394
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Research and Application of Highly Selective Molecular Imprinting Technology in Chiral Separation Analysis

, , ORCID Icon, , , & show all
Pages 1066-1079 | Published online: 21 Nov 2021

References

  • Zhang, L.; Fan, H. H.; Liu, M. H. Homo-Chiral and Hetero-Chiral Interaction Regulate on Supramolecular Polymers. J. Funct. Polym. 2019, 32, 660–670. DOI: 10.14133/j.cnki.1008-9357.20190527001.
  • Tohala, L.; Oukacine, F.; Ravelet, C.; Peyrin, E. Chiral Resolution Capabilities of DNA Oligonucleotides. Anal. Chem. 2015, 87, 5491–5495. DOI: 10.1021/acs.analchem.5b01252.
  • Wang, H. Y.; Zheng, C. W.; Zhao, G. Bifunctional Ion Pair Catalysts from Chiral α-Amino Acids. Chin. J. Chem. 2019, 37, 1111–1119. DOI: 10.1002/cjoc.201900276.
  • Čižmáriková, R.; Čižmárik, J.; Valentová, J.; Habala, L.; Markuliak, M. Chiral Aspects of Local Anesthetics. Molecules 2020, 25, 2738–2758. DOI: 10.3390/molecules25122738.
  • Zhou, Q.; Yu, L. S.; Zeng, S. Stereoselectivity of Chiral Drug Transport: A Focus on Enantiomer-Transporter Interaction. Drug Metab. Rev. 2014, 46, 283–290. DOI: 10.3109/03602532.2014.887094.
  • Chen, F. X.; Bai, Q. X.; Wang, Q. F.; Chen, S. Y.; Ma, X. X.; Cai, C. L.; Wang, D. N.; Waqas, A.; Gong, P. Stereoselective Pharmacokinetics and Chiral Inversions of Some Chiral Hydroxy Group Drugs. Curr. Pharm. Biotechnol. 2020, 21, 1632–1644. DOI: 10.2174/1389201021666200727144053.
  • Masaki, Y.; Kashiwagi, Y.; Watabe, H.; Abe, K. ( R)- and (S)-Ketamine Induce Differential fMRI Responses in Conscious Rats. Synapse 2019, 73, 22126–22151. DOI: 10.1002/syn.22126.
  • Basheer, A. A.; Hussain, I.; Scotti, M. T.; Scotti, L.; Ali, I. Advances in Chiral Separations at Nano Level. CAC. 2020, 16, 351–368. DOI: 10.2174/1573407215666190131122413.
  • Du, Y. Y.; Luo, L. D.; Sun, S.; Jiang, Z.; Guo, X. Enantioselective Separation and Determination of Miconazole in Rat Plasma by Chiral LC-MS/MS: Application in a stereoselective pharmacokinetic study. Anal. Bioanal. Chem. 2017, 409, 6315–6323. DOI: 10.1007/s00216-017-0551-z.
  • Szabó, Z. I.; Mohammadhassan, F.; Szőcs, L. S.; Nagy, J.; Komjáti, B.; Noszál, B.; Tóth, G. Stereoselective Interactions and Liquid Chromatographic Enantioseparation of Thalidomide on Cyclodextrin-Bonded Stationary Phases. J. Incl. Phenom. Macrocycl. Chem. 2016, 85, 227–236. DOI: 10.1007/s10847-016-0622-3.
  • Aboul-Enein, H. Y.; Ali, I. Optimization Strategies for HPLC Enantioseparation of Racemic Drugs Using Polysaccharides and Macrocyclic Glycopeptide Antibiotic Chiral Stationary Phases. Farmaco 2002, 57, 513–529. DOI: 10.1016/S0014-827X(02)01242-9
  • Kowalczyk, A.; Lipiński, P. F. J.; Karoń, K.; Rode, J. E.; Lyczko, K.; Dobrowolski, J. C.; Donten, M.; Kaczorek, D.; Poszytek, J.; Kawęcki, R.; et al. Enantioselective Sensing of (S)-Thalidomide in Blood Plasma with a Chiral Naphthalene Diimide Derivative. Biosens. Bioelectron. 2020, 167, 112446–112455. DOI: 10.1016/j.bios.2020.112446.
  • Lin, X.; Zhu, S.; Wang, Q. H.; Xia, Q.; Ran, P. Y.; Fu, Y. Z. Chiral Recognition of Penicillamine Enantiomers Using Hemoglobin and Gold Nanoparticles Functionalized Graphite-like Carbon Nitride Nanosheets via Electrochemiluminescence. Colloids Surf. B Biointerfaces 2016, 148, 371–376. DOI: 10.1016/j.colsurfb.2016.09.013.
  • Heiland, J.; Geissler, D.; Piendl, S. K.; Warias, R.; Belder, D. Supercritical-Fluid Chromatography on-Chip with Two-Photon-Excited-Fluorescence Detection for High-Speed Chiral Separations. Anal. Chem. 2019, 91, 6134–6140. DOI: 10.1021/acs.analchem.9b00726.
  • Lipka, E.; Dascalu, A. E.; Messara, Y.; Tsutsqiridze, E.; Farkas, T.; Chankvetadze, B. Separation of Enantiomers of Native Amino Acids with Polysaccharide-Based Chiral Columns in Supercritical Fluid Chromatography. J. Chromatogr. A. 2019, 1585, 207–212. DOI: 10.1016/j.chroma.2018.11.049.
  • Aboul-Enein, H. Y.; Ali, I. HPLC Enantiomeric Resolution of Nebivolol on Normal and Reversed Amylose Based Chiral Phases. Pharmazie 2001, 56, 214–216.
  • Aboul-Enein, H. Y.; Ali, I. Studies on the Effect of Alcohols on the Chiral Discrimination Mechanisms of Amylose Stationary Phase on the Enantioseparation of Nebivolol by HPLC. J. Biochem. Bioph. Methods 2001, 48, 175–188. DOI: 10.1016/S0165-022X(01)00148-8.
  • Ali, I.; Naim, L.; Ghanem, A.; Aboul-Enein, H. Y. Chiral Separations of Piperidine-2,6-dione Analogues on Chiralpak IA and Chiralpak IB Columns by using HPLC. Talanta 2006, 69, 1013–1017. DOI: 10.1016/j.talanta.2005.12.004.
  • Wang, T. T.; Cheng, Y. H.; Zhang, Y. L.; Zha, J. Y.; Ye, J. N.; Chu, Q. C.; Cheng, G. F. β-Cyclodextrin Modified Quantum Dots as Pseudo-Stationary Phase for Direct Enantioseparation Based on Capillary Electrophoresis with Laser-Induced Fluorescence Detection. Talanta 2020, 210, 120629. DOI: 10.1016/j.talanta.2019.120629.
  • Xu, Z. Q.; Xue, T. F.; He, T. Investigation on the Chiral Recognition Mechanism between Verteporfin and Cholate Salts by Capillary Electrophoresis. J. Sep. Sci. 2020, 43, 2905–2913. DOI: 10.1002/jssc.202000026.
  • Moussa, B. A.; Youssef, N. F.; Elkady, E. F.; Mohamed, M. F. Indirect Synchronous Fluorescence Spectroscopy and Direct High-Performance Thin-Layer Chromatographic Methods for Enantioseperation of Zopiclone and Determination of Chiral-Switching Eszopiclone: Evaluation of Thermodynamic Quantities of Chromatographic Separation. Chirality 2019, 31, 362–374. DOI: 10.1002/chir.23063.
  • Chen, X. M.; Hu, N.; Wei, H. F.; Wang, H. B. Chiral Fluorescent Recognition by Naphthalimide. J. Fluoresc. 2020, 30, 679–685. DOI: 10.1007/s10895-020-02539-6.
  • Yang, B.; Fu, C.; Li, J. P.; Xu, G. B. Frontiers in Highly Sensitive Molecularly Imprinted Electrochemical Sensors: Challenges and Strategies. TrAC, Trends Anal. Chem. 2018, 105, 52–67. DOI: 10.1016/j.trac.2018.04.011.
  • Li, Z. L.; Mo, Z. L.; Meng, S. J.; Gao, H. H.; Niu, X. H.; Guo, R. B. The Construction and Application of Chiral Electrochemical Sensors. Anal. Methods 2016, 8, 8134–8140. DOI: 10.1039/C6AY02431A.
  • Ansari, S.; Masoum, S. Molecularly Imprinted Polymers for Capturing and Sensing Proteins: Current Progress and Future Implications. TrAC, Trends Anal. Chem. 2019, 114, 29–47. DOI: 10.1016/j.trac.2019.02.008.
  • Özcan, N.; Karaman, C.; Atar, N.; Karaman, O.; Yola, M. L. A Novel Molecularly Imprinting Biosensor Including Graphene Quantum Dots/Multi-Walled Carbon Nanotubes Composite for Interleukin-6 Detection and Electrochemical Biosensor Validation. ECS J. Solid State Sci. Technol. 2020, 9, 121010. DOI: 10.1149/2162-8777/abd149.
  • Özcan, N.; Medetalibeyoglu, H.; Akyıldırım, O.; Atar, N.; Yola, M. L. Electrochemical Detection of Amyloid-β Protein by Delaminated Titanium Carbide MXene/Multi-Walled Carbon Nanotubes Composite with Molecularly Imprinted Polymer. Mater. Today Commun. 2020, 23, 101097. DOI: 10.1016/j.mtcomm.2020.101097.
  • Medetalibeyoğlu, H.; Beytur, M.; Manap, S.; Karaman, C.; Kardaş, F.; Akyıldırım, O.; Kotan, G.; Yüksek, H.; Atar, N.; Yola, M. L. Molecular Imprinted Sensor Including Au Nanoparticles/Polyoxometalate/Two-Dimensional Hexagonal Boron Nitride Nanocomposite for Diazinon Recognition. ECS J. Solid State Sci. Technol. 2020, 9, 101006. DOI: 10.1149/2162-8777/abbe6a.
  • Böke, C. P.; Karaman, O.; Medetalibeyoglu, H.; Karaman, C.; Atar, N.; Yola, M. L. A New Approach for Electrochemical Detection of Organochlorine Compound Lindane: Development of Molecular Imprinting Polymer with Polyoxometalate/Carbon Nitride Nanotubes Composite and Validation. Microchem. J. 2020, 157, 105012. DOI: 10.1016/j.microc.2020.105012.
  • Karimi-Maleh, H.; Yola, M. L.; Atar, N.; Orooji, Y.; Karimi, F.; Kumar, P. S.; Rouhi, J.; Baghayeri, M. A Novel Detection Method for Organophosphorus Insecticide Fenamiphos: Molecularly Imprinted Electrochemical Sensor Based on Core-Shell Co3O4@MOF-74 Nanocomposite. J. Colloid Interface Sci. 2021, 592, 174–185. DOI: 10.1016/j.jcis.2021.02.066.
  • Dalgliesh, C. E. The Optical Resolution of Aromatic Amino-Acids on Paper Chromatograms. J. Chem. Soc 1952, 47, 3940–3942. DOI: 10.1039/jr9520003940.
  • Davankov, V. A. The Nature of Chiral Recognition: Is It a Three‐Point Interaction? Chirality 1997, 9, 99–102. DOI: 10.1002/(SICI)1520-636X(1997)9:2<99::AID-CHIR3>3.0.CO;2-B.
  • Berthod, A. Chiral Recognition Mechanisms. Anal. Chem. 2006, 78, 2093–2099. DOI: 10.1021/ac0693823.
  • Dong, L. Q.; Zhang, Y. S.; Duan, X. M.; Zhu, X. F.; Sun, H.; Xu, J. K. Chiral PEDOT-Based Enantioselective Electrode Modification Material for Chiral Electrochemical Sensing: Mechanism and Model of Chiral Recognition. Anal. Chem. 2017, 89, 9695–9702. DOI: 10.1021/acs.analchem.7b01095.
  • Vidyasankar, S.; Ru, M.; Arnold, F. Molecularly Imprinted Ligand-Exchange Adsorbents for the Chiral Separation of Underivatized Amino Acids. J. Chromatogr. A 1997, 775, 51–63. DOI: 10.1016/S0021-9673(97)00280-X.
  • Chen, Q.; Zhou, J.; Han, Q.; Wang, Y. H.; Fu, Y. Z. Electrochemical Enantioselective Recognition of Tryptophane Enantiomers Based on Chiral Ligand Exchange. Colloids Surf. B Biointerfaces 2012, 92, 130–135. DOI: 10.1016/j.colsurfb.2011.11.031.
  • Yu, C.; Mosbach, K. Insights into the Origins of Binding and the Recognition Properties of Molecularly Imprinted Polymers Prepared Using an Amide as the Hydrogen-Bonding Functional Group. J. Mol. Recognit. 1998, 11, 69–74. DOI: 10.1002/(SICI)1099-1352(199812)11:1/6<69::AID-JMR392>3.0.CO;2-I.
  • Szumski, M.; Buszewski, B. Molecularly Imprinted Polymers: A New Tool for Separation of Steroid Isomers. J. Sep. Sci. 2004, 27, 837–842. DOI: 10.1002/jssc.200401799.
  • Sun, J. Y.; Ma, S. M.; Liu, B. B.; Yu, J.; Guo, X. J. A Fully Derivatized 4-Chlorophenylcarbamate-β-Cyclodextrin Bonded Chiral Stationary Phase for Enhanced Enantioseparation in HPLC. Talanta 2019, 204, 817–825. DOI: 10.1016/j.talanta.2019.06.071.
  • Deng, X. J.; Li, W. B.; Ding, G. H.; Xue, T.; Chen, X. P. Synthesis and Applications of Functionalized Magnetic Nanomaterials in Enantioseparation. Sep. Purif. Rev. 2019, 48, 14–29. DOI: 10.1080/15422119.2017.1419257.
  • Zor, E.; Bingol, H.; Ersoz, M. Chiral Sensors. TrAC, Trends Anal. Chem. 2019, 121, 115662–115679. DOI: 10.1016/j.trac.2019.115662.
  • Wang, X. H.; Dong, Q.; Ying, L. L.; Chi, S. S.; Lan, Y. H.; Huang, P. Y.; Liu, Z. S. Enhancement of Selective Separation on Molecularly Imprinted Monolith by Molecular Crowding Agent. Anal. Bioanal. Chem. 2017, 409, 201–211. DOI: 10.1007/s00216-016-9986-x.
  • Hroboňová, K.; Lomenova, A. Molecularly Imprinted Polymer as Stationary Phase for HPLC Separation of Phenylalanine Enantiomers. Monatsh. Chem. 2018, 149, 939–946. DOI: 10.1007/s00706-018-2155-5.
  • Yang, Z.; Shan, Y. L.; Yu, B.; Gao, Q.; Cong, H. L. Selective Adsorption of Chiral Mandelic Acid by Molecularly Imprinted Poly (Dimethylaminoethyl Methacrylate) on Surface of Magnetic Silica Microspheres. Integr. Ferroelectr. 2017, 180, 133–138. DOI: 10.1007/s00706-018-2155-5.
  • Lai, S. Z.; Ouyang, X. L.; Cai, C. Q.; Xu, W. S.; Chen, C. Y.; Chen, X. M. Surface-Imprinted Microspheres Prepared by a Template-Oriented Method for the Chiral Separation of Amlodipine. J. Sep. Sci. 2017, 40, 1869–1876. DOI: 10.1002/jssc.201700076.
  • Alizadeh, T.; Bagherzadeh, A.; Shamkhali, A. N. Synthesis of Nano-Sized Stereoselective Imprinted Polymer by Copolymerization of (S)-2-(Acrylamido) Propanoic Acid and Ethylene Glycol Dimethacrylate in the Presence of Racemic Propranolol and Copper Ion. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 63, 247–255. DOI: 10.1016/j.msec.2016.02.077.
  • Karim, K.; Breton, F.; Rouillon, R.; Piletska, E.; Piletsky, S.; Guerreiro, A.; Chianella, I.; Piletsky, S. A. How to Find Effective Functional Monomers for Effective Molecularly Imprinted Polymers? Adv. Drug Deliv. Rev. 2005, 57, 1795–1808. DOI: 10.1016/j.addr.2005.07.013.
  • Duan, F. F.; Chen, C. Q.; Zhao, X. F.; Yang, Y. Z.; Liu, X. G.; Yong, Q. Water-Compatible Surface Molecularly Imprinted Polymers with Synergy of Bi-Functional Monomers for Enhanced Selective Adsorption of Bisphenol a from Aqueous Solution. Environ. Sci. Nano. 2016, 3, 213–222. DOI: 10.1039/C5EN00198F.
  • Liu, W. F.; Holdsworth, C.; Ye, L. Synthesis of Molecularly Imprinted Polymers Using a Functionalized Initiator for Chiral-Selective Recognition of Propranolol. Chirality 2020, 32, 370–377. DOI: 10.1002/chir.23167.
  • Knutsson, M.; Andersson, H.; Nicholls, I. A. Novel Chiral Recognition Elements for Molecularly Imprinted Polymer Preparation. J. Mol. Recognit. 1998, 11, 87–90. DOI: 10.1002/(SICI)1099-1352(199812)11:1/6<87::AID-JMR396>3.0.CO;2-A.
  • Li, Y. G.; Zhang, L.; Dang, Y. Y.; Chen, Z. Q.; Zhang, R. Y.; Li, Y. C.; Ye, B. C. A Robust Electrochemical Sensing of Molecularly Imprinted Polymer Prepared by Using Bifunctional Monomer and Its Application in Detection of Cypermethrin. Biosens. Bioelectron. 2019, 127, 207–214. DOI: 10.1016/j.bios.2018.12.002.
  • Zhou, T. Y.; Ding, J.; He, Z. Y.; Li, J. Y.; Liang, Z. H.; Li, C. Y.; Li, Y.; Chen, Y. H.; L. Hydrophilic, D. Molecularly Imprinted Resorcinol–Formaldehyde–Melamine Resin Prepared in Water with Excellent Molecular Recognition in Aqueous Matrices. Chem. Eng. J. 2018, 334, 2293–2302. DOI: 10.1016/j.bios.2018.12.002.
  • Lv, T. W.; Yan, H. Y.; Cao, J. K.; Liang, S. R. Hydrophilic Molecularly Imprinted Resorcinol-Formaldehyde-Melamine Resin Prepared in Water with Excellent Molecular Recognition in Aqueous Matrices. Anal. Chem. 2015, 87, 11084–11091. DOI: 10.1021/acs.analchem.5b03253.
  • Monier, M.; Youssef, I.; Abdel, L. D. A. Synthesis of Imprinted Styrene-Maleic Acid Functionalized Resin for Enantio-Selective Extraction of R-Amphetamine. Chem. Eng. J. 2019, 356, 693–701. DOI: 10.1016/j.cej.2018.09.028.
  • Alatawi, R. A.; Monier, M.; Elsayed, N. H. Chiral Separation of (±)-Methamphetamine Racemate Using Molecularly Imprinted Sulfonic Acid Functionalized Resin. J. Colloid Interface Sci. 2018, 531, 654–663. DOI: 10.1016/j.jcis.2018.07.070.
  • Alotaibi, M.; Monier, M.; Elsayed, N. Enantiomeric Resolution of Ephedrine Racemic Mixture Using Molecularly Imprinted Carboxylic Acid Functionalized Resin. Eur. Polym. J. 2019, 121, 109309–109316. DOI: 10.1016/j.eurpolymj.2019.109309.
  • Wollschläger, J. M.; Simon, K.; Gaedke, M.; Schalley, C. A. Ion Mobility and Gas Phase H/D Exchange: revealing the Importance of a Single Hydrogen Bond for the Chiral Recognition of Crown Ether Ammonium Complexes. Chem. Commun. 2018, 54, 4967–4970. DOI: 10.1039/C8CC01671B.
  • Dudzik, K.; Wojcik, J.; Ejchart, A.; Nowakowski, M. Size Makes a Difference: Chiral Recognition in Complexes of Fenchone with Cyclodextrins Studied by Means of NMR Titration. Chirality 2017, 29, 747–758. DOI: 10.1002/chir.22747.
  • Li, S. H.; Pang, H. C.; Ma, X. H.; Zhao, M.; Li, H. B.; Wang, M. Y.; Li, J. P.; Luo, J. H. Electrochemical Immunoassay for the Carcinoembryonic Antigen Based on Au NPs Modified Zeolitic Imidazolate Framework and Ordered Mesoporous Carbon. Mikrochim. Acta 2020, 187, 1–9. DOI: 10.1007/s00604-020-04235-5.
  • Mandadapu, V.; Day, A. I.; Ghanem, A. Cucurbituril: Chiral Applications. Chirality 2014, 26, 712–723. DOI: 10.1002/chir.22363.
  • Zhao, G. F.; Zhou, X.; Ran, X.; Tan, X. P.; Li, T. H.; Cao, M.; Yang, L.; Du, G. B. Layer-by-Layer Assembly of Anionic-/Cationic-Pillar [5] Arenes Multilayer Films as Chiral Interface for Electrochemical Recognition of Tryptophan Isomers. Electrochim. Acta 2018, 277, 1–8. DOI: 10.1016/j.electacta.2018.04.196.
  • James, T. D.; Kawabata, H.; Ludwig, R.; Murata, K.; Shinkai, S. Cholesterol as a Versatile Platform for Chiral Recognition. Tetrahedron 1995, 51, 555–566. DOI: 10.1016/0040-4020(94)00915-H.
  • Pinalli, R.; Pedrini, A.; Dalcanale, E. Biochemical Sensing with Macrocyclic Receptors. Chem. Soc. Rev. 2018, 47, 7006–7026. DOI: 10.1039/C8CS00271A.
  • Zhu, G. B.; Kingsford, O. J.; Yi, Y. H.; Wong, K. Y. Review-Recent Advances in Electrochemical Chiral Recognition. J. Electrochem. Soc. 2019, 166, H205–H217. DOI: 10.1149/2.1121906jes.
  • Yu, G. C.; Jie, K. C.; Huang, F. H. Supramolecular Amphiphiles Based on Host-Guest Molecular Recognition Motifs. Chem. Rev. 2015, 115, 7240–7303. DOI: 10.1021/cr5005315.
  • Zhou, J.; Yu, G. C.; Huang, F. H. Supramolecular Chemotherapy Based on Host-Guest Molecular Recognition: A Novel Strategy in the Battle against Cancer with a Bright Future. Chem. Soc. Rev. 2017, 46, 7021–7053. DOI: 10.1039/c6cs00898d.
  • Yuan, X. Y.; Tan, Y. J.; Wei, X. P.; Li, J. P. Chiral Determination of Cinchonine Using an Electrochemiluminescent Sensor with Molecularly Imprinted Membrane on the Surfaces of Magnetic Particles. Luminescence 2017, 32, 1116–1122. DOI: 10.1002/bio.3297.
  • Szumna, A. Inherently Chiral Concave Molecules-from Synthesis to Applications. Chem. Soc. Rev. 2010, 39, 4274–4285. DOI: 10.1039/B919527K.
  • Tlustý, M.; Spálovská, D.; Babor, M.; Lhoták, P. Synthesis of Enantiomerically Pure Inherently Chiral Calix [4] Arenes Using the Meta-Substitution Strategy. Tetrahedron Lett. 2019, 60, 260–263. DOI: 10.1016/j.tetlet.2018.12.026.
  • Jiang, J. F.; Mu, X. Y.; Qiao, J.; Su, Y.; Qi, L. New Chiral Ligand Exchange Capillary Electrophoresis System with Chiral Amino Amide Ionic Liquids as Ligands. Talanta 2017, 175, 451–456. DOI: 10.1016/j.talanta.2017.07.052.
  • Feng, W. Y.; Qiao, J.; Li, D.; Qi, L. Chiral Ligand Exchange Capillary Electrochromatography with Dual Ligands for Enantioseparation of D,L-amino acids. Talanta 2019, 194, 430–436. DOI: 10.1016/j.talanta.2018.10.059.
  • Scriba, G. K. C. Recognition in Separation Sciences. Part II: Macrocyclic Glycopeptide, Donor-Acceptor, Ion-Exchange, Ligand-Exchange and Micellar Selectors. TrAC, Trends Anal. Chem. 2019, 119, 115628–115636. DOI: 10.1016/j.trac.2019.115628.
  • Zhang, Y.; Wang, H. Y.; He, X. W.; Li, W. Y.; Zhang, Y. K. Homochiral Fluorescence Responsive Molecularly Imprinted Polymer: Highly Chiral Enantiomer Resolution and Quantitative Detection of l-Penicillamine. J. Hazard. Mater. 2021, 412, 125249–125259. DOI: 10.1016/j.jhazmat.2021.125249.
  • Fu, Y. Z.; Wang, L. L.; Chen, Q.; Zhou, J. Enantioselective Recognition of Chiral Mandelic Acid in the Presence of zn(ii) Ions by l-Cysteine-Modified Electrode. Sens. Actuators B Chem. 2011, 155, 140–144. DOI: 10.1016/j.snb.2010.11.038.
  • Lee, H. S.; Hong, J. Chiral and Electrokinetic Separation of Amino Acids Using Polypyrrole-Coated Adsorbents. J. Chromatogr. A. 2000, 868, 189–196. DOI: 10.1016/S0021-9673(99)01246-7.
  • Chen, Z. D.; Okimoto, A.; Kiyonaga, T.; Nagaoka, T. Preparation of Soluble Polypyrrole Composites and Their Uptake Properties for Anionic Compounds. Anal. Chem. 1999, 71, 1834–1839. DOI: 10.1021/ac981334y.
  • Knox, J. H.; Wan, Q. H. Chiral Chromatography of Amino- and Hydroxy-Acids on Surface Modified Porous Graphite. Chromatographia 1995, 40, 9–14. DOI: 10.1007/BF02274600.
  • Grenács, Á.; Lihi, N.; Sóvágó, I.; Várnagy, K. The Influence of Penicillamine/Cysteine Mutation on the Metal Complexes of Peptides. Dalton Trans. 2017, 46, 13472–13481. DOI: 10.1039/C7DT02703F.
  • Chen, X. H.; Zhang, S. B.; Shan, X. L.; Chen, Z. D. Derivative Chiral Copper(II) Complexes as Template of an Electrochemical Molecular Imprinting Sol-Gel Sensor for Enantiorecognition of Aspartic Acid. Anal. Chim. Acta. 2019, 1072, 54–60. DOI: 10.1016/j.aca.2019.04.039.
  • Zhang, S.; Yang, J.; Liu, M.; Lü, S.; Gao, C.; Wu, C.; Zhu, Z. Synthesis of Peptide Dendrimers and Their Application in the Drug Delivery System. Acta Chim. Sin. 2016, 74, 401–409. DOI: 10.6023/A16020096.
  • Baimani, N.; Aberoomand Azar, P.; Waqif Husain, S.; Ahmad Panahi, H.; Mehramizi, A. Ultrasensitive Separation of Methylprednisolone Acetate Using a Photoresponsive Molecularly Imprinted Polymer Incorporated Polyester Dendrimer Based on Magnetic Nanoparticles. J. Sep. Sci. 2019, 42, 1468–1476. DOI: 10.1002/jssc.201801093.
  • Lian, W. J.; Huang, J. D.; Yu, J. H.; Zhang, X. M.; Lin, Q.; He, X. R.; Xing, X. R.; Liu, S. A Molecularly Imprinted Sensor Based on β-Cyclodextrin Incorporated Multiwalled Carbon Nanotube and Gold Nanoparticles-Polyamide Amine Dendrimer Nanocomposites Combining with Water-Soluble Chitosan Derivative for the Detection of Chlortetracycline. Food Control 2012, 26, 620–627. DOI: 10.1016/j.foodcont.2012.02.023.
  • Beil, J. B.; Zimmerman, S. C. A Monomolecularly Imprinted Dendrimer (MID) Capable of Selective Binding with a Tris (2-Aminoethyl) Amine Guest through Multiple Functional Group Interactions. Chem. Commun. 2004, 10, 488–489. DOI: 10.1039/b316248f.
  • Hashidzume, A.; Zimmerman, S. C. Switching the Selectivity of a Polyglycerol Dendrimer Monomolecularly Imprinted with D-(-)-fructose. Tetrahedron Lett. 2009, 50, 2204–2207. DOI: 10.1016/j.tetlet.2009.02.168.
  • Song, W. F.; Zhao, Q. L.; Zhou, X. J.; Zhang, L. S.; Huang, Y. P.; Liu, Z. S. A Star-Shaped Molecularly Imprinted Polymer Derived from Polyhedral Oligomeric Silsesquioxanes with Improved Site Accessibility and Capacity for Enantiomeric Separation via Capillary Electrochromatography. Mikrochim. Acta 2019, 186, 1–7. DOI: 10.1007/s00604-018-3151-5.
  • Zhang, L.; Wang, T. Y.; Shen, Z. S.; Liu, M. H. Chiral Nanoarchitectonics: Towards the Design, Self-Assembly, and Function of Nanoscale Chiral Twists and Helices. Adv. Mater. 2016, 28, 1044–1059. DOI: 10.1002/adma.201502590.
  • Fang, Y.; Ghijsens, E.; Ivasenko, O.; Cao, H.; Noguchi, A.; Mali, K. S.; Tahara, K.; Tobe, Y.; De Feyter, S. Dynamic Control over Supramolecular Handedness by Selecting Chiral Induction Pathways at the solution-solid interface. Nat. Chem. 2016, 8, 711–717. DOI: 10.1038/nchem.2514.
  • Cheng, G. Q.; Xu, D.; Lu, Z. Y.; Liu, K. Chiral Self-Assembly of Nanoparticles Induced by Polymers Synthesized via Reversible Addition-Fragmentation Chain Transfer Polymerization. ACS Nano. 2019, 13, 1479–1489. DOI: 10.1021/acsnano.8b07151.
  • Zhang, J.; Li, Z. J.; Gong, W.; Han, X.; Liu, Y.; Cui, Y. Chiral DHIP-Based Metal-Organic Frameworks for Enantioselective Recognition and Separation. Inorg. Chem. 2016, 55, 7229–7232. DOI: 10.1021/acs.inorgchem.6b00894.
  • Wu, X. W.; Han, X.; Xu, Q. S.; Liu, Y. H.; Yuan, C.; Yang, S.; Liu, Y.; Jiang, J. W.; Cu, Y. Chiral BINOL-Based Covalent Organic Frameworks for Enantioselective Sensing. J. Am. Chem. Soc. 2019, 141, 7081–7089. DOI: 10.1021/jacs.9b02153.
  • Liu, G.; Sheng, J.; Zhao, Y. Covalent Organic Frameworks for Asymmetric Catalysis and Chiral Separation. Sci. China Chem. 2017, 60, 1015–1022. DOI: 10.1007/s11426-017-9070-1.
  • Jintoku, H.; Takafuji, M.; Oda, R.; Ihara, H. Enantioselective Recognition by a Highly Ordered Porphyrin-Assembly on a Chiral Molecular Gel. Chem. Commun. 2012, 48, 4881–4883. DOI: 10.1039/c2cc31127e.
  • Wu, T.; Wei, X. P.; Ma, X. H.; J. P. Amperometric, L. Sensing of l-Phenylalanine Using a Gold Electrode Modified with a Metal Organic Framework, a Molecularly Imprinted Polymer, and β-Cyclodextrin-Functionalized Gold Nanoparticles. Mikrochim. Acta 2017, 184, 2901–2907. DOI: 10.1007/s00604-017-2281-5.
  • Travers, A.; Muskhelishvili, G. DNA Structure and Function. FEBS J. 2015, 282, 2279–2295. DOI: 10.1111/febs.13307.
  • Fojta, M.; Daňhel, A.; Havran, L.; Vyskočil, V. Recent Progress in Electrochemical Sensors and Assays for DNA Damage and Repair. TrAC, Trends Anal. Chem. 2016, 79, 160–167. DOI: 10.1016/j.trac.2015.11.018.
  • Biver, T. Use of UV-Vis Spectrometry to Gain Information on the Mode of Binding of Small Molecules to DNAs and RNAs. Appl. Spectrosc. Rev. 2012, 47, 272–325. DOI: 10.1080/05704928.2011.641044.
  • Liu, X. Y.; Ren, J.; Su, L. H.; Gao, X.; Tang, Y. W.; Ma, T.; Zhu, L. J.; Li, J. Novel Hybrid Probe Based on Double Recognition of Aptamer-Molecularly Imprinted Polymer Grafted on Upconversion Nanoparticles for Enrofloxacin Sensing. Biosens. Bioelectron. 2017, 87, 203–208. DOI: 10.1016/j.bios.2016.08.051.
  • Zhang, L. M.; Luo, K.; Li, D.; Zhang, Y. F.; Zeng, Y.; Li, J. P. Chiral Molecular Imprinted Sensor for Highly Selective Determination of D-Carnitine in Enantiomers via dsDNA-Assisted Conformation Immobilization. Anal. Chim. Acta. 2020, 1136, 82–90. DOI: 10.1016/j.aca.2020.08.046.
  • Azadmehr, F.; Zarei, K. An Imprinted Polymeric Matrix Containing DNA for Electrochemical Sensing of 2, 4–Dichlorophenoxyacetic Acid. Mikrochim. Acta 2019, 186, 1–8. DOI: 10.1007/s00604-019-3980-x.
  • Lyu, H.; Sun, H.; Zhu, Y.; Wang, J.; Xie, Z.; Li, J. A Double-Recognized Aptamer-Molecularly Imprinted Monolithic Column for High-Specificity Recognition of Ochratoxin A. Anal. Chim. Acta. 2020, 1103, 97–105. DOI: 10.1016/j.aca.2019.12.052.
  • Zhang, J.; Zhang, G. H.; Wang, X. C.; Bai, Z. W.; Chen, W. Synthesis and Evaluation of Novel Chiral Stationary Phases Based on N‑Cyclobutylcarbonyl Chitosan Derivatives. Microchem. J. 2019, 147, 224–231. DOI: 10.1016/j.microc.2019.02.068.
  • Xiao, X. D.; Li, Z. Q.; Liu, Y.; Jia, L. Preparation of Chitosan-Based Molecularly Imprinted Material for Enantioseparation of Racemic Mandelic Acid in Aqueous Medium by Solid Phase Extraction. J. Sep. Sci. 2019, 42, 3544–3552. DOI: 10.1002/jssc.201900825.
  • Zhang, J.; Hu, J. H.; Wu, D. T.; Ma, J. F.; Tao, Y. X.; Qin, Y.; Kong, Y. Multi-Templates Based Molecularly Imprinted Sodium Alginate/MnO2 for Simultaneous Enantiorecognition of Lysine, Alanine and Cysteine Isomers. Int. J. Biol. Macromol. 2019, 129, 786–791. DOI: 10.1016/j.ijbiomac.2019.02.095.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.