836
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Applications of Advanced Materials for Non-Enzymatic Glucose Monitoring: From Invasive to the Wearable Device

, , ORCID Icon & ORCID Icon
Pages 1116-1131 | Published online: 13 Dec 2021

References

  • Zimmet, P. Z.; Magliano, D. J.; Herman, W. H.; Shaw, J. E. Diabetes: A 21st Century Challenge. Lancet. Diabetes Endocrinol. 2014, 2, 56–64. DOI: 10.1016/S2213-8587(13)70112-8.
  • Wang, H. C.; Lee, A. R. Recent Developments in Blood Glucose Sensors. J. Food Drug Anal. 2015, 23, 191–200. DOI: 10.1016/j.jfda.2014.12.001.
  • Xiao, J.; Liu, Y.; Su, L.; Zhao, D.; Zhao, L.; Zhang, X. Microfluidic Chip-Based Wearable Colorimetric Sensor for Simple and Facile Detection of Sweat Glucose. Anal. Chem. 2019, 91, 14803–14807. DOI: 10.1021/acs.analchem.9b03110.
  • Abellán-Llobregat, A.; Jeerapan, I.; Bandodkar, A.; Vidal, L.; Canals, A.; Wang, J.; Morallón, E. A Stretchable and Screen-Printed Electrochemical Sensor for Glucose Determination in Human Perspiration. Biosens. Bioelectron. 2017, 91, 885–891. DOI: 10.1016/j.bios.2017.01.058.
  • Jiang-Feng, M.; Hong-Li, X.; Xue-Yan, W.; Min, N.; Shuang-Yu, L.; Hong-Ding, X.; Liang-Ming, L. Prevalence and Risk Factors of Diabetes in Patients with Klinefelter Syndrome: A Longitudinal Observational Study. Fertil. Steril. 2012, 98, 1331–1335. DOI: 10.1016/j.fertnstert.2012.07.1122.
  • Strakosas, X.; Selberg, J.; Pansodtee, P.; Yonas, N.; Manapongpun, P.; Teodorescu, M.; Rolandi, M. A Non-Enzymatic Glucose Sensor Enabled by Bioelectronic PH Control. Sci. Rep. 2019, 9, 10844. DOI: 10.1038/s41598-019-46302-9.
  • Elsherif, M.; Hassan, M. U.; Yetisen, A. K.; Butt, H. Wearable Contact Lens Biosensors for Continuous Glucose Monitoring Using Smartphones. ACS Nano. 2018, 12, 5452–5462. DOI: 10.1021/acsnano.8b00829.
  • WHO. Diabetes. https://www.who.int/news-room/fact-sheets/detail/diabetes. (accessed Sep 9, 2021).
  • Bell, C.; Nammari, A.; Uttamchandani, P.; Rai, A.; Shah, P.; Moore, A. L. Flexible Electronics-Compatible Non-Enzymatic Glucose Sensing via Transparent CuO Nanowire Networks on PET Films. Nanotechnology 2017, 28, 245502. DOI: 10.1088/1361-6528/aa7164.
  • Chang, G.; Shu, H.; Huang, Q.; Oyama, M.; Ji, K.; Liu, X.; He, Y. Synthesis of Highly Dispersed Pt Nanoclusters Anchored Graphene Composites and Their Application for Non-Enzymatic Glucose Sensing. Electrochim. Acta. 2015, 157, 149–157. DOI: 10.1016/j.electacta.2015.01.085.
  • Chen, C.; Xie, Q.; Yang, D.; Xiao, H.; Fu, Y.; Tan, Y.; Yao, S. Recent Advances in Electrochemical Glucose Biosensors: A Review. RSC Adv. 2013, 3, 4473–4491. pp DOI: 10.1039/c2ra22351a.
  • Heller, A.; Feldman, B. Electrochemical Glucose Sensors and Their Applications in Diabetes Management. Chem. Rev. 2008, 108, 2482–2505. DOI: 10.1021/cr068069y.
  • Wu, G. H.; Song, X. H.; Wu, Y. F.; Chen, X. M.; Luo, F.; Chen, X. Non-Enzymatic Electrochemical Glucose Sensor Based on Platinum Nanoflowers Supported on Graphene Oxide. Talanta 2013, 105, 379–385. DOI: 10.1016/j.talanta.2012.10.066.
  • Mastrototaro, J.; Shin, J.; Marcus, A.; Sulur, G, STAR 1 Clinical Trial Investigators. The Accuracy and Efficacy of Real-Time Continuous Glucose Monitoring Sensor in Patients with Type 1 Diabetes. Diabetes Technol. Ther. 2008, 10, 385–390. DOI: 10.1089/DIA.2007.0291.
  • Toi, P. T.; Trung, T. Q.; Dang, T. M. L.; Bae, C. W.; Lee, N. E. Highly Electrocatalytic, Durable, and Stretchable Nanohybrid Fiber for on-Body Sweat Glucose Detection. ACS Appl. Mater. Interf. 2019, 11, 10707–10717. DOI: 10.1021/ACSAMI.8B20583.
  • Caucheteur, C.; Guo, T.; Albert, J. Review of Plasmonic Fiber Optic Biochemical Sensors: Improving the Limit of Detection. Anal. Bioanal. Chem. 2015, 407, 3883–3897. DOI: 10.1007/s00216-014-8411-6.
  • Gao, F.; Zhou, F.; Yao, Y.; Zhang, Y.; Du, L.; Geng, D.; Wang, P. Ordered Assembly of Platinum Nanoparticles on Carbon Nanocubes and Their Application in the Non-Enzymatic Sensing of Glucose. J. Electroanal. Chem. 2017, 803, 165–172. DOI: 10.1016/j.jelechem.2017.09.036.
  • Nantaphol, S.; Watanabe, T.; Nomura, N.; Siangproh, W.; Chailapakul, O.; Einaga, Y. Bimetallic Pt-Au Nanocatalysts Electrochemically Deposited on Boron-Doped Diamond Electrodes for Nonenzymatic Glucose Detection. Biosens. Bioelectron. 2017, 98, 76–82. DOI: 10.1016/j.bios.2017.06.034.
  • Karra, S.; Wooten, M.; Griffith, W.; Gorski, W. Morphology of Gold Nanoparticles and Electrocatalysis of Glucose Oxidation. Electrochim. Acta. 2016, 218, 8–14. DOI: 10.1016/j.electacta.2016.09.097.
  • Pei, Y.; Hu, M.; Tu, F.; Tang, X.; Huang, W.; Chen, S.; Li, Z.; Xia, Y. Ultra-Rapid Fabrication of Highly Surface-Roughened Nanoporous Gold Film from AuSn Alloy with Improved Performance for Nonenzymatic Glucose Sensing. Biosens. Bioelectron. 2018, 117, 758–765. DOI: 10.1016/j.bios.2018.07.021.
  • Dhara, K.; Mahapatra, D. R. Electrochemical Nonenzymatic Sensing of Glucose Using Advanced Nanomaterials. Mikrochim. Acta. 2018, 185, 49. DOI: 10.1007/s00604-017-2609-1.
  • Jernelv, I. L.; Milenko, K.; Fuglerud, S. S.; Hjelme, D. R.; Ellingsen, R.; Aksnes, A. A Review of Optical Methods for Continuous Glucose Monitoring. Appl. Spectrosc. Rev. 2019, 54, 543–572. DOI: 10.1080/05704928.2018.1486324.
  • Klonoff, D. C. Overview of Fluorescence Glucose Sensing: A Technology with a Bright Future. J. Diabetes Sci. Technol. 2012, 6, 1242–1250. DOI: 10.1177/193229681200600602.
  • Bandodkar, A. J.; Wang, J. Non-Invasive Wearable Electrochemical Sensors: A Review. Trends Biotechnol. 2014, 32, 363–371. DOI: 10.1016/j.tibtech.2014.04.005.
  • Matzeu, G.; Florea, L.; Diamond, D. Advances in Wearable Chemical Sensor Design for Monitoring Biological Fluids. Sensors Actuators, B Chem 2015, 211, 403–418. DOI: 10.1016/j.snb.2015.01.077.
  • Mitsou, E.; Xenakis, A.; Zoumpanioti, M. Oxidation Catalysis by Enzymes in Microemulsions. Catalysts 2017, 7, 52. DOI: 10.3390/catal7020052.
  • Mohapatra, J.; Ananthoju, B.; Nair, V.; Mitra, A.; Bahadur, D.; Medhekar, N. V.; Aslam, M. Enzymatic and Non-Enzymatic Electrochemical Glucose Sensor Based on Carbon Nano-Onions. Appl. Surf. Sci. 2018, 442, 332–341. DOI: 10.1016/j.apsusc.2018.02.124.
  • Yoon, H.; Xuan, X.; Jeong, S.; Park, J. Y. Wearable, Robust, Non-Enzymatic Continuous Glucose Monitoring System and Its in Vivo Investigation. Biosens. Bioelectron. 2018, 117, 267–275. DOI: 10.1016/j.bios.2018.06.008.
  • Bae, C. W.; Toi, P. T.; Kim, B. Y.; Lee, W. I.; Lee, H. B.; Hanif, A.; Lee, E. H.; Lee, N. E. Fully Stretchable Capillary Microfluidics-Integrated Nanoporous Gold Electrochemical Sensor for Wearable Continuous Glucose Monitoring. ACS Appl. Mater. Interf. 2019, 11, 14567–14575. DOI: 10.1021/acsami.9b00848.
  • Gao, Y.; Yang, F.; Yu, Q.; Fan, R.; Yang, M.; Rao, S.; Lan, Q.; Yang, Z.; Yang, Z. Three-Dimensional Porous Cu@Cu2O Aerogels for Direct Voltammetric Sensing of Glucose. Mikrochim. Acta. 2019, 186, 192 DOI: 10.1007/s00604-019-3263-6.
  • Muthuchamy, N.; Gopalan, A.; Lee, K. P. Highly Selective Non-Enzymatic Electrochemical Sensor Based on a Titanium Dioxide Nanowire-Poly(3-Aminophenyl Boronic Acid)-Gold Nanoparticle Ternary Nanocomposite. RSC Adv. 2018, 8, 2138–2147. DOI: 10.1039/C7RA09097H.
  • Wang, X. X.; Tan, Z. H.; Zeng, M.; Wang, J. N. Carbon Nanocages: A New Support Material for Pt Catalyst with Remarkably High Durability. Sci. Rep. 2014, 4, 4437 DOI: 10.1038/srep04437.
  • Jiang, D.; Liu, Z.; Wu, K.; Mou, L.; Ovalle-Robles, R.; Inoue, K.; Zhang, Y.; Yuan, N.; Ding, J.; Qiu, J.; et al. Fabrication of Stretchable Copper Coated Carbon Nanotube Conductor for Non-Enzymatic Glucose Detection Electrode with Low Detection Limit and Selectivity. Polymers (Basel) 2018, 10, 375. DOI: 10.3390/polym10040375.
  • Bajgrowicz-Cieslak, M.; Alqurashi, Y.; Elshereif, M. I.; Yetisen, A. K.; Hassan, M. U.; Butt, H. Optical Glucose Sensors Based on Hexagonally-Packed 2.5-Dimensional Photonic Concavities Imprinted in Phenylboronic Acid Functionalized Hydrogel Films. RSC Adv. 2017, 7, 53916–53924. DOI: 10.1039/c7ra11184c.
  • Hasanzadeh, M.; Solhi, E.; Jafari, M.; Mokhtarzadeh, A.; Soleymani, J.; Jouyban, A.; Mahboob, S. Ultrasensitive Immunoassay of Tumor Protein CA 15.3 in MCF-7 Breast Cancer Cell Lysates and Unprocessed Human Plasma Using Gold Nanoparticles Doped on the Structure of Mesoporous Silica. 2018, 120, 2493–2508. DOI: 10.1016/j.ijbiomac.2018.09.020.
  • Alizadeh, P. M.; Hasanzadeh, M.; Soleymani, J.; Vaez-Gharamaleki, J.; Jouyban, A. Application of Bioactive Cyclic Oligosaccharide on the Detection of Doxorubicin Hydrochloride in Unprocessed Human Plasma Sample: A New Platform towards Efficient Chemotherapy. Microchem. J. 2019, 145, 450–455. DOI: 10.1016/j.microc.2018.11.012.
  • Zhu, X.; Yuan, S.; Ju, Y.; Yang, J.; Zhao, C.; Liu, H. Water Splitting-Assisted Electrocatalytic Oxidation of Glucose with a Metal-Organic Framework for Wearable Nonenzymatic Perspiration Sensing. Anal. Chem. 2019, 91, 10764–10771. DOI: 10.1021/acs.analchem.9b02328.
  • Grochowska, K.; Ryl, J.; Karczewski, J.; Śliwiński, G.; Cenian, A.; Siuzdak, K. Non-Enzymatic Flexible Glucose Sensing Platform Based on Nanostructured TiO2 – Au Composite. J. Electroanal. Chem. 2019, 837, 230–239. DOI: 10.1016/j.jelechem.2019.02.040.
  • Pandey, R.; Paidi, S. K.; Valdez, T. A.; Zhang, C.; Spegazzini, N.; Dasari, R. R.; Barman, I. Dasari RR.; Barman I. Noninvasive Monitoring of Blood Glucose with Raman Spectroscopy. Acc. Chem. Res. 2017, 50, 264–272. DOI: 10.1021/acs.accounts.6b00472.
  • Choi, J.; Kang, D.; Han, S.; Kim, S. B.; Rogers, J. A. Soft, Skin-Mounted Microfluidic Networks with Capillary Bursting Valves for Chrono-Sampling of Sweat. Adv. Healthcare Mater. 2017, 6, 1601355. DOI: 10.1002/adhm.201601355.
  • Gao, W.; Nyein, H. Y. Y.; Shahpar, Z.; Fahad, H. M.; Chen, K.; Emaminejad, S.; Gao, Y.; Tai, L.-C.; Ota, H.; Wu, E.; et al. Wearable Microsensor Array for Multiplexed Heavy Metal Monitoring of Body Fluids. ACS Sens. 2016, 1, 866–874. DOI: 10.1021/acssensors.6b00287.
  • Wang, H.; Ma, X.; Hao, Y. Electronic Devices for Human-Machine Interfaces. Adv. Mater. Interf. 2017, 4, 1600709. DOI: 10.1002/admi.201600709.
  • Rodbard, D. Continuous Glucose Monitoring: A Review of Successes, Challenges, and Opportunities. Diabetes Technol. Ther. 2016, 18, S23–S213. DOI: 10.1089/dia.2015.0417.
  • Xie, K.; Qin, X.; Wang, X.; Wang, Y.; Tao, H.; Wu, Q.; Yang, L.; Hu, Z. Carbon Nanocages as Supercapacitor Electrode Materials. Adv. Mater. 2012, 24, 347–352. DOI: 10.1002/ADMA.201103872.
  • Soleymani, J.; Hasanzadeh, M.; Somi, M. H.; Ozkan, S. A.; Jouyban, A. Targeting and Sensing of Some Cancer Cells Using Folate Bioreceptor Functionalized Nitrogen-Doped Graphene Quantum Dots. Int. J. Biol. Macromol. 2018, 118, 1021–1034. DOI: 10.1016/j.ijbiomac.2018.06.183.
  • Soleymani, J.; Azizi, S.; Abbaspour-Ravasjani, S.; Hasanzadeh, M.; Somi, M. H.; Jouyban, A. Glycoprotein-Based Bioimaging of HeLa Cancer Cells by Folate Receptor and Folate Decorated Graphene Quantum Dots. Microchem. J. 2021, 170, 106732. DOI: 10.1016/j.microc.2021.106732.
  • Chen, S.; Bi, J.; Zhao, Y.; Yang, L.; Zhang, C.; Ma, Y.; Wu, Q.; Wang, X.; Hu, Z. Nitrogen-Doped Carbon Nanocages as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction. Adv. Mater. 2012, 24, 5593–5597. DOI: 10.1002/adma.201202424.
  • Hasan, K. u.; Asif, M. H.; Hassan, M. U.; Sandberg, M. O.; Nur, O.; Willander, M.; Fagerholm, S.; Strålfors, P. A Miniature Graphene-Based Biosensor for Intracellular Glucose Measurements. Electrochim. Acta. 2015, 174, 574–580. DOI: 10.1016/j.electacta.2015.06.035.
  • He, W.; Sun, Y.; Xi, J.; Abdurhman, A. A. M.; Ren, J.; Duan, H. Printing Graphene-Carbon Nanotube-Ionic Liquid Gel on Graphene Paper: Towards Flexible Electrodes with Efficient Loading of PtAu Alloy Nanoparticles for Electrochemical Sensing of Blood Glucose. Anal. Chim. Acta. 2016, 903, 61–68. DOI: 10.1016/j.aca.2015.11.019.
  • Zhang, Y.; Li, N.; Xiang, Y.; Wang, D.; Zhang, P.; Wang, Y.; Lu, S.; Xu, R.; Zhao, J. A Flexible Non-Enzymatic Glucose Sensor Based on Copper Nanoparticles Anchored on Laser-Induced Graphene. Carbon N. Y. 2020, 156, 506–513. DOI: 10.1016/j.carbon.2019.10.006.
  • Yoon, H.; Nah, J.; Kim, H.; Ko, S.; Sharifuzzaman, M.; Barman, S. C.; Xuan, X.; Kim, J.; Park, J. Y. A Chemically Modified Laser-Induced Porous Graphene Based Flexible and Ultrasensitive Electrochemical Biosensor for Sweat Glucose Detection. Sensors Actuators B Chem. 2020, 311, 127866. DOI: 10.1016/j.snb.2020.127866.
  • Yang, Y.; Song, Y.; Bo, X.; Min, J.; Pak, O. S.; Zhu, L.; Wang, M.; Tu, J.; Kogan, A.; Zhang, H.; et al. A Laser-Engraved Wearable Sensor for Sensitive Detection of Uric Acid and Tyrosine in Sweat. Nat. Biotechnol. 2020, 38, 217–224. DOI: 10.1038/s41587-019-0321-x.
  • Zhu, J.; Liu, S.; Hu, Z.; Zhang, X.; Yi, N.; Tang, K.; Dexheimer, M. G.; Lian, X.; Wang, Q.; Yang, J.; et al. Laser-Induced Graphene Non-Enzymatic Glucose Sensors for on-Body Measurements. Biosens. Bioelectron. 2021, 193, 113606. DOI: 10.1016/j.bios.2021.113606.
  • Sano, N.; Wang, H.; Chhowalla, M.; Alexandrou, I.; Amaratunga, G. A. J. Synthesis of Carbon “'Onions' in Water”. Nature 2001, 414, 506–507. DOI: 10.1038/35107141.
  • Zhang, H.; Xu, X.; Yin, Y.; Wu, P.; Cai, C. Nonenzymatic Electrochemical Detection of Glucose Based on Pd 1Pt3-Graphene Nanomaterials. J. Electroanal. Chem. 2013, 690, 19–24. DOI: 10.1016/j.jelechem.2012.12.001.
  • Oh, S. Y.; Hong, S. Y.; Jeong, Y. R.; Yun, J.; Park, H.; Jin, S. W.; Lee, G.; Oh, J. H.; Lee, H.; Lee, S. S.; et al. Skin-Attachable, Stretchable Electrochemical Sweat Sensor for Glucose and PH Detection. ACS Appl. Mater. Interf. 2018, 10, 13729–13740. DOI: 10.1021/acsami.8b03342.
  • Li, M.; Bo, X.; Zhang, Y.; Han, C.; Guo, L. One-Pot Ionic Liquid-Assisted Synthesis of Highly Dispersed PtPd Nanoparticles/Reduced Graphene Oxide Composites for Nonenzymatic Glucose Detection. Biosens. Bioelectron. 2014, 56, 223–230. DOI: 10.1016/j.bios.2014.01.030.
  • Zang, G.; Hao, W.; Li, X.; Huang, S.; Gan, J.; Luo, Z.; Zhang, Y. Copper Nanowires-MOFs-Graphene Oxide Hybrid Nanocomposite Targeting Glucose Electro-Oxidation in Neutral Medium. Electrochim. Acta. 2018, 277, 176–184. DOI: 10.1016/j.electacta.2018.05.016.
  • Foroughi, F.; Rahsepar, M.; Hadianfard, M. J.; Kim, H. Microwave-Assisted Synthesis of Graphene Modified CuO Nanoparticles for Voltammetric Enzyme-Free Sensing of Glucose at Biological PH Values. Mikrochim. Acta. 2017, 185, 57 DOI: 10.1007/s00604-017-2558-8.
  • Chinnadayyala, S. R.; Park, I.; Cho, S. Nonenzymatic Determination of Glucose at near Neutral PH Values Based on the Use of Nafion and Platinum Black Coated Microneedle Electrode Array. Microchim. Acta. 2018, 185, 1–8. DOI: 10.1007/s00604-018-2770-1.
  • Nikolaev, K. G.; Ermakov, S. S.; Offenhäusser, A.; Mourzina, Y. Nonenzymatic Determination of Glucose on Electrodes Prepared by Directed Electrochemical Nanowire Assembly (DENA). J. Anal. Chem. 2017, 72, 371–374. DOI: 10.1134/S1061934817040104.
  • Mai, H. H.; Tran, D. H.; Janssens, E. Non-Enzymatic Fluorescent Glucose Sensor Using Vertically Aligned ZnO Nanotubes Grown by a One-Step, Seedless Hydrothermal Method. Mikrochim. Acta. 2019, 186, 245 DOI: 10.1007/s00604-019-3353-5.
  • Yang, J.; Liang, X.; Cui, L.; Liu, H.; Xie, J.; Liu, W. A Novel Non-Enzymatic Glucose Sensor Based on Pt3Ru1 Alloy Nanoparticles with High Density of Surface Defects. Biosens. Bioelectron. 2016, 80, 171–174. DOI: 10.1016/j.bios.2016.01.056.
  • Sarangi, S. N.; Nozaki, S.; Sahu, S. N. ZnO Nanorod-Based Non-Enzymatic Optical Glucose Biosensor. J. Biomed. Nanotechnol. 2015, 11, 988–996. DOI: 10.1166/jbn.2015.2048.
  • Mei, H.; Wu, W.; Yu, B.; Li, Y.; Wu, H.; Wang, S.; Xia, Q. Non-Enzymatic Sensing of Glucose at Neutral PH Values Using a Glassy Carbon Electrode Modified with Carbon Supported Co@Pt Core-Shell Nanoparticles. Microchim. Acta. 2015, 182, 1869–1875. DOI: 10.1007/s00604-015-1524-6.
  • Weremfo, A.; Fong, S. T. C.; Khan, A.; Hibbert, D. B.; Zhao, C. Electrochemically Roughened Nanoporous Platinum Electrodes for Non-Enzymatic Glucose Sensors. Electrochim. Acta. 2017, 231, 20–26. DOI: 10.1016/j.electacta.2017.02.018.
  • Ruan, J.-L.; Chen, C.; Shen, J.-H.; Zhao, X.-L.; Qian, S.-H.; Zhu, Z.-G. A Gelated Colloidal Crystal Attached Lens for Noninvasive Continuous Monitoring of Tear Glucose. Polym. 2017, 9, 125. DOI: 10.3390/polym9040125.
  • Li, D.; Wu, J.; Wu, P.; Lin, Y.; Sun, Y.; Zhu, R.; Yang, J.; Xu, K. Affinity Based Glucose Measurement Using Fiber Optic Surface Plasmon Resonance Sensor with Surface Modification by Borate Polymer. Sensors Actuators, B Chem. 2015, 213, 295–304. DOI: 10.1016/j.snb.2015.02.039.
  • Lobry, M.; Lahem, D.; Loyez, M.; Debliquy, M.; Chah, K.; David, M.; Caucheteur, C. Non-Enzymatic D-Glucose Plasmonic Optical Fiber Grating Biosensor. Biosens. Bioelectron. 2019, 142, 111506 DOI: 10.1016/j.bios.2019.111506.
  • Soleymani, J.; Hasanzadeh, M.; Somi, M. H.; Jouyban, A. Differentiation and Targeting of HT 29 Cancer Cells Based on Folate Bioreceptor Using Cysteamine Functionalized Gold Nano-Leaf. Mater. Sci. Eng C Mater. Biol. Appl. 2020, 107, 110320 DOI: 10.1016/j.msec.2019.110320.
  • Charan, P. H. K.; Ranga Rao, G. Synthesis of CuNi and CuNi/SBA-15 by Aqueous Method at Room Temperature and Their Catalytic Activity. Microporous Mesoporous Mater. 2014, 200, 101–109. DOI: 10.1016/j.micromeso.2014.08.029.
  • Huang, J.; Zhu, Y.; Yang, X.; Chen, W.; Zhou, Y.; Li, C. Flexible 3D Porous CuO Nanowire Arrays for Enzymeless Glucose Sensing: In Situ Engineered versus Ex Situ Piled. Nanoscale. 2015, 7, 559–569. DOI: 10.1039/c4nr05620e.
  • Shim, K.; Lee, W. C.; Park, M. S.; Shahabuddin, M.; Yamauchi, Y.; Hossain, M. S. A.; Shim, Y. B.; Kim, J. H. Au Decorated Core-Shell Structured Au@Pt for the Glucose Oxidation Reaction. Sensors Actuators, B Chem. 2019, 278, 88–96. DOI: 10.1016/j.snb.2018.09.048.
  • Zhang, Y.; Song, Y.; Zhao, J.; Li, S.; Li, Y. Ultrahigh Electrocatalytic Activity and Durability of Bimetallic Au@Ni Core-Shell Nanoparticles Supported on RGO for Methanol Oxidation Reaction in Alkaline Electrolyte. J. Alloys Compd. 2020, 822, 153322. DOI: 10.1016/j.jallcom.2019.153322.
  • Zhang, X.; Zheng, J. Controllable Synthesis of Highly Active Au@Ni Nanocatalyst Supported on Graphene Oxide for Electrochemical Sensing of Hydrazine. Appl. Surf. Sci. 2019, 493, 1159–1166. DOI: 10.1016/j.apsusc.2019.07.136.
  • Amiripour, F.; Ghasemi, S.; Azizi, S. N. A Novel Non-Enzymatic Glucose Sensor Based on Gold-Nickel Bimetallic Nanoparticles Doped Aluminosilicate Framework Prepared from Agro-Waste Material. Appl. Surf. Sci. 2021, 537, 147827. DOI: 10.1016/j.apsusc.2020.147827.
  • Kim, S. e.; Muthurasu, A. Metal-Organic Framework–Assisted Bimetallic Ni@Cu Microsphere for Enzyme-Free Electrochemical Sensing of Glucose. J. Electroanal. Chem. 2020, 873, 114356. DOI: 10.1016/j.jelechem.2020.114356.
  • Lo, M.; Ktari, N.; Gningue-Sall, D.; Madani, A.; Aaron, S. E.; Aaron, J.-J.; Mekhalif, Z.; Delhalle, J.; Chehimi, M. M. Polypyrrole: A Reactive and Functional Conductive Polymer for the Selective Electrochemical Detection of Heavy Metals in Water. Emergent Mater. 2020, 3, 815–839. DOI: 10.1007/s42247-020-00119-9.
  • Dhiman, T. K.; Poddar, M.; Lakshmi, G. B. V. S.; Kumar, R.; Solanki, P. R. Non-Enzymatic and Rapid Detection of Glucose on PVA-CuO Thin Film Using ARDUINO UNO Based Capacitance Measurement Unit. Biomed. Microdevices. 2021, 23, 36. DOI: 10.1007/s10544-021-00568-x.
  • Song, R.; Chiang, M. Y. M.; Crosby, A. J.; Karim, A.; Amis, E. J.; Eidelman, N. Combinatorial Peel Tests for the Characterization of Adhesion Behavior of Polymeric Films. Polymer (Guildf). 2005, 46, 1643–1652. DOI: 10.1016/j.polymer.2004.10.086.
  • He, Q.; Wan, Y.; Jiang, H.; Pan, Z.; Wu, C.; Wang, M.; Wu, X.; Ye, B.; Ajayan, P. M.; Song, L. Nickel Vacancies Boost Reconstruction in Nickel Hydroxide Electrocatalyst. ACS Energy Lett. 2018, 3, 1373–1380. DOI: 10.1021/acsenergylett.8b00515.
  • Qian, Q.; Hu, Q.; Li, L.; Shi, P.; Zhou, J.; Kong, J.; Zhang, X.; Sun, G.; Huang, W. Sensitive Fiber Microelectrode Made of Nickel Hydroxide Nanosheets Embedded in Highly-Aligned Carbon Nanotube Scaffold for Nonenzymatic Glucose Determination. Sensors Actuators B Chem. 2018, 257, 23–28. DOI: 10.1016/j.snb.2017.10.110.
  • Lu, Y.; Wang, J.; Zeng, S.; Zhou, L.; Xu, W.; Zheng, D.; Liu, J.; Zeng, Y.; Lu, X. An Ultrathin Defect-Rich Co3O4 Nanosheet Cathode for High-Energy and Durable Aqueous Zinc Ion Batteries. J. Mater. Chem. A. 2019, 7, 21678–21683. DOI: 10.1039/C9TA08625K.
  • Balasubramanian, P.; He, S.-B.; Deng, H.-H.; Peng, H.-P.; Chen, W. Defects Engineered 2D Ultrathin Cobalt Hydroxide Nanosheets as Highly Efficient Electrocatalyst for Non-Enzymatic Electrochemical Sensing of Glucose and L-Cysteine. Sensors Actuators B Chem. 2020, 320, 128374. DOI: 10.1016/j.snb.2020.128374.
  • Gao, Z.D.; Qu, Y.; Li, T.; Shrestha, N. K.; Song, Y. Y. Development of Amperometric Glucose Biosensor Based on Prussian Blue Functionlized TiO2 Nanotube Arrays. Sci. Rep. 2014, 4, 6891 DOI: 10.1038/srep06891.
  • Olejnik, A.; Siuzdak, K.; Karczewski, J.; Grochowska, K. A Flexible Nafion Coated Enzyme-Free Glucose Sensor Based on Au-Dimpled Ti Structures. Electroanalysis. 2020, 32, 323–332. DOI: 10.1002/elan.201900455.
  • Qiao, Y.; Liu, Q.; Lu, S.; Chen, G.; Gao, S.; Lu, W.; Sun, X. High-Performance Non-Enzymatic Glucose Detection: Using a Conductive Ni-MOF as an Electrocatalyst. J. Mater. Chem. B. 2020, 8, 5411–5415. DOI: 10.1039/d0tb00131g.
  • Chen, J.; Yin, H.; Zhou, J.; Wang, L.; Gong, J.; Ji, Z.; Nie, Q. Efficient Nonenzymatic Sensors Based on Ni-MOF Microspheres Decorated with Au Nanoparticles for Glucose Detection. J. Elec. Mater. 2020, 49, 4754–4763. DOI: 10.1007/s11664-020-08191-x.
  • Wang, L.; Yang, Y.; Wang, B.; Duan, C.; Li, J.; Zheng, L.; Li, J.; Yin, Z. Bifunctional Three-Dimensional Self-Supporting Multistage Structure CC@MOF-74(NiO)@NiCo LDH Electrode for Supercapacitors and Non-Enzymatic Glucose Sensors. J. Alloys Compd. 2021, 885, 160899. DOI: 10.1016/j.jallcom.2021.160899.
  • Qian, C.; Chen, Y.; Feng, P.; Xiao, X.; Dong, M.; Yu, J.; Hu, Q.; Shen, Q.; Gu, Z. Conjugated Polymer Nanomaterials for Theranostics. Acta Pharmacol Sin. 2017, 38, 764–781. DOI: 10.1038/aps.2017.42.
  • Kim, D.-M.; Moon, J.-M.; Lee, W.-C.; Yoon, J.-H.; Choi, C. S.; Shim, Y.-B. A Potentiometric Non-Enzymatic Glucose Sensor Using a Molecularly Imprinted Layer Bonded on a Conducting Polymer. Biosens. Bioelectron. 2017, 91, 276–283. DOI: 10.1016/j.bios.2016.12.046.
  • Diouf, A.; Bouchikhi, B.; El Bari, N. A Nonenzymatic Electrochemical Glucose Sensor Based on Molecularly Imprinted Polymer and Its Application in Measuring Saliva Glucose. Mater. Sci. Eng C Mater. Biol. Appl. 2019, 98, 1196–1209. DOI: 10.1016/j.msec.2019.01.001.
  • Szunerits, S.; Spadavecchia, J.; Boukherroub, R. Surface Plasmon Resonance: Signal Amplification Using Colloidal Gold Nanoparticles for Enhanced Sensitivity. Rev. Anal. Chem. 2014, 33, 153–164. DOI: 10.1515/revac-2014-0011.
  • Piliarik, M.; Homola, J. Surface Plasmon Resonance (SPR) Sensors: Approaching Their Limits? Opt. Express. 2009, 17, 16505–16517. DOI: 10.1364/oe.17.016505.
  • Yuan, H.; Ji, W.; Chu, S.; Qian, S.; Wang, F.; Masson, J. F.; Han, X.; Peng, W. Fiber-Optic Surface Plasmon Resonance Glucose Sensor Enhanced with Phenylboronic Acid Modified Au Nanoparticles. Biosens. Bioelectron. 2018, 117, 637–643. DOI: 10.1016/j.bios.2018.06.042.
  • Kamińska, A.; Witkowska, E.; Winkler, K.; Dzięcielewski, I.; Weyher, J. L.; Waluk, J. Detection of Hepatitis B Virus Antigen from Human Blood: SERS Immunoassay in a Microfluidic System. Biosens. Bioelectron. 2015, 66, 461–467. DOI: 10.1016/j.bios.2014.10.082.
  • Yetisen, A. K.; Jiang, N.; Fallahi, A.; Montelongo, Y.; Ruiz‐Esparza, G. U.; Tamayol, A.; Zhang, Y. S.; Mahmood, I.; Yang, S. ‐A.; Kim, K. S.; et al. Glucose-Sensitive Hydrogel Optical Fibers Functionalized with Phenylboronic Acid. Adv. Mater. 2017, 29, 1606380. DOI: 10.1002/adma.201606380.
  • Elsherif, M.; Hassan, M. U.; Yetisen, A. K.; Butt, H. Hydrogel Optical Fibers for Continuous Glucose Monitoring. Biosens. Bioelectron. 2019, 137, 25–32. DOI: 10.1016/j.bios.2019.05.002.
  • Emaminejad, S.; Gao, W.; Wu, E.; Davies, Z. A.; Yin Yin Nyein, H.; Challa, S.; Ryan, S. P.; Fahad, H. M.; Chen, K.; Shahpar, Z.; et al. Autonomous Sweat Extraction and Analysis Applied to Cystic Fibrosis and Glucose Monitoring Using a Fully Integrated Wearable Platform. Proc. Natl. Acad. Sci. U S A. 2017, 114, 4625–4630. DOI: 10.1073/pnas.1701740114.
  • Sasirekha, R.; Santhanam, P. Surface Bioengineering of Diatom by Amine and Phosphate Groups for Efficient Drug Delivery. In Basic and Applied Phytoplankton Biology; Springer, Singapore, 2018, pp 229–237. DOI: 10.1007/978-981-10-7938-2_12.
  • Fischer, C.; Adam, M.; Mueller, A. C.; Sperling, E.; Wustmann, M.; van Pée, K.-H.; Kaskel, S.; Brunner, E. Gold Nanoparticle-Decorated Diatom Biosilica: A Favorable Catalyst for the Oxidation of d-Glucose. ACS Omega. 2016, 1, 1253–1261. DOI: 10.1021/ACSOMEGA.6B00406.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.