474
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Epirubicin: Biological Properties, Analytical Methods, and Drug Delivery Nanosystems

ORCID Icon, , ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 1080-1093 | Published online: 24 Nov 2021

References

  • Tariq, M.; Alam, M. A.; Singh, A. T.; Panda, A. K.; Talegaonkar, S. Improved Oral Efficacy of Epirubicin through Polymeric Nanoparticles: Pharmacodynamic and Toxicological Investigations. Drug Deliv. 2016, 23, 2990–2997. DOI: 10.3109/10717544.2015.1136713.
  • Sharma, N.; Kumari, R. M.; Gupta, N.; Syed, A.; Bahkali, A. H.; Nimesh, S. Poly-(Lactic-Co-Glycolic) Acid Nanoparticles for Synergistic Delivery of Epirubicin and Paclitaxel to Human Lung Cancer Cells. Molecules 2020, 25, 4243–4249. DOI: 10.3390/molecules25184243.
  • Liu, L.; Mu, L. M.; Yan, Y.; Wu, J. S.; Hu, Y. J.; Bu, Y. Z.; Zhang, J. Y.; Liu, R.; Li, X. Q.; Lu, W. L. The Use of Functional Epirubicin Liposomes to Induce Programmed Death in Refractory Breast Cancer. Int. J. Nanomed. 2017, 12, 4163–4176. DOI: 10.2147/IJN.S133194.
  • Fathian Kolahkaj, F.; Derakhshandeh, K.; Khaleseh, F.; Azandaryani, A. H.; Mansouri, K.; Khazaei, M. Active Targeting Carrier for Breast Cancer Treatment: Monoclonal Antibody Conjugated Epirubicin Loaded Nanoparticle. J. Drug Deliv. Sci. Technol. 2019, 53, 101136. DOI: 10.1016/j.jddst.2019.101136.
  • Alavi, M.; Varma, R. S. Overview of Novel Strategies for the Delivery of Anthracyclines to Cancer Cells by Liposomal and Polymeric Nanoformulations. Int. J. Biol. Macromol. 2020, 164, 2197–2203. DOI: 10.1016/j.ijbiomac.2020.07.274.
  • Nalluri, L. P.; Popuri, S. R.; Lee, C. H.; Terbish, N. Synthesis of Biopolymer Coated Functionalized Superparamagnetic Iron Oxide Nanoparticles for the PH-Sensitive Delivery of anti-Cancer Drugs Epirubicin and Temozolomide. Int. J. Polym. Mater. Polym. Biomater. 2021, 70, 1039–1052. DOI: 10.1080/00914037.2020.1785449.
  • Angelova, N.; Yordanov, G. Albumin-Stabilized Epirubicin Nanocarriers of Core-Shell Type Based on Poly(Butyl Cyanoacrylate) and Poly(Styrene-Co-Maleic Acid). Colloids Surf. A Physicochem. Eng. Asp 2015, 487, 232–239. DOI: 10.1016/j.colsurfa.2015.10.009.
  • Lê, L. M. M.; Tfayli, A.; Zhou, J.; Prognon, P.; Baillet-Guffroy, A.; Caudron, E. Discrimination and Quantification of Two Isomeric Antineoplastic Drugs by Rapid and Non-Invasive Analytical Control Using a Handheld Raman Spectrometer. Talanta 2016, 161, 320–324. DOI: 10.1016/j.talanta.2016.07.025.
  • Ding, J.; Chen, G.; Chen, G.; Guo, M. One-Pot Synthesis of Epirubicin-Capped Silver Nanoparticles and Their Anticancer Activity against Hep G2 Cells. Pharmaceutics 2019, 11, 123–127. DOI: 10.3390/pharmaceutics11030123.
  • Zhang, T.; Zhou, S.; Hu, L.; Peng, B.; Liu, Y.; Luo, X.; Liu, X.; Song, Y.; Deng, Y. Polysialic Acid-Polyethylene Glycol Conjugate-Modified Liposomes as a Targeted Drug Delivery System for Epirubicin to Enhance Anticancer Efficiency. Drug Deliv. Transl. Res. 2018, 8, 602–616. DOI: 10.1007/s13346-018-0496-6.
  • Mo, J.; Shen, L.; Xu, Q.; Zeng, J.; Sha, J.; Hu, T.; Bi, K.; Chen, Y. An Nd3+-Sensitized Upconversion Fluorescent Sensor for Epirubicin Detection. Nanomaterials 2019, 9, 1700–1714. DOI: 10.3390/nano9121700.
  • Tariq, M.; Thomas, S.; Singh, A.; Talegaonkar, S. Developed and Validated Stability Indicating HPLC Method for the Determination of Epirubicin in Bulk Drug, Marketed Injection and Polymeric Nanoparticles. Brazilian J. Pharm. Sci. 2018, 54, 1–8. DOI: 10.1590/s2175-97902018000417515.
  • Brachet, G.; Bruno, C.; Boulay, D.; Tournamille, J. F.; Gyan, E.; Viaud-Massuard, M. C.; Respaud, R. An Ion-Pairing, Reversed-Phase Liquid Chromatography Method to Assess the Cross-Contamination of Cancer Chemotherapy Infusions Prepared in a Dual-Operator Aseptic Isolator. Drug Test. Anal. 2016, 8, 985–990. DOI: 10.1002/dta.1902.
  • Korany, M. A.; Mahgoub, H.; Haggag, R. S.; Ragab, M. A. A.; Elmallah, O. A. Green Chemistry: Analytical and Chromatography. J. Liq. Chromatogr. Relat. Technol. 2017, 40, 839–852. DOI: 10.1080/10826076.2017.1373672.
  • Liu, C.; Zhang, J.; You, G. Interaction of Anticancer Drugs with Human Organic Anion Transporter HOAT4. J. Oncol. 2019, 2019, 1951786–1951788. DOI: 10.1155/2019/1951786.
  • Gomhor, J.; Alqaraghuli, H.; Kashanian, S.; Rafipour, R.; Mahdavian, E.; Mansouri, K. Development and Characterization of Folic Acid-Functionalized Apoferritin as a Delivery Vehicle for Epirubicin against MCF-7 Breast Cancer Cells. Artif. Cells. Nanomed. Biotechnol. 2018, 46, S847–S854. DOI: 10.1080/21691401.2018.1516671.
  • Gopinath, P.; Veluswami, S.; Thangarajan, R.; Gopisetty, G. RP-HPLC-UV Method for Estimation of Fluorouracil-Epirubicin-Cyclophosphamide and Their Metabolite Mixtures in Human Plasma (Matrix). J. Chromatogr. Sci. 2018, 56, 488–497. DOI: 10.1093/chromsci/bmy020.
  • Paul Launchbury, A.; Habboubi, N. Epirubicin and Doxorubicin: A Comparison of Their Characteristics, Therapeutic Activity and Toxicity. Cancer Treat. Rev. 1993, 19, 197–228. DOI: 10.1016/0305-7372(93)90036-Q.
  • Burnell, M.; Levine, M. N.; Chapman, J. A. W.; Bramwell, V.; Gelmon, K.; Walley, B.; Vandenberg, T.; Chalchal, H.; Albain, K. S.; Perez, E. A.; et al. Cyclophosphamide, Epirubicin, and Fluorouracil versus Dose-Dense Epirubicin and Cyclophosphamide Followed by Paclitaxel versus Doxorubicin and Cyclophosphamide Followed by Paclitaxel in Node-Positive or High-Risk Node-Negative Breast Cancer. J. Clin. Oncol. 2010, 28, 77–82. DOI: 10.1200/JCO.2009.22.1077.
  • Lunardi, G.; Vannozzi, M. O.; Bighin, C.; Del Mastro, L.; Stevani, I.; Schettini, G.; Venturini, M. Influence of Trastuzumab on Epirubicin Pharmacokinetics in Metastatic Breast Cancer Patients. Ann. Oncol. 2003, 14, 1222–1226. DOI: 10.1093/annonc/mdg350.
  • Treder, N.; Maliszewska, O.; Olędzka, I.; Kowalski, P.; Miękus, N.; Bączek, T.; Bień, E.; Krawczyk, M. A.; Adamkiewicz-Drożynska, E.; Plenis, A. Development and Validation of a High-Performance Liquid Chromatographic Method with a Fluorescence Detector for the Analysis of Epirubicin in Human Urine and Plasma, and Its Application in Drug Monitoring. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020, 1136, 121910 DOI: 10.1016/j.jchromb.2019.121910.
  • Perveen, K.; Masood, F.; Hameed, A. Hameed, A. Preparation, Characterization and Evaluation of Antibacterial Properties of Epirubicin Loaded PHB and PHBV Nanoparticles. Int. J. Biol. Macromol. 2020, 144, 259–266. DOI: 10.1016/j.ijbiomac.2019.12.049.
  • Ribeiro, I. S.; Pontes, F. J. G.; Carneiro, M. J. M.; Sousa, N. A.; Pinto, V. P. T.; Ribeiro, F. O. S.; Silva, D. A.; Araújo, G. S.; Marinho Filho, J. D. B.; Araújo, A. J.; et al. Poly(ε-Caprolactone) Grafted Cashew Gum Nanoparticles as an Epirubicin Delivery System. Int. J. Biol. Macromol. 2021, 179, 314–323. DOI: 10.1016/j.ijbiomac.2021.03.011.
  • Nelson, D. R. Progress in Tracing the Evolutionary Paths of Cytochrome P450. Biochim. Biophys. Acta 2011, 1814, 14–18. DOI: 10.1016/j.bbapap.2010.08.008.
  • Sawyer, M. B.; Pituskin, E.; Damaraju, S.; Bies, R. R.; Vos, L. J.; Prado, C. M. M.; Kuzma, M.; Scarfe, A. G.; Clemons, M.; Tonkin, K.; et al. A Uridine Glucuronosyltransferase 2B7 Polymorphism Predicts Epirubicin Clearance and Outcomes in Early-Stage Breast Cancer. Clin. Breast Cancer. 2016, 16, 139–144. DOI: 10.1016/j.clbc.2015.09.006.
  • Ware, M. J.; Keshishian, V.; Law, J. J.; Ho, J. C.; Favela, C. A.; Rees, P.; Smith, B.; Mohammad, S.; Hwang, R. F.; Rajapakshe, K.; et al. Generation of an in vitro 3D PDAC stroma rich spheroid model. Biomaterials 2016, 108, 129–142. DOI: 10.1016/j.biomaterials.2016.08.041.
  • Peccatori, F. A.; Azim, H. A.; Scarfone, G.; Gadducci, A.; Bonazzi, C.; Gentilini, O.; Galimberti, V.; Intra, M.; Locatelli, M.; Acaia, B.; et al. Weekly Epirubicin in the Treatment of Gestational Breast Cancer (GBC). Breast Cancer Res. Treat. 2009, 115, 591–594. DOI: 10.1007/s10549-008-0159-2.
  • Pernkopf, I.; Tesch, G.; Dempe, K.; Kletzl, H.; Schüller, J.; Czejka, M. Binding of Epirubicin to Human Plasma Proteins and Red Blood Cells : In Vitro Interaction with the Cytoprotective Amifostine. Pharmazie 1996, 51, 897–901.
  • Robert, J.; Bui, N. B. Original Article: Pharmacokinetics and Metabolism of Epirubicin Administered as I.V. Bolus and 48-h Infusion in Patients with Advanced Soft-Tissue Sarcoma. Ann. Oncol. 1992, 3, 651–656. DOI: 10.1093/oxfordjournals.annonc.a058296.
  • Townsend, D. Epirubicin. xPharm: The Comprehensive Pharmacology Reference 2007, 1–6. DOI: 10.1016/B978-008055232-3.61696-4.
  • Fogli, S.; Danesi, R.; Gennari, A.; Donati, S.; Conte, P. F.; Del Tacca, M. Gemcitabine, Epirubicin and Paclitaxel: Pharmacokinetic and Pharmacodynamic Interactions in Advanced Breast Cancer. Ann. Oncol. 2002, 13, 919–927. DOI: 10.1093/annonc/mdf164.
  • Conte, P. F.; Gennari, A.; Landucci, E.; Orlandini, C. Role of Epirubicin in Advanced Breast Cancer. Clin Breast Cancer. 2000, 1, S46–S51. DOI: 10.3816/cbc.2000.s.009.
  • Murray, L. S.; Jodrell, D. I.; Morrison, J. G.; Cook, A.; Kerr, D. J.; Whiting, B.; Kaye, S. B.; Cassidy, J. The Effect of Cimetidine on the Pharmacokinetics of Epirubicin in Patients with Advanced Breast Cancer: Preliminary Evidence of a Potentially Common Drug Interaction. Clin. Oncol. 1998, 10, 35–38. DOI: 10.1016/S0936-6555(98)80109-X.
  • Yamamoto, Y.; Hyodo, I.; Koga, Y.; Tsumura, R.; Sato, R.; Obonai, T.; Fuchigami, H.; Furuya, F.; Yasunaga, M.; Harada, M.; et al. Enhanced Antitumor Effect of anti-tissue factor antibody-conjugated epirubicin-incorporating micelles in xenograft models. Cancer Sci. 2015, 106, 627–634. DOI: 10.1111/cas.12645.
  • Petrioli, R.; Roviello, G.; Zanotti, L.; Roviello, F.; Polom, K.; Bottini, A.; Marano, L.; Francini, E.; Marrelli, D.; Generali, D. Epirubicin-Based Compared with Docetaxel-Based Chemotherapy for Advanced Gastric Carcinoma: A Systematic Review and Meta-Analysis. Crit. Rev. Oncol. Hematol. 2016, 102, 82–88. DOI: 10.1016/j.critrevonc.2016.04.001.
  • Wu, X.; Ye, C.; Wang, X.; Cai, R.; Yang, J.; Yu, X.; Zhou, Y.; Shen, L.; Zhu, Y.; Liu, X. The Efficacy and Toxicity of Neoadjuvant Chemotherapy Regimens of Epirubicin plus Cyclophosphamide Followed by Docetaxel or Paclitaxel in Female Breast Cancer Patients. Cancer Manage. Res. 2021, 13, 1517–1527. DOI: 10.2147/CMAR.S284638.
  • Robert, J. Clinical Pharmacokinetics of Epirubicin. Clin. Pharmacokinet. 1994, 26, 428–438. DOI: 10.2165/00003088-199426060-00002.
  • Zhou, S.; Zhang, T.; Peng, B.; Luo, X.; Liu, X.; Hu, L.; Liu, Y.; Di, D.; Song, Y.; Deng, Y. Targeted Delivery of Epirubicin to Tumor-Associated Macrophages by Sialic Acid-Cholesterol Conjugate Modified Liposomes with Improved Antitumor Activity. Int. J. Pharm. 2017, 523, 203–216. DOI: 10.1016/j.ijpharm.2017.03.034.
  • Prado, C. M. M.; Lima, I. S. F.; Baracos, V. E.; Bies, R. R.; McCargar, L. J.; Reiman, T.; Mackey, J. R.; Kuzma, M.; Damaraju, V. L.; Sawyer, M. B. An Exploratory Study of Body Composition as a Determinant of Epirubicin Pharmacokinetics and Toxicity. Cancer Chemother. Pharmacol. 2011, 67, 93–101. DOI: 10.1007/s00280-010-1288-y.
  • Kaklamani, V. G.; Gradishar, W. J. Epirubicin versus Doxorubicin: Which is the Anthracycline of Choice for the Treatment of Breast Cancer? Clin. Breast Cancer 2003, 4, S26–S33. DOI: 10.3816/CBC.2003.s.012.
  • Petit, K.; Suwalsky, M.; Colina, J. R.; Contreras, D.; Aguilar, L. F.; Jemiola-Rzeminska, M.; Strzalka, K. Toxic Effects of the Anticancer Drug Epirubicin in Vitro Assayed in Human Erythrocytes. Toxicol. In Vitro 2020, 68, 104964 DOI: 10.1016/j.tiv.2020.104964.
  • Demetzos, C.; Pippa, N. Advanced Drug Delivery Nanosystems (ADDnSs): A Mini-Review. Drug Deliv. 2014, 21, 250–257. DOI: 10.3109/10717544.2013.844745.
  • Hashida, M. Role of Pharmacokinetic Consideration for the Development of Drug Delivery Systems: A Historical Overview. Adv. Drug Deliv. Rev. 2020, 157, 71–82. DOI: 10.1016/j.addr.2020.06.015.
  • Bassyouni, F.; ElHalwany, N.; Abdel Rehim, M.; Neyfeh, M. Advances and New Technologies Applied in Controlled Drug Delivery System. Res. Chem. Intermed. 2015, 41, 2165–2200. DOI: 10.1007/s11164-013-1338-2.
  • Patra, J. K.; Das, G.; Fraceto, L. F.; Campos, E. V. R.; Rodriguez-Torres, M.; del, P.; Acosta-Torres, L. S.; Diaz-Torres, L. A.; Grillo, R.; Swamy, M. K.; Sharma, S.; et al. Nano Based Drug Delivery Systems: Recent Developments and Future Prospects. J. Nanobiotechnol. 2018, 16, 71 DOI: 10.1186/s12951-018-0392-8.
  • Zhang, X.; Zhou, J.; Gu, Z.; Zhang, H.; Gong, Q.; Luo, K. Advances in Nanomedicines for Diagnosis of Central Nervous System Disorders. Biomaterials 2021, 269, 120492 DOI: 10.1016/j.biomaterials.2020.120492.
  • Abbott, N. J.; Patabendige, A. A. K.; Dolman, D. E. M.; Yusof, S. R.; Begley, D. J. Structure and Function of the Blood-Brain Barrier. Neurobiol. Dis. 2010, 37, 13–25. DOI: 10.1016/j.nbd.2009.07.030.
  • Lakkadwala, S.; dos Santos Rodrigues, B.; Sun, C.; Singh, J. Dual Functionalized Liposomes for Efficient Co-Delivery of anti-Cancer Chemotherapeutics for the Treatment of Glioblastoma. J. Control. Release 2019, 307, 247–260. DOI: 10.1016/j.jconrel.2019.06.033.
  • Song, P.; Zhao, X.; Xiao, S. Application Prospect of Peptide-Modified Nano Targeting Drug Delivery System Combined with PD-1/PD-L1 Based Immune Checkpoint Blockade in Glioblastoma. Int. J. Pharm. 2020, 589, 119865 DOI: 10.1016/j.ijpharm.2020.119865.
  • Takashima, H.; Koga, Y.; Tsumura, R.; Yasunaga, M.; Tsuchiya, M.; Inoue, T.; Negishi, E.; Harada, M.; Yoshida, S.; Matsumura, Y. Reinforcement of Antitumor Effect of Micelles Containing Anticancer Drugs by Binding of an anti-Tissue Factor Antibody without Direct Cytocidal Effects. J. Control. Release 2020, 323, 138–150. DOI: 10.1016/j.jconrel.2020.03.048.
  • Wu, Y.; Yang, Y.; Zhang, F.; Wu, C.; Lü, W.-L.; Mei, X.-G. Epirubicin-Encapsulated Long-Circulating Thermosensitive Liposome Improves Pharmacokinetics and Antitumor Therapeutic Efficacy in Animals. J. Liposome Res. 2011, 21, 221–228. DOI: 10.3109/08982104.2010.520273.
  • Ansari, L.; Jaafari, M. R.; Bastami, T. R.; Malaekeh-Nikouei, B. Improved Anticancer Efficacy of Epirubicin by Magnetic Mesoporous Silica Nanoparticles: In Vitro and in Vivo Studies. Artif. Cells. Artif. Cells. Nanomed. Biotechnol. 2018, 46, 594–606. DOI: 10.1080/21691401.2018.1464461.
  • Matai, I.; Sachdev, A.; Gopinath, P. Self-Assembled Hybrids of Fluorescent Carbon Dots and PAMAM Dendrimers for Epirubicin Delivery and Intracellular Imaging. ACS Appl. Mater. Interfaces 2015, 7, 11423–11435. DOI: 10.1021/acsami.5b02095.
  • Chen, X.; Han, W.; Zhao, X.; Tang, W.; Wang, F. Epirubicin-Loaded Marine Carrageenan Oligosaccharide Capped Gold Nanoparticle System for pH-Triggered Anticancer Drug Release. Sci. Rep. 2019, 9, 1–10. DOI: 10.1038/s41598-019-43106-9.
  • Ansari, L.; Derakhshi, M.; Bagheri, E.; Shahtahmassebi, N.; Malaekeh-Nikouei, B. Folate Conjugation Improved Uptake and Targeting of Porous Hydroxyapatite Nanoparticles Containing Epirubicin to Cancer Cells. Pharm. Dev. Technol. 2020, 25, 601–609. DOI: 10.1080/10837450.2020.1725045.
  • Tian, W.; Ying, X.; Du, J.; Guo, J.; Men, Y.; Zhang, Y.; Li, R. J.; Yao, H. J.; Lou, J. N.; Zhang, L. R.; et al. Enhanced Efficacy of Functionalized Epirubicin Liposomes in Treating Brain Glioma-Bearing Rats. Eur. J. Pharm. Sci. 2010, 41, 232–243. DOI: 10.1016/j.ejps.2010.06.008.
  • De Souza Barbosa, F.; Coty Rodrigues, V.; Volpato, N. M.; S. Schapoval, E. E.; Steppe, M.; Garcia, C. V.; L. Mendez, A. S. UV Spectrophotometric Method for Quantitative Determination of Agomelatine in Coated Tablets. Drug Anal. Res. 2017, 1, 24–29. DOI: 10.22456/2527-2616.79219.
  • Yordanov, G.; Skrobanska, R.; Evangelatov, A. Entrapment of Epirubicin in Poly(Butyl Cyanoacrylate) Colloidal Nanospheres by Nanoprecipitation: Formulation Development and in Vitro Studies on Cancer Cell Lines. Colloids Surf. B Biointerfaces 2012, 92, 98–105. DOI: 10.1016/j.colsurfb.2011.11.029.
  • Angelova, N.; Yordanov, G. Nanoparticles of Poly(Styrene-Co-Maleic Acid) as Colloidal Carriers for the Anticancer Drug Epirubicin. Colloids Surf. A Physicochem. Eng. Asp 2014, 452, 73–81. DOI: 10.1016/j.colsurfa.2014.03.106.
  • Rafiee, E.; Rahpeyma, N. Enhanced Delivery of Epirubicin by Polyoxometalate-Based Magnetic Nanocarriers: Controlled Drug Loading and PH-Sensitive Drug Release. Turk. J. Chem. 2016, 40, 305–313. DOI: 10.3906/kim-1502-67.
  • Wang, L.; Pei, J.; Cong, Z.; Zou, Y.; Sun, T.; Davitt, F.; Garcia-Gil, A.; Holmes, J. D.; O’Driscoll, C. M.; Rahme, K.; et al. Development of Anisamide-Targeted PEGylated gold nanorods to deliver epirubicin for chemo-photothermal therapy in tumor-bearing mice . Int. J. Nanomed. 2019, 14, 1817–1833. DOI: 10.2147/IJN.S192520.
  • Tang, H.; Chen, J.; Wang, L.; Li, Q.; Yang, Y.; Lv, Z.; Bao, H.; Li, Y.; Luan, X.; Li, Y.; et al. Co-Delivery of Epirubicin and Paclitaxel Using an Estrone-Targeted PEGylated Liposomal Nanoparticle for Breast Cancer. Int. J. Pharm. 2020, 573, 118806 DOI: 10.1016/j.ijpharm.2019.118806.
  • Wang, X.; Low, X. C.; Hou, W.; Abdullah, L. N.; Toh, T. B.; Mohd Abdul Rashid, M.; Ho, D.; Chow, E. K. H. Epirubicin-Adsorbed Nanodiamonds Kill Chemoresistant Hepatic Cancer Stem Cells. ACS Nano. 2014, 8, 12151–12166. DOI: 10.1021/nn503491e.
  • Edwards, H. G. M. Modern Raman Spectroscopy—A Practical Approach. Ewen Smith and Geoffrey Dent; John Wiley and Sons Ltd: Chichester, UK, 2005.
  • Dumont, E.; De Bleye, C.; Sacré, P. Y.; Netchacovitch, L.; Hubert, P.; Ziemons, E. From near-Infrared and Raman to Surface-Enhanced Raman Spectroscopy: Progress, Limitations and Perspectives in Bioanalysis. Bioanalysis 2016, 8, 1077–1103. DOI: 10.4155/bio-2015-0030.
  • Makki, A. A.; Bonnier, F.; Respaud, R.; Chtara, F.; Tfayli, A.; Tauber, C.; Bertrand, D.; Byrne, H. J.; Mohammed, E.; Chourpa, I. Qualitative and Quantitative Analysis of Therapeutic Solutions Using Raman and Infrared Spectroscopy. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2019, 218, 97–108. DOI: 10.1016/j.saa.2019.03.056.
  • Dendisová, M.; Jeništová, A.; Parchaňská-Kokaislová, A.; Matějka, P.; Prokopec, V.; Švecová, M. The Use of Infrared Spectroscopic Techniques to Characterize Nanomaterials and Nanostructures: A Review. Anal. Chim. Acta 2018, 1031, 1–14. DOI: 10.1016/j.aca.2018.05.046.
  • López-Lorente, Á. I.; Mizaikoff, B. Recent Advances on the Characterization of Nanoparticles Using Infrared Spectroscopy. TrAC - Trends Anal. Chem. 2016, 84, 97–106. DOI: 10.1016/j.trac.2016.01.012.
  • Wang, D.-Y.; Liu, Y.; Zhang, L.; Jin, Z.-N.; Zhao, Z.-Q.; Yang, Y.; Ren, S.-Y.; Yu, H.-L.; Zhao, Y.-J.; Peng, N.-X.; et al. Hierarchically Nanostructured Fe3O4/C Composite as a Promising Magnetic Targeted Drug Nanocarrier. J. Nanosci. Nanotechnol. 2019, 19, 7532–7538. DOI: 10.1166/jnn.2019.16852.
  • Bayat, P.; Pakravan, P.; Salouti, M.; Dolatabadi, J. E. N. Lysine Decorated Solid Lipid Nanoparticles of Epirubicin for Cancer Targeting and Therapy. Adv. Pharm. Bull. 2021, 11, 96–103. DOI: 10.34172/apb.2021.010.
  • Valeur, B.; Berberan-Santos, M. N. Molecular Fluorescence; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012.
  • Fiod Riccio, B. V.; Fonseca-Santos, B.; Colerato Ferrari, P.; Chorilli, M. Characteristics, Biological Properties and Analytical Methods of Trans-Resveratrol: A Review. Crit. Rev. Anal. Chem. 2020, 50, 339–358. DOI: 10.1080/10408347.2019.1637242.
  • El-Kimary, E. I.; El-Yazbi, A. F. An Eco-Friendly Stability-Indicating Spectrofluorimetric Method for the Determination of Two Anticancer Stereoisomer Drugs in Their Pharmaceutical Preparations following Micellar Enhancement: Application to Kinetic Degradation Studies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 163, 145–153. DOI: 10.1016/j.saa.2016.03.034.
  • Gao, F.; Li, L.; Zhang, H.; Yang, W.; Chen, H.; Zhou, J.; Zhou, Z.; Wang, Y.; Cai, Y.; Li, X.; et al. Deoxycholic Acid Modified-Carboxymethyl Curdlan Conjugate as a Novel Carrier of Epirubicin: In Vitro and in Vivo Studies. Int. J. Pharm. 2010, 392, 254–260. DOI: 10.1016/j.ijpharm.2010.03.044.
  • Morrison, K. A.; Clowers, B. H. Fundamentals and Applications of Incorporating Chromatographic Separations with Ion Mobility-Mass Spectrometry. TrAC Trends Anal. Chem. 2019, 119, 115625. DOI: 10.1016/j.trac.2019.115625.
  • Liu, G.; Mo, E.; Wang, X.; Wu, N.; Liu, F.; Yuan, W.; Chen, H.; Wang, J.; Xu, J.; Cai, S. Plasma Pharmacokinetic and Heart Distribution Studies of Z-GP-EPI, a Hypocardiotoxic Prodrug of Epirubicin. Trop. J. Pharm. Res. 2015, 14, 899–905. DOI: 10.4314/tjpr.v14i5.21.
  • Elmasry, M. S.; Blagbrough, I. S.; Rowan, M. G.; Saleh, H. M.; Kheir, A. A.; Rogers, P. J. Quantitative HPLC Analysis of Mebeverine, Mesalazine, Sulphasalazine and Dispersible Aspirin Stored in a Venalink Monitored Dosage System with Co-Prescribed Medicines. J. Pharm. Biomed. Anal. 2011, 54, 646–652. DOI: 10.1016/j.jpba.2010.10.002.
  • Banda, J.; Lakshmanan, R.; Katepalli, R. B.; Reddy Venati, U. K.; Koppula, R.; Shiva Prasad, V. V. S. Determination of Mesalazine, a Low Bioavailability Olsalazine Metabolite in Human Plasma by UHPLC-MS/MS: Application to a pharmacokinetic study. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1008, 1–10. DOI: 10.1016/j.jchromb.2015.11.001.
  • Sanogo, S.; Silimbani, P.; Gaggeri, R.; Masini, C. Development and Validation of an HPLC-DAD Method for the Simultaneous Identification and Quantification of Topotecan, Irinotecan, Etoposide, Doxorubicin and Epirubicin. Arab. J. Chem. 2021, 14, 102896. DOI: 10.1016/j.arabjc.2020.11.002.
  • Bennis, Y.; Savry, A.; Correard, F.; Montana, M.; Sauzet, C.; Gauthier-Villano, L.; Pisano, P.; Pourroy, B. Stability of a Highly Concentrated Solution of Epirubicin for Conventional Transcatheter Arterial Chemoembolization. Int. J. Pharm. 2015, 495, 956–962. DOI: 10.1016/j.ijpharm.2015.10.012.
  • Kaczmarek, A.; Cielecka-Piontek, J.; Garbacki, P.; Lewandowska, K.; Bednarski, W.; Barszcz, B.; Zalewski, P.; Kycler, W.; Oszczapowicz, I.; Jelińska, A. Radiation Sterilization of Anthracycline Antibiotics in Solid State. Sci. World J. 2013, 2013, 1–7. DOI: 10.1155/2013/258758.
  • Sobczak, A.; Jelińska, A.; Leśniewska, M.; Firlej, A.; Oszczapowicz, I. Oszczapowicz, I. Stability of Epidoxorubicin in Solid State. J. Pharm. Biomed. Anal. 2011, 54, 869–872. DOI: 10.1016/j.jpba.2010.10.024.
  • Dalvand, K.; Ghiasvand, A.; Gupta, V.; Paull, B. Chemotaxis-Based Smart Drug Delivery of Epirubicin Using a 3D Printed Microfluidic Chip. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2021, 1162, 122456 DOI: 10.1016/j.jchromb.2020.122456.
  • Shin, D. H.; Park, S. H.; Kwon, O. S.; Park, C. W.; Han, K.; Chung, Y. B. Validation of High-Performance Liqid Chromatography Method to Determine Epirubicin and Its Pharmacokinetics after Intravenous Bolus Administration in Rats. J. Pharm. Investig. 2013, 43, 243–249. DOI: 10.1007/s40005-013-0076-1.
  • Shin, D. H.; Park, S. H.; Jeong, S. W.; Park, C. W.; Han, K.; Chung, Y. B. Hepatic Uptake of Epirubicin by Isolated Rat Hepatocytes and Its Biliary Excretion after Intravenous Infusion in Rats. Arch. Pharm. Res. 2014, 37, 1599–1606. DOI: 10.1007/s12272-014-0475-5.
  • Souza, D. M.; Reichert, J. F.; Martins, A. F. A Simultaneous Determination of anti-Cancer Drugs in Hospital Effluent by DLLME HPLC-FLD, Together with a Risk Assessment. Chemosphere 2018, 201, 178–188. DOI: 10.1016/j.chemosphere.2018.02.164.
  • Vyas, N.; Turner, A.; Clark, J. M.; Sewell, G. J. Evaluation of a Closed-System Cytotoxic Transfer Device in a Pharmaceutical Isolator. J. Oncol. Pharm. Pract. 2016, 22, 10–19. DOI: 10.1177/1078155214544993.
  • Haslik, W.; Hacker, S.; Felberbauer, F. X.; Thallinger, C.; Bartsch, R.; Kornauth, C.; Deutschmann, C.; Mader, R. M. Port-a-Cath extravasation of Vesicant Cytotoxics: Surgical Options for a Rare Complication of Cancer Chemotherapy. Eur. J. Surg. Oncol. 2015, 41, 378–385. DOI: 10.1016/j.ejso.2014.11.042.
  • Stratigou, I. C.; Tsiasioti, A.; Tzanavaras, P. D.; Markopoulou, C. K.; Fytianos, K.; Zacharis, C. K. Homogeneous Liquid Liquid Extraction Using Salt as Mass Separating Agent for the Ultra High Pressure Liquid Chromatographic Determination of Doxorubicin in Human Urine. Microchem. J. 2020, 158, 105260. DOI: 10.1016/j.microc.2020.105260.
  • Schaupp, C. M.; White, C. C.; Merrill, G. F.; Kavanagh, T. J. Metabolism of Doxorubicin to the Cardiotoxic Metabolite Doxorubicinol is Increased in a Mouse Model of Chronic Glutathione Deficiency: A Potential Role for Carbonyl Reductase 3. Chem. Biol. Interact. 2015, 234, 154–161. DOI: 10.1016/j.cbi.2014.11.010.
  • Guichard, N.; Fekete, S.; Guillarme, D.; Bonnabry, P.; Fleury-Souverain, S. Computer-Assisted UHPLC-MS method development and optimization for the determination of 24 antineoplastic drugs used in hospital pharmacy. J. Pharm. Biomed. Anal. 2019, 164, 395–401. DOI: 10.1016/j.jpba.2018.11.014.
  • Villa, A.; Tremolet, K.; Martinez, B.; Da Silva Cacao, O.; Atgé, B.; Ducint, D.; Titier-Debeaupuis, K.; Verdun-Esquer, C.; Molimard, M.; Canal-Raffin, M. Canal-Raffin, M. A Highly Sensitive UHPLC-MS/MS Method for Urine Biological Monitoring of Occupational Exposure to Anthracycline Antineoplastic Drugs and Routine Application. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020, 1156, 122305. DOI: 10.1016/j.jchromb.2020.122305.
  • Chen, H.; Xie, L. Q.; Qin, J.; Jia, Y.; Cai, X.; Nan, W.; Bin; Yang, W.; Lv, F.; Zhang, Q. Q. Surface Modification of PLGA Nanoparticles with Biotinylated Chitosan for the Sustained in Vitro Release and the Enhanced Cytotoxicity of Epirubicin. Colloids Surf. B Biointerfaces 2016, 138, 1–9. DOI: 10.1016/j.colsurfb.2015.11.033.
  • Sun, Y.; Wang, Q.; Shi, X.; Li, J.; Yao, Q.; Zhang, P. Fabrication of Epirubicin Loaded Core/Shell Electrospun Fibers with Effective Transdermal Sustained-Release Properties. Mater. Lett. 2021, 299, 130117. DOI: 10.1016/j.matlet.2021.130117.
  • Hu, L. D.; Jia, Y.; Ding, W. Preparation and Characterization of Solid Lipid Nanoparticles Loaded with Epirubicin for Pulmonary Delivery. Pharmazie 2010, 65, 585–587. DOI: 10.1691/ph.2010.0023.
  • Haley, B.; Frenkel, E. Nanoparticles for Drug Delivery in Cancer Treatment. Urol. Oncol. 2008, 26, 57–64. DOI: 10.1016/j.urolonc.2007.03.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.