755
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Carbon-Based Electrochemical Sensors for In Vivo and In Vitro Neurotransmitter Detection

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 955-974 | Published online: 09 Nov 2021

References

  • Tavakolian-Ardakani, Z.; Hosu, O.; Cristea, C.; Mazloum-Ardakani, M.; Marrazza, G. Latest Trends in Electrochemical Sensors for Neurotransmitters: A Review. Sensors (Basel) 2019, 19, 2037. DOI: 10.3390/s19092037.
  • Baranwal, A.; Chandra, P. Clinical Implications and Electrochemical Biosensing of Monoamine Neurotransmitters in Body Fluids, In Vitro, in Vivo, and Ex Vivo Models. Biosens. Bioelectron. 2018, 121, 137–152. DOI: 10.1016/j.bios.2018.09.002.
  • Lippert, R. N.; Cremer, A. L.; Edwin Thanarajah, S.; Korn, C.; Jahans-Price, T.; Burgeno, L. M.; Tittgemeyer, M.; Bruning, J. C.; Walton, M. E.; Backes, H. Time-Dependent Assessment of Stimulus-Evoked Regional Dopamine Release. Nat. Commun. 2019, 10, 336. DOI: 10.1038/s41467-018-08143-4.
  • Zhou, L.; Hou, H.; Wei, H.; Yao, L.; Sun, L.; Yu, P.; Su, B.; Mao, L. In Vivo Monitoring of Oxygen in Rat Brain by Carbon Fiber Microelectrode Modified with Antifouling Nanoporous Membrane. Anal. Chem. 2019, 91, 3645–3651. DOI: 10.1021/acs.analchem.8b05658.
  • Wei, H.; Wu, F.; Li, L.; Yang, X.; Xu, C.; Yu, P.; Ma, F.; Mao, L. Natural Leukocyte Membrane-Masked Microelectrodes with an Enhanced Antifouling Ability and Biocompatibility for in Vivo Electrochemical Sensing. Anal. Chem. 2020, 92, 11374–11379. DOI: 10.1021/acs.analchem.0c02240.
  • Ngernsutivorakul, T.; Steyer, D. J.; Valenta, A. C.; Kennedy, R. T. In Vivo Chemical Monitoring at High Spatiotemporal Resolution Using Microfabricated Sampling Probes and Droplet-Based Microfluidics Coupled to Mass Spectrometry. Anal. Chem. 2018, 90, 10943–10950. DOI: 10.1021/acs.analchem.8b02468.
  • Ngo, K. T.; Varner, E. L.; Michael, A. C.; Weber, S. G. Monitoring Dopamine Responses to Potassium Ion and Nomifensine by in Vivo Microdialysis with Online Liquid Chromatography at One-Minute Resolution. ACS Chem. Neurosci. 2017, 8, 329–338. DOI: 10.1021/acschemneuro.6b00383.
  • Yang, Y.; Zhang, L.; Wang, Z.; Liang, B.; Barbera, G.; Moffitt, C.; Li, Y.; Lin, D. T. A Two-Step GRIN Lens Coating for In Vivo Brain Imaging. Neurosci. Bull. 2019, 35, 419–424. DOI: 10.1007/s12264-019-00356-x.
  • Costantini, I.; Cicchi, R.; Silvestri, L.; Vanzi, F.; Pavone, F. S. In-Vivo and Ex-Vivo Optical Clearing Methods for Biological Tissues: Review. Biomed. Opt. Express. 2019, 10, 5251–5267. DOI: 10.1364/BOE.10.005251.
  • Finnema, S. J.; Scheinin, M.; Shahid, M.; Lehto, J.; Borroni, E.; Bang-Andersen, B.; Sallinen, J.; Wong, E.; Farde, L.; Halldin, C.; Grimwood, S. Application of Cross-Species PET Imaging to Assess Neurotransmitter Release in Brain. Psychopharmacology (Berl) 2015, 232, 4129–4157. DOI: 10.1007/s00213-015-3938-6.
  • Van Der Vos, C. S.; Koopman, D.; Rijnsdorp, S.; Arends, A. J.; Boellaard, R.; Van Dalen, J. A.; Lubberink, M.; Willemsen, A. T. M.; Visser, E. P. Quantification, Improvement, and Harmonization of Small Lesion Detection with State-of-the-Art PET. Eur. J. Nucl. Med. Mol. Imag. 2017, 44, 4–16. DOI: 10.1007/s00259-017-3727-z.
  • Weltin, A.; Kieninger, J.; Urban, G. A. Microfabricated, Amperometric, Enzyme-Based Biosensors for In Vivo Applications. Anal. Bioanal. Chem. 2016, 408, 4503–4521. DOI: 10.1007/s00216-016-9420-4.
  • Govind, V.; Young, K.; Maudsley, A. A. Corrigendum: Proton NMR Chemical Shifts and Coupling Constants for Brain Metabolites. Govindaraju V, Young K, Maudsley AA, NMR Biomed. 2000; 13: 129-153. NMR Biomed. 2015, 28, 923–924. DOI: 10.1002/nbm.3336.
  • Schwerdt, H. N.; Zhang, E.; Kim, M. J.; Yoshida, T.; Stanwicks, L.; Amemori, S.; Dagdeviren, H. E.; Langer, R.; Cima, M. J.; Graybiel, A. M. Cellular-Scale Probes Enable Stable Chronic Subsecond Monitoring of Dopamine Neurochemicals in a Rodent Model. Commun. Biol. 2018, 1,144. DOI: 10.1038/s42003-018-0147-y.
  • Li, Y.; Hu, K.; Yu, Y.; Rotenberg, S. A.; Amatore, C.; Mirkin, M. V. Direct Electrochemical Measurements of Reactive Oxygen and Nitrogen Species in Nontransformed and Metastatic Human Breast Cells. J. Am. Chem. Soc. 2017, 139, 13055–13062. DOI: 10.1021/jacs.7b06476.
  • Guan, L. H.; Wang, C.; Zhang, W.; Cai, Y. L.; Kai, L. I.; Lin, Y. Q.; Chemistry, D. O.; University, C. N. A Facile Strategy for Two-Step Fabrication of Gold Nanoelectrode for in Vivo Dopamine Detection. J. Electrochem. 2019, 25, 244–251.
  • Bortz, D. M.; Upton, B. A.; Mikkelsen, J. D.; Bruno, J. P. Positive Allosteric Modulators of the α7 Nicotinic Acetylcholine Receptor Potentiate Glutamate Release in the Prefrontal Cortex of Freely-Moving Rats. Neuropharmacology 2016, 111, 78–91. DOI: 10.1016/j.neuropharm.2016.08.033.
  • Aldrin-Kirk, P.; Heuer, A.; Wang, G.; Mattsson, B.; Lundblad, M.; Parmar, M.; Bjorklund, T. DREADD Modulation of Transplanted DA Neurons Reveals a Novel Parkinsonian Dyskinesia Mechanism Mediated by the Serotonin 5-HT6 Receptor. Neuron 2016, 90, 955–968. DOI: 10.1016/j.neuron.2016.04.017.
  • Kruss, S.; Salem, D. P.; Vukovic, L.; Lima, B.; Vander Ende, E.; Boyden, E. S.; Strano, M. S. High-Resolution Imaging of Cellular Dopamine Efflux Using a Fluorescent Nanosensor Array. Proc. Natl. Acad. Sci. USA. 2017, 114, 1789–1794. DOI: 10.1073/pnas.1613541114.
  • Alatraktchi, F. A.; Bakmand, T.; Dimaki, M.; Svendsen, W. E. Novel Membrane-Based Electrochemical Sensor for Real-Time Bio-Applications. Sensors (Basel) 2014, 14, 22128–22139. DOI: 10.3390/s141122128.
  • Baker, K. L.; Bolger, F. B.; Lowry, J. P. A Microelectrochemical Biosensor for Real-Time in Vivo Monitoring of Brain Extracellular Choline. Analyst 2015, 140, 3738–3745. DOI: 10.1039/c4an02027h.
  • Ou, Y.; Buchanan, A. M.; Witt, C. E.; Hashemi, P. Frontiers in Electrochemical Sensors for Neurotransmitter Detection: Towards Measuring Neurotransmitters as Chemical Diagnostics for Brain Disorders. Anal Methods. 2019, 11, 2738–2755. DOI: 10.1039/c9ay00055k.
  • Li, X. An Electrochemical Sensor Based on Platinum Nanoparticles and Mesoporous Carbon Composites for Selective Analysis of Dopamine. Int. J. Electrochem. Sci. 2019, 14, 1082–1091. DOI: 10.20964/2019.01.112.
  • Kado, Y.; Soneda, Y.; Hatori, H.; Kodama, M. Advanced Carbon Electrode for Electrochemical Capacitors. J. Solid State Electrochem. 2019, 23, 1061–1081. DOI: 10.1007/s10008-019-04211-x.
  • Taylor, I. M.; Du, Z.; Bigelow, E. T.; Eles, J. R.; Horner, A. R.; Catt, K. A.; Weber, S. G.; Jamieson, B. G.; Cui, X. T. Aptamer-Functionalized Neural Recording Electrodes for the Direct Measurement of Cocaine in Vivo. J. Mater. Chem. B 2017, 5, 2445–2458. DOI: 10.1039/C7TB00095B.
  • Zhang, Y. An Amperometric Hydrogen Peroxide Sensor Based on Reduced Graphene Oxide/Carbon Nanotubes/Pt NPs Modified Glassy Carbon Electrode. Int. J. Electrochem. Sci. 2020, 15, 8771–8785. DOI: 10.20964/2020.09.62.
  • Ferreira, N. R.; Ledo, A.; Laranjinha, J.; Gerhardt, G. A.; Barbosa, R. M. Simultaneous Measurements of Ascorbate and Glutamate in Vivo in the Rat Brain Using Carbon Fiber Nanocomposite Sensors and Microbiosensor Arrays. Bioelectrochemistry 2018, 121, 142–150. DOI: 10.1016/j.bioelechem.2018.01.009.
  • Ganesana, M.; Trikantzopoulos, E.; Maniar, Y.; Lee, S. T.; Venton, B. J. Development of a Novel Micro Biosensor for In Vivo Monitoring of Glutamate Release in the Brain. Biosens. Bioelectron. 2019, 130, 103–109. DOI: 10.1016/j.bios.2019.01.049.
  • Santos-Cancel, M.; Simpson, L. W.; Leach, J. B.; White, R. J. Direct, Real-Time Detection of Adenosine Triphosphate Release from Astrocytes in Three-Dimensional Culture Using an Integrated Electrochemical Aptamer-Based Sensor. ACS Chem. Neurosci. 2019, 10, 2070–2079. DOI: 10.1021/acschemneuro.9b00033.
  • Zhang, D.; Ma, J.; Meng, X.; Xu, Z.; Zhang, J.; Fang, Y.; Guo, Y. Electrochemical Aptamer-Based Microsensor for Real-Time Monitoring of Adenosine In Vivo. Anal. Chim. Acta. 2019, 1076, 55–63. DOI: 10.1016/j.aca.2019.05.035.
  • Zhang, S. J.; Kang, K.; Niu, L. M.; Kang, W. J. Electroanalysis of Neurotransmitters via 3D Gold Nanoparticles and a Graphene Composite Coupled with a Microdialysis Device. Electroanal. Chem. 2019, 834, 249–257. DOI: 10.1016/j.jelechem.2018.12.043.
  • Ragavan, K. V.; Egan, P.; Neethirajan, S. Multi Mimetic Graphene Palladium Nanocomposite Based Colorimetric Paper Sensor for the Detection of Neurotransmitters. Sens. Actuators B 2018, 273, 1385–1394. DOI: 10.1016/j.snb.2018.07.048.
  • Ibanez-Redin, G.; Wilson, D.; Goncalves, D.; Oliveira, O. N. Jr. Low-Cost Screen-Printed Electrodes Based on Electrochemically Reduced Graphene Oxide-Carbon Black Nanocomposites for Dopamine, Epinephrine and Paracetamol Detection. J. Colloid Interface Sci. 2018, 515, 101–108. DOI: 10.1016/j.jcis.2017.12.085.
  • Barsan, M. M.; Ghica, M. E.; Brett, C. M. Electrochemical Sensors and Biosensors Based on Redox Polymer/Carbon Nanotube Modified Electrodes: A Review. Anal. Chim. Acta 2015, 881, 1–23. DOI: 10.1016/j.aca.2015.02.059.
  • Meyyappan, M. Carbon Nanotube-Based Chemical Sensors. Small 2016, 12, 2118–2129. DOI: 10.1002/smll.201502555.
  • Wang, Y.; Li, Z.; Wang, J.; Li, J.; Lin, Y. Graphene and Graphene Oxide: Biofunctionalization and Applications in Biotechnology. Trends Biotechnol. 2011, 29, 205–212. DOI: 10.1016/j.tibtech.2011.01.008.
  • Yang, X.; Feng, B.; He, X.; Li, F.; Ding, Y.; Fei, J. Carbon Nanomaterial Based Electrochemical Sensors for Biogenic Amines. Microchim. Acta 2013, 180, 935–956. DOI: 10.1007/s00604-013-1015-6.
  • Yang, C.; Denno, M. E.; Pyakurel, P.; Venton, B. J. Recent Trends in Carbon Nanomaterial-Based Electrochemical Sensors for Biomolecules: A Review. Anal. Chim. Acta 2015, 887, 17–37. DOI: 10.1016/j.aca.2015.05.049.
  • Aoki, I.; Shirane, K.; Tokimoto, T.; Nakagawa, K. Separation of Fine Particles Using Rotating Tube with Alternate Flow. Rev. Sci. Instrum. 1986, 57, 2859–2861. DOI: 10.1063/1.1139056.
  • Moon, J. M.; Thapliyal, N.; Hussain, K. K.; Goyal, R. N.; Shim, Y. B. Conducting Polymer-Based Electrochemical Biosensors for Neurotransmitters: A Review. Biosens. Bioelectron. 2018, 102, 540–552. DOI: 10.1016/j.bios.2017.11.069.
  • Mora, F.; Segovia, G.; Del Arco, A.; De Blas, M.; Garrido, P. Stress, Neurotransmitters, Corticosterone and Body-Brain Integration. Brain Res. 2012, 1476, 71–85. DOI: 10.1016/j.brainres.2011.12.049.
  • Kim, J.-H.; Auerbach, J. M.; Rodríguez-Gómez, J. A.; Velasco, I.; Gavin, D.; Lumelsky, N.; Lee, S.-H.; Nguyen, J.; Sánchez-Pernaute, R.; Bankiewicz, K.; McKay, R. Dopamine Neurons Derived from Embryonic Stem Cells Function in an Animal Model of Parkinson's Disease. Nature 2002, 418, 50–56. DOI: 10.1038/nature00900.
  • Kesby, J. P.; Eyles, D. W.; Mcgrath, J. J.; Scott, J. G. Dopamine, Psychosis and Schizophrenia: The Widening Gap between Basic and Clinical Neuroscience. Transl. Psychiatry 2018, 8, 30. DOI: 10.1038/s41398-017-0071-9.
  • Pandey, P. C.; Chauhan, D. S.; Singh, V. Effect of Processable Polyindole and Nanostructured Domain on the Selective Sensing of dopamine. Mater. Sci. Eng. C Mater. Biol. Appl. 2012, 32, 1–11. DOI: 10.1016/j.msec.2011.08.020.
  • Kurzatkowska, K.; Dolusic, E.; Dehaen, W.; Sieroń-Stołtny, K.; Sieroń, A.; Radecka, H. Gold Electrode Incorporating Corrole as an Ion-Channel Mimetic Sensor for Determination of Dopamine. Anal. Chem. 2009, 81, 7397–7405. DOI: 10.1021/ac901213h.
  • Palomaki, T.; Peltola, E.; Sainio, S.; Wester, N.; Pitkanen, O.; Kordas, K.; Koskinen, J.; Laurila, T. Unmodified and Multi-Walled Carbon Nanotube Modified Tetrahedral Amorphous Carbon (ta-C) Films as In Vivo Sensor Materials for Sensitive and Selective Detection of Dopamine. Biosens. Bioelectron. 2018, 118, 23–30. DOI: 10.1016/j.bios.2018.07.018.
  • Tan, C.; Dutta, G.; Yin, H.; Siddiqui, S.; Arumugam, P. U. Detection of Neurochemicals with Enhanced Sensitivity and Selectivity via Hybrid Multiwall Carbon Nanotube-Ultrananocrystalline Diamond Microelectrodes. Sens. Actuators B Chem. 2018, 258, 193–203. DOI: 10.1016/j.snb.2017.11.054.
  • He, Q.; Liu, J.; Liu, X.; Li, G.; Chen, D.; Deng, P.; Liang, J. A Promising Sensing Platform toward Dopamine Using MnO2 Nanowires/Electro-Reduced Graphene Oxide Composites. Electrochim. Acta 2019, 296, 683–692. DOI: 10.1016/j.electacta.2018.11.096.
  • Li, N.; Nan, C.; Mei, X.; Sun, Y.; Feng, H.; Li, Y. Electrochemical Sensor Based on Dual-Template Molecularly Imprinted Polymer and Nanoporous Gold Leaf Modified Electrode for Simultaneous Determination of Dopamine and Uric Acid. Mikrochim. Acta 2020, 187, 496. DOI: 10.1007/s00604-020-04413-5.
  • Shin, J. W.; Kim, K. J.; Yoon, J.; Jo, J.; El-Said, W. A.; Choi, J. W. Silver Nanoparticle Modified Electrode Covered by Graphene Oxide for the Enhanced Electrochemical Detection of Dopamine. Sensors (Basel) 2017, 17, 2771. DOI: 10.3390/s17122771.
  • Yang, C.; Trikantzopoulos, E.; Nguyen, M. D.; Jacobs, C. B.; Wang, Y.; Mahjouri-Samani, M.; Ivanov, I. N.; Venton, B. J. Laser Treated Carbon Nanotube Yarn Microelectrodes for Rapid and Sensitive Detection of Dopamine In Vivo. ACS Sens. 2016, 1, 508–515. DOI: 10.1021/acssensors.6b00021.
  • Vreeland, R. F.; Atcherley, C. W.; Russell, W. S.; Xie, J. Y.; Lu, D.; Laude, N. D.; Porreca, F.; Heien, M. L. Biocompatible PEDOT:Nafion Composite Electrode Coatings for Selective Detection of Neurotransmitters In Vivo. Anal. Chem. 2015, 87, 2600–2607. DOI: 10.1021/ac502165f.
  • Feng, T.; Ji, W.; Tang, Q.; Wei, H.; Zhang, S.; Mao, J.; Zhang, Y.; Mao, L.; Zhang, M. Low-Fouling Nanoporous Conductive Polymer-Coated Microelectrode for in Vivo Monitoring of Dopamine in the Rat Brain. Anal. Chem. 2019, 91, 10786–10791. DOI: 10.1021/acs.analchem.9b02386.
  • Ishida, A.; Imamura, A.; Ueda, Y.; Shimizu, T.; Marumoto, R.; Jung, C. G.; Hida, H. A Novel Biosensor with High Signal-to-Noise Ratio for Real-Time Measurement of Dopamine Levels in Vivo. J. Neurosci. Res. 2018, 96, 817–827. DOI: 10.1002/jnr.24193.
  • Taylor, I. M.; Patel, N. A.; Freedman, N. C.; Castagnola, E.; Cui, X. T. Direct in Vivo Electrochemical Detection of Resting Dopamine Using Poly(3,4-Ethylenedioxythiophene)/Carbon Nanotube Functionalized Microelectrodes. Anal. Chem. 2019, 91, 12917–12927. DOI: 10.1021/acs.analchem.9b02904.
  • Xiao, G.; Song, Y.; Zhang, Y.; Xing, Y.; Zhao, H.; Xie, J.; Xu, S.; Gao, F.; Wang, M.; Xing, G.; Cai, X. Microelectrode Arrays Modified with Nanocomposites for Monitoring Dopamine and Spike Firings under Deep Brain Stimulation in Rat Models of Parkinson's Disease. ACS Sens. 2019, 4, 1992–2000. DOI: 10.1021/acssensors.9b00182.
  • Monassier, L.; Maroteaux, L. Serotonin and Cardiovascular Diseases. In Serotonin 2019, 203–238.
  • Poulin, J. F.; Zou, J.; Drouin-Ouellet, J.; Kim, K. Y.; Cicchetti, F.; Awatramani, R. B. Defining Midbrain Dopaminergic Neuron Diversity by Single-Cell Gene Expression Profiling. Cell Rep. 2014, 9, 930–943. DOI: 10.1016/j.celrep.2014.10.008.
  • Farzin, L.; Shamsipur, M.; Samandari, L.; Sheibani, S. Advances in the Design of Nanomaterial-Based Electrochemical Affinity and Enzymatic Biosensors for Metabolic Biomarkers: A Review. Mikrochim. Acta 2018, 185, 276. DOI: 10.1007/s00604-018-2820-8.
  • Leitner, M.; Fragner, L.; Danner, S.; Holeschofsky, N.; Leitner, K.; Tischler, S.; Doerfler, H.; Bachmann, G.; Sun, X.; Jaeger, W.; et al. Combined Metabolomic Analysis of Plasma and Urine Reveals AHBA, Tryptophan and Serotonin Metabolism as Potential Risk Factors in Gestational Diabetes Mellitus (GDM). Front. Mol. Biosci. 2017, 4, 84. DOI: 10.3389/fmolb.2017.00084.
  • Jackson, B. P.; Dietz, S. M.; Wightman, R. M. Fast-scan cyclic voltammetry of 5-hydroxytryptamine . Anal. Chem. 1995, 67, 1115–1120. DOI: 10.1021/ac00102a015.
  • Cao, Q.; Puthongkham, P.; Venton, B. J. Review: New Insights into Optimizing Chemical and 3D Surface Structures of Carbon Electrodes for Neurotransmitter Detection. Anal. Methods 2019, 11, 247–261. DOI: 10.1039/C8AY02472C.
  • Szeitz, A.; Bandiera, S. M. Analysis and Measurement of Serotonin. Biomed. Chromatogr. 2018, 32, e4135. DOI: 10.1002/bmc.4135.
  • Wang, Y.; Wang, S.; Tao, L.; Min, Q.; Xiang, J.; Wang, Q.; Xie, J.; Yue, Y.; Wu, S.; Li, X.; Ding, H. A Disposable Electrochemical Sensor for Simultaneous Determination of Norepinephrine and Serotonin in Rat Cerebrospinal Fluid Based on MWNTs-ZnO/Chitosan Composites Modified Screen-Printed Electrode. Biosens. Bioelectron. 2015, 65, 31–38. DOI: 10.1016/j.bios.2014.09.099.
  • Song, J.; Wang, L.; Qi, H.; Qi, H.; Zhang, C. Highly Selective Electrochemical Method for the Detection of Serotonin at Carbon Fiber Microelectrode Modified with Gold Nanoflowers and Overoxidized Polypyrrole. Chin. Chem. Lett. 2019, 30, 1643–1646. DOI: 10.1016/j.cclet.2019.05.042.
  • Ran, G.; Xia, Y.; Liang, L.; Fu, C. Enhanced Response of Sensor on Serotonin Using Nickel-Reduced Graphene Oxide by Atomic Layer Deposition. Bioelectrochemistry 2021, 140, 107820. DOI: 10.1016/j.bioelechem.2021.107820.
  • Thanh, T. D.; Balamurugan, J.; Hien, H. V.; Kim, N. H.; Lee, J. H. A Novel Sensitive Sensor for Serotonin Based on High-Quality of AuAg Nanoalloy Encapsulated Graphene Electrocatalyst. Biosens. Bioelectron. 2017, 96, 186–193. DOI: 10.1016/j.bios.2017.05.014.
  • Liang, W.; Rong, Y.; Fan, L.; Zhang, C.; Dong, W.; Li, J.; Niu, J.; Yang, C.; Shuang, S.; Dong, C.; Wong, W. Y. Simultaneous Electrochemical Sensing of Serotonin, Dopamine and Ascorbic Acid by Using a Nanocomposite Prepared from Reduced Graphene Oxide, Fe3O4 and Hydroxypropyl-β-Cyclodextrin . Mikrochim. Acta 2019, 186, 751. DOI: 10.1007/s00604-019-3861-3.
  • Mahato, K.; Purohit, B.; Bhardwaj, K.; Jaiswal, A.; Chandra, P. Novel Electrochemical Biosensor for Serotonin Detection Based on Gold Nanorattles Decorated Reduced Graphene Oxide in Biological Fluids and In Vitro Model. Biosens. Bioelectron. 2019, 142,111502. DOI: 10.1016/j.bios.2019.111502.
  • Hashemi, P.; Dankoski, E. C.; Petrovic, J.; Keithley, R. B.; Wightman, R. M. Voltammetric Detection of 5-Hydroxytryptamine Release in the Rat Brain. Anal. Chem. 2009, 81, 9462–9471. DOI: 10.1021/ac9018846.
  • Abdalla, A.; Atcherley, C. W.; Pathirathna, P.; Samaranayake, S.; Qiang, B.; Pena, E.; Morgan, S. L.; Heien, M. L.; Hashemi, P. In Vivo Ambient Serotonin Measurements at Carbon-Fiber Microelectrodes. Anal. Chem. 2017, 89, 9703–9711. DOI: 10.1021/acs.analchem.7b01257.
  • Ozel, R. E.; Wallace, K. N.; Andreescu, S. Chitosan Coated Carbon Fiber Microelectrode for Selective in Vivo Detection of Neurotransmitters in Live Zebrafish Embryos. Anal. Chim. Acta 2011, 695, 89–95. DOI: 10.1016/j.aca.2011.03.057.
  • Hashemi, P.; Dankoski, E. C.; Wood, K. M.; Ambrose, R. E.; Wightman, R. M. In Vivo Electrochemical Evidence for Simultaneous 5-HT and Histamine Release in the Rat Substantia Nigra Pars Reticulata following Medial Forebrain Bundle Stimulation. J. Neurochem. 2011, 118, 749–759. DOI: 10.1111/j.1471-4159.2011.07352.x.
  • Sattarahmady, N.; Heli, H.; Moosavi-Movahedi, A. A. An Electrochemical Acetylcholine Biosensor Based on Nanoshells of Hollow Nickel Microspheres-Carbon microparticles-Nafion Nanocomposite. Biosens. Bioelectron. 2010, 25, 2329–2335. DOI: 10.1016/j.bios.2010.03.031.
  • Mitchell, K. M. Acetylcholine and Choline Amperometric Enzyme Sensors Characterized In Vitro and In Vivo. Anal. Chem. 2004, 76, 1098–1106. DOI: 10.1021/ac034757v.
  • Kong, D.; Jin, R.; Zhao, X.; Li, H.; Yan, X.; Liu, F.; Sun, P.; Gao, Y.; Liang, X.; Lin, Y.; Lu, G. Protein-Inorganic Hybrid Nanoflower-Rooted Agarose Hydrogel Platform for Point-of-Care Detection of Acetylcholine. ACS Appl. Mater. Interfaces 2019, 11, 11857–11864. DOI: 10.1021/acsami.8b21571.
  • Chauhan, N.; Chawla, S.; Pundir, C. S.; Jain, U. An Electrochemical Sensor for Detection of Neurotransmitter-Acetylcholine Using Metal Nanoparticles, 2D Material and Conducting Polymer Modified Electrode. Biosens. Bioelectron. 2017, 89, 377–383. DOI: 10.1016/j.bios.2016.06.047.
  • Tyagi, C.; Chauhan, N.; Tripathi, A.; Jain, U.; Avasthi, D. K. Voltammetric Measurements of Neurotransmitter-Acetylcholine through Metallic Nanoparticles Embedded 2-D Material. Int. J. Biol. Macromol. 2019, 140, 415–422. DOI: 10.1016/j.ijbiomac.2019.08.102.
  • Fenoy, G. E.; Marmisolle, W. A.; Azzaroni, O.; Knoll, W. Acetylcholine Biosensor Based on the Electrochemical Functionalization of Graphene Field-Effect Transistors. Biosens. Bioelectron. 2020, 148, 111796. DOI: 10.1016/j.bios.2019.111796.
  • Akhtar, M. H.; Hussain, K. K.; Gurudatt, N. G.; Shim, Y. B. Detection of Ca2+-Induced Acetylcholine Released from Leukemic T-cells using an Amperometric Microfluidic Sensor. Biosens. Bioelectron. 2017, 98, 364–370. DOI: 10.1016/j.bios.2017.07.003.
  • Lin, Y.; Yu, P.; Mao, L. A Multi-Enzyme Microreactor-Based Online Electrochemical System for Selective and Continuous Monitoring of Acetylcholine. Analyst 2015, 140, 3781–3787. DOI: 10.1039/c4an02089h.
  • Santos, R. M.; Laranjinha, J.; Barbosa, R. M.; Sirota, A. Simultaneous Measurement of Cholinergic Tone and Neuronal Network Dynamics In Vivo in the Rat Brain Using a Novel Choline Oxidase Based Electrochemical Biosensor. Biosens. Bioelectron. 2015, 69, 83–94. DOI: 10.1016/j.bios.2015.02.003.
  • Zhou, Y.; Danbolt, N. C. Glutamate as a Neurotransmitter in the Healthy Brain. J. Neural Transm. (Vienna) 2014, 121, 799–817. DOI: 10.1007/s00702-014-1180-8.
  • Baj, A.; Moro, E.; Bistoletti, M.; Orlandi, V.; Crema, F.; Giaroni, C. Glutamatergic Signaling along the Microbiota-Gut-Brain Axis. Int. J. Mol. Sci. 2019, 20, 1482. DOI: 10.3390/ijms20061482.
  • Lewerenz, J.; Maher, P. Chronic Glutamate Toxicity in Neurodegenerative Diseases-What is the Evidence? Front. Neurosci. 2015, 9, 469. DOI: 10.3389/fnins.2015.00469.
  • Zeynaloo, E.; Yang, Y. P.; Dikici, E.; Landgraf, R.; Bachas, L. G.; Daunert, S. Design of a Mediator-Free, Non-Enzymatic Electrochemical Biosensor for Glutamate Detection. Nanomedicine 2021, 31, 102305. DOI: 10.1016/j.nano.2020.102305.
  • Wang, Y.; Mishra, D.; Bergman, J.; Keighron, J. D.; Skibicka, K. P.; Cans, A. S. Ultrafast Glutamate Biosensor Recordings in Brain Slices Reveal Complex Single Exocytosis Transients. ACS Chem. Neurosci. 2019, 10, 1744–1752. DOI: 10.1021/acschemneuro.8b00624.
  • Dalkiran, B.; Erden, P. E.; Kilic, E. Graphene and Tricobalt Tetraoxide Nanoparticles Based Biosensor for Electrochemical Glutamate Sensing. Artif. Cells Nanomed. Biotechnol. 2017, 45, 340–348. DOI: 10.3109/21691401.2016.1153482.
  • Chen, J.; Yu, Q.; Fu, W.; Chen, X.; Zhang, Q.; Dong, S.; Chen, H.; Zhang, S. A Highly Sensitive Amperometric Glutamate Oxidase Microbiosensor Based on a Reduced Graphene Oxide/Prussian Blue Nanocube/Gold Nanoparticle Composite Film-Modified Pt Electrode. Sensors (Basel). 2020, 20, 2924. DOI: 10.3390/s20102924.
  • Li, Y. T.; Jin, X.; Tang, L.; Lv, W. L.; Xiao, M. M.; Zhang, Z. Y.; Gao, C.; Zhang, G. J. Receptor-Mediated Field Effect Transistor Biosensor for Real-Time Monitoring of Glutamate Release from Primary Hippocampal Neurons. Anal. Chem. 2019, 91, 8229–8236. DOI: 10.1021/acs.analchem.9b00832.
  • Nguyen, T. N. H.; Nolan, J. K.; Park, H.; Lam, S.; Fattah, M.; Page, J. C.; Joe, H. E.; Jun, M. B. G.; Lee, H.; Kim, S. J.; et al. Facile Fabrication of Flexible Glutamate Biosensor Using Direct Writing of Platinum Nanoparticle-Based Nanocomposite Ink. Biosens. Bioelectron. 2019, 131, 257–266. DOI: 10.1016/j.bios.2019.01.051.
  • Xiao, G.; Song, Y.; Zhang, S.; Yang, L.; Xu, S.; Zhang, Y.; Xu, H.; Gao, F.; Li, Z.; Cai, X. A High-Sensitive Nano-Modified Biosensor for Dynamic Monitoring of Glutamate and Neural Spike Covariation from Rat Cortex to Hippocampal Sub-Regions. J. Neurosci. Methods 2017, 291, 122–130. DOI: 10.1016/j.jneumeth.2017.08.015.
  • Nathan, C.; Xie, Q. W. Nitric Oxide Synthases: Roles, Tolls, and Controls. Cell 1994, 78, 915–918. DOI: 10.1016/0092-8674(94)90266-6.
  • Hao, X.; Hu, F.; Gu, Y.; Yang, H.; Li, C.; Guo, C. Molecularly Assembled Graphdiyne with Atomic Sites for Ultrafast and Real-Time Detection of Nitric Oxide in Cell Assays. Biosens. Bioelectron. 2021, 195, 113630. DOI: 10.1016/j.bios.2021.113630.
  • Deng, X.; Zou, Z.; Zhang, Y.; Gao, J.; Liang, T.; Lu, Z.; Ming Li, C. Synthesis of Merit-Combined Antimony Tetroxide Nanoflowers/Reduced Graphene Oxide to Synergistically Boost Real-Time Detection of Nitric Oxide Released from Living Cells for High Sensitivity. J. Colloid Interface Sci. 2021, 581, 465–474. DOI: 10.1016/j.jcis.2020.07.076.
  • Geetha Bai, R.; Muthoosamy, K.; Zhou, M.; Ashokkumar, M.; Huang, N. M.; Manickam, S. Sonochemical and Sustainable Synthesis of Graphene-Gold (G-Au) Nanocomposites for Enzymeless and Selective Electrochemical Detection of Nitric Oxide. Biosens. Bioelectron. 2017, 87, 622–629. DOI: 10.1016/j.bios.2016.09.003.
  • Li, J.; Xie, J.; Gao, L.; Li, C. M. Au Nanoparticles-3D Graphene Hydrogel Nanocomposite to Boost Synergistically In Situ Detection Sensitivity toward Cell-Released Nitric Oxide. ACS Appl. Mater. Interfaces 2015, 7, 2726–2734. DOI: 10.1021/am5077777.
  • Meiller, A.; Sequeira, E.; Marinesco, S. Electrochemical Nitric Oxide Microsensors Based on a Fluorinated Xerogel Screening Layer for In Vivo Brain Monitoring. Anal. Chem. 2020, 92, 1804–1810. DOI: 10.1021/acs.analchem.9b03621.
  • Santos, R. M.; Rodrigues, M. S.; Laranjinha, J.; Barbosa, R. M. Biomimetic Sensor Based on Hemin/Carbon Nanotubes/Chitosan Modified Microelectrode for Nitric Oxide Measurement in the Brain. Biosens. Bioelectron. 2013, 44, 152–159. DOI: 10.1016/j.bios.2013.01.015.
  • Liu, L.; Zhang, L.; Dai, Z.; Tian, Y. A Simple Functional Carbon Nanotube Fiber for in Vivo Monitoring of NO in a Rat Brain following Cerebral Ischemia. Analyst 2017, 142, 1452–1458. DOI: 10.1039/c7an00138j.
  • Huang, D. W.; Niu, C. G.; Zeng, G. M.; Ruan, M. Time-Resolved Fluorescence Biosensor for Adenosine Detection Based on Home-Made Europium Complexes. Biosens. Bioelectron. 2011, 29, 178–183. DOI: 10.1016/j.bios.2011.08.014.
  • Wang, X.; Dong, P.; He, P.; Fang, Y. A Solid-State Electrochemiluminescence Sensing Platform for Detection of Adenosine Based on Ferrocene-Labeled Structure-Switching Signaling Aptamer. Anal. Chim. Acta 2010, 658, 128–132. DOI: 10.1016/j.aca.2009.11.007.
  • Shahdost-Fard, F.; Salimi, A.; Sharifi, E.; Korani, A. Fabrication of a Highly Sensitive Adenosine Aptasensor Based on Covalent Attachment of Aptamer onto Chitosan-Carbon Nanotubes-Ionic Liquid Nanocomposite. Biosens. Bioelectron. 2013, 48, 100–107. DOI: 10.1016/j.bios.2013.03.060.
  • Gao, Y.; Qi, H.; Shang, M.; Zhang, J.; Yan, J.; Song, W. Carbon Dots-Sensitized Amorphous MoSx Photoanode: Sequential Electrodeposition Preparation and Dual Amplified Photoelectrochemical Aptasensing of Adenosine. Biosens. Bioelectron. 2019, 146, 111741. DOI: 10.1016/j.bios.2019.111741.
  • Wu, D.; Ren, X.; Hu, L.; Fan, D.; Zheng, Y.; Wei, Q. Electrochemical Aptasensor for the Detection of Adenosine by Using PdCu@MWCNTs-Supported Bienzymes as Labels. Biosens. Bioelectron. 2015, 74, 391–397. DOI: 10.1016/j.bios.2015.07.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.