661
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Transistor-Based Biomolecule Sensors: Recent Technological Advancements and Future Prospects

ORCID Icon, , , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1044-1065 | Published online: 17 Nov 2021

References

  • Bardeen, J. Semiconductor Research Leading to the Point Contact Transistor; Great Solid State Physicists of the 20th Century, 2003, pp. 234-260, DOI: 10.1142/9789812795267_0007.
  • Xia, F.; Mueller, T.; Lin, Y.-M.; Valdes-Garcia, A.; Avouris, P. Ultrafast Graphene Photodetector. Nat. Nanotechnol. 2009, 4, 839–843. DOI: 10.1038/nnano.2009.292.
  • Zhu, C.; Chortos, A.; Wang, Y.; Pfattner, R.; Lei, T.; Hinckley, A. C.; Pochorovski, I.; Yan, X.; To, J. W.-F.; Oh, J. Y.; et al. Stretchable Temperature-Sensing Circuits with Strain Suppression Based on Carbon Nanotube Transistors. Nat. Electron. 2018, 1, 183–190. DOI: 10.1038/s41928-018-0041-0.
  • Bergveld, P. The Operation of an ISFET as an Electronic Device. Sens. Actuators 1981, 1, 17–29. DOI: 10.1016/0250-6874(81)80004-2.
  • Vu, C.-A.; Chen, W.-Y. Field-Effect Transistor Biosensors for Biomedical Applications: Recent Advances and Future Prospects. Sensors 2019, 19, 22–22. DOI: 10.3390/s19194214.
  • White, H. S.; Kittlesen, G. P.; Wrighton, M. S. Chemical Derivatization of an Array of Three Gold Microelectrodes with Polypyrrole: Fabrication of a Molecule-Based Transistor. J. Am. Chem. Soc. 1984, 106, 5375–5377. DOI: 10.1021/ja00330a070.
  • Sirringhaus, H. 25th Anniversary Article: Organic Field-Effect Transistors: The Path beyond Amorphous Silicon. Adv. Mater. 2014, 26, 1319–1335. DOI: 10.1002/adma.201304346.
  • Clark, L. C.; Jr.; Lyons, C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. DOI: 10.1111/j.1749-6632.1962.tb13623.x.
  • Ohayon, D.; Nikiforidis, G.; Savva, A.; Giugni, A.; Wustoni, S.; Palanisamy, T.; Chen, X.; Maria, I. P.; Di Fabrizio, E.; Costa, P. M. F. J.; et al. Biofuel Powered Glucose Detection in Bodily Fluids with an n-Type Conjugated Polymer. Nat. Mater. 2020, 19, 456–463. DOI: 10.1038/s41563-019-0556-4.
  • Mak, C. H.; Liao, C.; Fu, Y.; Zhang, M.; Tang, C. Y.; Tsang, Y. H.; Chan, H. L. W.; Yan, F. Highly-Sensitive Epinephrine Sensors Based on Organic Electrochemical Transistors with Carbon Nanomaterial Modified Gate Electrodes. J. Mater. Chem. C 2015, 3, 6532–6538. DOI: 10.1039/C5TC01100K.
  • Pappa, A. M.; Ohayon, D.; Giovannitti, A.; Maria, I. P.; Savva, A.; Uguz, I.; Rivnay, J.; McCulloch, I.; Owens, R. M.; Inal, S. Direct Metabolite Detection with an n-Type Accumulation Mode Organic Electrochemical Transistor. Sci. Adv. 2018, 4, eaat0911. DOI: 10.1126/sciadv.aat0911.
  • Jang, H.-J.; Lee, T.; Song, J.; Russell, L.; Li, H.; Dailey, J.; Searson, P. C.; Katz, H. E. Electronic Cortisol Detection Using an Antibody-Embedded Polymer Coupled to a Field-Effect Transistor. ACS Appl. Mater. Interfaces 2018, 10, 16233–16237. DOI: 10.1021/acsami.7b18855.
  • Macchia, E.; Manoli, K.; Holzer, B.; Di Franco, C.; Ghittorelli, M.; Torricelli, F.; Alberga, D.; Mangiatordi, G. F.; Palazzo, G.; Scamarcio, G.; et al. Single-Molecule Detection with a Millimetre-Sized Transistor. Nat. Commun. 2018, 9, 3223. DOI: 10.1038/s41467-018-05235-z.
  • Rothberg, J. M.; Hinz, W.; Rearick, T. M.; Schultz, J.; Mileski, W.; Davey, M.; Leamon, J. H.; Johnson, K.; Milgrew, M. J.; Edwards, M.; et al. An Integrated Semiconductor Device Enabling Non-Optical Genome Sequencing. Nature 2011, 475, 348–352. DOI: 10.1038/nature10242.
  • Romele, P.; Gkoupidenis, P.; Koutsouras, D. A.; Lieberth, K.; Kovács-Vajna, Z. M.; Blom, P. W. M.; Torricelli, F. Multiscale Real Time and High Sensitivity Ion Detection with Complementary Organic Electrochemical Transistors Amplifier. Nat. Commun. 2020, 11, 3743. DOI: 10.1038/s41467-020-17547-0.
  • Kim, S.; Keisham, B.; Berry, V. Cellular Nano-Transistor: An Electronic-Interface between Nanoscale Semiconductors and Biological Cells. Mater. Today Nano 2020, 9, 100063. DOI: 10.1016/j.mtnano.2019.100063.
  • Sakata, T. Biologically Coupled Gate Field-Effect Transistors Meet in Vitro Diagnostics. ACS Omega. 2019, 4, 11852–11862. DOI: 10.1021/acsomega.9b01629.
  • Wang, N.; Yang, A.; Fu, Y.; Li, Y.; Yan, F. Functionalized Organic Thin Film Transistors for Biosensing. Acc. Chem. Res. 2019, 52, 277–287. DOI: 10.1021/acs.accounts.8b00448.
  • Khodagholy, D.; Rivnay, J.; Sessolo, M.; Gurfinkel, M.; Leleux, P.; Jimison, L. H.; Stavrinidou, E.; Herve, T.; Sanaur, S.; Owens, R. M.; et al. High Transconductance Organic Electrochemical Transistors. Nat. Commun. 2013, 4, 2133. DOI: 10.1038/ncomms3133.
  • Newman, C. R.; Frisbie, C. D.; da Silva Filho, D. A.; Brédas, J.-L.; Ewbank, P. C.; Mann, K. R. Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors. Chem. Mater. 2004, 16, 4436–4451. DOI: 10.1021/cm049391x.
  • Medina-Sánchez, M.; Martínez-Domingo, C.; Ramon, E.; Merkoçi, A. An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing. Adv. Funct. Mater. 2014, 24, 6291–6302. DOI: 10.1002/adfm.201401180.
  • Lee, Y. H.; Jang, M.; Lee, M. Y.; Kweon, O. Y.; Oh, J. H. Flexible Field-Effect Transistor-Type Sensors Based on Conjugated Molecules. Chem 2017, 3, 724–763. DOI: 10.1016/j.chempr.2017.10.005.
  • Rivnay, J.; Inal, S.; Salleo, A.; Owens, R. M.; Berggren, M.; Malliaras, G. G. Organic Electrochemical Transistors. Nat. Rev. Mater. 2018, 3, 17086. DOI: 10.1038/natrevmats.2017.86.
  • Liu, D.; Wang, J.; Wu, L.; Huang, Y.; Zhang, Y.; Zhu, M.; Wang, Y.; Zhu, Z.; Yang, C. Trends in Miniaturized Biosensors for Point-of-Care Testing. TrAC Trends Anal. Chem. 2020, 122, 115701. DOI: 10.1016/j.trac.2019.115701.
  • Derkus, B. Applying the Miniaturization Technologies for Biosensor Design. Biosens. Bioelectron. 2016, 79, 901–913. DOI: 10.1016/j.bios.2016.01.033.
  • Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors (Basel) 2021, 21, 1109. DOI: 10.3390/s21041109.
  • Panahi, A.; Sadighbayan, D.; Forouhi, S.; Ghafar-Zadeh, E. Recent Advances of Field-Effect Transistor Technology for Infectious Diseases. Biosensors 2021, 11, 103. DOI: 10.3390/bios11040103.
  • Feig, V. R.; Tran, H.; Bao, Z. Biodegradable Polymeric Materials in Degradable Electronic Devices. ACS Cent. Sci. 2018, 4, 337–348. DOI: 10.1021/acscentsci.7b00595.
  • Liang, J.; Tong, K.; Pei, Q. A Water-Based Silver-Nanowire Screen-Print Ink for the Fabrication of Stretchable Conductors and Wearable Thin-Film Transistors. Adv. Mater. 2016, 28, 5986–5996. DOI: 10.1002/adma.201600772.
  • Kim, D.; Jeong, S.; Lee, S.; Park, B. K.; Moon, J. Organic Thin Film Transistor Using Silver Electrodes by the Ink-Jet Printing Technology. Thin Solid Films 2007, 515, 7692–7696. DOI: 10.1016/j.tsf.2006.11.141.
  • Wang, S.; Xu, J.; Wang, W.; Wang, G.-J. N.; Rastak, R.; Molina-Lopez, F.; Chung, J. W.; Niu, S.; Feig, V. R.; Lopez, J.; et al. Skin Electronics from Scalable Fabrication of an Intrinsically Stretchable Transistor Array. Nature 2018, 555, 83–88. DOI: 10.1038/nature25494.
  • Briseno, A. L.; Mannsfeld, S. C. B.; Reese, C.; Hancock, J. M.; Xiong, Y.; Jenekhe, S. A.; Bao, Z.; Xia, Y. Perylenediimide Nanowires and Their Use in Fabricating Field-Effect Transistors and Complementary Inverters. Nano Lett. 2007, 7, 2847–2853. DOI: 10.1021/nl071495u.
  • Yuan, Y.; Giri, G.; Ayzner, A. L.; Zoombelt, A. P.; Mannsfeld, S. C. B.; Chen, J.; Nordlund, D.; Toney, M. F.; Huang, J.; Bao, Z. Ultra-High Mobility Transparent Organic Thin Film Transistors Grown by an off-Centre Spin-Coating Method. Nat. Commun. 2014, 5, 3005. DOI: 10.1038/ncomms4005.
  • Duan, Y.; Zhang, B.; Zou, S.; Fang, C.; Wang, Q.; Shi, Y.; Li, Y. Low-Power-Consumption Organic Field-Effect Transistors. J. Phys. Mater. 2020, 3, 014009. DOI: 10.1088/2515-7639/ab6305.
  • Friedlein, J. T.; McLeod, R. R.; Rivnay, J. Device Physics of Organic Electrochemical Transistors. Org. Electron. 2018, 63, 398–414. DOI: 10.1016/j.orgel.2018.09.010.
  • Lee, S.; Nathan, A. Subthreshold Schottky-Barrier Thin-Film Transistors with Ultralow Power and High Intrinsic Gain. Science 2016, 354, 302–304. DOI: 10.1126/science.aah5035.
  • Wang, D.; Noël, V.; Piro, B. Electrolytic Gated Organic Field-Effect Transistors for Application in Biosensors—A Review. Electronics 2016, 5, 9. DOI: 10.3390/electronics5010009.
  • Nehra, A.; Pal Singh, K. Current Trends in Nanomaterial Embedded Field Effect Transistor-Based Biosensor. Biosens. Bioelectron. 2015, 74, 731–743. DOI: 10.1016/j.bios.2015.07.030.
  • Suvarnaphaet, P.; Pechprasarn, S. Graphene-Based Materials for Biosensors: A Review. Sensors 2017, 17, 2161. DOI: 10.3390/s17102161.
  • Xiang, Q.-Y.; Zhang, K.; Wang, Y.; Lou, X.-J.; Yao, W.-Q.; Bai, Y.; Duan, D.-W.; Hu, X.-P.; Wang, J.; Luo, Z.-D.; et al. Insight into Metalized Interfaces in Nano Devices by Surface Analytical Techniques. ACS Appl. Mater. Interfaces 2015, 7, 27351–27356. DOI: 10.1021/acsami.5b08919.
  • Sokolov, A. N.; Roberts, M. E.; Bao, Z. Fabrication of Low-Cost Electronic Biosensors. Mater. Today 2009, 12, 12–20. DOI: 10.1016/S1369-7021(09)70247-0.
  • Betancourt, T.; Brannon-Peppas, L. Micro- and Nanofabrication Methods in Nanotechnological Medical and Pharmaceutical Devices. Int. J. Nanomed. 2006, 1, 483–495. DOI: 10.2147/nano.2006.1.4.483.
  • Pathakoti, K.; Manubolu, M.; Hwang, H. M. Nanostructures: Current Uses and Future Applications in Food Science. J. Food Drug Anal. 2017, 25, 245–253. DOI: 10.1016/j.jfda.2017.02.004.
  • Wen, Y.; Liu, Y.; Guo, Y.; Yu, G.; Hu, W. Experimental Techniques for the Fabrication and Characterization of Organic Thin Films for Field-Effect Transistors. Chem. Rev. 2011, 111, 3358–3406. DOI: 10.1021/cr1001904.
  • Chen, S.; Surendran, A.; Wu, X.; Lee, S. Y.; Stephen, M.; Leong, W. L. Recent Technological Advances in Fabrication and Application of Organic Electrochemical Transistors. Adv. Mater. Technol. 2020, 5, 2000523. DOI: 10.1002/admt.202000523.
  • Zhang, C.; Chen, P.; Hu, W. Organic Field-Effect Transistor-Based Gas Sensors. Chem. Soc. Rev. 2015, 44, 2087–2107. DOI: 10.1039/c4cs00326h.
  • Parkula, V.; Berto, M.; Diacci, C.; Patrahau, B.; Di Lauro, M.; Kovtun, A.; Liscio, A.; Sensi, M.; Samorì, P.; Greco, P.; et al. Harnessing Selectivity and Sensitivity in Electronic Biosensing: A Novel Lab-on-Chip Multigate Organic Transistor. Anal. Chem. 2020, 92, 9330–9337. DOI: 10.1021/acs.analchem.0c01655.
  • Ramanathan, S.; Gopinath, S. C. B.; Md Arshad, M. K.; Poopalan, P.; Loong, F. K.; Lakshmipriya, T.; Anbu, P. Assorted Micro-Scale Interdigitated Aluminium Electrode Fabrication for Insensitive Electrolyte Evaluation: Zeolite Nanoparticle-Mediated Micro- to Nano-Scaled Electrodes. Appl. Phys. A 2019, 125, 548–548. DOI: 10.1007/s00339-019-2833-0.
  • Park, H.-Y.; Dugasani, S. R.; Kang, D.-H.; Yoo, G.; Kim, J.; Gnapareddy, B.; Jeon, J.; Kim, M.; Song, Y. J.; Lee, S.; et al. M-DNA/Transition Metal Dichalcogenide Hybrid Structure-Based Bio-FET Sensor with Ultra-High Sensitivity. Sci. Rep. 2016, 6, 35733. DOI: 10.1038/srep35733.
  • Adzhri, R.; Md Arshad, M. K.; Gopinath, S. C. B.; Ruslinda, A. R.; Fathil, M. F. M.; Ayub, R. M.; Nor, M. N. M.; Voon, C. H. High-Performance Integrated Field-Effect Transistor-Based Sensors. Anal. Chim. Acta 2016, 917, 1–18. DOI: 10.1016/j.aca.2016.02.042.
  • Huang, H. L.; Chen, J. K.; Houng, M. P. Using Soft Lithography to Fabricate Gold Nanoparticle Patterns for Bottom-Gate Field Effect Transistors. Thin Solid Films 2012, 524, 304–308. DOI: 10.1016/j.tsf.2012.09.078.
  • Iskierko, Z.; Noworyta, K.; Sharma, P. S. Molecular Recognition by Synthetic Receptors: Application in Field-Effect Transistor Based Chemosensing. Biosens. Bioelectron. 2018, 109, 50–62. DOI: 10.1016/j.bios.2018.02.058.
  • Lai, S.; Viola, F.; Cosseddu, P.; Bonfiglio, A. Floating Gate, Organic Field-Effect Transistor-Based Sensors towards Biomedical Applications Fabricated with Large-Area Processes over Flexible Substrates. Sensors 2018, 18, 688–612. DOI: 10.3390/s18030688.
  • Arshad, M. K. M.; Adzhri, R.; Fathil, M. F. M.; Gopinath, S. C. B.; Nuzaihan, M. N. M. Field-Effect Transistor-Integration with TiO2 Nanoparticles for Sensing of Cardiac Troponin I Biomarker. J. Nanosci. Nanotechnol. 2018, 18, 5283–5291. DOI: 10.1166/jnn.2018.15419.
  • Syedmoradi, L.; Ahmadi, A.; Norton, M. L.; Omidfar, K. A Review on Nanomaterial-Based Field Effect Transistor Technology for Biomarker Detection. Mikrochim. Acta 2019, 186, 739. DOI: 10.1007/s00604-019-3850-6.
  • Simoni, G De, Paolucci F, Solinas P, Strambini E, Giazotto F. Metallic supercurrent field-effect transistor. Nat Nanotechnol. 2018, 13, 802–805. DOI: 10.1038/s41565-018-0190-3.
  • Sun, H.; Gerasimov, J.; Berggren, M.; Fabiano, S. n-Type Organic Electrochemical Transistors: Materials and Challenges. J. Mater. Chem. C 2018, 6, 11778–11784. DOI: 10.1039/C8TC03185A.
  • Wang, J.; Ye, D.; Meng, Q.; Di, C.‐A.; Zhu, D. Advances in Organic Transistor-Based Biosensors. Adv. Mater. Technol. 2020, 5, 2000218. DOI: 10.1002/admt.202000218.
  • Kwon, S. S.; Yi, J.; Lee, W. W.; Shin, J. H.; Kim, S. H.; Cho, S. H.; Nam, S.; Park, W. I. Reversible and Irreversible Responses of Defect-Engineered Graphene-Based Electrolyte-Gated pH Sensors. ACS Appl. Mater. Interfaces 2016, 8, 834–839. DOI: 10.1021/acsami.5b10183.
  • Yu, Y.; Nyein, H. Y. Y.; Gao, W.; Javey, A. Flexible Electrochemical Bioelectronics: The Rise of in Situ Bioanalysis. Adv. Mater. 2020, 32, 1902083. DOI: 10.1002/adma.201902083.
  • De Moraes, A. C.; Kubota, L. T. Recent Trends in Field-Effect Transistors-Based Immunosensors. Chemosensors 2016, 4, 20. DOI: 10.3390/chemosensors4040020.
  • Katz, E.; Willner, I. Biomolecule-Functionalized Carbon Nanotubes: Applications in Nanobioelectronics. Chemphyschem 2004, 5, 1084–1104. DOI: 10.1002/cphc.200400193.
  • Saraf, N.; Woods, E. R.; Peppler, M.; Seal, S. Highly Selective Aptamer Based Organic Electrochemical Biosensor with Pico-Level Detection. Biosens. Bioelectron. 2018, 117, 40–46. DOI: 10.1016/j.bios.2018.05.031.
  • BelBruno, J. J. Molecularly Imprinted Polymers. Chem. Rev. 2019, 119, 94–119. DOI: 10.1021/acs.chemrev.8b00171.
  • Saparov, B.; Mitzi, D. B. Organic-Inorganic Perovskites: Structural Versatility for Functional Materials Design. Chem. Rev. 2016, 116, 4558–4596. DOI: 10.1021/acs.chemrev.5b00715.
  • Liu, Y.; Hao, W.; Yao, H.; Li, S.; Wu, Y.; Zhu, J.; Jiang, L. Solution Adsorption Formation of a π-Conjugated Polymer/Graphene Composite for High-Performance Field-Effect Transistors. Adv. Mater. 2018, 30, 1705377. DOI: 10.1002/adma.201705377.
  • Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures. Anal. Chem. 2015, 87, 230–249. DOI: 10.1021/ac5039863.
  • Quesada-González, D.; Merkoçi, A. Nanomaterial-Based Devices for Point-of-Care Diagnostic Applications. Chem. Soc. Rev. 2018, 47, 4697–4709. DOI: 10.1039/c7cs00837f.
  • Viswambari Devi, R.; Doble, M.; Verma, R. S. Nanomaterials for Early Detection of Cancer Biomarker with Special Emphasis on Gold Nanoparticles in Immunoassays/Sensors. Biosens. Bioelectron. 2015, 68, 688–698. DOI: 10.1016/j.bios.2015.01.066.
  • Wongkaew, N.; Simsek, M.; Griesche, C.; Baeumner, A. J. Functional Nanomaterials and Nanostructures Enhancing Electrochemical Biosensors and Lab-on-a-Chip Performances: Recent Progress, Applications, and Future Perspective. Chem. Rev. 2019, 119, 120–194. DOI: 10.1021/acs.chemrev.8b00172.
  • Ramanathan, S.; Gopinath, S. C. B.; Md Arshad, M. K.; Poopalan, P. Multidimensional (0D-3D) Nanostructures for Lung Cancer Biomarker Analysis: Comprehensive Assessment on Current Diagnostics. Biosens. Bioelectron. 2019, 141, 111434–111434. DOI: 10.1016/j.bios.2019.111434.
  • Su, H.; Li, S.; Jin, Y.; Xian, Z.; Yang, D.; Zhou, W.; Mangaran, F.; Leung, F.; Sithamparanathan, G.; Kerman, K.; et al. Nanomaterial-Based Biosensors for Biological Detections. AHCT. 2017, 3, 19–29. DOI: 10.2147/AHCT.S94025.
  • Holzinger, M.; Goff, A. L.; Cosnier, S. Nanomaterials for Biosensing Applications: A Review. Front. Chem. 2014, 2, 63–10. DOI: 10.3389/fchem.2014.00063.
  • Fenoy, G. E.; Azzaroni, O.; Knoll, W.; Marmisollé, W. A. Functionalization Strategies of PEDOT and PEDOT:PSS Films for Organic Bioelectronics Applications. Chemosensors 2021, 9, 212. DOI: 10.3390/chemosensors9080212.
  • Li, L.; Wang, S.; Xiao, Y.; Wang, Y. Recent Advances in Immobilization Strategies for Biomolecules in Sensors Using Organic Field-Effect Transistors. Trans. Tianjin Univ. 2020, 26, 424–440. DOI: 10.1007/s12209-020-00234-y.
  • Wickramathilaka, M. P.; Tao, B. Y. Characterization of Covalent Crosslinking Strategies for Synthesizing DNA-Based Bioconjugates. J. Biol. Eng. 2019, 13, 63. DOI: 10.1186/s13036-019-0191-2.
  • Głowacki, E. D.; Tangorra, R. R.; Coskun, H.; Farka, D.; Operamolla, A.; Kanbur, Y.; Milano, F.; Giotta, L.; Farinola, G. M.; Sariciftci, N. S.; et al. Bioconjugation of Hydrogen-Bonded Organic Semiconductors with Functional Proteins. J. Mater. Chem. C 2015, 3, 6554–6564. DOI: 10.1039/C5TC00556F.
  • Seshadri, P.; Manoli, K.; Schneiderhan-Marra, N.; Anthes, U.; Wierzchowiec, P.; Bonrad, K.; Di Franco, C.; Torsi, L. Low-Picomolar, Label-Free Procalcitonin Analytical Detection with an Electrolyte-Gated Organic Field-Effect Transistor Based Electronic Immunosensor. Biosens. Bioelectron. 2018, 104, 113–119. DOI: 10.1016/j.bios.2017.12.041.
  • Kim, D.-J.; Lee, N.-E.; Park, J.-S.; Park, I.-J.; Kim, J.-G.; Cho, H. J. Organic Electrochemical Transistor Based Immunosensor for Prostate Specific Antigen (PSA) Detection Using Gold Nanoparticles for Signal Amplification. Biosens. Bioelectron. 2010, 25, 2477–2482. DOI: 10.1016/j.bios.2010.04.013.
  • Kim, J.; Rim, Y. S.; Chen, H.; Cao, H. H.; Nakatsuka, N.; Hinton, H. L.; Zhao, C.; Andrews, A. M.; Yang, Y.; Weiss, P. S.; et al. Fabrication of High-Performance Ultrathin In2O3 Film Field-Effect Transistors and Biosensors Using Chemical Lift-Off Lithography. ACS Nano. 2015, 9, 4572–4582. DOI: 10.1021/acsnano.5b01211.
  • Béraud, A.; Sauvage, M.; Bazán, C. M.; Tie, M.; Bencherif, A.; Bouilly, D. Graphene Field-Effect Transistors as Bioanalytical Sensors: Design, Operation and Performance. Analyst 2021, 146, 403–428. DOI: 10.1039/d0an01661f.
  • Hai, W.; Goda, T.; Takeuchi, H.; Yamaoka, S.; Horiguchi, Y.; Matsumoto, A.; Miyahara, Y. Human Influenza Virus Detection Using Sialyllactose-Functionalized Organic Electrochemical Transistors. Sens. Actuators B 2018, 260, 635–641. DOI: 10.1016/j.snb.2018.01.081.
  • Fradetal, L.; Stambouli, V.; Bano, E.; Pelissier, B.; Choi, J. H.; Ollivier, M.; Latu-Romain, L.; Boudou, T.; Pignot-Paintrand, I. Bio-Functionalization of Silicon Carbide Nanostructures for SiC Nanowire-Based Sensors Realization. J. Nanosci. Nanotechnol. 2014, 14, 3391–3397. DOI: 10.1166/jnn.2014.8223.
  • Stern, E.; Jay, S.; Bertram, J.; Boese, B.; Kretzschmar, I.; Turner-Evans, D.; Dietz, C.; LaVan, D. A.; Malinski, T.; Fahmy, T.; et al. Electropolymerization on Microelectrodes: Functionalization Technique for Selective Protein and DNA conjugation. Anal. Chem. 2006, 78, 6340–6346. DOI: 10.1021/ac060410r.
  • Chen, L.; Wang, N.; Wu, J.; Yan, F.; Ju, H. Organic Electrochemical Transistor for Sensing of Sialic Acid in Serum Samples. Anal. Chim. Acta. 2020, 1128, 231–237. DOI: 10.1016/j.aca.2020.07.006.
  • Tang, H.; Yan, F.; Lin, P.; Xu, J.; Chan, H. L. W. Highly Sensitive Glucose Biosensors Based on Organic Electrochemical Transistors Using Platinum Gate Electrodes Modified with Enzyme and Nanomaterials. Adv. Funct. Mater. 2011, 21, 2264–2272. DOI: 10.1002/adfm.201002117.
  • Khodagholy, D.; Curto, V. F.; Fraser, K. J.; Gurfinkel, M.; Byrne, R.; Diamond, D.; Malliaras, G. G.; Benito-Lopez, F.; Owens, R. M. Organic Electrochemical Transistor Incorporating an Ionogel as a Solid State Electrolyte for Lactate Sensing. J. Mater. Chem. 2012, 22, 4440–4443. DOI: 10.1039/c2jm15716k.
  • Sun, C.; Wang, X.; Auwalu, M. A.; Cheng, S.; Hu, W. Organic Thin Film Transistors-Based Biosensors. EcoMat 2021, 3, e12094. DOI: 10.1002/eom2.12094.
  • Dinelli, F.; Murgia, M.; Levy, P.; Cavallini, M.; Biscarini, F.; de Leeuw, D. M. Spatially Correlated Charge Transport in Organic Thin Film Transistors. Phys. Rev. Lett. 2004, 92, 116802. DOI: 10.1103/PhysRevLett.92.116802.
  • Inal, S.; Rivnay, J.; Suiu, A.-O.; Malliaras, G. G.; McCulloch, I. Conjugated Polymers in Bioelectronics. Acc. Chem. Res. 2018, 51, 1368–1376. DOI: 10.1021/acs.accounts.7b00624.
  • Park, K. S.; Kwok, J. J.; Dilmurat, R.; Qu, G.; Kafle, P.; Luo, X.; Jung, S.-H.; Olivier, Y.; Lee, J.-K.; Mei, J.; et al. Tuning Conformation, Assembly, and Charge Transport Properties of Conjugated Polymers by Printing Flow. Sci. Adv. 2019, 5, eaaw7757. DOI: 10.1126/sciadv.aaw7757.
  • Liu, X.; Fan, Q.; Huang, W. DNA Biosensors Based on Water-Soluble Conjugated Polymers. Biosens. Bioelectron. 2011, 26, 2154–2164. DOI: 10.1016/j.bios.2010.09.025.
  • Jeon, S. I.; Lee, J. H.; Andrade, J. D.; De Gennes, P. G. Protein—Surface Interactions in the Presence of Polyethylene Oxide: I. Simplified Theory. J. Colloid Interface Sci. 1991, 142, 149–158. DOI: 10.1016/0021-9797(91)90043-8.
  • Tsumura, A.; Koezuka, H.; Ando, T. Macromolecular Electronic Device: Field‐Effect Transistor with a Polythiophene Thin Film. Appl. Phys. Lett. 1986, 49, 1210–1212. DOI: 10.1063/1.97417.
  • Tanase, C.; Meijer, E. J.; Blom, P. W. M.; de Leeuw, D. M. Local Charge Carrier Mobility in Disordered Organic Field-Effect Transistors. Org. Electron. 2003, 4, 33–37. DOI: 10.1016/S1566-1199(03)00006-5.
  • Goetz, S. M.; Erlen, C. M.; Grothe, H.; Wolf, B.; Lugli, P.; Scarpa, G. Organic Field-Effect Transistors for Biosensing Applications. Org. Electron. 2009, 10, 573–580. DOI: 10.1016/j.orgel.2009.02.011.
  • Sheibani, S.; Capua, L.; Kamaei, S.; Akbari, S. S. A.; Zhang, J.; Guerin, H.; Ionescu, A. M. Extended Gate Field-Effect-Transistor for Sensing Cortisol Stress Hormone. Commun. Mater. 2021, 2, 10. DOI: 10.1038/s43246-020-00114-x.
  • Minami, T.; Sato, T.; Minamiki, T.; Fukuda, K.; Kumaki, D.; Tokito, S. A Novel OFET-Based Biosensor for the Selective and Sensitive Detection of Lactate Levels. Biosens. Bioelectron. 2015, 74, 45–48. DOI: 10.1016/j.bios.2015.06.002.
  • Minamiki, T.; Minami, T.; Sasaki, Y.; Wakida, S-i.; Kurita, R.; Niwa, O.; Tokito, S. Label-Free Detection of Human Glycoprotein (CgA) Using an Extended-Gated Organic Transistor-Based Immunosensor. Sensors (Switzerland) 2016, 16, 2033. DOI: 10.3390/s16122033.
  • Minamiki, T.; Minami, T.; Koutnik, P.; Anzenbacher, P.; Tokito, S. Antibody- and Label-Free Phosphoprotein Sensor Device Based on an Organic Transistor. Anal. Chem. 2016, 88, 1092–1095. DOI: 10.1021/acs.analchem.5b04618.
  • Ji, X.; Zhou, P.; Zhong, L.; Xu, A.; Tsang, A. C. O.; Chan, P. K. L. Smart Surgical Catheter for C-Reactive Protein Sensing Based on an Imperceptible Organic Transistor. Adv Sci (Weinh.) 2018, 5, 1701053. DOI: 10.1002/advs.201701053.
  • Oh, J.; Lee, J. S.; Jun, J.; Kim, S. G.; Jang, J. Ultrasensitive and Selective Organic FET-Type Nonenzymatic Dopamine Sensor Based on Platinum Nanoparticles-Decorated Reduced Graphene Oxide. ACS Appl. Mater. Interfaces 2017, 9, 39526–39533. DOI: 10.1021/acsami.7b15093.
  • Sun, C.; Li, R.; Song, Y.; Jiang, X.; Zhang, C.; Cheng, S.; Hu, W. Ultrasensitive and Reliable Organic Field-Effect Transistor-Based Biosensors in Early Liver Cancer Diagnosis. Anal. Chem. 2021, 93, 6188–6194. DOI: 10.1021/acs.analchem.1c00372.
  • Hammock, M. L.; Knopfmacher, O.; Naab, B. D.; Tok, J. B.-H.; Bao, Z. Investigation of Protein Detection Parameters Using Nanofunctionalized Organic Field-Effect Transistors. ACS Nano. 2013, 7, 3970–3980. DOI: 10.1021/nn305903q.
  • Zhang, L.; Wang, G.; Xiong, C.; Zheng, L.; He, J.; Ding, Y.; Lu, H.; Zhang, G.; Cho, K.; Qiu, L.; et al. Chirality Detection of Amino Acid Enantiomers by Organic Electrochemical Transistor. Biosens. Bioelectron. 2018, 105, 121–128. DOI: 10.1016/j.bios.2018.01.035.
  • Sailapu, S. K.; Macchia, E.; Merino-Jimenez, I.; Esquivel, J. P.; Sarcina, L.; Scamarcio, G.; Minteer, S. D.; Torsi, L.; Sabaté, N. Standalone Operation of an EGOFET for Ultra-Sensitive Detection of HIV. Biosens. Bioelectron. 2020, 156, 112103.
  • Berto, M.; Diacci, C.; D'Agata, R.; Pinti, M.; Bianchini, E.; Lauro, M. D.; Casalini, S.; Cossarizza, A.; Berggren, M.; Simon, D.; et al. EGOFET Peptide Aptasensor for Label-Free Detection of Inflammatory Cytokines in Complex Fluids. Adv. Biosys. 2018, 2, 1700072. DOI: 10.1002/adbi.201700072.
  • Chen, L.; Fu, Y.; Wang, N.; Yang, A.; Li, Y.; Wu, J.; Ju, H.; Yan, F. Organic Electrochemical Transistors for the Detection of Cell Surface Glycans. ACS Appl. Mater. Interfaces 2018, 10, 18470–18477. DOI: 10.1021/acsami.8b01987.
  • Rivnay, J.; Ramuz, M.; Leleux, P.; Hama, A.; Huerta, M.; Owens, R. M. Organic Electrochemical Transistors for Cell-Based Impedance Sensing. Appl. Phys. Lett. 2015, 106, 043301–043301. DOI: 10.1063/1.4906872.
  • Wustoni, S.; Hidalgo, T. C.; Hama, A.; Ohayon, D.; Savva, A.; Wei, N.; Wehbe, N.; Inal, S. In Situ Electrochemical Synthesis of a Conducting Polymer Composite for Multimetabolite Sensing. Adv. Mater. Technol. 2020, 5, 1900943. DOI: 10.1002/admt.201900943.
  • Macchia, E.; Romele, P.; Manoli, K.; Ghittorelli, M.; Magliulo, M.; Kovács-Vajna, Z. M.; Torricelli, F.; Torsi, L. Ultra-Sensitive Protein Detection with Organic Electrochemical Transistors Printed on Plastic Substrates. Flex. Print. Electron. 2018, 3, 034002–034002. DOI: 10.1088/2058-8585/aad0cb.
  • Ghittorelli, M.; Lingstedt, L.; Romele, P.; Crăciun, N. I.; Kovács-Vajna, Z. M.; Blom, P. W. M.; Torricelli, F. High-Sensitivity Ion Detection at Low Voltages with Current-Driven Organic Electrochemical Transistors. Nat. Commun. 2018, 9, 1441. DOI: 10.1038/s41467-018-03932-3.
  • Fu, Y.; Wang, N.; Yang, A.; Law, H. K-w.; Li, L.; Yan, F. Highly Sensitive Detection of Protein Biomarkers with Organic Electrochemical Transistors. Adv. Mater. 2017, 29, 1703787–1703787. DOI: 10.1002/adma.201703787.
  • Leleux, P.; Rivnay, J.; Lonjaret, T.; Badier, J.-M.; Bénar, C.; Hervé, T.; Chauvel, P.; Malliaras, G. G. Organic Electrochemical Transistors for Clinical Applications. Adv. Healthc. Mater. 2015, 4, 142–147. DOI: 10.1002/adhm.201400356.
  • Wang, Y.; Qing, X.; Zhou, Q.; Zhang, Y.; Liu, Q.; Liu, K.; Wang, W.; Li, M.; Lu, Z.; Chen, Y.; et al. The Woven Fiber Organic Electrochemical Transistors Based on Polypyrrole Nanowires/Reduced Graphene Oxide Composites for Glucose Sensing. Biosens. Bioelectron. 2017, 95, 138–145. DOI: 10.1016/j.bios.2017.04.018.
  • Braendlein, M.; Pappa, A.-M.; Ferro, M.; Lopresti, A.; Acquaviva, C.; Mamessier, E.; Malliaras, G. G.; Owens, R. M. Lactate Detection in Tumor Cell Cultures Using Organic Transistor Circuits. Adv. Mater. 2017, 29, 1605744–1605744. DOI: 10.1002/adma.201605744.
  • Bihar, E.; Deng, Y.; Miyake, T.; Saadaoui, M.; Malliaras, G. G.; Rolandi, M. A Disposable Paper Breathalyzer with an Alcohol Sensing Organic Electrochemical Transistor. Sci. Rep. 2016, 6, 27582–27587. DOI: 10.1038/srep27582.
  • Macchia, E.; Ghittorelli, M.; Torricelli, F.; Torsi, L. Organic Electrochemical Transistor Immuno-Sensor Operating at the Femto-Molar Limit of Detection. Proceedings - 2017 7th International Workshop on Advances in Sensors and Interfaces, IWASI 2017, Vieste, Italy, 2017; pp 68–72.DOI: 10.1109/IWASI.2017.7974217
  • Tao, W.; Lin, P.; Hu, J.; Ke, S.; Song, J.; Zeng, X. A Sensitive DNA Sensor Based on an Organic Electrochemical Transistor Using a Peptide Nucleic Acid-Modified Nanoporous Gold Gate Electrode. RSC Adv. 2017, 7, 52118–52124. DOI: 10.1039/C7RA09832D.
  • Peng, J.; He, T.; Sun, Y.; Liu, Y.; Cao, Q.; Wang, Q.; Tang, H. An Organic Electrochemical Transistor for Determination of microRNA21 Using Gold Nanoparticles and a Capture DNA Probe. Microchim. Acta 2018, 185, 1–8. DOI: 10.1007/s00604-018-2944-x.
  • Zhang, L.; Wang, G.; Wu, D.; Xiong, C.; Zheng, L.; Ding, Y.; Lu, H.; Zhang, G.; Qiu, L. Highly Selective and Sensitive Sensor Based on an Organic Electrochemical Transistor for the Detection of Ascorbic Acid. Biosens. Bioelectron. 2018, 100, 235–241. DOI: 10.1016/j.bios.2017.09.006.
  • Zhang, M.; Liao, C.; Yao, Y.; Liu, Z.; Gong, F.; Yan, F. High-Performance Dopamine Sensors Based on Whole-Graphene Solution-Gated Transistors. Adv. Funct. Mater. 2014, 24, 978–985. DOI: 10.1002/adfm.201302359.
  • Xi, X.; Wu, D.; Ji, W.; Zhang, S.; Tang, W.; Su, Y.; Guo, X.; Liu, R. Manipulating the Sensitivity and Selectivity of OECT-Based Biosensors via the Surface Engineering of Carbon Cloth Gate Electrodes. Adv. Funct. Mater. 2020, 30, 1905361. DOI: 10.1002/adfm.201905361.
  • Ricci, S.; Casalini, S.; Parkula, V.; Selvaraj, M.; Saygin, G. D.; Greco, P.; Biscarini, F.; Mas-Torrent, M. Label-Free Immunodetection of Alpha-Synuclein by Using a Microfluidics Coplanar Electrolyte-Gated Organic Field-Effect Transistor. Biosens. Bioelectron. 2020, 167, 112433.
  • Elkington, D.; Wasson, M.; Belcher, W.; Dastoor, P. C.; Zhou, X. Printable Organic Thin Film Transistors for Glucose Detection Incorporating Inkjet-Printing of the Enzyme Recognition Element. Appl. Phys. Lett. 2015, 106, 263301. DOI: 10.1063/1.4923397.
  • Chen, L. Z.; Wu, J.; Yan, F.; Ju, H. X. A Facile Strategy for Quantitative Sensing of Glycans on Cell Surface Using Organic Electrochemical Transistors. Biosens. Bioelectron. 2021, 175, 112878. DOI: 10.1016/j.bios.2020.112878.
  • Galliani, M.; Diacci, C.; Berto, M.; Sensi, M.; Beni, V.; Berggren, M.; Borsari, M.; Simon, D. T.; Biscarini, F.; Bortolotti, C. A.; et al. Flexible Printed Organic Electrochemical Transistors for the Detection of Uric Acid in Artificial Wound Exudate. Adv. Mater. Interfaces 2020, 7, 2001218. DOI: 10.1002/admi.202001218.
  • Lee, C.-S.; Kim, S.; Kim, M. Ion-Sensitive Field-Effect Transistor for Biological Sensing. Sensors (Basel) 2009, 9, 7111–7131. DOI: 10.3390/s90907111.
  • Jimenez-Jorquera, C.; Orozco, J.; Baldi, A. ISFET Based Microsensors for Environmental Monitoring. Sensors (Basel) 2010, 10, 61–83. DOI: 10.3390/s100100061.
  • Sinha, S.; Mukhiya, R.; Sharma, R.; Khanna, P. K.; Khanna, V. K. Fabrication, Characterization and Electrochemical Simulation of AlN-Gate ISFET pH Sensor. J. Mater. Sci: Mater. Electron. 2019, 30, 7163–7174. DOI: 10.1007/s10854-019-01033-5.
  • Nabovati, G.; Ghafar-Zadeh, E.; Sawan, M. A 64 Pixel ISFET-Based Biosensor for Extracellular pH Gradient Monitoring. Proceedings - IEEE International Symposium on Circuits and Systems, 2015; pp 1762–1765.
  • Gasparyan, L.; Mazo, I.; Simonyan, V.; Gasparyan, F. ISFET Based DNA Sensor: Current-Voltage Characteristic and Sensitivity to DNA Molecules. Open J. Biophys. 2019, 09, 239–253. DOI: 10.4236/ojbiphy.2019.94017.
  • Ma, S.; Lee, Y.-K.; Zhang, A.; Li, X. Label-Free Detection of Cordyceps Sinensis Using Dual-Gate Nanoribbon-Based Ion-Sensitive Field-Effect Transistor Biosensor. Sens. Actuators B 2018, 264, 344–352. DOI: 10.1016/j.snb.2018.02.148.
  • Nguyen, T. C.; Schwartz, M.; Vu, X. T.; Blinn, J.; Ingebrandt, S. Handheld Readout System for Field-Effect Transistor Biosensor Arrays for Label-Free Detection of Biomolecules. Phys. Status Solidi A. 2015, 212, 1313–1319. DOI: 10.1002/pssa.201431862.
  • Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-Temperature Fabrication of Transparent Flexible Thin-Film Transistors Using Amorphous Oxide Semiconductors. Nature 2004, 432, 488–492. DOI: 10.1038/nature03090.
  • Keeble, L.; Moser, N.; Rodriguez-Manzano, J.; Georgiou, P. ISFET-Based Sensing and Electric Field Actuation of DNA for on-Chip Detection: A Review. IEEE Sens. J. 2020, 20, 11044–11065. DOI: 10.1109/JSEN.2020.2998168.
  • Starodub, N. F.; Ogorodnijchuk, J. O. Immune Biosensor Based on the ISFETs for Express Determination of Salmonella Typhimurium. Electroanalysis 2012, 24, 600–606. DOI: 10.1002/elan.201100539.
  • Lau, H.-C.; Lee, I.-K.; Ko, P.-W.; Lee, H.-W.; Huh, J.-S.; Cho, W.-J.; Lim, J.-O. Non-Invasive Screening for Alzheimer's Disease by Sensing Salivary Sugar Using Drosophila Cells Expressing Gustatory Receptor (GR5A) IMMOBILIZED on an Extended Gate Ion-Sensitive Field-Effect Transistor (EG-ISFET) Biosensor. PLoS One. 2015, 10, e0117810. DOI: 10.1371/journal.pone.0117810.
  • Pachauri, V.; Ingebrandt, S. Biologically Sensitive Field-Effect Transistors: From ISFETs to NanoFETs. Essays Biochem. 2016, 60, 81–90. DOI: 10.1042/EBC20150009.
  • Syu, Y.-C.; Hsu, W.-E.; Lin, C.-T. Review—Field-Effect Transistor Biosensing: Devices and Clinical Applications. ECS J. Solid State Sci. Technol. 2018, 7, Q3196–Q3207. DOI: 10.1149/2.0291807jss.
  • Li, J.; He, G.; Ueno, H.; Jia, C.; Noji, H.; Qi, C.; Guo, X. Direct Real-Time Detection of Single Proteins Using Silicon Nanowire-Based Electrical Circuits. Nanoscale 2016, 8, 16172–16176. DOI: 10.1039/c6nr04103e.
  • Du, X.; Li, Y.; Motley, J. R.; Stickle, W. F.; Herman, G. S. Glucose Sensing Using Functionalized Amorphous in-Ga-Zn-O Field-Effect Transistors. ACS Appl. Mater. Interfaces 2016, 8, 7631–7637. DOI: 10.1021/acsami.5b12058.
  • Dai, P.; Gao, A.; Lu, N.; Li, T.; Wang, Y. A Back-Gate Controlled Silicon Nanowire Sensor with Sensitivity Improvement for DNA and pH Detection. Jpn. J. Appl. Phys. 2013, 52, 121301–121301. DOI: 10.7567/JJAP.52.121301.
  • Puppo, F.; Doucey, M. A.; Delaloye, J. F.; Moh, T. S. Y.; Pandraud, G.; Sarro, P. M.; De Micheli, G.; Carrara, S. High Sensitive Detection in Tumor Extracts with SiNW-FET in-Air Biosensors. Presented at 2014 Conference Proceeding IEEE SENSORS, Valencia, Spain, 2-5 Nov. 2014.  DOI: 10.1109/ICSENS.2014.6985137
  • Regonda, S.; Tian, R.; Gao, J.; Greene, S.; Ding, J.; Hu, W. Silicon Multi-Nanochannel FETs to Improve Device Uniformity/Stability and Femtomolar Detection of Insulin in Serum. Biosens. Bioelectron. 2013, 45, 245–251. DOI: 10.1016/j.bios.2013.01.027.
  • Knopfmacher, O.; Tarasov, A.; Fu, W.; Wipf, M.; Niesen, B.; Calame, M.; Schönenberger, C. Nernst Limit in Dual-Gated Si-Nanowire FET Sensors. Nano Lett. 2010, 10, 2268–2274. DOI: 10.1021/nl100892y.
  • Liu, X.; Lin, P.; Yan, X.; Kang, Z.; Zhao, Y.; Lei, Y.; Li, C.; Du, H.; Zhang, Y. Enzyme-Coated Single ZnO Nanowire FET Biosensor for Detection of Uric Acid. Sens. Actuators B Chem. 2013, 176, 22–27. DOI: 10.1016/j.snb.2012.08.043.
  • Yu, R.; Pan, C.; Chen, J.; Zhu, G.; Wang, Z. L. Enhanced Performance of a ZnO Nanowire-Based Self-Powered Glucose Sensor by Piezotronic Effect. Adv. Funct. Mater. 2013, 23, 5868–5874. DOI: 10.1002/adfm.201300593.
  • Rahman, S. F. A.; Yusof, N. A.; Hashim, U.; Hushiarian, R.; M N, M. N.; Hamidon, M. N.; Zawawi, R. M.; Fathil, M. F. M. Enhanced Sensing of Dengue Virus DNA Detection Using O2 Plasma Treated-Silicon Nanowire Based Electrical Biosensor. Anal. Chim. Acta. 2016, 942, 74–85. DOI: 10.1016/j.aca.2016.09.009.
  • Kajisa, T.; Sakata, T. Molecularly Imprinted Artificial Biointerface for an Enzyme-Free Glucose Transistor. ACS Appl. Mater. Interfaces 2018, 10, 34983–34990. DOI: 10.1021/acsami.8b13317.
  • Yang, H.; Nishitani, S.; Sakata, T. Potentiometric Langmuir Isotherm Analysis of Histamine-Selective Molecularly Imprinted Polymer-Based Field-Effect Transistor. ECS J. Solid State Sci. Technol. 2018, 7, Q3079–Q3082. DOI: 10.1149/2.0131807jss.
  • Iskierko, Z.; Checinska, A.; Sharma, P. S.; Golebiewska, K.; Noworyta, K.; Borowicz, P.; Fronc, K.; Bandi, V.; D'Souza, F.; Kutner, W.; et al. Molecularly Imprinted Polymer Based Extended-Gate Field-Effect Transistor Chemosensors for Phenylalanine Enantioselective Sensing. J. Mater. Chem. C 2017, 5, 969–977. DOI: 10.1039/C6TC03812C.
  • Iskierko, Z.; Sosnowska, M.; Sharma, P. S.; Benincori, T.; D'Souza, F.; Kaminska, I.; Fronc, K.; Noworyta, K. Extended-Gate Field-Effect Transistor (EG-FET) with Molecularly Imprinted Polymer (MIP) Film for Selective Inosine Determination. Biosens. Bioelectron. 2015, 74, 526–533. DOI: 10.1016/j.bios.2015.06.073.
  • Roy, S.; Gao, Z. Nanostructure-Based Electrical Biosensors. Nano Today 2009, 4, 318–334. DOI: 10.1016/j.nantod.2009.06.003.
  • Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I. A.; Lin, Y. Graphene Based Electrochemical Sensors and Biosensors: A Review. Electroanalysis 2010, 22, 1027–1036. DOI: 10.1002/elan.200900571.
  • Chauhan, N.; Maekawa, T.; Kumar, D. N. S. Graphene Based Biosensors—Accelerating Medical Diagnostics to New-Dimensions. J. Mater. Res. 2017, 32, 2860–2882. DOI: 10.1557/jmr.2017.91.
  • Dong, X.; Shi, Y.; Huang, W.; Chen, P.; Li, L.-J. Electrical Detection of DNA Hybridization with Single-Base Specificity Using Transistors Based on CVD-Grown Graphene Sheets. Adv. Mater. 2010, 22, 1649–1653. DOI: 10.1002/adma.200903645.
  • Cai, B.; Wang, S.; Huang, L.; Ning, Y.; Zhang, Z.; Zhang, G.-J. Ultrasensitive Label-Free Detection of PNA-DNA Hybridization by Reduced Graphene Oxide Field-Effect Transistor Biosensor. ACS Nano. 2014, 8, 2632–2638. DOI: 10.1021/nn4063424.
  • Oh, J.; Yoo, G.; Chang, Y. W.; Kim, H. J.; Jose, J.; Kim, E.; Pyun, J.-C.; Yoo, K.-H. A Carbon Nanotube Metal Semiconductor Field Effect Transistor-Based Biosensor for Detection of Amyloid-Beta in Human Serum. Biosens. Bioelectron. 2013, 50, 345–350. DOI: 10.1016/j.bios.2013.07.004.
  • Kwak, Y. H.; Choi, D. S.; Kim, Y. N.; Kim, H.; Yoon, D. H.; Ahn, S.-S.; Yang, J.-W.; Yang, W. S.; Seo, S. Flexible Glucose Sensor Using CVD-Grown Graphene-Based Field Effect Transistor. Biosens. Bioelectron. 2012, 37, 82–87. DOI: 10.1016/j.bios.2012.04.042.
  • Zhang, M.; Liao, C.; Mak, C. H.; You, P.; Mak, C. L.; Yan, F. Highly Sensitive Glucose Sensors Based on Enzyme-Modified Whole-Graphene Solution-Gated Transistors. Sci. Rep. 2015, 5, 8311. DOI: 10.1038/srep08311.
  • He, Q.; Sudibya, H. G.; Yin, Z.; Wu, S.; Li, H.; Boey, F.; Huang, W.; Chen, P.; Zhang, H. Centimeter-Long and Large-Scale Micropatterns of Reduced Graphene Oxide Films: Fabrication and Sensing Applications. ACS Nano. 2010, 4, 3201–3208. DOI: 10.1021/nn100780v.
  • Hess, L. H.; Lyuleeva, A.; Blaschke, B. M.; Sachsenhauser, M.; Seifert, M.; Garrido, J. A.; Deubel, F. Graphene Transistors with Multifunctional Polymer Brushes for Biosensing Applications. ACS Appl. Mater. Interfaces 2014, 6, 9705–9710. DOI: 10.1021/am502112x.
  • Cohen-Karni, T.; Qing, Q.; Li, Q.; Fang, Y.; Lieber, C. M. Graphene and Nanowire Transistors for Cellular Interfaces and Electrical Recording. Nano Lett. 2010, 10, 1098–1102. DOI: 10.1021/nl1002608.
  • Sun, Q.; Kim, D. H.; Park, S. S.; Lee, N. Y.; Zhang, Y.; Lee, J. H.; Cho, K.; Cho, J. H. Transparent, Low-Power Pressure Sensor Matrix Based on Coplanar-Gate Graphene Transistors. Adv. Mater. 2014, 26, 4735–4740. DOI: 10.1002/adma.201400918.
  • Dai, H. Carbon Nanotubes: Synthesis, Integration, and Properties. Acc. Chem. Res. 2002, 35, 1035–1044. DOI: 10.1021/ar0101640.
  • Wang, C.-W.; Pan, C.-Y.; Wu, H.-C.; Shih, P.-Y.; Tsai, C.-C.; Liao, K.-T.; Lu, L.-L.; Hsieh, W.-H.; Chen, C.-D.; Chen, Y.-T.; et al. In Situ Detection of Chromogranin a Released from Living Neurons with a Single-Walled Carbon-Nanotube Field-Effect Transistor. Small 2007, 3, 1350–1355. DOI: 10.1002/smll.200600723.
  • Noyce, S. G.; Doherty, J. L.; Cheng, Z.; Han, H.; Bowen, S.; Franklin, A. D. Electronic Stability of Carbon Nanotube Transistors under Long-Term Bias Stress. Nano Lett. 2019, 19, 1460–1466. DOI: 10.1021/acs.nanolett.8b03986.
  • Besteman, K.; Lee, J.-O.; Wiertz, F. G. M.; Heering, H. A.; Dekker, C. Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors. Nano Lett. 2003, 3, 727–730. DOI: 10.1021/nl034139u.
  • Sorgenfrei, S.; Chiu, C-y.; Gonzalez, R. L.; Yu, Y.-J.; Kim, P.; Nuckolls, C.; Shepard, K. L. Label-Free Single-Molecule Detection of DNA-Hybridization Kinetics with a Carbon Nanotube Field-Effect Transistor. Nat. Nanotechnol. 2011, 6, 126–132. DOI: 10.1038/nnano.2010.275.
  • Hu, P.; Zhang, J.; Wen, Z.; Zhang, C. Network Single-Walled Carbon Nanotube Biosensors for Fast and Highly Sensitive Detection of Proteins. Nanotechnology 2011, 22, 335502. DOI: 10.1088/0957-4484/22/33/335502.
  • Park, I.; Li, Z.; Li, X.; Pisano, A. P.; Williams, R. S. Towards the Silicon Nanowire-Based Sensor for Intracellular Biochemical Detection. Biosens. Bioelectron. 2007, 22, 2065–2070. DOI: 10.1016/j.bios.2006.09.017.
  • Lee, D.; Cui, T. Low-Cost, Transparent, and Flexible Single-Walled Carbon Nanotube Nanocomposite Based Ion-Sensitive Field-Effect Transistors for pH/Glucose Sensing. Biosens. Bioelectron. 2010, 25, 2259–2264. DOI: 10.1016/j.bios.2010.03.003.
  • Li, P.; Lee, G.-H.; Kim, S. Y.; Kwon, S. Y.; Kim, H.-R.; Park, S. From Diagnosis to Treatment: Recent Advances in Patient-Friendly Biosensors and Implantable Devices. ACS Nano. 2021, 15, 1960–2004. DOI: 10.1021/acsnano.0c06688.
  • Reeder, J.; Kaltenbrunner, M.; Ware, T.; Arreaga-Salas, D.; Avendano-Bolivar, A.; Yokota, T.; Inoue, Y.; Sekino, M.; Voit, W.; Sekitani, T.; et al. Mechanically Adaptive Organic Transistors for Implantable Electronics. Adv. Mater. 2014, 26, 4967–4973. DOI: 10.1002/adma.201400420.
  • Owyeung, R. E.; Terse-Thakoor, T.; Rezaei Nejad, H.; Panzer, M. J.; Sonkusale, S. R. Highly Flexible Transistor Threads for All-Thread Based Integrated Circuits and Multiplexed Diagnostics. ACS Appl. Mater. Interfaces 2019, 11, 31096–31104. DOI: 10.1021/acsami.9b09522.
  • Schuhmann, T. G. Injectable Nanoelectronic Sensors for Brain-Machine Interfacing. 2019. Doctoral dissertation, Graduate School of Arts & Sciences, Harvard University, United States. http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029683
  • Fernando, P.; Gengfeng, Z.; Charles, M.L. Nanowire-Based Biosensors. Anal. Chem. 2006, 78, 4260–4269. DOI: 10.1021/ac069419j
  • Qing, Q.; Pal, S. K.; Tian, B.; Duan, X.; Timko, B. P.; Cohen-Karni, T.; Murthy, V. N.; Lieber, C. M. Nanowire Transistor Arrays for Mapping Neural Circuits in Acute Brain Slices. Proc. Natl. Acad. Sci. USA 2010, 107, 1882–1887. DOI: 10.1073/pnas.0914737107.
  • Kim, Y.; Lim, T.; Kim, C.-H.; Yeo, C. S.; Seo, K.; Kim, S.-M.; Kim, J.; Park, S. Y.; Ju, S.; Yoon, M.-H.; et al. Organic Electrochemical Transistor-Based Channel Dimension-Independent Single-Strand Wearable Sweat Sensors. NPG Asia Mater. 2018, 10, 1086–1095. DOI: 10.1038/s41427-018-0097-3.
  • Shen, M.-Y.; Li, B.-R.; Li, Y.-K. Silicon Nanowire Field-Effect-Transistor Based Biosensors: From Sensitive to Ultra-Sensitive. Biosens. Bioelectron. 2014, 60, 101–111. DOI: 10.1016/j.bios.2014.03.057.
  • Bahadir, E. B.; Sezgintürk, M. K. Applications of Commercial Biosensors in Clinical, Food, Environmental, and Biothreat/Biowarfare Analyses. Anal. Biochem. 2015, 478, 107–120. DOI: 10.1016/j.ab.2015.03.011.
  • Kasapkara, Ç. S.; Cinasal Demir, G.; Hasanoğlu, A.; Tümer, L. Continuous Glucose Monitoring in Children with Glycogen Storage Disease Type I. Eur. J. Clin. Nutr. 2014, 68, 101–105. DOI: 10.1038/ejcn.2013.186.
  • Voskerician, G.; Anderson, J. Sensor Biocompatibility and Biofouling in Real-Time Monitoring. In Wiley Encyclopedia of Biomedical Engineering; Akay M., Ed.; Wiley: Hoboken, 2006. DOI: 10.1002/9780471740360.ebs1370.
  • Duarte-Guevara, C.; Swaminathan, V.; Reddy, B.; Wen, C.-H.; Huang, Y.-J.; Huang, J.-C.; Liu, Y.-S.; Bashir, R. Characterization of a 1024 × 1024 DG-BioFET Platform. Sens. Actuators B Chem. 2017, 250, 100–110. DOI: 10.1016/j.snb.2017.04.107.
  • Thévenot, D. R.; Toth, K.; Durst, R. A.; Wilson, G. S. Electrochemical Biosensors: Recommended Definitions and classification1International Union of Pure and Applied Chemistry: Physical Chemistry Division, Commission I.7 (Biophysical Chemistry); Analytical Chemistry Division, Commission V.5 (Electroanalytical Chemistry).1. Biosens. Bioelectron. 2001, 16, 121–131. DOI: 10.1016/S0956-5663(01)00115-4.
  • Carpenter, A. C.; Paulsen, I. T.; Williams, T. C. Blueprints for Biosensors: Design, Limitations, and Applications. Genes 2018, 9, 375. DOI: 10.3390/genes9080375.
  • Balasubramanian, K. Challenges in the Use of 1D Nanostructures for on-Chip Biosensing and Diagnostics: A Review. Biosens. Bioelectron. 2010, 26, 1195–1204. DOI: 10.1016/j.bios.2010.07.041.
  • Koga, Y.; Yamazaki, N.; Matsumura, Y. Fecal Biomarker for Colorectal Cancer Diagnosis. Rinsho Byori 2015, 63, 361–368.
  • Romeo, A.; Leung, T. S.; Sánchez, S. Smart Biosensors for Multiplexed and Fully Integrated Point-of-Care Diagnostics. Lab Chip. 2016, 16, 1957–1961. DOI: 10.1039/c6lc90046a.
  • Wang, SQi.; Chinnasamy, T.; Lifson, M. A.; Inci, F.; Demirci, U. Flexible Substrate-Based Devices for Point-of-Care Diagnostics. Trends Biotechnol. 2016, 34, 909–921. DOI: 10.1016/j.tibtech.2016.05.009.
  • Zhang, A.; Zhao, Y.; You, S. S.; Lieber, C. M. Nanowire Probes Could Drive High-Resolution Brain-Machine Interfaces. Nano Today 2020, 31, 100821–100821. DOI: 10.1016/j.nantod.2019.100821.
  • Karthikeyan, V.; Surjadi, J. U.; Wong, J. C. K.; Kannan, V.; Lam, K.-H.; Chen, X.; Lu, Y.; Roy, V. A. L. Wearable and Flexible Thin Film Thermoelectric Module for Multi-Scale Energy Harvesting. J. Power Sources 2020, 455, 227983–227983. DOI: 10.1016/j.jpowsour.2020.227983.
  • Ahmad, O. S.; Bedwell, T. S.; Esen, C.; Garcia-Cruz, A.; Piletsky, S. A. Molecularly Imprinted Polymers in Electrochemical and Optical Sensors. Trends Biotechnol. 2019, 37, 294–309. DOI: 10.1016/j.tibtech.2018.08.009.
  • Majumder, S.; Deen, M. J. Smartphone Sensors for Health Monitoring and Diagnosis. Sensors (Basel, Switzerland) 2019, 19, 2164. DOI: 10.3390/s19092164.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.