455
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Progress in Electrochemical Sensing of Heavy Metals Based on Amino Acids and Its Composites

ORCID Icon, , & ORCID Icon
Pages 869-886 | Published online: 21 Oct 2021

References

  • Wang, R.; Zhang, C.; Huang, X.; Zhao, L.; Yang, S.; Struck, U.; Yin, D. Distribution and Source of Heavy Metals in the Sediments of the Coastal East China Sea: Geochemical Controls and Typhoon Impact. Environ. Pollut. 2020, 260, 113936. DOI: 10.1016/j.envpol.2020.113936.
  • Hao, Z.; Chen, L.; Wang, C.; Zou, X.; Zheng, F.; Feng, W.; Zhang, D.; Peng, L. Heavy Metal Distribution and Bioaccumulation Ability in Marine Organisms from Coastal Regions of Hainan and Zhoushan, China. Chemosphere 2019, 226, 340–350. DOI: 10.1016/j.chemosphere.2019.03.132.
  • Zeeshan, M.; Ahmad, W.; Hussain, F.; Ahamd, W.; Numan, M.; Shah, M.; Ahmad, I. Phytostabalization of the Heavy Metals in the Soil with Biochar Applications, the Impact on Chlorophyll, Carotene, Soil Fertility and Tomato Crop Yield. J. Clean. Prod. 2020, 255, 120318. DOI: 10.1016/j.jclepro.2020.120318.
  • Aendo, P.; Thongyuan, S.; Songserm, T.; Tulayakul, P. Carcinogenic and Non-Carcinogenic Risk Assessment of Heavy Metals Contamination in Duck Eggs and Meat as a Warning Scenario in Thailand. Sci. Total Environ. 2019, 689, 215–222. DOI: 10.1016/j.scitotenv.2019.06.414.
  • Lu, H.; Li, H.; Liu, T.; Fan, Y.; Yuan, Y.; Xie, M.; Qian, X. Simulating Heavy Metal Concentrations in an Aquatic Environment Using Artificial Intelligence Models and Physicochemical Indexes. Sci. Total Environ. 2019, 694, 133591. DOI: 10.1016/j.scitotenv.2019.133591.
  • Chi, Z.; Hong, B.; Tan, S.; Wu, Y.; Li, H.; Lu, C. H.; Li, W. Impact Assessment of Heavy Metal Cations to the Characteristics of Photosynthetic Phycocyanin. J. Hazard. Mater 2020, 391, 122225. DOI: 10.1016/j.jhazmat.2020.122225.
  • Yang, S.; Jiang, S.; Hu, K.; Wen, X. Investigation of Dispersive Solid-Phase Extraction Combined with Slurry Sampling Thermospray Flame Furnace Atomic Absorption Spectrometry for the Determination of Cadmium. Microchem. J. 2020, 154, 104542. DOI: 10.1016/j.microc.2019.104542.
  • Zhang, M.; Zhang, L.; Tian, H.; Lu, A. Universal Preparation of Cellulose-Based Colorimetric Sensor for Heavy Metal Ion Detection. Carbohydr. Polym. 2020, 236, 116037. DOI: 10.1016/j.carbpol.2020.116037.
  • Zhang, D.; Jiang, W.; Zhao, Y.; Dong, Y.; Feng, X.; Chen, L. Carbon Dots Rooted PVDF Membrane for Fluorescence Detection of Heavy Metal Ions. Appl. Surf. Sci. 2019, 494, 635–643. DOI: 10.1016/j.apsusc.2019.07.141.
  • Zhang, D.; Yang, S.; Cheng, H.; Wang, Y.; Liu, J. Speciation of Inorganic and Organic Species of Mercury and Arsenic in Lotus Root Using High Performance Liquid Chromatography with Inductively Coupled Plasma Mass Spectrometric Detection in One Run. Talanta 2019, 199, 620–627. DOI: 10.1016/j.talanta.2019.03.023.
  • Wu, Y.; Jiang, T.; Wu, Z.; Yu, R. Novel Ratiometric Surface-Enhanced Raman Spectroscopy Aptasensor for Sensitive and Reproducible Sensing of Hg2+. Biosens. Bioelectron. 2018, 99, 646–652. DOI: 10.1016/j.bios.2017.08.041.
  • Yuan, M.; Peng, X.; Ge, F.; Li, Q.; Wang, K.; Yu, D. G.; Wang, Z. Simplified Design for Solution Anode Glow Discharge Atomic Emission Spectrometry Device for Highly Sensitive Detection of Ag, Bi, Cd, Hg, Pb, Tl, and Zn. Microchem. J. 2020, 155, 104785. DOI: 10.1016/j.microc.2020.104785.
  • Motia, S.; Bouchikhi, B.; Llobet, E.; El Bari, N. Synthesis and Characterization of a Highly Sensitive and Selective Electrochemical Sensor Based on Molecularly Imprinted Polymer with Gold Nanoparticles Modified Screen-Printed Electrode for Glycerol Determination in Wastewater. Talanta 2020, 216, 120953. DOI: 10.1016/j.talanta.2020.120953.
  • Stoian, I. A.; Iacob, B. C.; Dudaș, C. L.; Barbu-Tudoran, L.; Bogdan, D.; Marian, I. O.; Bodoki, E.; Oprean, R. Biomimetic Electrochemical Sensor for the Highly Selective Detection of Azithromycin in Biological Samples. Biosens. Bioelectron. 2020, 155, 112098. DOI: 10.1016/j.bios.2020.112098.
  • Lotfi, S.; Veisi, H. Pd Nanoparticles Decorated Poly-Methyldopa@GO/Fe3O4 Nanocomposite Modified Glassy Carbon Electrode as a New Electrochemical Sensor for Simultaneous Determination of Acetaminophen and Phenylephrine. Mater. Sci. Eng. C 2019, 105, 110112. DOI: 10.1016/j.msec.2019.110112.
  • Lu, Z.; Lin, X.; Zhang, J.; Dai, W.; Liu, B.; Mo, G.; Ye, J.; Ye, J. Ionic Liquid/Poly-L-Cysteine Composite Deposited on Flexible and Hierarchical Porous Laser-Engraved Graphene Electrode for High-Performance Electrochemical Analysis of Lead Ion. Electrochim. Acta 2019, 295, 514–523. DOI: 10.1016/j.electacta.2018.10.176.
  • Tig, A. G. Highly Sensitive Amperometric Biosensor for Determination of NADH and Ethanol Based on Au-Ag Nanoparticles/Poly(L-Cysteine)/Reduced Graphene Oxide Nanocomposite. Talanta 2017, 175, 382–389. DOI: 10.1016/j.talanta.2017.07.073.
  • Gujar, V.; V, R.; Suryawanshi, M.; Bobade, V.; Ottoor, D. Pattern Recognition of Amino Acids Based on Highly Fluorescent SDS Modified Pyridyl Thiazole Derivative. Sensors Actuators, B. Chem. 2020, 310, 127840. DOI: 10.1016/j.snb.2020.127840.
  • Mandler, D. Chiral Self-Assembled Monolayers in Electrochemistry. Curr. Opin. Electrochem. 2018, 7, 42–47. DOI: 10.1016/j.coelec.2017.09.030.
  • Zhang, Q.; Fu, M.; Lu, H.; Fan, X.; Wang, H.; Zhang, Y.; Wang, H. Novel Potential and Current Type Chiral Amino Acids Biosensor Based on L/D-Handed Double Helix Carbon Nanotubes@Polypyrrole@Au Nanoparticles@L/D-Cysteine. Sensors Actuators, B Chem. 2019, 296, 126667. DOI: 10.1016/j.snb.2019.126667.
  • Zhu, F.; Yuan, T.; Jing, W.; Chen, K.; Wang, L.; Fu, Q.; Guan, J.; Chen, M.; Liu, Q.; Yang, H.; Chen, X. Integrating Amino Acid Oxidase with Photoresponsive Probe: A Fast Quantitative Readout Platform of Amino Acid Enantiomers. Talanta 2021, 224, 121894. DOI: 10.1016/j.talanta.2020.121894.
  • Ma, X.; Du, Y.; Zhu, X.; Yang, J. Visual Chiral Recognition of Aromatic Amino Acids with (S)-Mandelic Acid-Based Ionic Liquids via Complexation. Talanta 2020, 217, 121083. DOI: 10.1016/j.talanta.2020.121083.
  • García-Carmona, L.; Moreno-Guzmán, M.; González, M. C.; Escarpa, A. Class Enzyme-Based Motors for “on the Fly” Enantiomer Analysis of Amino Acids. Biosens. Bioelectron 2017, 96, 275–280. DOI: 10.1016/j.bios.2017.04.051.
  • Jiang, J. F.; Qiao, J.; Mu, X. Y.; Moon, M. H.; Qi, L. Fabrication of Enzyme Reactor Utilizing Magnetic Porous Polymer Membrane for Screening D-Amino Acid Oxidase Inhibitors. Talanta 2017, 165, 251–257. DOI: 10.1016/j.talanta.2016.12.055.
  • Zhang, L.; Wang, G.; Xiong, C.; Zheng, L.; He, J.; Ding, Y.; Lu, H.; Zhang, G.; Cho, K.; Qiu, L. Chirality Detection of Amino Acid Enantiomers by Organic Electrochemical Transistor. Biosens. Bioelectron. 2018, 105, 121–128. DOI: 10.1016/j.bios.2018.01.035.
  • Zuo, Y.; Zhang, Y.; Gou, Z.; Lin, W. Facile Construction of Imidazole Functionalized Polysiloxanes by Thiol-Ene “Click” Reaction for the Consecutive Detection of Fe3+ and Amino Acids. Sensors Actuators, B Chem. 2019, 291, 235–242. DOI: 10.1016/j.snb.2019.04.021.
  • Hemalatha, R.; Alagar, M.; Selvasekarapandian, S.; Sundaresan, B.; Moniha, V. Studies of Proton Conducting Polymer Electrolyte Based on PVA, Amino Acid Proline and NH 4 SCN. J. Sci. Adv. Mater. Devices 2019, 4, 101–110. DOI: 10.1016/j.jsamd.2019.01.004.
  • Sedehi, S.; Tabani, H.; Nojavan, S. Electro-Driven Extraction of Polar Compounds Using Agarose Gel as a New Membrane: Determination of Amino Acids in Fruit Juice and Human Plasma Samples. Talanta 2018, 179, 318–325. DOI: 10.1016/j.talanta.2017.11.009.
  • Xu, W.; Feng, H.; Zhao, W.; Huang, C.; Redshaw, C.; Tao, Z.; Xiao, X. Amino Acid Recognition by a Fluorescent Chemosensor Based on Cucurbit[8]Uril and Acridine Hydrochloride. Anal. Chim. Acta. 2020, 1135, 142–149. DOI: 10.1016/j.aca.2020.09.028.
  • Wang, J.; Liu, X.; Wang, Y.; Yu, L.; Peng, H.; Zhu, J. Z. Fe NPs and MWCNTs Based Electrode as FIA Detector for Determination of Amino Acids in Hypothalamus Microdialysis Fluids. Sensors Actuators, B Chem. 2017, 238, 834–841. DOI: 10.1016/j.snb.2016.07.115.
  • Chinta, J. P. Coinage Metal Nanoparticles Based Colorimetric Assays for Natural Amino Acids: A Review of Recent Developments. Sensors Actuators, B Chem. 2017, 248, 733–752. DOI: 10.1016/j.snb.2017.04.028.
  • Tayade, K.; Sonawane, M.; Torawane, P.; Singh, A.; Singh, N.; Kuwar, A. A Chemosensor Selection for the Fluorescence Identification of Tryptophan (Trp) Amino Acids in Aqueous Solutions with Nanomolar Detection. Sensors Actuators, B. Chem. 2017, 246, 563–569. DOI: 10.1016/j.snb.2017.02.121.
  • Xu, M.; Huo, F.; Yin, C. A Supramolecular Sensor System to Detect Amino Acids with Different Carboxyl Groups. Sensors Actuators, B Chem 2017, 240, 1245–1250. DOI: 10.1016/j.snb.2016.09.105.
  • Wang, Y.; Jiang, F.; Ma, C.; Rui, Y.; Tsang, D. C. W.; Xing, B. Effect of Metal Oxide Nanoparticles on Amino Acids in Wheat Grains (Triticum aestivum) in a Life Cycle Study. J. Environ. Manage. 2019, 241, 319–327. DOI: 10.1016/j.jenvman.2019.04.041.
  • Yan, T. T.; Xuan, Z. X.; Wang, S.; Zhang, X.; Luo, F. Facile One-Pot Construction of Polyoxometalate-Based Lanthanide-Amino Acid Coordination Polymers for Proton Conduction. Inorg. Chem. Commun 2019, 105, 147–150. DOI: 10.1016/j.inoche.2019.05.003.
  • Waheed, A.; Mansha, M.; Ullah, N. Nanomaterials-Based Electrochemical Detection of Heavy Metals in Water: Current Status, Challenges and Future Direction. TrAC - Trends Anal. Chem. 2018, 105, 37–51. DOI: 10.1016/j.trac.2018.04.012.
  • Unnikrishnan, B.; Lien, C. W.; Chu, H. W.; Huang, C. C. A Review on Metal Nanozyme-Based Sensing of Heavy Metal Ions: Challenges and Future Perspectives. J. Hazard. Mater. 2021, 401, 123397. DOI: 10.1016/j.jhazmat.2020.123397.
  • Du, Z.; Chen, H.; Guo, X.; Qin, L.; Lin, D.; Huo, L.; Yao, Y.; Zhang, Z. Mechanism and Industrial Application Feasibility Analysis on Microwave-Assisted Rapid Synthesis of Amino-Carboxyl Functionalized Cellulose for Enhanced Heavy Metal Removal. Chemosphere 2021, 268, 128833. DOI: 10.1016/j.chemosphere.2020.128833.
  • An, X.; Tan, Q.; Pan, S.; Liu, H.; Hu, X. A Turn-on Luminescence Probe Based on Amino-Functionalized Metal-Organic Frameworks for the Selective Detections of Cu2+, Pb2+ and Pyrophosphate. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2021, 247, 119073. DOI: 10.1016/j.saa.2020.119073.
  • Kou, Y.; Zhao, Q.; Cheng, Y.; Wu, Y.; Dou, W.; Ren, X. Removal of Heavy Metals in Sludge via. Sci. Total Environ. 2020, 707, 135866. DOI: 10.1016/j.scitotenv.2019.135866.
  • Selim, S.; Abuelsoud, W.; Al-Sanea, M. M.; AbdElgawad, H. Elevated CO2 Differently Suppresses the Arsenic Oxide Nanoparticles-Induced Stress in C3 (Hordeum Vulgare) and C4 (Zea Maize) Plants via Altered Homeostasis in Metabolites Specifically Proline and Anthocyanin Metabolism. Plant Physiol. Biochem. 2021, 166, 235–245. DOI: 10.1016/j.plaphy.2021.05.036.
  • Muche, S.; Hołyńska, M. New Insights into the Coordination Chemistry of Schiff Bases Derived from Amino Acids: Planar [Ni4] Complexes with Tyrosine Side-Chains. J. Mol. Struct. 2017, 1142, 168–174. DOI: 10.1016/j.molstruc.2017.04.036.
  • Ahmad, R.; Hasan, I. L-Methionine Montmorillonite Encapsulated Guar Gum-g-Polyacrylonitrile Copolymer Hybrid Nanocomposite for Removal of Heavy Metals. Groundw. Sustain. Dev. 2017, 5, 75–84. DOI: 10.1016/j.gsd.2017.03.006.
  • Hua, J.; Liu, S.; Ma, H.; Zhou, M.; Wang, C.; Gao, Y.; Bai, Y.; Lu, L.; Xie, W.; Guo, C.; Wang, J. Tryptophan Functionalized Framework of Nanoporous Material as Fluorescent Sensor for Trace Detection of Zn2+ Ions. Mater. Chem. Phys. 2021, 259, 124088. DOI: 10.1016/j.matchemphys.2020.124088.
  • Alrufaydi, Z. A.; Ahmed, S. M.; Mubarak, A. T. Synthesis and Characterization of Novel Transition Metal Complexes with L-Proline and Their Catalytic Activity Evaluation towards Cyclohexane Oxidation. Mater. Res. Express 2020, 7, 045103. DOI: 10.1088/2053-1591/ab89dd.
  • Taraban, M. B.; Ramachandran, S.; Gryczynski, I.; Gryczynski, Z.; Trewhella, J.; Yu, Y. B. Effects of Chain Length on Oligopeptide Hydrogelation. Soft Matter. 2011, 7, 2624–2631. DOI: 10.1039/c0sm00919a.
  • Namazi, H. Polymers in Our Daily Life. Bioimpacts 2017, 7, 73–74. DOI: 10.15171/bi.2017.09.
  • Hu, W.; Ying, M.; Zhang, S.; Wang, J. Poly(Amino Acid)-Based Carrier for Drug Delivery Systems. J. Biomed. Nanotechnol. 2018, 14, 1359–1374. DOI: 10.1166/jbn.2018.2590.
  • Abbina, S.; Parambath, A. PEGylation and Its Alternatives: A Summary. Eng. Biomater. Drug Deliv. Syst. Beyond Polyethyl. Glycol. 2018, 363–376. DOI: 10.1016/B978-0-08-101750-0.00014-3.
  • Li, X.; Jiang, G.; Wang, J.; Ni, X. Inhibitive Properties Comparison of Different Polyamino Acids in Water-Based Drilling Fluids. J. Nat. Gas Sci. Eng 2020, 83, 103589. DOI: 10.1016/j.jngse.2020.103589.
  • Esen, E.; Yazgan, I.; Demirkol, D. O.; Timur, S. Laccase Assay Based on Electrochemistry and Fluorescence Detection via Anthracene Sequestered Poly(Amic Acid) Films. React. Funct. Polym. 2018, 131, 36–43. DOI: 10.1016/j.reactfunctpolym.2018.07.001.
  • Yuan, Y.; Zhao, L.; Shen, C.; He, Y.; Yang, F.; Zhang, G.; Jia, M.; Zeng, R.; Li, C.; Qiao, R. Reactive Oxygen Species-Responsive Amino Acid-Based Polymeric Nanovehicles for Tumor-Selective Anticancer Drug Delivery. Mater. Sci. Eng. C 2020, 106, 110159. DOI: 10.1016/j.msec.2019.110159.
  • Wei, M.; Geng, X.; Liu, Y.; Long, H.; Du, J. A Novel Electrochemical Sensor Based on Electropolymerized Molecularly Imprinted Polymer for Determination of Luteolin. J. Electroanal. Chem 2019, 842, 184–192. DOI: 10.1016/j.jelechem.2019.04.074.
  • Gürsoy, S.; Dükar, N.; Yaman, Y. T.; Abaci, S.; Kuralay, F. Electroactive Polyglycine Coatings for Nanobiosensing Applications: Label-Free DNA Hybridization, DNA-Antitumor Agent Interaction and Antitumor Agent Determination. Anal. Chim. Acta. 2019, 1072, 15–24. DOI: 10.1016/j.aca.2019.04.044.
  • Kordasht, H. K.; Hasanzadeh, M.; Seidi, F.; Alizadeh, P. M. Poly (Amino Acids) towards Sensing: Recent Progress and Challenges. TrAC - Trends Anal. Chem. 2021, 140, 116279. DOI: 10.1016/j.trac.2021.116279.
  • Shadjou, N.; Hasanzadeh, M.; Omari, A. Electrochemical Quantification of Some Water Soluble Vitamins in Commercial Multi-Vitamin Using Poly-Amino Acid Caped by Graphene Quantum Dots Nanocomposite as Dual Signal Amplification Elements. Anal. Biochem. 2017, 539, 70–80. DOI: 10.1016/j.ab.2017.10.011.
  • Hasanzadeh, M.; Mokhtari, F.; Shadjou, N.; Eftekhari, A.; Mokhtarzadeh, A.; Jouyban-Gharamaleki, V.; Mahboob, S. Poly Arginine-Graphene Quantum Dots as a Biocompatible and Non-Toxic Nanocomposite: Layer-by-Layer Electrochemical Preparation, Characterization and Non-Invasive Malondialdehyde Sensory Application in Exhaled Breath Condensate. Mater. Sci. Eng. C. Mater. Biol. Appl. 2017, 75, 247–258. DOI: 10.1016/j.msec.2017.02.025.
  • Ali, M. F. B.; Abdel-Aal, F. A. M. In Situ Polymerization and FT-IR Characterization of Poly-Glycine on Pencil Graphite Electrode for Sensitive Determination of anti-Emetic Drug, Granisetron in Injections and Human Plasma. RSC Adv. 2019, 9, 4325–4335. DOI: 10.1039/C9RA00179D.
  • Hasanzadeh, M.; Mokhtari, F.; Jouyban-Gharamaleki, V.; Mokhtarzadeh, A.; Shadjou, N. Electrochemical Monitoring of Malondialdehyde Biomarker in Biological Samples via Electropolymerized Amino Acid/Chitosan Nanocomposite. J. Mol. Recognit. 2018, 31(8), e2717. DOI: 10.1002/jmr.2717.
  • Ali, M. R.; Bacchu, M. S.; Daizy, M.; Tarafder, C.; Hossain, M. S.; Rahman, M. M.; Khan, M. Z. H. A Highly Sensitive Poly-Arginine Based MIP as an Electrochemical Sensor for Selective Detection of Dimetridazole. Anal. Chim. Acta. 2020, 1121, 11–16. DOI: 10.1016/j.aca.2020.05.004.
  • Kumar, M.; Wang, M.; Kumara Swamy, B. E.; Praveen, M.; Zhao, W. Poly (Alanine)/NaOH/MoS2/MWCNTs Modified Carbon Paste Electrode for Simultaneous Detection of Dopamine, Ascorbic Acid, Serotonin and Guanine. Colloids Surf. B Biointerfaces 2020, 196, 111299. DOI: 10.1016/j.colsurfb.2020.111299.
  • Kokab, T.; Shah, A.; Iftikhar, F. J.; Nisar, J.; Akhter, M. S.; Khan, S. B. Amino Acid-Fabricated Glassy Carbon Electrode for Efficient Simultaneous Sensing of Zinc(II), Cadmium(II), Copper(II), and Mercury(II) Ions. ACS Omega. 2019, 4, 22057–22068. DOI: 10.1021/acsomega.9b03189.
  • Akhtar, M.; Tahir, A.; Zulfiqar, S.; Hanif, F.; Warsi, M. F.; Agboola, P. O.; Shakir, I. Ternary Hybrid of Polyaniline-Alanine-Reduced Graphene Oxide for Electrochemical Sensing of Heavy Metal Ions. Synth. Met 2020, 265, 116410. DOI: 10.1016/j.synthmet.2020.116410.
  • Sayyad, P. W.; Ingle, N. N.; Al-Gahouari, T.; Mahadik, M. M.; Bodkhe, G. A.; Shirsat, S. M.; Shirsat, M. D. Sensitive and Selective Detection of Cu2+ and Pb2+ Ions Using Field Effect Transistor (FET) Based on L-Cysteine Anchored PEDOT:PSS/RGO Composite. Chem. Phys. Lett. 2020, 761, 138056. DOI: 10.1016/j.cplett.2020.138056.
  • Fu, R.; Yu, P.; Wang, M.; Sun, J.; Chen, D.; Jin, C.; Li, Z. The Research of Lead Ion Detection Based on RGO/g-C3N4 Modified Glassy Carbon Electrode. Microchem. J. 2020, 157, 105076. DOI: 10.1016/j.microc.2020.105076.
  • Deshmukh, M. A.; Gicevicius, M.; Ramanaviciene, A.; Shirsat, M. D.; Viter, R.; Ramanavicius, A. Hybrid Electrochemical/Electrochromic Cu(II) Ion Sensor Prototype Based on PANI/ITO-Electrode. Sensors Actuators, B Chem. 2017, 248, 527–535. DOI: 10.1016/j.snb.2017.03.167.
  • Sohouli, E.; Ghalkhani, M.; Rostami, M.; Rahimi-Nasrabadi, M.; Ahmadi, F. A Noble Electrochemical Sensor Based on TiO2@CuO-N-RGO and Poly (L-Cysteine) Nanocomposite Applicable for Trace Analysis of Flunitrazepam. Mater. Sci. Eng. C. 2020, 117, 111300. DOI: 10.1016/j.msec.2020.111300.
  • Zhou, W.; Li, C.; Sun, C.; Yang, X. Simultaneously Determination of Trace Cd(2+) and Pb(2+) Based on L-Cysteine/Graphene Modified Glassy Carbon Electrode . Food Chem. 2016, 192, 351–357. DOI: 10.1016/j.foodchem.2015.07.042.
  • Priya, T.; Dhanalakshmi, N.; Thennarasu, S.; Thinakaran, N. A Novel Voltammetric Sensor for the Simultaneous Detection of Cd2+ and Pb2+ Using Graphene Oxide/κ-Carrageenan/L-Cysteine Nanocomposite. Carbohydr. Polym. 2018, 182, 199–206. DOI: 10.1016/j.carbpol.2017.11.017.
  • Prasannan, A.; Udomsin, J.; Tsai, H. C.; Wang, C. F.; Lai, J. Y. Robust Underwater Superoleophobic Membranes with Bio-Inspired Carrageenan/Laponite Multilayers for the Effective Removal of Emulsions, Metal Ions, and Organic Dyes from Wastewater. Chem. Eng. J 2020, 391, 123585. DOI: 10.1016/j.cej.2019.123585.
  • Lobregas, M. O. S.; Bantang, J. P. O.; Camacho, D. H. Carrageenan-Stabilized Silver Nanoparticle Gel Probe Kit for Colorimetric Sensing of Mercury (II) Using Digital Image Analysis. Sens. Bio-Sensing Res. 2019, 26. DOI: 10.1016/j.sbsr.2019.100303.
  • Priya, T.; Dhanalakshmi, N.; Thennarasu, S.; Karthikeyan, V.; Thinakaran, N. Ultra Sensitive Electrochemical Detection of Cd2+ and Pb2+ Using Penetrable Nature of Graphene/Gold Nanoparticles/Modified L-Cysteine Nanocomposite. Chem. Phys. Lett 2019, 731, 136621. DOI: 10.1016/j.cplett.2019.136621.
  • Aqlan, F. M.; Alam, M. M.; Asiri, A. M.; Zayed, M. E. M.; Al-Eryani, D. A.; Al-Zahrani, F. A. M.; El-Shishtawy, R. M.; Uddin, J.; Rahman, M. M. Fabrication of Selective and Sensitive Pb 2+ Detection by 2,2′-(−(1,2-Phenylenebis(Azaneylylidene))Bis(Methaneylylidene))Diphenol by Electrochemical Approach for Environmental Remediation. J. Mol. Liq. 2019, 281, 401–406. DOI: 10.1016/j.molliq.2019.02.109.
  • Zhang, Y.; Cao, X.; Wu, G.; Wang, J.; Zhang, T. Quaternized Salicylaldehyde Schiff Base Modified Mesoporous Silica for Efficiently Sensing Cu(II) Ions and Their Removal from Aqueous Solution. Appl. Surf. Sci. 2020, 527, 146803. DOI: 10.1016/j.apsusc.2020.146803.
  • Ramirez, M. L.; Tettamanti, C. S.; Gutierrez, F. A.; Gonzalez-Domínguez, J. M.; Anson-Casaos, A.; Hernandez-Ferrer, J.; Martinez, M. T.; Rivas, G. A.; Rodriguez, M. C. Cysteine Functionalized Bio-Nanomaterial for the Affinity Sensing of Pb(II) as an Indicator of Environmental Damage. Microchem. J. 2018, 141, 271–278. DOI: 10.1016/j.microc.2018.05.007.
  • ZabihiSahebi, A.; Koushkbaghi, S.; Pishnamazi, M.; Askari, A.; Khosravi, R.; Irani, M. Synthesis of Cellulose Acetate/Chitosan/SWCNT/Fe3O4/TiO2 Composite Nanofibers for the Removal of Cr(VI), as(V), Methylene Blue and Congo Red from Aqueous Solutions. Int. J. Biol. Macromol. 2019, 140, 1296–1304. DOI: 10.1016/j.ijbiomac.2019.08.214.
  • Jiang, L.; Meng, Y.; Zhang, W.; Yu, H.; Hou, X. Preparation of NH2-SH-GO/SWCNTs Based on Graphene Oxide/Single-Walled Carbon Nanotubes for CO2 and N2 Separation from Blast Furnace Gas. Microporous Mesoporous Mater. 2020, 306, 110476. DOI: 10.1016/j.micromeso.2020.110476.
  • Priya, T.; Dhanalakshmi, N.; Thennarasu, S.; Pulikkutty, S.; Karthikeyan, V.; Thinakaran, N. Synchronous Detection of Cadmium and Lead in Honey, Cocos Nucifera and Egg White Samples Using Multiwalled Carbon Nanotube/Hyaluronic Acid/Amino Acids Nanocomposites. Food Chem. 2020, 317, 126430. DOI: 10.1016/j.foodchem.2020.126430.
  • Oliveira, V. H. B.; Rechotnek, F.; da Silva, E. P.; Marques, V.; de, S.; Rubira, A. F.; Silva, R.; Lourenço, S. A.; Muniz, E. C. A Sensitive Electrochemical Sensor for Pb2+ Ions Based on ZnO Nanofibers Functionalized by L-Cysteine. J. Mol. Liq 2020, 309, 113041. DOI: 10.1016/j.molliq.2020.113041.
  • Kogularasu, S.; Akilarasan, M.; Chen, S. M.; Elaiyappillai, E.; Johnson, P. M.; Chen, T. W.; Al-Hemaid, F. M. A.; Ali, M. A.; Elshikh, M. S. A Comparative Study on Conventionally Prepared MnFe2O4 Nanospheres and Template-Synthesized Novel MnFe2O4 Nano-Agglomerates as the Electrodes for Biosensing of Mercury Contaminations and Supercapacitor Applications. Electrochim. Acta 2018, 290, 533–543. DOI: 10.1016/j.electacta.2018.09.028.
  • Zhou, S. F.; Han, X. J.; Fan, H. L.; Huang, J.; Liu, Y. Q. Enhanced Electrochemical Performance for Sensing Pb(II) Based on Graphene Oxide Incorporated Mesoporous MnFe2O4 Nanocomposites. J. Alloys Compd. 2018, 747, 447–454. DOI: 10.1016/j.jallcom.2018.03.037.
  • Zhou, S. F.; Wang, J. J.; Gan, L.; Han, X. J.; Fan, H. L.; Mei, L. Y.; Huang, J.; Liu, Y. Q. Individual and Simultaneous Electrochemical Detection toward Heavy Metal Ions Based on L-Cysteine Modified Mesoporous MnFe2O4 Nanocrystal Clusters. J. Alloys Compd 2017, 721, 492–500. DOI: 10.1016/j.jallcom.2017.05.321.
  • Jency Feminus, J.; Deepa, P. N. Electrochemical Sensor Based on Composite of Reduced Graphene and Poly-Glutamic Acid for Selective and Sensitive Detection of Lead. J. Mater. Sci: Mater. Electron. 2019, 30, 15553–15562. DOI: 10.1007/s10854-019-01932-7.
  • Raj, M.; Goyal, R. N. A Poly-(Melamine)/Poly-(Glutamic Acid) Based Electrochemical Sensor for Sensitive Determination of 2-Thioxanthine. Sensors Actuators, B Chem. 2017, 250, 552–562. DOI: 10.1016/j.snb.2017.05.009.
  • Negut, C. C.; Stefan - van Staden, R.-I.; van Staden, J. F. Porphyrins-as Active Materials in the Design of Sensors. An Overview. ECS J. Solid State Sci. Technol. 2020, 9, 051005. DOI: 10.1149/2162-8777/ab9a5d.
  • Sallam, G.; Shaban, S. Y.; Nassar, A.; El-Khouly, M. E. Water Soluble Porphyrin as Optical Sensor for the Toxic Heavy Metal Ions in an Aqueous Medium. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2020, 241, 118609. DOI: 10.1016/j.saa.2020.118609.
  • Yi, W.; He, Z.; Fei, J.; He, X. Sensitive Electrochemical Sensor Based on Poly(l-Glutamic Acid)/Graphene Oxide Composite Material for Simultaneous Detection of Heavy Metal Ions. RSC Adv. 2019, 9, 17325–17334. DOI: 10.1039/C9RA01891C.
  • Wei, S. l.; Yan, L. j.; Huang, X. j.; Li, J. w.; Yao, S.; Zhang, H. s.; Xu, A. z. Facile and Green Fabrication of Electrochemical Sensor Based on Poly(Glutamic Acid) and Carboxylated Carbon Nanosheets for the Sensitive Simultaneous Detection of Cd(II) and Pb(II). Ionics (Kiel) 2021, 27, 375–387. DOI: 10.1007/s11581-020-03810-3.
  • Wang, Q.; Liu, Y.; Campillo-Brocal, J. C.; Jimenez-Quero, A.; Crespo, G. A.; Cuartero, M. Electrochemical Biosensor for Glycine Detection in Biological Fluids. Biosens. Bioelectron, 2021, 182, 113154. DOI: 10.1016/j.bios.2021.113154.
  • Liu, R.; Yang, R.; Qu, C.; Mao, H.; Hu, Y.; Li, J.; Qu, L. Synthesis of Glycine-Functionalized Graphene Quantum Dots as Highly Sensitive and Selective Fluorescent Sensor of Ascorbic Acid in Human Serum. Sensors Actuators, B Chem 2017, 241, 644–651. DOI: 10.1016/j.snb.2016.10.096.
  • Shah, A.; Nisar, A.; Khan, K.; Nisar, J.; Niaz, A.; Ashiq, M. N.; Akhter, M. S. Amino Acid Functionalized Glassy Carbon Electrode for the Simultaneous Detection of Thallium and Mercuric Ions. Electrochim. Acta 2019, 321, 134658. DOI: 10.1016/j.electacta.2019.134658.
  • Hanif, F.; Tahir, A.; Akhtar, M.; Waseem, M.; Haider, S.; Aly Aboud, M. F.; Shakir, I.; Imran, M.; Warsi, M. F. Ultra-Selective Detection of Cd2+ and Pb2+ Using Glycine Functionalized Reduced Graphene Oxide/Polyaniline Nanocomposite Electrode. Synth. Met. 2019, 257, 116185. DOI: 10.1016/j.synthmet.2019.116185.
  • Laurinavičius, L.; Radzevič, A.; Ignatjev, I.; Niaura, G.; Vitkutė, K.; Širšinaitis, T.; Trusovas, R.; Pauliukaite, R. Investigation of Electrochemical Polymerisation of L-Lysine and Application for Immobilisation of Functionalised Graphene as Platform for Electrochemical Sensing. Electrochim. Acta 2019, 299, 936–945. DOI: 10.1016/j.electacta.2019.01.079.
  • Guo, Z.; Li, D. d.; Luo, X. k.; Li, Y. h.; Zhao, Q. N.; Li, M. m.; Zhao, Y. t.; Sun, T. s.; Ma, C. Simultaneous Determination of Trace Cd(II), Pb(II) and Cu(II) by Differential Pulse Anodic Stripping Voltammetry Using a Reduced Graphene Oxide-Chitosan/Poly-L-Lysine Nanocomposite Modified Glassy Carbon Electrode. J. Colloid Interface Sci. 2017, 490, 11–22. DOI: 10.1016/j.jcis.2016.11.006.
  • Murugavelu, M.; Karthikeyan, B. Synthesis, Characterization of Ag-Au Core-Shell Bimetal Nanoparticles and Its Application for Electrocatalytic Oxidation/Sensing of L-Methionine. Mater. Sci. Eng. C. Mater. Biol. Appl. 2017, 70, 656–664. DOI: 10.1016/j.msec.2016.09.046.
  • Saidur, M. R.; Aziz, A. R. A.; Basirun, W. J. Recent Advances in DNA-Based Electrochemical Biosensors for Heavy Metal Ion Detection: A Review. Biosens. Bioelectron. 2017, 90, 125–139. DOI: 10.1016/j.bios.2016.11.039.
  • Wang, W.; Xu, Y.; Cheng, N.; Xie, Y.; Huang, K.; Xu, W. Dual-Recognition Aptazyme-Driven DNA Nanomachine for Two-in-One Electrochemical Detection of Pesticides and Heavy Metal Ions. Sensors Actuators, B Chem. 2020, 321, 128598. DOI: 10.1016/j.snb.2020.128598.
  • Wang, X.; Xu, C.; Wang, Y.; Li, W.; Chen, Z. Electrochemical DNA Sensor Based on T-Hg-T Pairs and Exonuclease III for Sensitive Detection of Hg2+. Sensors Actuators, B Chem. 2021, 343, 130151. DOI: 10.1016/j.snb.2021.130151.
  • Zhang, X.; Jiang, Y.; Zhu, M.; Xu, Y.; Guo, Z.; Shi, J.; Han, E.; Zou, X.; Wang, D. Electrochemical DNA Sensor for Inorganic Mercury(II) Ion at Attomolar Level in Dairy Product Using Cu(II)-Anchored Metal-Organic Framework as Mimetic Catalyst. Chem. Eng. J 2020, 383, 123182. DOI: 10.1016/j.cej.2019.123182.
  • Liu, H.; Wang, J.; Jin, H.; Wei, M.; Ren, W.; Zhang, Y.; Wu, L.; He, B. Electrochemical Biosensor for Sensitive Detection of Hg2+ Baesd on Clustered Peonylike Copper-Based Metal-Organic Frameworks and DNAzyme-Driven DNA Walker Dual Amplification Signal Strategy. Sensors Actuators, B Chem. 2021, 329, 129215. DOI: 10.1016/j.snb.2020.129215.
  • Akbari Hasanjani, H. R.; Zarei, K. An Electrochemical Sensor for Attomolar Determination of Mercury(II) Using DNA/Poly-L-Methionine-Gold Nanoparticles/Pencil Graphite Electrode. Biosens. Bioelectron. 2019, 128, 1–8. DOI: 10.1016/j.bios.2018.12.039.
  • Choi, Y. S.; Im, M. K.; Lee, M. R.; Kim, C. S.; Lee, K. H. Highly Sensitive Enclosed Multilayer Paper-Based Microfluidic Sensor for Quantifying Proline in Plants. Anal. Chim. Acta. 2020, 1105, 169–177. DOI: 10.1016/j.aca.2020.01.038.
  • El Boraei, N. F.; Ibrahim, M. A. M. Catalytic Effect of L-Proline on the Reduction of Ni(II) Ions during Nickel Electrodeposition from a Watts-Type Nickel Bath. Surf. Coatings Technol. 2018, 347, 113–122. DOI: 10.1016/j.surfcoat.2018.04.079.
  • Bhardiya, S. R.; Asati, A.; Sheshma, H.; Rai, A.; Rai, V. K.; Singh, M. A Novel Bioconjugated Reduced Graphene Oxide-Based Nanocomposite for Sensitive Electrochemical Detection of Cadmium in Water. Sensors Actuators, B Chem 2021, 328, 129019. DOI: 10.1016/j.snb.2020.129019.
  • Gong, Q. J.; Han, H. X.; Wang, Y. D.; Yao, C. Z.; Yang, H. Y.; Qiao, J. L. An Electrochemical Sensor for Dopamine Detection Using Poly-Tryptophan Composited Graphene on Glassy Carbon as the Electrode. New Carbon Mater. 2020, 35, 34–41. DOI: 10.1016/S1872-5805(20)60473-5.
  • Seher, S.; Shah, A.; Iftikhar, F. J.; Nisar, J.; Ashiq, M. N.; Aljar, M. A.; Akhter, M. S. Detection of Copper Ions by a Simple, Greener and Cost Effective Sensor with GCE Modified with L-Tryptophan. J. Electrochem. Soc. 2020, 167, 027506. DOI: 10.1149/1945-7111/ab6287.
  • Alam, A. U.; Howlader, M. M. R.; Hu, N. X.; Deen, M. J. Electrochemical Sensing of Lead in Drinking Water Using Β-Cyclodextrin-Modified MWCNTs. Sensors Actuators, B Chem. 2019, 296, 126632. DOI: 10.1016/j.snb.2019.126632.
  • Deb, M.; Saxena, S.; Bandyopadhyaya, R.; Shukla, S. β-Cyclodextrin Functionalized RGO Films for Lead Sensing. Mater. Sci. Eng. B. 2021, 272, 115323. DOI: 10.1016/j.mseb.2021.115323.
  • Cui, X.; Yang, B.; Zhao, S.; Li, X.; Qiao, M.; Mao, R.; Wang, Y.; Zhao, X. Electrochemical Sensor Based on ZIF-8@Dimethylglyoxime and β-Cyclodextrin Modified Reduced Graphene Oxide for Nickel (II) Detection. Sensors Actuators, B Chem. 2020, 315, 128091. DOI: 10.1016/j.snb.2020.128091.
  • Ghorbani, M.; Pedramrad, T.; Aghamohammadhasan, M.; Seyedin, O.; Akhlaghi, H.; Afshar Lahoori, N. Afshar Lahoori, N. Simultaneous Clean-up and Determination of Cu(II), Pb(II) and Cr(III) in Real Water and Food Samples Using a Magnetic Dispersive Solid Phase Microextraction and Differential Pulse Voltammetry with a Green and Novel Modified Glassy Carbon Electrode. Microchem. J. 2019, 147, 545–554. DOI: 10.1016/j.microc.2019.03.072.
  • Lee, J.; Ju, M.; Cho, O. H.; Kim, Y.; Nam, K. T. Tyrosine-Rich Peptides as a Platform for Assembly and Material Synthesis. Adv. Sci. (Weinh) 2019, 6, 1801255. DOI: 10.1002/advs.201801255.
  • Dalkıran, B. Amperometric Determination of Heavy Metal Using an HRP Inhibition Biosensor Based on ITO Nanoparticles-Ruthenium (III) Hexamine Trichloride Composite: Central Composite Design Optimization. Bioelectrochemistry 2020, 135, 107569. DOI: 10.1016/j.bioelechem.2020.107569.
  • da Silva, W.; Ghica, M. E.; Brett, C. M. A. Biotoxic Trace Metal Ion Detection by Enzymatic Inhibition of a Glucose Biosensor Based on a Poly(Brilliant Green)–Deep Eutectic Solvent/Carbon Nanotube Modified Electrode. Talanta 2020, 208, 120427. DOI: 10.1016/j.talanta.2019.120427.
  • Elsebai, B.; Ghica, M. E.; Abbas, M. N.; Brett, C. M. A. Catalase Based Hydrogen Peroxide Biosensor for Mercury Determination by Inhibition Measurements. J. Hazard. Mater. 2017, 340, 344–350. DOI: 10.1016/j.jhazmat.2017.07.021.
  • Liu, L.; Kang, X.; Chen, C.; Zhang, H.; Chen, C.; Xie, Q. L-Tyrosine Polymerization-Based Ultrasensitive Multi-Analyte Enzymatic Biosensor. Talanta 2018, 179, 803–809. DOI: 10.1016/j.talanta.2017.12.014.
  • Oularbi, L.; Turmine, M.; Salih, F. E.; El Rhazi, M. Ionic Liquid/Carbon Nanofibers/Bismuth Particles Novel Hybrid Nanocomposite for Voltammetric Sensing of Heavy Metals. J. Environ. Chem. Eng. 2020, 8, 103774. DOI: 10.1016/j.jece.2020.103774.
  • Lu, Z.; Dai, W.; Lin, X.; Liu, B.; Zhang, J.; Ye, J.; Ye, J. Facile One-Step Fabrication of a Novel 3D Honeycomb-like Bismuth Nanoparticles Decorated N-Doped Carbon Nanosheet Frameworks: Ultrasensitive Electrochemical Sensing of Heavy Metal Ions. Electrochim. Acta 2018, 266, 94–102. DOI: 10.1016/j.electacta.2018.01.188.
  • Lin, W. F.; Zhai, W. Y.; Yan, Y.; Liu, Y. Q. Highly Sensitive Pb2+ Sensor Based on Rod-like Poly-Tyrosine/Bi Modified Glassy Carbon Electrode Combined with Electrodeposition to Eliminate Cu2+ Interference. Microchem. J. 2021, 160, 105664. DOI: 10.1016/j.microc.2020.105664.
  • Xiao, L.; Xu, H.; Zhou, S.; Song, T.; Wang, H.; Li, S.; Gan, W.; Yuan, Q. Simultaneous Detection of Cd(II) and Pb(II) by Differential Pulse Anodic Stripping Voltammetry at a Nitrogen-Doped Microporous Carbon/Nafion/Bismuth-Film Electrode. Electrochim. Acta 2014, 143, 143–151. DOI: 10.1016/j.electacta.2014.08.021.
  • Zhang, Y.; Li, C.; Su, Y.; Mu, W.; Han, X. Simultaneous Detection of Trace Cd(II) and Pb(II) by Differential Pulse Anodic Stripping Voltammetry Using a Bismuth Oxycarbide/Nafion Electrode. Inorg. Chem. Commun 2020, 111, 107672. DOI: 10.1016/j.inoche.2019.107672.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.