600
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Reactive Matrices for Analytical Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry

ORCID Icon, & ORCID Icon
Pages 1027-1043 | Published online: 30 Dec 2021

References

  • Karas, M.; Bachmann, D.; Hillenkamp, F. Influence of the Wavelength in High Irradiance Ultraviolet Laser Desorption Mass Spectrometry of Organic Molecules. Anal. Chem. 1985, 57, 2935–2939. DOI: 10.1021/ac00291a042.
  • Karas, M.; Hillenkamp, F. Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10,000 Daltons. Anal. Chem. 1988, 60, 2299–2301. DOI: 10.1021/ac00171a028.
  • Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T. Protein and Polymer Analyses up to m/z 100000 by Laser Ionization Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 1988, 2, 151–153. DOI: 10.1002/rcm.1290020802.
  • Bergman, N.; Shevchenko, D.; Bergquist, J. Approaches for the Analysis of Low Molecular Weight Compounds with Laser Desorption/Ionization Techniques and Mass Spectrometry. Anal. Bioanal. Chem. 2014, 406, 49–61. DOI: 10.1007/s00216-013-7471-3.
  • Kiss, A.; Hopfgartner, G. Laser-Based Methods for the Analysis of Low Molecular Weight Compounds in Biological Matrices. Methods. 2016, 104, 142–153. DOI: 10.1016/j.ymeth.2016.04.017.
  • Qiao, Z.; Lissel, F. MALDI Matrices for the Analysis of Low Molecular Weight Compounds: Rational Design, Challenges and Perspectives. Chem. Asian J. 2021, 16, 868–878. DOI: 10.1016/j.ymeth.2016.04.017.
  • Zaikin, V. G.; Borisov, R. S. Review. Mass Spectrometry as the Most Important Analytical Basis for a Number of Omics Sciences. Mass-Spektromet. 2021, 18, 4–31. (in Russian)
  • Leopold, J.; Popkova, Y.; Engel, K. M.; Schiller, J. Recent Developments of Useful MALDI Matrices for the Mass Spectrometric Characterization of Lipids. Biomolecules. 2018, 8, 173. DOI: 10.3390/biom8040173.
  • Falkenhagen, J.; Weidner, S. M. Detection Limits of Matrix-Assisted Laser Desorption/Ionisation Mass Spectrometry Coupled to Chromatography – A New Application of Solvent-Free Sample Preparation. Rapid Commun Mass Spectrom. 2005, 19, 3724–3730. DOI: 10.1002/rcm.2256.
  • Müller, W. H.; Verdin, A.; De Pauw, E.; Malherbe, C.; Eppe, G. Surface-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging: A Review. Mass Spectrom. Rev. 2020. DOI: 10.1002/mas.21670.
  • Zaikin, V.; Halket, J. A Handbook of Derivatives for Mass Spectrometry; IMPublications: Chichester, England, 2009.
  • Zaikin, V. G.; Borisov, R. S. Options of the Main Derivatization Approaches for Analytical ESI and MALDI Mass Spectrometry. Crit. Rev. Anal. Chem. 2021, 1–81. DOI: 10.1080/10408347.2021.1873100.
  • Brombacher, S.; Owen, S. J.; Dietrich, A.; Volmer, D. A. Automated Coupling of Capillary-HPLC to Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for the Analysis of Small Molecules Utilizing a Reactive Matrix. Anal. Bioanal. Chem. 2003, 376, 773–779. DOI: 10.1007/s00216-003-2024-9.
  • Karas, M.; Glückmann, M.; Schäfer, J. Ionization in Matrix-Assisted Laser Desorption/Ionization: Singly Charged Molecular Ions Are the Lucky Survivors. J. Mass Spectrom. 2000, 35, 1–12. DOI: 10.1002/(SICI)1096-9888(200001)35:1 < 1::AID-JMS904 > 3.0.CO;2-0.
  • Zenobi, R.; Knochenmuss, R. Ion Formation in MALDI Mass Spectrometry. Mass Spectrom. Rev. 1998, 17, 337–366. DOI: 10.1002/(SICI)1098-2787(1998)17:5 < 337::AID-MAS2 > 3.0.CO;2-S.
  • Karas, M.; Krüger, R. Ion Formation in MALDI: The Cluster Ionization Mechanism. Chem. Rev. 2003, 103, 427–439. DOI: 10.1021/cr010376a.
  • Knochenmuss, R.; Zenobi, R. MALDI Ionization: The Role of in-Plume Processes. Chem. Rev. 2003, 103, 441–452. DOI: 10.1021/cr0103773.
  • Fuchs, B.; Schiller, J. Recent Developments of Useful MALDI Matrices for the Mass Spectrometric Characterization of Apolar Compounds. Curr. Org. Chem. 2009, 13, 1664–1681. DOI: 10.2174/138527209789578108.
  • Mirabelli, M. F.; Zenobi, R. Observing Proton Transfer Reactions inside the MALDI Plume: Experimental and Theoretical Insight into MALDI Gas-Phase Reactions. J. Am. Soc. Mass Spectrom. 2017, 28, 1676–1686. DOI: 10.1007/s13361-017-1677-0.
  • Jaskolla, T. W.; Karas, M. Compelling Evidence for Lucky Survivor and Gas Phase Protonation: The Unified MALDI Analyte Protonation Mechanism. J. Am. Soc. Mass Spectrom. 2011, 22, 976–988. DOI: 10.1007/s13361-011-0093-0.
  • Knochenmuss, R. Photoionization Pathways and Free Electrons in UV-MALDI. Anal. Chem. 2004, 76, 3179–3184. DOI: 10.1021/ac035501s.
  • Knochenmuss, R. Ion Yields in the Coupled Chemical and Physical Dynamics Model of Matrix-Assisted Laser Desorption/Ionization. J. Am. Soc. Mass Spectrom. 2015, 26, 1645–1648. DOI: 10.1007/s13361-015-1225-8.
  • Calvano, C. D.; Monopoli, A.; Cataldi, T. R. I.; Palmisano, F. MALDI Matrices for Low Molecular Weight Compounds: An Endless Story? Anal. Bioanal. Chem. 2018, 410, 4015–4038. DOI: 10.1007/s00216-018-1014-x.
  • Lin, X.; Xiao, C.; Ling, L.; Guo, L.; Guo, X. A Dual-Mode Reactive Matrix for Sensitive and Quantitative Analysis of Carbohydrates by MALDI-TOF MS. Talanta. 2021, 235, 122792 DOI: 10.1016/j.talanta.2021.122792.
  • Huang, P.; Huang, C.-Y.; Lin, T.-C.; Lin, L.-E.; Yang, E.; Lee, C.; Hsu, C.-C.; Pi-Tai Chou, P.-T. Toward the Rational Design of Universal Dual Polarity Matrix for MALDI Mass Spectrometry. Anal. Chem. 2020, 92, 7139–7145. DOI: 10.1021/acs.analchem.0c00570.
  • Vermillion-Salsbury, R. L.; Hercules, D. M. 9-Aminoacridine as a Matrix for Negative Mode Matrix-Assisted Laser Desorption/Ionization. Rapid Commun. Mass Spectrom. 2002, 16, 1575–1581. DOI: 10.1002/rcm.750.
  • Shroff, R.; Muck, A.; Svatoš, A. Analysis of Low Molecular Weight Acids by Negative Mode Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Rapid Commun Mass Spectrom. 2007, 21, 3295–3300. DOI: 10.1002/rcm.3216.
  • Edwards, J. L.; Kennedy, R. T. Metabolomic Analysis of Eukaryotic Tissue and Prokaryotes Using Negative Mode MALDI Time-of-Flight Mass Spectrometry. Anal. Chem. 2005, 77, 2201–2209. DOI: 10.1021/ac048323r.
  • Cheng, H.; Sun, G.; Yang, K.; Gross, R. W.; Han, X. Selective Desorption/Ionization of Sulfatides by MALDI-MS Facilitated Using 9-Aminoacridine as Matrix. J. Lipid. Res. 2010, 51, 1599–1609. DOI: 10.1194/jlr.D004077.
  • Fagerer, S. R.; Nielsen, S.; Ibáñez, A.; Zenobi, R. Matrix-Assisted Laser Desorption/Ionization Matrices for Negative Mode Metabolomics. Eur. J. Mass. Spectrom. (Chichester). 2013, 19, 39–47. DOI: 10.1255/ejms.1209.
  • Amantonico, A.; Oh, J. Y.; Sobek, J.; Heinemann, M.; Zenobi, R. Mass Spectrometric Method for Analyzing Metabolites in Yeast with Single Cell Sensitivity. Angew. Chem. Int. Ed. Engl. 2008, 47, 5382–5385. DOI: 10.1002/anie.200705923.
  • Sun, G.; Yang, K.; Zhao, Z.; Guan, S.; Han, X.; Gross, R. W. Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometric Analysis of Cellular Glycerophospholipids Enabled by Multiplexed Solvent Dependent Analyte-Matrix Interactions. Anal. Chem. 2008, 80, 7576–7585. DOI: 10.1021/ac801200w.
  • Becher, J.; Muck, A.; Mithöfer, A.; Svatoš, A.; Boland, W. Negative Ion Mode Matrix-Assisted Laser Desorption/Ionisation Time-of-Flight Mass Spectrometric Analysis of Oligosaccharides Using Halide Adducts and 9-Aminoacridine Matrix. Rapid Commun. Mass Spectrom. 2008, 22, 1153–1158. DOI: 10.1002/rcm.3489.
  • Vaidyanathan, S.; Goodacre, R. Quantitative Detection of Metabolites Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry with 9-Aminoacridine as the Matrix. Rapid Commun Mass Spectrom. 2007, 21, 2072–2078. DOI: 10.1002/rcm.3063.
  • Scott, A. J.; Flinders, B.; Cappell, J.; Liang, T.; Pelc, R. S.; Tran, B.; Kilgour, D. P. A.; Heeren, R. M. A.; Goodlett, D. R.; Ernst, R. K. Norharmane Matrix Enhances Detection of Endotoxin by MALDI-MS for Simultaneous Profiling of Pathogen, Host and Vector Systems. Pathog Dis. 2016, 74, ftw097. DOI: 0.1093/femspd/ftw097.
  • Krivosheina, M. S.; Borisov, R. S.; Zhilyaev, D. I.; Matveeva, M. D.; Zaikin, V. G. New Suitable Deprotonating Matrices for the Analysis of Carboxylic Acids and Some Acidic Compounds by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry in Negative Ion Mode. Rapid Commun Mass Spectrom. 2021, 35, e8954. DOI: 10.1002/rcm.8954.
  • Ling, L.; Li, Y.; Wang, S.; Guo, L.; Xiao, C.; Chen, X.; Guo, X. DBDA as a Novel Matrix for the Analyses of Small Molecules and Quantification of Fatty Acids by Negative Ion MALDI-TOF MS. J. Am. Soc. Mass Spectrom. 2018, 29, 704–710. DOI: 10.1007/s13361-017-1881-y.
  • Lorkiewicz, P.; Yappert, M. C. 2-(2-Aminoethylamino)-5-Nitropyridine as a Basic Matrix for Negative-Mode Matrix-Assisted Laser Desorption/Ionization Analysis of Phospholipids. J. Mass Spectrom. 2009, 44, 137–143. DOI: 10.1002/jms.1483.
  • Mirza, S. P.; Raju, N. P.; Vairamani, M. Estimation of the Proton Affinity Values of Fifteen Matrix-Assisted Laser Desorption/Ionization Matrices under Electrospray Ionization Conditions Using the Kinetic Method. J. Am. Soc. Mass Spectrom. 2004, 15, 431–435. DOI: 10.1016/j.jasms.2003.12.001.
  • Shroff, R.; Svatoš, A. Proton Sponge: A Novel and Versatile MALDI Matrix for the Analysis of Metabolites Using Mass Spectrometry. Anal. Chem. 2009, 81, 7954–7959. DOI: 10.1021/ac901048z.
  • Shroff, R.; Svatoš, A. 1,8-Bis(Dimethylamino)Naphthalene: A Novel Superbasic Matrix for Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometric Analysis of Fatty Acids. Rapid Commun Mass Spectrom. 2009, 23, 2380–2382. DOI: 10.1002/rcm.4143.
  • Shroff, R.; Rulíšek, L.; Doubský, J.; Svatoš, A. Acid– Base-Driven Matrix-Assisted Mass Spectrometry for Targeted Metabolomics. PNAS. 2009, 106, 10092–10096. DOI: 10.1073/pnas.0900914106.
  • Calvano, C. D.; Zambonin, C. G.; Palmisano, F. Lipid Fingerprinting of Gram-Positive Lactobacilli by Intact-Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry using a Proton Sponge Based Matrix. Rapid Commun Mass Spectrom. 2011, 25, 1757–1764. DOI: 10.1002/rcm.5035.
  • Calvano, C. D.; Monopoli, A.; Ditaranto, N.; Palmisano, F. 1,8-Bis(Dimethylamino)Naphthalene/9-Aminoacridine: A New Binary Matrix for Lipid Fingerprinting of Intact Bacteria by Matrix Assisted Laser Desorption Ionization Mass Spectrometry. Anal. Chim. Acta. 2013, 798, 56–63. DOI: 10.1016/j.aca.2013.08.050.
  • Zhang, S.; Yao, Z. P. Improved Detection of Phosphopeptides by Negative Ion Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Using a Proton Sponge Co-Matrix. Anal. Chim. Acta. 2012, 711, 77–82. DOI: 10.1016/j.aca.2011.10.060.
  • Valencia-Dávila, J. A.; Witt, M.; Blanco-Tirado, C.; Combariza, M. Y. Molecular Characterization of Naphthenic Acids from Heavy Crude Oils Using MALDI FT-ICR Mass Spectrometry. Fuel. 2018, 231, 126–133. DOI: 10.1016/j.fuel.2018.05.061.
  • Valencia-Dávila, J. A.; Blanco-Tirado, C.; Combariza, M. Y. Analysis of Naphthenic Acids by Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry. Fuel. 2017, 193, 168–177. DOI: 10.1016/j.fuel.2016.12.048.
  • Cao, D.; Wang, Z.; Han, C.; Cui, L.; Hu, M.; Wu, J.; Liu, Y.; Cai, Y.; Wang, H.; Kang, Y. Quantitative Detection of Trace Perfluorinated Compounds in Environmental Water Samples by Matrix-assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry with 1,8-Bis(Tetramethylguanidino)-Naphthalene as Matrix. Talanta 2011, 85, 345–352. DOI: 10.1016/j.talanta.2011.03.062.
  • Weißflog, J.; Svatoš, A. 1,8-Di(Piperidinyl)-Naphthalene – Rationally Designed MAILD/MALDI Matrix for Metabolomics and Imaging Mass Spectrometry. RSC Adv. 2016, 6, 75073–75081. DOI: 10.1039/C6RA17237G.
  • Calvano, C. D.; Cataldi, T. R. I.; Kögel, J. F.; Monopoli, A.; Palmisano, F.; Sundermeyer, J. Superbasic Alkyl-Substituted Bisphosphazene Proton Sponges: A New Class of Deprotonating Matrices for Negative Ion Matrix-Assisted Ionization/Laser Desorption Mass Spectrometry of Low Molecular Weight Hardly Ionizable Analytes. Rapid Commun Mass Spectrom. 2016, 30, 1680–1686. DOI: 10.1002/rcm.7604.
  • Calvano, C. D.; Cataldi, T. R. I.; Kögel, J. F.; Monopoli, A.; Palmisano, F.; Sundermeyer, J. Structural Characterization of Neutral Saccharides by Negative Ion MALDI Mass Spectrometry Using a Superbasic Proton Sponge as Deprotonating Matrix. J. Am. Soc. Mass. Spectrom. 2017, 28, 1666–1675. DOI: 10.1007/s13361-017-1679-y.
  • Napagoda, M.; Rulíšek, L.; Jančařík, A.; Klívar, J.; Šámal, M.; Stará, I. G.; Starý, I.; Šolínová, V.; Kašička, V.; Svatoš, A. Azahelicene Superbases as MAILD Matrices for Acidic Analytes. Chempluschem. 2013, 78, 937–942. DOI: 10.1002/cplu.201300258.
  • Kögel, J. F.; Xie, X.; Baal, E.; Gesevičius, D.; Oelkers, B.; Kovačević, B.; Sundermeyer, J. Superbasic Alkyl-Substituted Bisphosphazene Proton Sponges: Synthesis, Structural Features, Thermodynamic and Kinetic Basicity, Nucleophilicity and Coordination Chemistry. Chemistry. 2014, 20, 7670–7685. DOI: 10.1002/chem.201402226.
  • Eibisch, M.; Süss, R.; Schiller, J. Time-Dependent Intensity Changes of Free Fatty Acids Detected by Matrix-Assisted Laser Desorption and Ionization Time-of-Flight Mass Spectrometry in the Presence of 1,8-Bis-(Dimethylamino)naphthalene-a Cautionary Note. Rapid Commun Mass Spectrom. 2012, 26, 1573–1576. DOI: 10.1002/rcm.6260.
  • Zhang, L.-K.; Gross, M. L. Location of Abasic Sites in Oligodeoxynucleotides by Tandem Mass Spectrometry and by a Chemical Cleavage Initiated by an Unusual Reaction of the ODN with MALDI Matrix. J. Am. Soc. Mass Spectrom. 2002, 13, 1418–1426. DOI: 10.1016/S1044-0305(02)00701-8.
  • Monopoli, A.; Calvano, C. D.; Nacci, A.; Palmisano, F. Boronic Acid Chemistry in MALDI MS: A Step Forward in Designing a Reactive Matrix with Molecular Recognition Capabilities. Chem Commun (Camb). 2014, 50, 4322–4324. DOI: 10.1039/C4CC01185F.
  • Asakawa, D.; Osaka, I. Direct MALDI-MS Analysis of the Disulfide Bonds in Peptide Using Thiosalicylic Acid as a Reactive Matrix. J. Mass. Spectrom. 2017, 52, 127–131. DOI: 10.1002/jms.3906.
  • Teuber, K.; Fedorova, M.; Hoffmann, R.; Schiller, J. 2,4-Dinitrophenylhydrazine as a New Reactive Matrix to Analyze Oxidized Phospholipids by MALDI-TOF Mass Spectrometry. Anal. Lett. 2012, 45, 968–976. DOI: 10.1080/00032719.2012.
  • Fenaille, F.; Tabet, J.-C.; Guy, P. A. Identification of 4-Hydroxy-2-nonenal-Modified Peptides within Unfractionated Digests Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Anal. Chem. 2004, 76, 867–873. DOI: 10.1021/ac0303822.
  • Shigeri, Y.; Ikeda, S.; Yasuda, A.; Ando, M.; Sato, H.; Kinumi, T. Hydrazide and Hydrazine Reagents as Reactive Matrices for MALDI-MS to Detect Gaseous Aldehydes. J. Mass Spectrom. 2014, 49, 742–749. DOI: 10.1002/jms.3408.
  • Shigeri, Y.; Yasuda, A.; Sakai, M.; Ikeda, S.; Arakawa, R.; Sato, H.; Kinumi, T. Hydrazide and Hydrazine Reagents as Reactive Matrices for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry to Detect Steroids with Carbonyl Groups. Eur. J. Mass. Spectrom. (Chichester). 2015, 21, 79–90. DOI: 10.1255/ejms.1336.
  • Shigeri, Y.; Kamimura, T.; Ando, M.; Uegaki, K.; Sato, H.; Tani, F.; Arakawa, R.; Kinumi, T. 2-Hydrazinoquinoline: A Reactive Matrix for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry to Detect Gaseous Carbonyl Compounds. Eur. J. Mass. Spectrom. (Chichester). 2016, 22, 83–90. DOI: 10.1255/ejms.1413.
  • Jiang, K.; Aloor, A.; Qu, J.; Xiao, C.; Wu, Z.; Ma, C.; Zhang, L.; Wang, P. G. Rapid and Sensitive MALDI MS Analysis of Oligosaccharides by Using 2-Hydrazinopyrimidine as a Derivative Reagent and Co-Matrix. Anal. Bioanal. Chem. 2017, 409, 421–429. DOI: 10.1007/s00216-016-9690-x.
  • Mugo, S. M.; Bottaro, C. S. Rapid on-Plate and One-Pot Derivatization of Carbonyl Compounds for Enhanced Detection by Reactive Matrix LDI-TOF MS Using the Tailor-Made Reactive Matrix, 4-Dimethylamino-6-(4-Methoxy-1-Naphthyl)-1,3,5-Triazine-2-Hydrazine (DMNTH). J. Mass. Spectrom. 2007, 42, 206–217. DOI: 10.1002/jms.1153.
  • Ling, L.; Xiao, C.; Ma, Y.; Jiang, L.; Wang, S.; Guo, L.; Jiang, S.; Guo, X. 2-Phenyl-3-(p-aminophenyl) Acrylonitrile: A Reactive Matrix for Sensitive and Selective Analysis of Glycans by MALDI-MS. Anal. Chem. 2019, 91, 8801–8807. DOI: 10.1021/acs.analchem.9b01434.
  • Ling, L.; Jiang, L.; Chen, Q.; Zhao, B.; Li, Y.; Guo, X. Rapid and Accurate Profiling of Oligosaccharides in Beer by Using a Reactive Matrix via MALDI-TOF MS. Food Chem. 2021, 340, 128208. DOI: 10.1016/j.foodchem.2020.128208.
  • Rohmer, M.; Meyer, B.; Mank, M.; Stahl, B.; Bahr, U.; Karas, M. 3-Aminoquinoline Acting as Matrix and Derivatizing Agent for MALDI MS Analysis of Oligosaccharides. Anal. Chem. 2010, 82, 3719–3726. DOI: 10.1021/ac1001096.
  • Cai, Y.; Zhang, Y.; Yang, P.; Lu, H. Improved Analysis of Oligosaccharides for Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Using Aminopyrazine as a Derivatization Reagent and a Co-Matrix. Analyst 2013, 138, 6270–6276. DOI: 10.1039/c3an01228j.
  • Slyundina, M. S.; Polovkov, N. Y.; Borisov, R. S.; Zaikin, V. G. Tryptamine: A Reactive Matrix for MALDI Mass Spectrometry. Mass-Spektromet. (in Russian) 2016, 13, 220–224. [Engl. Translation. J. Anal. Chem. 2017, 72, 1295–1299]. DOI: 10.1134/S106193481713010X.
  • Mugo, S. M.; Bottaro, C. S. Rapid Analysis of α-Dicarbonyl Compounds by Laser Desorption/Ionization Mass Spectrometry Using 9-(3,4-Diaminophenyl)Acridine (DAA) as a Reactive Matrix. Rapid Commun. Mass Spectrom. 2008, 22, 1087–1093. DOI: 10.1002/rcm.3450.
  • Zaikin, V. G.; Borisov, R. S.; Polovkov, N.; Yu.; Kulikova, L. N. Derivatization by Forming Schiff Bases in the Study of Synthetic Polymers Bearing Amino Groups by MALDI Mass Spectrometry. J. Anal. Chem. 2012, 67, 1001–1004. DOI: 10.1134/S1061934812130126.
  • Zaikin, V. G.; Borisov, R. S.; Polovkov, N.; Yu.; Slyundina, M. S. Reactive Matrices for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of Primary Amines. Eur. J. Mass Spectrom. (Chichester) 2015, 21, 403–411. DOI: 10.1255/ejms.1353.
  • Tianhin, W.; Qun, L.; Shazhou, Z. 2009. MALDI Analysis Based on Derivatized Matrices Forming Covalent Bonds with Analyte Molecules. US Patent 7.550,301 B2 (Jun. 23). https://patentimages.storage.googleapis.com.
  • Mandal, A.; Das, A. K.; Basak, A. Label-Assisted Laser Desorption/Ionization Mass Spectrometry (LA-LDI-MS): Use of Pyrene Aldehyde for Detection of Biogenic Amines, Amino Acids and Peptides. RSC Adv. 2015, 5, 106912–106917. DOI: 10.1039/C5RA20678B.
  • Slyundina, M. S.; Borisov, R. S.; Zaikin, V. G. Novel Reactive Matrices for the Analysis of Alcohols by Matrix-Assisted Laser Desorption/Ioization Mass Spectrometry. Mass-Spektromet. (in Russian) 2018, 15, 83–88. [Engl. Translation. J. Anal. Chem 2018, 73, 1347–1352.] DOI: 10.1134/S1061934818140113].
  • Addy, P. S.; Bhattacharya, A. B.; Mandal, S. M.; Basak, A. Label-Assisted Laser Desorption/Ionization MassS (LA-LDI-MS): an Emerging Technique for Rapid Detection of Ubiquitous Cis-1,2-Diol Functionality. RSC Adv. 2014, 4, 46555–46560. DOI: 10.1039/C4RA07499H.
  • Zhao, X.; Guo, C.; Huang, Y.; Huang, L.; Ma, G.; Liu, Y.; He, Q.; Wang, H.; Chen, K.; Pan, Y. Combination Strategy of Reactive and Catalytic Matrices for Qualitative and Quantitative Profiling of N-Glycans in MALDI-MS. Anal. Chem. 2019, 91, 9251–9925. DOI: 10.1021/acs.analchem.9b02144.
  • Wallace, W. E. Reactive MALDI Mass Spectrometry: Application to High Mass Alkanes and Polyethylene. Chem. Commun. 2007, 4525–4527. DOI: 10.1039/b711932a.
  • Wallace, W. E.; Lewandowski, H.; Meier, R. J. Reactive MALDI Mass Spectrometry of Saturated Hydrocarbons: A Theoretical Study. Int. J. Mass Spectrom. 2010, 292, 32–37. DOI: 10.1016/j.ijms.2010.02.012.
  • Yang, H.; Wan, D.; Song, F.; Liu, Z.; Liu, S. α-Cyano-4-Hydroxycinnamic Acid, Sinapinic Acid, and Ferulic Acid as Matrices and Alkylating Agents for Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometric Analysis of Cysteine-Containing Peptides. Rapid Commun. Mass Spectrom. 2013, 27, 1410–1412. DOI: 10.1002/rcm.6587.
  • Norris, J. L.; Caprioli, R. M. Analysis of Tissue Specimens by Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry in Biological and Clinical Research. Chem. Rev. 2013, 113, 2309–2342. DOI: 10.1021/cr3004295.
  • Buchberger, A. R.; DeLaney, K.; Johnson, J.; Li, L. Mass Spectrometry Imaging: A Review of Emerging Advancements and Future Insights. Anal. Chem. 2018, 90, 240–265. DOI: 10.1021/acs.analchem.7b04733.
  • Ignacy Rzagalinski, I.; Dietrich, A.; Volmer, D. A. Quantification of Low Molecular Weight Compounds by MALDI Imaging Mass Spectrometry – A Tutorial Review. Biochim. Biophys. Acta. Proteins Proteom. 2017, 1865, 726–739. DOI: 10.1016/j.bbapap.2016.12.011.
  • Vaysse, P.-M.; Heeren, R. M. A.; Porta, T.; Balluff, B. Mass Spectrometry Imaging for Clinical Research – Latest Developments, Applications, and Current Limitations. Analyst 2017, 142, 2690–2712. DOI: 10.1039/C7AN00565B.
  • Lemaire, R.; Desmons, A.; Tabet, J. C.; Day, R.; Salzet, M.; Fournier, I. Direct Analysis and MALDI Imaging of Formalin-Fixed, Paraffin-Embedded Tissue Sections. J Proteome Res. 2007, 6, 1295–1305. DOI: 10.1021/pr060549i.
  • Hermann, J.; Noels, H.; Theelen, W.; Lellig, M.; Orth-Alampour, S.; Boor, P.; Jankowski, V.; Jankowski, J. Sample Preparation of Formalin-Fixed Paraffin-Embedded Tissue Sections for MALDI-Mass Spectrometry Imaging. Anal. Bioanal. Chem. 2020, 412, 1263–1275. 2020). DOI: 10.1007/s00216-019-02296-x.
  • Thomas, A.; Chaurand, P. Advances in Tissue Section Preparation for MALDI Imaging MS. Bioanalysis. 2014, 6, 967–982. DOI: 0.4155/bio.14.63. DOI: 10.4155/bio.14.63.
  • Baker, T. C.; Han, J.; Borchers, C. H. Recent Advancements in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Curr. Opin. Biotechnol. 2017, 43, 62–69. DOI: 10.1016/j.copbio.2016.09.003.
  • Zhou, Q.; Fülöp, A.; Hopf, C. Recent Developments of Novel Matrices and on-Tissue Chemical Derivatization Reagents for MALDI-MSI. Anal. Bioanal. Chem. 2021, 413, 2599–2617. DOI: 10.1007/s00216-020-03023-7.
  • Harkin, C.; Smith, K. W.; Cruickshank, F. L.; Mackay, C. L.; Flinders, B.; Heeren, R. M. A.; Moore, T.; Brockbank, S.; Cobice, D. F. On‐Tissue Chemical Derivatization in Mass Spectrometry Imaging. Mass Spectrom. Rev. 2021. DOI: 10.1002/mas.21680.
  • Iwama, T.; Kano, K.; Saigusa, D.; Ekroos, K.; van Echten-Deckert, G.; Vogt, J.; Aoki, J. Development of an on-Tissue Derivatization Method for MALDI Mass Spectrometry Imaging of Bioactive Lipids Containing Phosphate Monoester Using Phos-Tag. Anal. Chem. 2021, 93, 3867–3875. DOI: 10.1021/acs.analchem.0c04479.
  • Flinders, B.; Morrell, J.; Marshall, P. S.; Ranshaw, L. E.; Clench, M. R. The Use of Hydrazine-Based Derivatization Reagents for Improved Sensitivity and Detection of Carbonyl Containing Compounds Using MALDI-MSI. Anal. Bioanal. Chem. 2015, 407, 2085–2094. DOI: 10.1007/s00216-014-8223-8.
  • Shariatgorji, M.; Nilsson, A.; K€Allback, P.; Karlsson, O.; Zhang, X.; Svenningsson, P.; Andren, P. E. Pyrylium Salts as Reactive Matrices for MALDI-MS Imaging of Biologically Active Primary Amines. J Am Soc Mass Spectrom. 2015, 26, 934–939. DOI: 10.1007/s13361-015-1119-9.
  • Shariatgorji, M.; Nilsson, A.; Goodwin, R. J. A.; Källback, P.; Schintu, N.; Zhang, X.; Crossman, A. R.; Bezard, E.; Svenningsson, P.; Andren, P. E. Direct Targeted Quantitative Molecular Imaging of Neurotransmitters in Brain Tissue Sections. Neuron 2014, 84, 697–707. DOI: 10.1016/j.neuron.2014.10.011.
  • Enomoto, Y.; An, P. N.; Yamaguchi, M.; Fukusaki, E.; Shimma, S. Mass Spectrometric Imaging of GABA in the Drosophila Melanogaster Adult Head. Anal. Sci. 2018, 34, 1055–1059. DOI: 10.2116/analsci.18SCN01.
  • Esteve, C.; Tolner, E. A.; Shyti, R.; van den Maagdenberg, A. M. J. M.; McDonnell, L. A. Mass Spectrometry Imaging of Amino Neurotransmitters: A Comparison of Derivatization Methods and Application in Mouse Brain Tissue. Metabolomics 2016, 12, 30. DOI: 10.1007/s11306-015-0926-0.
  • Eto, F.; Sato, S.; Setou, M.; Yao, I. Region-Specific Effects of Scrapper on the Abundance of Glutamate and Gamma-Aminobutyric Acid in the Mouse Brain. Sci. Rep. 2020, 10, 7435 DOI: 10.1038/s41598-020-64277-w.
  • Cao, Q.; Wang, Y.; Chen, B.; Ma, F.; Hao, L.; Li, G.; Ouyang, C.; Li, L. Visualization and Identification of Neurotransmitters in Crustacean Brain via Multifaceted Mass Spectrometric Approaches. ACS Chem Neurosci. 2019, 10, 1222–1229. DOI: 10.1021/acschemneuro.8b00730.
  • Shariatgorji, R.; Nilsson, A.; Strittmatter, N.; Vallianatou, T.; Zhang, X.; Svenningsson, P.; Goodwin, R.; Andrén, P. E. Bromopyrylium Derivatization Facilitates Identification by Mass Spectrometry Imaging of Monoamine Neurotransmitters and Small Molecule Neuroactive Compounds. J Am Soc Mass Spectrom. 2020, 31, 2553–2557. DOI: 10.1021/jasms.0c00166.
  • Shariatgorji, M.; Nilsson, A.; Fridjonsdottir , E.; Vallianatou, T.; Källback, P.; Katan, L.; Sävmarker, J.; Mantas, I.; Zhang, X.; Bezard , E.; et al. Comprehensive Mapping of Neurotransmitter Networks by MALDI–MS Imaging. Nat. Methods. 2019, 16, 1021–1028. DOI: 10.1038/s41592-019-0551-3.
  • Wäldchen, F.; Spengler, B.; Heiles, S. Reactive Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging Using an Intrinsically Photoreactive üChi Matrix for Double-Bond Localization in Isomeric Phospholipids. J. Am. Chem. Soc. 2019, 141, 11816–11820. DOI: 10.1021/jacs.9b05868.
  • Wäldchen, F.; Mohr, F.; Wagner, A. H.; Heiles, S. Multifunctional Reactive MALDI Matrix Enabling High-Lateral Resolution Dual Polarity MS Imaging and Lipid C═C Position-Resolved MS2 Imaging. Anal. Chem. 2020, 92, 14130–14138. DOI: 10.1021/acs.analchem.0c03150.
  • Bednařík, A.; Bölsker, S.; Soltwisch, J.; Dreisewerd, K. An On-Tissue Paternò-Büchi Reaction for Localization of Carbon-Carbon Double Bonds in Phospholipids and Glycolipids by Matrix-Assisted Laser-Desorption-Ionization Mass-Spectrometry Imaging. Angew. Chem. Int. Ed. Engl. 2018, 57, 12092–12096. DOI: 10.1002/anie.201806635.
  • Kaya, I.; Brülls, S. M.; Dunevall, J.; Jennische, E.; Lange, S.; Mårtensson, J.; Ewing, A. G.; Malmberg, P.; Fletcher, J. S. On-Tissue Chemical Derivatization of Catecholamines Using 4-( N-Methyl)pyridinium Boronic Acid for ToF-SIMS and LDI-ToF Mass Spectrometry Imaging. Anal. Chem. 2018, 90, 13580–13590. DOI: 10.1021/acs.analchem.8b03746.
  • FülöP, A.; Bausbacher, T.; Rizzo, S.; Zhou, Q.; Gillandt, H.; Hopf, C.; Rittner, M. New Derivatization Reagent for Detection of Free Thiol-Groups in Metabolites and Proteins in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Anal. Chem. 2020, 92, 6224–6228. DOI: 10.1021/acs.analchem.9b05630.
  • Cerruti, C. D.; Benabdellah, F.; Laprévote, O.; Touboul, D.; Brunelle, A. MALDI Imaging and Structural Analysis of Rat Brain Lipid Negative Ions with 9-Aminoacridine Matrix. Anal. Chem. 2012, 84, 2164–2171. DOI: 10.1021/ac2025317.
  • Marsching, C.; Eckhardt, M.; Gröne, H.-J.; Sandhoff, R.; Hopf, C. Imaging of Complex Sulfatides SM3 and SB1a in Mouse Kidney Using MALDI-TOF/TOF Mass Spectrometry. Anal. Bioanal. Chem. 2011, 401, 53–64. DOI: 10.1007/s00216-011-4802-0.
  • Benabdellah, F.; Touboul, D.; Brunelle, A.; Laprévote, O. In Situ Primary Metabolites Localization on a Rat Brain Section by Chemical Mass Spectrometry Imaging. Anal. Chem. 2009, 81, 5557–5560. DOI: 10.1021/ac9005364.
  • Ye, H.; Gemperline, E.; Venkateshwaran, M.; Chen, R.; Delaux, P.-M.; Howes-Podoll, M.; Ane, J.-M.; Li, L. MALDI Mass Spectrometry-Assisted Molecular Imaging of Metabolites During Nitrogen Fixation in the Medicago truncatula-Sinorhizobium meliloti Symbiosis. Plant J. 2013, 75, 130–145. DOI: 10.1111/tpj.12191.
  • Corinti, D.; Crestoni, M. E.; Fornarini, S.; Pieper, M.; Niehaus, K.; Giampà, M. An Integrated Approach to Study Novel Properties of a MALDI Matrix (4-Maleicanhydridoproton Sponge) for MS Imaging Analyses. Anal. Bioanal. Chem. 2019, 411, 953–964. DOI: 10.1007/s00216-018-1531-7.
  • Giampà, M.; Lissel, M.; Patschkowski, T.; Fuchser, J.; Hans, V. H.; Gembruch, O.; Bednarz, H.; Niehaus, K. Maleic Anhydride Proton Sponge as a Novel MALDI Matrix for the Visualization of Small Molecules (<250 m/z) in Brain Tumors by Routine MALDI ToF Imaging Mass Spectrometry. Chem. Commun 2016, 52, 9801–9804. DOI: 10.1039/C6CC02387H.
  • Sun, C.; Liu, W.; Mu, Y.; Wang, X. 1,1′-binaphthyl-2,2′-Diamine as a Novel MALDI Matrix to Enhance the In Situ Imaging of Metabolic Heterogeneity in Lung Cancer. Talanta 2020, 209, 120557 DOI: 10.1016/j.talanta.2019.120557.
  • Wang, J.; Qiu, S.; Chen, S.; Xiong, C.; Liu, H.; Wang, J.; Zhang, N.; Hou, J.; He, Q.; Nie, Z. MALDI-TOF MS Imaging of Metabolites with a N-(1-Naphthyl) Ethylenediamine Dihydrochloride Matrix and Its Application to Colorectal Cancer Liver Metastasis. Anal. Chem. 2015, 87, 422–430. DOI: 10.1021/ac504294s.
  • Liu, H.; Zhou, Y.; Wang, J.; Xiong, C.; Xue, J.; Zhan, L.; Nie, Z. N,N-Phenyl-2-Naphthylamine as a Novel MALDI Matrix for Analysis and in Situ Imaging of Small Molecules. Anal. Chem. 2018, 90, 729–736. DOI: 10.1021/acs.analchem.7b02710.
  • Esparza, C.; Borisov, R. S.; Polovkov, N. Y.; Zaikin, V. G. Post-Chromatographic Fixed-Charge Derivatization for the Analysis of Hydroxyl-Containing Compounds by a Combination of Thin-Layer Chromatography and Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. J. Chromatogr. A. 2018, 1560, 97–103. DOI: 10.1016/j.chroma.2018.05.025.
  • Borisov, R.; Esparza, C.; Polovkov, N.; Topolyan, A.; Zaikin, V. An Approach to Analysis of Primary Amines by a Combination of Thin-Layer Chromatography and Matrix-Assisted Laser Desorption Ionization Mass Spectrometry in Conjunction with Post-Chromatographic Derivatization. J. Sep. Sci. 2019, 42, 3470–3478. DOI: 10.1002/jssc.201900644.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.