j.ijabe.20191205.4914.
  • Dugo, L.; Russo, M.; Cacciola, F.; Mandolfino, F.; Salafia, F.; Vilmercati, A.; Fanali, C.; Casale, M.; De Gara, L.; Dugo, P.; et al. Determination of the Phenol and Tocopherol Content in Italian High-Quality Extra-Virgin Olive Oils by Using LC-MS and Multivariate Data Analysis. Food Anal. Method. 2020, 13, 1027–1041. DOI: 10.1007/s12161-020-01721-7.
  • Wang, Y. J.; Li, M. H.; Li, L. Q.; Ning, J. M.; Zhang, Z. Z. Green Analytical Assay for the Quality Assessment of Tea by Using Pocket-Sized NIR Spectrometer. Food Chem. 2021, 345, 128816 DOI: 10.1016/j.foodchem.2020.128816.
  • Qiao, X. L.; Zhao, C.; Shao, Q. J.; Hassan, M. Structural Characterization of Corn Stover Lignin after Hydrogen Peroxide Presoaking Prior to Ammonia Fiber Expansion Pretreatment. Energy Fuels 2018, 32, 6022–6030. DOI: 10.1021/acs.energyfuels.8b00951.
  • Zhao, C.; Cao, Y.; Ma, Z. Q.; Shao, Q. J. Optimization of Liquid Ammonia Pretreatment Conditions for Maximizing Sugar Release from Giant Reed (Arundo donax L.). Biomass Bioenergy. 2017, 98, 61–69. DOI: 10.1016/j.biombioe.2017.01.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.