240
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Recent Advances in Development of Metal-Organic Frameworks Based Extraction Approaches for Food and Biological Matrices

, , , , , & ORCID Icon show all
Pages 887-905 | Published online: 21 Oct 2021

References

  • Zolotov, Y. A. Evolution of Chemical Analysis Methods. Her. Russ. Acad. Sci. 2020, 90, 56–62. DOI: 10.1134/S1019331620010220.
  • Kopcinovic, L. M.; Vogrinc, Z.; Kocijan, I.; Culej, J.; Aralica, M.; Jokic, A.; Antoncic, D.; Bozovic, M. Laboratory Testing of Extravascular Body Fluids in Croatia: A Survey of the Working Group for Extravascular Body Fluids of the Croatian Society of Medical Biochemistry and Laboratory Medicine. Biochem. Med. (Zagreb.) 2016, 26, 395–407. DOI: 10.11613/BM.2016.042.
  • Griffiths, E.; Dooley, D.; Graham, M.; Van Domselaar, G.; Brinkman, F. S. L.; Hsiao, W. W. L. Context is Everything: Harmonization of Critical Food Microbiology Descriptors and Metadata for Improved Food Safety and Surveillance. Front. Microbiol. 2017, 8, 1068. DOI: 10.3389/fmicb.2017.01068.
  • Manousi, N.; Raber, G.; Papadoyannis, I. Recent Advances in Microextraction Techniques of Antipsychotics in Biological Fluids Prior to Liquid Chromatography Analysis. Separations 2017, 4, 18. DOI: 10.3390/separations4020018.
  • Shao, B.; Li, H.; Shen, J.; Wu, Y. Nontargeted Detection Methods for Food Safety and Integrity. Annu. Rev. Food Sci. Technol. 2019, 10, 429–455. DOI: 10.1146/annurev-food-032818-121233.
  • Zhai, Q.-G.; Bu, X.; Mao, C.; Zhao, X.; Feng, P. Systematic and Dramatic Tuning on Gas Sorption Performance in Heterometallic Metal-Organic Frameworks. J. Am. Chem. Soc. 2016, 138, 2524–2527. DOI: 10.1021/jacs.5b13491.
  • Wu, M.-X.; Yang, Y.-W. Metal-Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy. Adv. Mater. 2017, 29, 1606134. DOI: 10.1002/adma.201606134.
  • Khan, N.-A.; Jung, B.-K.; Hasan, Z.; Jhung, S.-H. Adsorption and Removal of Phthalic Acid and Diethyl Phthalate from Water with Zeolitic Imidazolate and Metal-Organic Frameworks. J. Hazard. Mater. 2015, 282, 194–200. DOI: 10.1016/j.jhazmat.2014.03.047.
  • Ma, L.; Abney, C.; Lin, W. Enantioselective Catalysis with Homochiral Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1248–1256. DOI: 10.1039/b807083k.
  • Yan, Z.; Zheng, J.; Chen, J.; Tong, P.; Lu, M.; Lin, Z.; Zhang, L. Preparation and Evaluation of Silica-UIO-66 Composite as Liquid Chromatographic Stationary Phase for Fast and Efficient Separation. J. Chromatogr. A. 2014, 1366, 45–53. DOI: 10.1016/j.chroma.2014.08.077.
  • Xue, Z.; Jia, L.; Zhu, R.-R.; Du, L.; Zhao, Q.-H. High-Performance Non-Enzymatic Glucose Electrochemical Sensor Constructed by Transition Nickel Modified Ni@Cu-MOF. J. Electroanal. Chem. 2020, 858, 113783. DOI: 10.1016/j.jelechem.2019.113783.
  • Saeed, A.; Hussain, D.; Saleem, S.; Mehdi, S.; Javeed, R.; Jabeen, F.; Najam-Ul-Haq, M. Metal-Organic Framework-Based Affinity Materials in Proteomics. Anal. Bioanal. Chem. 2019, 411, 1745–1759. DOI: 10.1007/s00216-019-01610-x.
  • Zhao, M.; Deng, C.; Zhang, X. The Design and Synthesis of a Hydrophilic Core-Shell-Shell Structured Magnetic Metal-Organic Framework as a Novel Immobilized Metal Ion Affinity Platform for Phosphoproteome Research. Chem. Commun. (Camb.) 2014, 50, 6228–6231. DOI: 10.1039/c4cc01038h.
  • Saeed, A.; Maya, F.; Xiao, D.-J.; Najam-Ul-Haq, M.; Svec, F.; Britt, D. K. Growth of a Highly Porous Coordination Polymer on a Macroporous Polymer Monolith Support for Enhanced Immobilized Metal Ion Affinity Chromatographic Enrichment of Phosphopeptides. Adv. Funct. Mater. 2014, 24, 5790–5797. DOI: 10.1002/adfm.201400116.
  • Yin, P.; Sun, N.; Deng, C.; Li, Y.; Zhang, X.; Yang, P. Facile Preparation of Magnetic Graphene Double-Sided Mesoporous Composites for the Selective Enrichment and Analysis of Endogenous Peptides. Proteomics 2013, 13, 2243–2250. DOI: 10.1002/pmic.201300066.
  • Wang, J.; Li, J.; Wang, Y.; Gao, M.; Zhang, X.; Yang, P. Development of Versatile Metal-Organic Framework Functionalized Magnetic Graphene Core-Shell Biocomposite for Highly Specific Recognition of Glycopeptides. ACS Appl. Mater. Interfaces 2016, 8, 27482–27489. DOI: 10.1021/acsami.6b08218.
  • Mohyuddin, A.; Hussain, D.; Fatima, B.; Athar, M.; Ashiq, M. N.; Najam-Ul-Haq, M. Gallic Acid Functionalized UiO-66 for the Recovery of Ribosylated Metabolites from Human Urine Samples. Talanta 2019, 201, 23–32. DOI: 10.1016/j.talanta.2019.03.072.
  • Tian, D.; Zhou, X.-L.; Zhang, Y.-H.; Zhou, Z.; Bu, X.-H. MOF-Derived Porous Co3O4 Hollow Tetrahedra with Excellent Performance as Anode Materials for Lithium-Ion Batteries. Inorg. Chem. 2015, 54, 8159–8161. DOI: 10.1021/acs.inorgchem.5b00544.
  • Mai, Z.; Liu, D. Synthesis and Applications of Isoreticular Metal-Organic Frameworks IRMOFs-n (n = 1, 3, 6, 8). Cryst. Growth Des. 2019, 19, 7439–7462. DOI: 10.1021/acs.cgd.9b00879.
  • Hashemi, B.; Zohrabi, P.; Raza, N.; Kim, K. H. Metal-Organic Frameworks as Advanced Sorbents for the Extraction and Determination of Pollutants from Environmental, Biological, and Food Media. TrAC-Trends Anal. Chem. 2017, 97, 65–82. DOI: 10.1016/j.trac.2017.08.015.
  • Gao, Y.; Liu, G.; Gao, M.; Huang, X.; Xu, D. Recent Advances and Applications of Magnetic Metal-Organic Frameworks in Adsorption and Enrichment Removal of Food and Environmental Pollutants. Crit. Rev. Anal. Chem. 2020, 50, 472–484. DOI: 10.1080/10408347.2019.1653166.
  • Hasan, Z.; Jhung, S. H. Removal of Hazardous Organics from Water Using Metal-Organic Frameworks (MOFs): Plausible Mechanisms for Selective Adsorptions. J. Hazard. Mater. 2015, 283, 329–339. DOI: 10.1016/j.jhazmat.2014.09.046.
  • Kobielska, P.; Howarth, A. J.; Farha, O. K.; Nayak, S. Metal-Organic Frameworks for Heavy Metal Removal from Water. Coord. Chem. Rev. 2018, 358, 92–107. DOI: 10.1016/j.ccr.2017.12.010.
  • Wang, P.-L.; Xie, L.-H.; Joseph, E. A.; Li, J.-R.; Su, X.-O.; Zhou, H.-C. Metal-Organic Frameworks for Food Safety. Chem. Rev. 2019, 119, 10638–10690. DOI: 10.1021/acs.chemrev.9b00257.
  • Souza-Silva, É. A.; Jiang, R.; Rodríguez-Lafuente, A.; Gionfriddo, E.; Pawliszyn, J. A Critical Review of the State of the Art of Solid-Phase Microextraction of Complex Matrices I. Environmental Analysis. TrAC Trends Anal. Chem. 2015, 71, 224–235. DOI: 10.1016/j.trac.2015.04.016.
  • Chui, S. S.; Lo, S. M.; Charmant, J. P.; Orpen, A. G.; Williams, I. D. A Chemically Functionalizable Nanoporous Material. Science 1999, 283, 1148–1150. DOI: 10.1126/science.283.5405.1148.
  • Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M. Room Temperature Synthesis of Metal-Organic Frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 2008, 64, 8553–8557. DOI: 10.1016/j.tet.2008.06.036.
  • Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science 2005, 309, 2040–2042. DOI: 10.1126/science.1116275.
  • Wang, X.; Deng, C. Preparation of Magnetic Graphene@polydopamine@Zr-MOF Material for the Extraction and Analysis of Bisphenols in Water Samples. Talanta 2015, 144, 1329–1335. DOI: 10.1016/j.talanta.2015.08.014.
  • Schlesinger, M.; Schulze, S.; Hietschold, M.; Mehring, M. Evaluation of Synthetic Methods for Microporous Metal-Organic Frameworks Exemplified by the Competitive Formation of [Cu2(btc)3(H2O)3] and [Cu2(btc)(OH)(H2O)]. Micropor. Mesopor. Mater. 2010, 132, 121–127. DOI: 10.1016/j.micromeso.2010.02.008.
  • Ni, Z.; Masel, R. I. Rapid Production of Metal-Organic Frameworks via Microwave-Assisted Solvothermal Synthesis. J. Am. Chem. Soc. 2006, 128, 12394–12395. DOI: 10.1021/ja0635231.
  • Seo, Y.-K.; Hundal, G.; Jang, I. T.; Hwang, Y. K.; Jun, C.-H.; Chang, J.-S. Microwave Synthesis of Hybrid Inorganic-Organic Materials Including Porous Cu3(BTC)2 from Cu(II)-Trimesate Mixture. Micropor. Mesopor. Mater. 2009, 119, 331–337. DOI: 10.1016/j.micromeso.2008.10.035.
  • Ren, J.; Dyosiba, X.; Musyoka, N. M.; Langmi, H. W.; Mathe, M.; Liao, S. Review on the Current Practices and Efforts towards Pilot-Scale Production of Metal-Organic Frameworks (MOFs). Coord. Chem. Rev. 2017, 352, 187–219. DOI: 10.1016/j.ccr.2017.09.005.
  • Taddei, M.; Steitz, D. A.; van Bokhoven, J. A.; Ranocchiari, M. Continuous-Flow Microwave Synthesis of Metal-Organic Frameworks: A Highly Efficient Method for Large-Scale Production. Chemistry 2016, 22, 3245–3249. DOI: 10.1002/chem.201505139.
  • Stock, N.; Biswas, S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev. 2012, 112, 933–969. DOI: 10.1021/cr200304e.
  • Butova, V. V.; Soldatov, M. A.; Guda, A. A.; Lomachenko, K. A.; Lamberti, C. Metal-Organic Frameworks: Structure, Properties, Methods of Synthesis and Characterization. Russ. Chem. Rev. 2016, 85, 280–307. DOI: 10.1070/RCR4554.
  • Hartmann, M.; Kunz, S.; Himsl, D.; Tangermann, O.; Ernst, S.; Wagener, A. Adsorptive Separation of Isobutene and Isobutane on Cu3(BTC)2. Langmuir 2008, 24, 8634–8642. DOI: 10.1021/la8008656.
  • Campagnol, N.; Souza, E. R.; De Vos, D. E.; Binnemans, K.; Fransaer, J. Luminescent Terbium-Containing Metal-Organic Framework Films: New Approaches for the Electrochemical Synthesis and Application as Detectors for Explosives. Chem. Commun. (Camb.) 2014, 50, 12545–12547. DOI: 10.1039/c4cc05742b.
  • Gangu, K. K.; Maddila, S.; Mukkamala, S. B.; Jonnalagadda, S. B. A Review on Contemporary Metal–Organic Framework Materials. Inorg. Chim. Acta 2016, 446, 61–74. DOI: 10.1016/j.ica.2016.02.062.
  • Sud, D.; Kaur, G. A Comprehensive Review on Synthetic Approaches for Metal-Organic Frameworks: From Traditional Solvothermal to Greener Protocols. Polyhedron 2021, 193, 114897. DOI: 10.1016/j.poly.2020.114897.
  • Pichon, A.; Lazuen-Garay, A.; James, S. L. Solvent-Free Synthesis of a Microporous Metal–Organic Framework. Cryst. Eng. Comm. 2006, 8, 211–214. DOI: 10.1039/b513750k.
  • Yang, H.; Orefuwa, S.; Goudy, A. Study of Mechanochemical Synthesis in the Formation of the Metal–Organic Framework Cu3(BTC)2 for Hydrogen Storage. Micropor. Mesopor. Mater. 2011, 143, 37–45. DOI: 10.1016/j.micromeso.2011.02.003.
  • Yuan, W.; Friscić, T.; Apperley, D.; James, S. L. High Reactivity of Metal-Organic Frameworks under Grinding Conditions: Parallels with Organic Molecular Materials. Angew. Chem. Int. Ed. Engl. 2010, 49, 3916–3919. DOI: 10.1002/anie.200906965.
  • Qiu, L.-G.; Li, Z.-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X. Facile Synthesis of Nanocrystals of a Microporous Metal-Organic Framework by an Ultrasonic Method and Selective Sensing of Organoamines. Chem. Commun. (Camb.) 2008, 31, 3642–3644. DOI: 10.1039/b804126a.
  • Son, W.-J.; Kim, J.; Kim, J.; Ahn, W.-S. Sonochemical Synthesis of MOF-5. Chem. Commun. (Camb.) 2008, 47, 6336–6338. DOI: 10.1039/b814740j.
  • Li, Z.-Q.; Qiu, L.-G.; Xu, T.; Wu, Y.; Wang, W.; Wu, Z.-Y.; Jiang, X. Ultrasonic Synthesis of the Microporous Metal–Organic Framework Cu3(BTC)2 at Ambient Temperature and Pressure an Eficient and Environmentally Friendly Method. Mater. Lett. 2009, 63, 78–80. DOI: 10.1016/j.matlet.2008.09.010.
  • Ma, D.; Li, B.; Shi, Z. Multi-Functional Sites Catalysts Based on Post-Synthetic Modification of Metal-Organic Frameworks. Chin. Chem. Lett. 2018, 29, 827–830. DOI: 10.1016/j.cclet.2017.09.028.
  • Yu, Q.; Li, Z.; Cao, Q.; Qu, S.; Jia, Q. Advances in Luminescent Metal-Organic Framework Sensors Based on Post-Synthetic Modification. Trends Anal. Chem. 2020, 129, 115939. DOI: 10.1016/j.trac.2020.115939.
  • Yin, Z.; Wan, S.; Yang, J.; Kurmoo, M.; Zeng, M.-H. Recent Advances in Post-Synthetic Modification of Metal–Organic Frameworks: New Types and Tandem Reactions. Coord. Chem. Rev. 2019, 378, 500–512. DOI: 10.1016/j.ccr.2017.11.015.
  • Du, Y.; Li, X.; Lv, X.; Jia, Q. Highly Sensitive and Selective Sensing of Free Bilirubin Using Metal-Organic Frameworks-Based Energy Transfer Process. ACS Appl. Mater. Interfaces 2017, 9, 30925–30932. DOI: 10.1021/acsami.7b09091.
  • Banerjee, M.; Das, S.; Yoon, M.; Choi, H. J.; Hyun, M. H.; Park, S. M.; Seo, G.; Kim, K. Postsynthetic Modification Switches an Achiral Framework to Catalytically Active Homochiral Metal-Organic Porous Materials. J. Am. Chem. Soc. 2009, 131, 7524–7525. DOI: 10.1021/ja901440g.
  • Yang, J.-M.; Hu, X.-W.; Liu, Y.-X.; Zhang, W. Fabrication of a Carbon Quantum Dots-Immobilized Zirconium-Based Metal-Organic Framework Composite Fluorescence Sensor for Highly Sensitive Detection of 4-Nitrophenol. Micropor. Mesopor. Mater. 2019, 274, 149–154. DOI: 10.1016/j.micromeso.2018.07.042.
  • Hao, J.-N.; Yan, B. Highly Sensitive and Selective Fluorescent Probe for Ag+ Based on a Eu3+ Post-Functionalized Metal-Organic Framework in Aqueous Media. J. Mater. Chem. A. 2014, 2, 18018–18025. DOI: 10.1039/C4TA03990D.
  • Gao, N.; Huang, J.; Wang, L.; Feng, J.; Huang, P.; Wu, F. Ratiometric Fluorescence Detection of Phosphate in Human Serum with a Metal-Organic Frameworks-Based Nanocomposite and Its Immobilized Agarose Hydrogels. Appl. Surf. Sci. 2018, 459, 686–692. DOI: 10.1016/j.apsusc.2018.08.092.
  • Ali, I.; Suhail, M.; Alharbi, O. M. L.; Hussain, I. Advances in Sample Preparation in Chromatography for Organic Environmental Pollutants Analyses. J. Liq. Chromatogr. Relat. Technol. 2019, 42, 137–160. DOI: 10.1080/10826076.2019.1579739.
  • Pang, X.; Li, H.; Yu, H.; Zhan, M.; Ba, L.; Ya, H. A Metal Organic Framework Polymer Monolithic Column as a Novel Adsorbent for on-Line Solid Phase Extraction and Determination of Ursolic Acid in Chinese Herbal Medicine. J. Chromatogr. B-Analytical Technol. Biomed. Life Sci. 2019, 1125, 121715. DOI: 10.1016/j.jchromb.2019.121715.
  • Kahkha, M. R. R.; Daliran, S.; Oveisi, A. R.; Kaykhaii, M.; Sepehri, Z. The Mesoporous Porphyrinic Zirconium Metal-Organic Framework for Pipette-Tip Solid-Phase Extraction of Mercury from Fish Samples Followed by Cold Vapor Atomic Absorption Spectrometric Determination. Food Anal. Methods 2017, 10, 2175–2184. DOI: 10.1007/s12161-016-0786-x.
  • Giesbers, M.; Carrasco-Correa, E. J.; Simo-Alfonso, E. F.; Herrero-Martinez, J. M. Hybrid Monoliths with Metal-Organic Frameworks in Spin Columns for Extraction of Non-Steroidal Drugs Prior to Their Quantitation by Reversed-Phase HPLC. Microchim. Acta 2019, 186, 759. DOI: 10.1007/s00604-019-3923-6.
  • Kahkha, M. R. R.; Kaykhaii, M.; Sargazi, G.; Kahkha, B. R. Determination of Nicotine in Saliva, Urine and Wastewater Samples Using Tantalum Metal Organic Framework Pipette Tip Micro-Solid Phase Extraction. Anal. Methods 2019, 11, 6168–6175. DOI: 10.1039/C9AY01773A.
  • Kahkha, M. R. R.; Oveisi, A. R.; Kaykhaii, M.; Kahkha, B. R. Determination of Carbamazepine in Urine and Water Samples Using Amino-Functionalized Metal-Organic Framework as Sorbent. Chem. Cent. J. 2018, 12, 77. DOI: 10.1186/s13065-018-0446-x.
  • Chen, Z.; Yu, C.; Xi, J.; Tang, S.; Bao, T.; Zhang, J. A Hybrid Material Prepared by Controlled Growth of a Covalent Organic Framework on Amino-Modified MIL-68 for Pipette Tip Solid-Phase Extraction of Sulfonamides Prior to Their Determination by HPLC. Microchim. Acta 2019, 186, 393. DOI: 10.1007/s00604-019-3513-7.
  • Sun, Z.; Liu, H.; Zhou, Y.; Zhao, S.; Li, J.; Wang, X.; Gong, B. A Restricted Access Molecularly Imprinted Polymer Coating on Metal-Organic Frameworks for Solid-Phase Extraction of Ofloxacin and Enrofloxacin from Bovine Serum. RSC Adv. 2019, 9, 27953–27960. DOI: 10.1039/C9RA04143E.
  • Saleem, S.; Sajid, M. S.; Hussain, D.; Jabeen, F.; Najam-Ul-Haq, M.; Saeed, A. Boronic Acid Functionalized MOFs as HILIC Material for N-Linked Glycopeptide Enrichment. Anal. Bioanal. Chem. 2020, 412, 1509–1520. DOI: 10.1007/s00216-020-02427-9.
  • Liu, Q.; Deng, C.; Sun, N. Hydrophilic Tripeptide-Functionalized Magnetic Metal-Organic Frameworks for the Highly Efficient Enrichment of N-Linked Glycopeptides. Nanoscale 2018, 10, 12149–12155. DOI: 10.1039/c8nr03174f.
  • Xie, Y.; Liu, Q.; Li, Y.; Deng, C. Core-Shell Structured Magnetic Metal-Organic Framework Composites for Highly Selective Detection of N-Glycopeptides Based on Boronic Acid Affinity Chromatography. J. Chromatogr. A. 2018, 1540, 87–93. DOI: 10.1016/j.chroma.2018.02.013.
  • Xie, Y.; Deng, C. Designed Synthesis of a “One for Two” Hydrophilic Magnetic Amino-Functionalized Metal-Organic Framework for Highly Efficient Enrichment of Glycopeptides and Phosphopeptides. Sci. Rep. 2017, 7, 1162. DOI: 10.1038/s41598-017-01341-y.
  • Li, J.; Wang, J.; Ling, Y.; Chen, Z.; Gao, M.; Zhang, X.; Zhou, Y. Unprecedented Highly Efficient Capture of Glycopeptides by Fe3O4@Mg-MOF-74 Core-Shell Nanoparticles. Chem. Commun. (Camb.) 2017, 53, 4018–4021. DOI: 10.1039/c7cc00447h.
  • Xie, Y.; Deng, C. Highly Efficient Enrichment of Phosphopeptides by a Magnetic Lanthanide Metal-Organic Framework. Talanta 2016, 159, 1–6. DOI: 10.1016/j.talanta.2016.05.075.
  • Hu, X.; Liu, Q.; Wu, Y.; Deng, Z.; Long, J.; Deng, C. Magnetic Metal-Organic Frameworks Containing Abundant Carboxylic Groups for Highly Effective Enrichment of Glycopeptides in Breast Cancer Serum. Talanta 2019, 204, 446–454. DOI: 10.1016/j.talanta.2019.06.037.
  • Luo, B.; Chen, Q.; He, J.; Li, Z.; Yu, L.; Lan, F.; Wu, Y. Boronic Acid-Functionalized Magnetic Metal-Organic Frameworks via a Dual-Ligand Strategy for Highly Efficient Enrichment of Phosphopeptides and Glycopeptides. ACS Sustainable Chem. Eng. 2019, 7, 6043–6052. DOI: 10.1021/acssuschemeng.8b06171.
  • Cao, L.; Zhao, Y.; Chu, Z.; Zhang, X.; Zhang, W. Core-Shell Magnetic Bimetallic MOF Material for Synergistic Enrichment of Phosphopeptides. Talanta 2020, 206, 120165. DOI: 10.1016/j.talanta.2019.120165.
  • Tan, S.; Long, Y.; Han, Q.; Guan, H.; Liang, Q.; Ding, M. Designed Fabrication of Polymer-Mediated MOF-Derived Magnetic Hollow Carbon Nanocages for Specific Isolation of Bovine Hemoglobin. ACS Biomater. Sci. Eng. 2020, 6, 1387–1396. DOI: 10.1021/acsbiomaterials.9b01793.
  • Liu, B.; Lu, Y.; Wang, B.; Yan, Y.; Liang, H.; Yang, H. Facile Preparation of Hydrophilic Dual Functional Magnetic Metal-Organic Frameworks as a Platform for Proteomics Research. Chemistryselect 2019, 4, 2200–2204. DOI: 10.1002/slct.201803527.
  • Zhang, R.; Wang, Z.; Wang, T.; Su, P.; Yang, Y. Boronic Acid-Decorated Metal-Organic Frameworks Modified via a Mixed-Ligand Strategy for the Selective Enrichment of Cis-Diol Containing Nucleosides. Anal. Chim. Acta 2020, 1106, 42–51. DOI: 10.1016/j.aca.2020.01.048.
  • Wang, T.; Zhang, R.; Li, D.; Su, P.; Yang, Y. Application of Magnetized MOF-74 to Phthalate Esters Extraction from Chinese Liquor. J. Sep. Sci. 2019, 42, 1600–1609. DOI: 10.1002/jssc.201801244.
  • Esmaeilzadeh, M. A Composite Prepared from a Metal-Organic Framework of Type MIL-101(Fe) and Morin-Modified Magnetite Nanoparticles for Extraction and Speciation of Vanadium(IV) and Vanadium(V). Mikrochim. Acta. 2018, 186, 14. DOI: 10.1007/s00604-018-3093-y.
  • Lu, N.; He, X.; Wang, T.; Liu, S.; Hou, X. Magnetic Solid-Phase Extraction Using MIL-101 (Cr)-Based Composite Combined with Dispersive Liquid-Liquid Microextraction Based on Solidification of a Floating Organic Droplet for the Determination of Pyrethroids in Environmental Water and Tea Samples. Microchem. J. 2018, 137, 449–455. DOI: 10.1016/j.microc.2017.12.009.
  • Saboori, A. A Nanoparticle Sorbent Composed of MIL-101(Fe) and Dithiocarbamate-Modified Magnetite Nanoparticles for Speciation of Cr(III) and Cr(VI) Prior to Their Determination by Electrothermal AAS. Microchim. Acta 2017, 184, 1509–1516. DOI: 10.1007/s00604-017-2155-x.
  • Ghorbani-Kalhor, E. A Metal-Organic Framework Nanocomposite Made from Functionalized Magnetite Nanoparticles and HKUST-1 (MOF-199) for Preconcentration of Cd(II), Pb(II), and Ni(II). Microchim. Acta 2016, 183, 2639–2647. DOI: 10.1007/s00604-016-1896-2.
  • Abbaszadeh, A.; Tadjarodi, A. Speciation Analysis of Inorganic Arsenic in Food and Water Samples by Electrothermal Atomic Absorption Spectrometry after Magnetic Solid Phase Extraction by a Novel MOF-199/Modified Magnetite Nanoparticle Composite. RSC Adv. 2016, 6, 113727–113736. DOI: 10.1039/C6RA21819A.
  • Liu, G.; Li, L.; Gao, Y.; Gao, M.; Huang, X.; Lv, J.; Xu, D. A Beta-Cyclodextrin-Functionalized Magnetic Metal Organic Framework for Efficient Extraction and Determination of Prochloraz and Triazole Fungicides in Vegetables Samples. Ecotoxicol. Environ. Saf. 2019, 183, 109546. DOI: 10.1016/j.ecoenv.2019.109546.
  • Hao, L.; Meng, X.; Wang, C.; Wu, Q.; Wang, Z. Preparation of Nickel-Doped Nanoporous Carbon Microspheres from Metal-Organic Framework as a Recyclable Magnetic Adsorbent for Phthalate Esters. J. Chromatogr. A. 2019, 1605, 460364. DOI: 10.1016/j.chroma.2019.460364.
  • Durmus, Z.; Kurt, B. Z.; Gazioglu, I.; Sevgi, E.; Hancer, C. K. Spectrofluorimetric Determination of Aflatoxin B-1 in Winter Herbal Teas via Magnetic Solid Phase Extraction Method by Using Metal-Organic Framework (MOF) Hybrid Structures Anchored with Magnetic Nanoparticles. Appl. Organomet. Chem. 2020, 34, e5375. DOI: 10.1002/aoc.5375.
  • Lu, J.; Luan, J.; Li, Y.; He, X.; Chen, L.; Zhang, Y. Hydrophilic Maltose-Modified Magnetic Metal-Organic Framework for Highly Efficient Enrichment of N-Linked Glycopeptides. J. Chromatogr. A. 2020, 1615, 460754. DOI: 10.1016/j.chroma.2019.460754.
  • Hua, X.; Gao, G.; Pan, S. High-Affinity Graphene Oxide-Encapsulated Magnetic Zr-MOF for Pretreatment and Rapid Determination of the Photosensitizers Hematoporphyrin and Hematoporphyrin Monomethyl Ether in Human Urine Prior to UPLC-HRMS. Anal. Bioanal. Chem. 2018, 410, 7749–7764. DOI: 10.1007/s00216-018-1391-1.
  • Xiao, J.; Yang, S.-S.; Wu, J.-X.; Wang, H.; Yu, X.; Shang, W.; Chen, G.-Q.; Gu, Z. Y. Highly Selective Capture of Monophosphopeptides by Two-Dimensional Metal-Organic Framework Nanosheets. Anal. Chem. 2019, 91, 9093–9101. DOI: 10.1021/acs.analchem.9b01581.
  • Yang, S.-S.; Chang, Y.-J.; Zhang, H.; Yu, X.; Shang, W.; Chen, G.-Q.; Chen, D.-D.-Y.; Gu, Z.-Y. Enrichment of Phosphorylated Peptides with Metal-Organic Framework Nanosheets for Serum Profiling of Diabetes and Phosphoproteomics Analysis. Anal. Chem. 2018, 90, 13796–13805. DOI: 10.1021/acs.analchem.8b04417.
  • Ma, W.; Xu, L.; Li, X.; Shen, S.; Wu, M.; Bai, Y.; Liu, H. Cysteine-Functionalized Metal-Organic Framework: Facile Synthesis and High Efficient Enrichment of N-Linked Glycopeptides in Cell Lysate. ACS Appl. Mater. Interfaces 2017, 9, 19562–19568. DOI: 10.1021/acsami.7b02853.
  • Wang, Y.; Wang, J.; Gao, M.; Zhang, X. A Novel Carbon Material with Nanopores Prepared Using a Metal-Organic Framework as Precursor for Highly Selective Enrichment of N-Linked Glycans. Anal. Bioanal. Chem. 2017, 409, 431–438. DOI: 10.1007/s00216-016-9796-1.
  • Ilavenil, S.; Al-Dhabi, N. A.; Srigopalram, S.; Kim, Y. O.; Agastian, P.; Baaru, R.; Choi, K. C.; Arasu, M. V.; Park, C. G.; Park, K. H. Removal of SDS from Biological Protein Digests for Proteomic Analysis by Mass Spectrometry. Proteome Sci. 2016, 14, 11. DOI: 10.1186/s12953-016-0098-5.
  • Pu, C.; Zhao, H.; Hong, Y.; Zhan, Q.; Lan, M. Facile Preparation of Hydrophilic Mesoporous Metal-Organic Framework via Synergistic Etching and Surface Functionalization for Glycopeptides Analysis. Anal. Chem. 2020, 92, 1940–1947. DOI: 10.1021/acs.analchem.9b04236.
  • Peng, J.; Hu, Y.; Zhang, H.; Wan, L.; Wang, L.; Liang, Z.; Zhang, L.; Wu, R. High anti-Interfering Profiling of Endogenous Glycopeptides for Human Plasma by the Dual-Hydrophilic Metal-Organic Framework. Anal. Chem. 2019, 91, 4852–4859. DOI: 10.1021/acs.analchem.9b00542.
  • Rieth, A. J.; Dincă, M. Controlled Gas Uptake in Metal-Organic Frameworks with Record Ammonia Sorption. J. Am. Chem. Soc. 2018, 140, 3461–3466. DOI: 10.1021/jacs.8b00313.
  • Qu, F.; Xia, L.; Wu, C.; Liu, L.; Li, G.; You, J. Sensitive and Accurate Determination of Sialic Acids in Serum with the Aid of Dispersive Solid-Phase Extraction Using the Zirconium-Based MOF of UiO-66-NH2 as Sorbent. RSC Adv. 2016, 6, 64895–64901. DOI: 10.1039/C6RA11633G.
  • Ke, F.; Peng, C.; Zhang, T.; Zhang, M.; Zhou, C.; Cai, H.; Zhu, J.; Wan, X. Fumarate-Based Metal-Organic Frameworks as a New Platform for Highly Selective Removal of Fluoride from Brick Tea. Sci. Rep. 2018, 8, 939. DOI: 10.1038/s41598-018-19277-2.
  • Tokalıoğlu, Ş.; Yavuz, E.; Demir, S.; Patat, Ş. Zirconium-Based Highly Porous Metal-Organic Framework (MOF-545) as an Efficient Adsorbent for Vortex Assisted-Solid Phase Extraction of Lead from Cereal, Beverage and Water Samples. Food Chem. 2017, 237, 707–715. DOI: 10.1016/j.foodchem.2017.06.005.
  • Liu, H.; Mu, L.; Chen, X.; Wang, J.; Wang, S.; Sun, B. Core-Shell Metal-Organic Frameworks/Molecularly Imprinted Nanoparticles as Absorbents for the Detection of Pyrraline in Milk and Milk Powder. J. Agric. Food Chem. 2017, 65, 986–992. DOI: 10.1021/acs.jafc.6b05429.
  • Bagheri, A. R.; Ghaedi, M. Application of Cu-Based Metal-Organic Framework (Cu-BDC) as a Sorbent for Dispersive Solid-Phase Extraction of Gallic Acid from Orange Juice Samples Using HPLC-UV Method. Arab. J. Chem. 2020, 13, 5218–5228. DOI: 10.1016/j.arabjc.2020.02.020.
  • Pu, C.; Zhao, H.; Hong, Y.; Zhan, Q.; Lan, M. Elution-Free Ultra-Sensitive Enrichment for Glycopeptides Analyses: Using a Degradable, Post-Modified Ce-Metale-Organic Framework. Anal. Chim. Acta. 2019, 1045, 123–131. DOI: 10.1016/j.aca.2018.09.013.
  • Liu, Q.; Xie, Y.; Deng, C.; Li, Y. One-Step Synthesis of Carboxyl-Functionalized Metal-Organic Framework with Binary Ligands for Highly Selective Enrichment of N-Linked Glycopeptides. Talanta 2017, 175, 477–482. DOI: 10.1016/j.talanta.2017.07.067.
  • Liu, G.; Xu, Y.; Han, Y.; Wu, J.; Xu, J.; Meng, H.; Zhang, X. Immobilization of Iysozyme Proteins on a Hierarchical Zeolitic Imidazolate Framework (ZIF-8). Dalton Trans. 2017, 46, 2114–2121. DOI: 10.1039/c6dt04582k.
  • Chen, Q.; Wang, M.-M.; Hu, X.; Chen, X.-W.; Wang, J.-H. An Octamolybdate-Metal Organic Framework Hybrid for the Efficient Adsorption of Histidine-Rich Proteins. J. Mater. Chem. B. 2016, 4, 6812–6819. DOI: 10.1039/c6tb02090a.
  • Hu, Z.; Wang, X.; Wang, J.; Chen, X. PEGylation of Metal-Organic Framework for Selective Isolation of Glycoprotein Immunoglobulin G. Talanta 2020, 208, 120433. DOI: 10.1016/j.talanta.2019.120433.
  • Kato, S.; Otake, K.; Chen, H.; Akpinar, I.; Buru, C. T.; Islamoglu, T.; Snurr, R. Q.; Farha, O. K. Zirconium-Based Metal-Organic Frameworks for the Removal of Protein-Bound Uremic Toxin from Human Serum Albumin. J. Am. Chem. Soc. 2019, 141, 2568–2576. DOI: 10.1021/jacs.8b12525.
  • Gonzalez-Hernandez, P.; Lago, A. B.; Pasan, J.; Ruiz-Perez, C.; Ayala, J. H.; Afonso, A. M.; Pino, V. Application of a Pillared-Layer Zn-Triazolate Metal-Organic Framework in the Dispersive Miniaturized Solid-Phase Extraction of Personal Care Products from Wastewater Samples. Molecules 2019, 24, 690. DOI: 10.3390/molecules24040690.
  • Moghaddam, Z. S.; Kaykhaii, M.; Khajeh, M.; Oveisi, A. R. PCN-222 Metal-Organic Framework: A Selective and Highly Efficient Sorbent for the Extraction of Aspartame from Gum, Juice, and Diet Soft Drink before Its Spectrophotometric Determination. BMC Chem. 2020, 14, 19. DOI: 10.1186/s13065-020-00674-6.
  • Wang, X.; Zhu, H.; Shi, X.; Qiu, X.; Lu, W.; Guo, H. Synthesis of MOF-199/CNTs Nanocomposite for Selective Adsorption and Determination of Nonsteroidal anti-Inflammatory Drugs in Human Urine. J. Nanosci. Nanotechnol. 2019, 19, 627–633. DOI: 10.1166/jnn.2019.15733.
  • Wang, R.; Xu, H.; Zhang, K.; Wei, S.; Wu, D. High-Quality Al@Fe-MOF Prepared Using Fe-MOF as a Micro-reactor to Improve Adsorption Performance for Selenite. J. Hazard. Mater. 2019, 364, 272–280. DOI: 10.1016/j.jhazmat.2018.10.030.
  • Cai, Q.; Zhao, T.; Zhang, L.; Zhao, P.; Zhu, Y.; Xu, H.; Hou, X. A New Strategy for Extraction and Depuration of Pantoprazole in Rat Plasma: Vortex Assisted Dispersive Micro-Solid-Phase Extraction Employing Metal Organic Framework MIL-101(Cr) as Sorbent Followed by Dispersive Liquid-Liquid Microextraction Based on Solidification of a Floating Organic Droplet. J. Pharm. Biomed. Anal. 2019, 172, 86–93. DOI: 10.1016/j.jpba.2019.04.016.
  • Jalilian, N.; Ebrahimzadeh, H.; Asgharinezhad, A. A. Preparation of Magnetite/Multiwalled Carbon Nanotubes/Metal-Organic Framework Composite for Dispersive Magnetic Micro Solid Phase Extraction of Parabens and Phthalate Esters from Water Samples and Various Types of Cream for Their Determination with Liquid Chromatography. J. Chromatogr. A. 2019, 1608, 460426. DOI: 10.1016/j.chroma.2019.460426.
  • Wang, Y.; Qiu, X.; Li, Y.; Guo, H.; Lu, W.; Nie, L. Synthesis of a Molecularly Imprinted Polymer on NH2-MIL-101(Cr) for Specific Recognition of Diclofenac Sodium. J. Nanosci. Nanotechnol. 2020, 20, 1807–1813. DOI: 10.1166/jnn.2020.17352.
  • Huan, W.; Xing, M.; Cheng, C.; Li, J. Facile Fabrication of Magnetic Metal-Organic Framework Nanofibers for Specific Capture of Phosphorylated Peptides. ACS Sustainable Chem. Eng. 2019, 7, 2245–2254. DOI: 10.1021/acssuschemeng.8b04928.
  • Mirzajani, R.; Kardani, F.; Ramezani, Z. Preparation and Characterization of Magnetic Metal Organic Framework Nanocomposite as Solid-Phase Microextraction Fibers Coupled with High-Performance Liquid Chromatography for Determination of Non-Steroidal Anti-Inflammatory Drugs in Biological Fluids and Tablet Formulation Samples. Microchem. J. 2019, 144, 270–284. DOI: 10.1016/j.microc.2018.09.014.
  • Li, Z.; Zhang, S.; Cai, Y.; Wu, Q.; Chen, H. Hollow Fiber-Based Solid-Liquid Phase Microextraction Combined with Theta Capillary Electrospray Ionization Mass Spectrometry for Sensitive and Accurate Analysis of Methamphetamine. Anal. Methods 2016, 8, 7800–7807. DOI: 10.1039/C6AY02254E.
  • Wu, M.; Ai, Y.; Zeng, B.; Zhao, F. In Situ Solvothermal Growth of Metal-Organic Framework-Ionic Liquid Functionalized Graphene Nanocomposite for Highly Efficient Enrichment of Chloramphenicol and Thiamphenicol. J. Chromatogr. A. 2016, 1427, 1–7. DOI: 10.1016/j.chroma.2015.11.080.
  • Mirzajani, R.; Kardani, F.; Ramezani, Z. Fabrication of UMCM-1 Based Monolithic and Hollow Fiber: Metal-Organic Framework Deep Eutectic Solvents/Molecularly Imprinted Polymers and Their Use in Solid Phase Microextraction of Phthalate Esters in Yogurt, Water and Edible Oil by GC-FID. Food Chem. 2020, 314, 126179. DOI: 10.1016/j.foodchem.2020.126179.
  • Guner, M.; Yilmaz, E.; Yuceer, Y. Off-Odor Removal from Fish Oil by Adsorbent Treatment with Selected Metal-Organic Frameworks. Flavour Fragr. J. 2019, 34, 163–174. DOI: 10.1002/ffj.3489.
  • Mondal, S.; Xu, J.; Chen, G.; Huang, S.; Huang, C.; Yin, L.; Ouyang, G. Solid-Phase Microextraction of Antibiotics from Fish Muscle by Using MIL-101(Cr)NH2-Polyacrylonitrile Fiber and Their Identification by Liquid Chromatography-Tandem Mass Spectrometry. Anal. Chim. Acta 2019, 1047, 62–70. DOI: 10.1016/j.aca.2018.09.060.
  • Lan, H.; Pan, D.; Sun, Y.; Guo, Y.; Wu, Z. Thin Metal Organic Frameworks Coatings by Cathodic Electrodeposition for Solid-Phase Microextraction and Analysis of Trace Exogenous Estrogens in Milk. Anal. Chim. Acta 2016, 937, 53–60. DOI: 10.1016/j.aca.2016.07.041.
  • Pang, Y.; Zang, X.; Li, H.; Liu, J.; Chang, Q.; Zhang, S.; Wang, C.; Wang, Z. Solid-Phase Microextraction of Organophosphorous Pesticides from Food Samples with a Nitrogen-Doped Porous Carbon Derived from g-C3N4 Templated MOF as the Fiber Coating. J. Hazard. Mater. 2020, 384, 121430. DOI: 10.1016/j.jhazmat.2019.121430.
  • Lirio, S.; Liu, W. L.; Lin, C. L.; Lin, C. H.; Huang, H.-Y. Aluminum Based Metal-Organic Framework-Polymer Monolith in Solid-Phase Microextraction of Penicillins in River Water and Milk Samples. J. Chromatogr. A. 2016, 1428, 236–245. DOI: 10.1016/j.chroma.2015.05.043.
  • Zhang, Q.-C.; Xia, G.-P.; Liang, J.-Y.; Zhang, X.-L.; Jiang, L.; Zheng, Y.-G.; Wang, X.-Y. NH2-MIL-53(Al) Polymer Monolithic Column for in-Tube Solid-Phase Microextraction Combined with UHPLC-MS/MS for Detection of Trace Sulfonamides in Food Samples. Molesules 2020, 25, 897. DOI: 10.3390/molecules25040897.
  • Ding, M.; Yang, L.; Zeng, J.; Yan, X.; Wang, Q. Orderly MOF-Assembled Hybrid Monolithic Stationary Phases for Nano-Flow HPLC. Anal. Chem. 2020, 92, 15757–15765. DOI: 10.1021/acs.analchem.0c02706.
  • Lin, S.; Gan, N.; Qiao, L.; Zhang, J.; Cao, Y.; Chen, Y. Magnetic Metal-Organic Frameworks Coated Stir Bar Sorptive Extraction Coupled with GC-MS for Determination of Polychlorinated Biphenyls in Fish Samples. Talanta 2015, 144, 1139–1145. DOI: 10.1016/j.talanta.2015.07.084.
  • Lin, S.; Gan, N.; Zhang, J.; Qiao, L.; Chen, Y.; Cao, Y. Aptamer-Functionalized Stir Bar Sorptive Extraction Coupled with Gas Chromatography-Mass Spectrometry for Selective Enrichment and Determination of Polychlorinated Biphenyls in Fish Samples. Talanta 2016, 149, 266–274. DOI: 10.1016/j.talanta.2015.11.062.
  • Gao, G.; Li, S.; Li, S.; Zhao, L.; Wang, T.; Hou, X. Development and Application of Vortex-Assisted Membrane Extraction Based on Metal-Organic Framework Mixed-Matrix Membrane for the Analysis of Estrogens in Human Urine. Anal. Chim. Acta 2018, 1023, 35–43. DOI: 10.1016/j.aca.2018.04.013.
  • Rahimpoor, R.; Bahrami, A.; Nematollahi, D.; Shahna, F. G.; Farhadian, M. Facile and Sensitive Determination of Urinary Mandelic Acid by Combination of Metal Organic Frameworks with Microextraction by Packed Sorbents. J. Chromatogr. B-Analytical Technol. Biomed. Life Sci. 2019, 1114, 45–54. DOI: 10.1016/j.jchromb.2019.03.023.
  • Pirmohammadi, Z.; Bahrami, A.; Nematollahi, D.; Alizadeh, S.; Shahna, F. G.; Rahimpoor, R. Determination of Urinary Methylhippuric Acids Using MIL-53-NH2 (Al) Metal-Organic Framework in Microextraction by Packed Sorbent Followed by HPLC-UV Analysis. Biomed. Chromatogr. 2020, 34, e4725. DOI: 10.1002/bmc.4725.
  • Jiang, Y.; Ma, P.; Li, X.; Piao, H.; Li, D.; Sun, Y.; Wang, X.; Song, D. Application of Metal-Organic Framework MIL-101(Cr) to Microextraction in Packed Syringe for Determination of Triazine Herbicides in Corn Samples by Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A. 2018, 1574, 36–41. DOI: 10.1016/j.chroma.2018.09.008.
  • Zhou, J.; Liang, Y.; He, X.; Chen, L.; Zhang, Y. Dual-Functionalized Magnetic Metal-Organic Framework for Highly Specific Enrichment of Phosphopeptides. ACS Sustainable Chem. Eng. 2017, 5, 11413–11421. DOI: 10.1021/acssuschemeng.7b02521.
  • Pourbahman, F.; Zeeb, M.; Monzavi, A.; Homami, S. S. Simultaneous Trace Monitoring of Prokinetic Drugs in Human Plasma Using Magnetic Dispersive Micro-Solid Phase Extraction Based on a New Graphene Oxide/Metal-Organic Framework-74/Fe3O4/Polytyramine Nanoporous Composite in Combination with HPLC. Chem. Pap. 2019, 73, 3135–3150. DOI: 10.1007/s11696-019-00855-1.
  • Rocio-Bautista, P.; Pino, V.; Ayala, J. H.; Pasan, J.; Ruiz-Perez, C.; Afonso, A. M. A Magnetic-Based Dispersive Micro-Solid-Phase Extraction Method Using the Metal-Organic Framework HKUST-1 and Ultra-High-Performance Liquid Chromatography with Fluorescence Detection for Determining Polycyclic Aromatic Hydrocarbons in Waters and Fruit Tea Infusions. J. Chromatogr. A. 2016, 1436, 42–50. DOI: 10.1016/j.chroma.2016.01.067.
  • Bahrani, S.; Ghaedi, M.; Dashtian, K.; Ostovan, A.; Mansoorkhani, M. J. K.; Salehi, A. MOF-5(Zn)-Fe2O4 Nanocomposite Based Magnetic Solid-Phase Microextraction Followed by HPLC-UV for Efficient Enrichment of Colchicine in Root of Colchicium Extracts and Plasma Samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1067, 45–52. DOI: 10.1016/j.jchromb.2017.09.044.
  • Abdel-Rehim, M. Recent Advances in Microextraction by Packed Sorbent for Bioanalysis. J. Chromatogr. A. 2010, 1217, 2569–2580. DOI: 10.1016/j.chroma.2009.09.053.
  • Moein, M. M.; Said, R.; Abdel-Rehim, M. Microextraction by Packed Sorbent. Bioanalysis 2015, 7, 2155–2161. DOI: 10.4155/bio.15.154.
  • Rahimpoor, R.; Bahrami, A.; Nematollahi, D.; Shahna, F. G.; Farhadian, M. Application of Zirconium-Based Metal-Organic Frameworks for Micro-Extraction by Packed Sorbent of Urinary Trans, Trans-Muconic Acid. J. Iran. Chem. Soc. 2020, 17, 2345–2358. DOI: 10.1007/s13738-020-01930-1.
  • Ma, W.; Li, X.; Bai, Y.; Liu, H. Applications of Metal-Organic Frameworks as Advanced Sorbents in Biomacromolecules Sample Preparation. TrAC Trends Anal. Chem. 2018, 109, 154–162. DOI: 10.1016/j.trac.2018.10.003.
  • Liu, J.; Shang, Y.; Zhu, Q.; Zhang, X.; Zheng, J.; A Voltammetric Immunoassay for the Carcinoembryonic Antigen Using Silver(I)-Terephthalate Metal-Organic Frameworks Containing Gold Nanoparticles as a Signal Probe. Mikrochim. Acta 2019, 186, 509. DOI: 10.1007/s00604-019-3638-8.
  • Liu, Q.; Yang, Y.; Liu, X.-P.; Wei, Y.-P.; Mao, C.-J.; Chen, J.-S.; Niu, H.-L.; Song, J.-M.; Zhang, S.-Y.; Jin, B.-K.; Jiang, M. A Facile In Situ Synthesis of MIL-101-CdSe Nanocomposites for Ultrasensitive Electrochemiluminescence Detection of Carcinoembryonic Antigen. Sensor. Actuat. B-Chem. 2017, 242, 1073–1078. DOI: 10.1016/j.snb.2016.09.143.
  • Du, L.; Chen, W.; Wang, J.; Cai, W.; Kong, S.; Wu, C. Folic Acid-Functionalized Zirconium Metal-Organic Frameworks Based Electrochemical Impedance Biosensor for the Cancer Cell Detection. Sensor. Actuat. B-Chem. 2019, 301, 127073. DOI: 10.1016/j.snb.2019.127073.
  • Zhou, X.; Liu, G.; Zhang, H.; Li, Y.; Cai, W. Porous Zeolite Imidazole Framework-Wrapped Urchin-Like Au-Ag Nanocrystals for SERS Detection of Trace Hexachlorocyclohexane Pesticides via Efficient Enrichment. J. Hazard. Mater. 2019, 368, 429–435. DOI: 10.1016/j.jhazmat.2019.01.070.
  • Wu, R.; Bi, C.; Zhang, D.; Fan, C.; Wang, L.; Zhu, B.; Liu, W.; Li, N.; Zhang, X.; Fan, Y. Highly Selective, Sensitive and Stable Three-Dimensional Luminescent Metal-Organic Framework for Detecting and Removing of the Antibiotic in Aqueous Solution. Microchem. J. 2020, 159, 105349. DOI: 10.1016/j.microc.2020.105349.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.