12,613
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Bacterial Carotenoids: Extraction, Characterization, and Applications

ORCID Icon, , , , &
Pages 1239-1262 | Published online: 16 Dec 2021

References

  • Liang, M. H.; Zhu, J.; Jiang, J. G. Carotenoids Biosynthesis and Cleavage Related Genes from Bacteria to Plants. Crit. Rev. Food Sci. Nutr. 2018, 58, 2314–2333. DOI: 10.1080/10408398.2017.1322552.
  • Amorim-Carrilho, K. T.; Cepeda, A.; Fente, C.; Regal, P. Review of Methods for Analysis of Carotenoids. TrAC – Trend. Anal. Chem. 2014, 56, 49–73. DOI: 10.1016/j.trac.2013.12.011.
  • Schaefer, B. Chapter 7 - Vitamins. In Natural Products in the Chemical Industry; Springer Berlin Heidelberg: Berlin, Heidelberg, Germany, 2014; pp 589–640. DOI: 10.1007/978-3-642-54461-3.
  • Valduga, E.; Oliveira Tatsch, P.; Tiggemann, L.; Treichel, H.; Toniazzo, G.; Zeni, J.; Luccio, M.; Di; Fúrigo Júnior, A. Produção de Carotenoides: Microrganismos Como Fonte de Pigmentos Naturais. Quim. Nova 2009, 32, 2429–2436. DOI: 10.1590/S0100-40422009000900036
  • Martínez, A.; Zeeshan, M.; Zaidi, A.; Sliwka, H.-R. R.; Naqvi, K.; Partali, V. On Infinitenes – Reliable Calculation of Λ∞ and Molecular Modeling of Lemniscate Structured Carotenoids. Comput. Theor. Chem. 2018, 1125, 133–141. DOI: 10.1016/j.comptc.2017.12.006.
  • Das, A.; Yoon, S. H.; Lee, S. H.; Kim, J. Y.; Oh, D. K.; Kim, S. W. An Update on Microbial Carotenoid Production: Application of Recent Metabolic Engineering Tools. Appl. Microbiol. Biotechnol. 2007, 77, 505–512. DOI: 10.1007/s00253-007-1206-3.
  • Mariutti, L. R. B.; Mercadante, A. Z. Carotenoid Esters Analysis and Occurrence: What Do We Know so Far? Arch. Biochem. Biophys. 2018, 648, 36–43. DOI: 10.1016/j.abb.2018.04.005.
  • Sliwka, H. R.; Partali, V. Key to Xenobiotic Carotenoids. Molecules 2012, 17, 2877–2928. DOI: 10.3390/molecules17032877.
  • Yabuzaki, J. Carotenoids Database: Structures, Chemical Fingerprints and Distribution among Organisms. Database 2017, 2017, bax004. DOI: 10.1093/database/bax004.
  • Xue, L.; Chen, Y. Y.; Yan, Z.; Lu, W.; Wan, D.; Zhu, H. Staphyloxanthin: A Potential Target for Antivirulence Therapy. Infect. Drug Resist. 2019, 12, 2151–2160. DOI: 10.2147/IDR.S193649.
  • Kim, J. W.; Choi, B. H.; Kim, J. H.; Kang, H. J.; Ryu, H.; Lee, P. C. Complete Genome Sequence of Planococcus Faecalis AJ003T, the Type Species of the Genus Planococcus and a Microbial C30 Carotenoid Producer. J. Biotechnol. 2018, 266, 72–76. DOI: 10.1016/j.jbiotec.2017.12.005.
  • Perez-Fons, L.; Steiger, S.; Khaneja, R.; Bramley, P. M.; Cutting, S. M.; Sandmann, G.; Fraser, P. D. Identification and the Developmental Formation of Carotenoid Pigments in the Yellow/Orange Bacillus Spore-Formers. Biochim. Biophys. Acta. 2011, 1811, 177–185. DOI: 10.1016/j.bbalip.2010.12.009.
  • Asker, D.; Awad, T. S.; Beppu, T.; Ueda, K. Screening and Profiling of Natural Ketocarotenoids from Environmental Aquatic Bacterial Isolates. Food Chem. 2018, 253, 247–254. DOI: 10.1016/j.foodchem.2018.01.066.
  • Kallscheuer, N.; Moreira, C.; Airs, R.; Llewellyn, C. A.; Wiegand, S.; Jogler, C.; Lage, O. M. Pink- and Orange-Pigmented Planctomycetes Produce Saproxanthin-Type Carotenoids Including a Rare C45 Carotenoid. Environ. Microbiol. Rep. 2019, 11, 741–748. DOI: 10.1111/1758-2229.12796.
  • Heider, S. A. E.; Peters-Wendisch, P.; Wendisch, V. F.; Beekwilder, J.; Brautaset, T. Metabolic Engineering for the Microbial Production of Carotenoids and Related Products with a Focus on the Rare C50 Carotenoids. Appl. Microbiol. Biotechnol. 2014, 98, 4355–4368. DOI: 10.1007/s00253-014-5693-8.
  • Saini, R. K.; Keum, Y. S. Carotenoid Extraction Methods: A Review of Recent Developments. Food Chem. 2018, 240, 90–103. DOI: 10.1016/j.foodchem.2017.07.099.
  • Silva, T. R.; Tavares, R. S. N.; Canela-Garayoa, R.; Eras, J.; Rodrigues, M. V. N.; Neri-Numa, I. A.; Pastore, G. M.; Rosa, L. H.; Schultz, J. A. A.; Debonsi, H. M.; et al. Chemical Characterization and Biotechnological Applicability of Pigments Isolated from Antarctic Bacteria. Mar. Biotechnol. 2019, 21, 416–429. DOI: 10.1007/s10126-019-09892-z.
  • Giuffrida, D.; Sutthiwong, N.; Dugo, P.; Donato, P.; Cacciola, F.; Girard-Valenciennes, E.; Le Mao, Y.; Monnet, C.; Fouillaud, M.; Caro, Y.; et al. Characterisation of the C50 Carotenoids Produced by Strains of the Cheese-Ripening Bacterium Arthrobacter Arilaitensis. Int. Dairy J. 2016, 55, 10–16. DOI: 10.1016/j.idairyj.2015.11.005.
  • Britton, G. Carotenoid Research: History and New Perspectives for Chemistry in Biological Systems. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 158699. DOI: 10.1016/j.bbalip.2020.158699.
  • Provesi, J. G.; Dias, C. O.; Amante, E. R. Changes in Carotenoids during Processing and Storage of Pumpkin Puree. Food Chem. 2011, 128, 195–202. DOI: 10.1016/j.foodchem.2011.03.027.
  • Amengual, J. Bioactive Properties of Carotenoids in Human Health. Nutrients 2019, 11, 2388. DOI: 10.3390/nu11102388.
  • Buscemi, S.; Corleo, D.; Di Pace, F.; Petroni, M. L.; Satriano, A.; Marchesini, G. The Effect of Lutein on Eye and Extra-Eye Health. Nutrients 2018, 10, 1321. DOI: 10.3390/nu10091321.
  • Davinelli, S.; Nielsen, M. E.; Scapagnini, G. Astaxanthin in Skin Health, Repair, and Disease: A Comprehensive Review. Nutrients 2018, 10, 522. DOI: 10.3390/nu10040522.
  • Aziz, E.; Batool, R.; Akhtar, W.; Rehman, S.; Shahzad, T.; Malik, A.; Shariati, M. A.; Laishevtcev, A.; Plygun, S.; Heydari, M.; et al. Xanthophyll: Health Benefits and Therapeutic Insights. Life Sci. 2020, 240, 117104. DOI: 10.1016/j.lfs.2019.117104.
  • Arunkumar, R.; Gorusupudi, A.; Bernstein, P. S. The Macular Carotenoids: A Biochemical Overview. Biochim. Biophys. Acta. Mol. Cell Biol. Lipids 2020, 1865, 158617. DOI: 10.1016/j.bbalip.2020.158617.
  • Meléndez-Martínez, A. J.; Stinco, C. M.; Mapelli-Brahm, P. Skin Carotenoids in Public Health and Nutricosmetics: The Emerging Roles and Applications of the UV Radiation-Absorbing Colourless Carotenoids Phytoene and Phytofluene. Nutrients 2019, 11, 1093. DOI: 10.3390/nu11051093.
  • Solymosi, K.; Latruffe, N.; Schoefs, B. Food Colour Additives of Natural Origin. In Colour Additives for Foods and Beverages; Elsevier Ltd.: Amsterdam, Netherlands, 2015; pp 3–34. DOI: 10.1016/B978-1-78242-011-8.00001-5.
  • Asker, D. Isolation and Characterization of a Novel, Highly Selective Astaxanthin-Producing Marine Bacterium. J. Agric. Food Chem. 2017, 65, 9101–9109. DOI: 10.1021/acs.jafc.7b03556.
  • Ambati, R. R.; Gogisetty, D.; Aswathanarayana, R. G.; Ravi, S.; Bikkina, P. N.; Bo, L.; Yuepeng, S. Industrial Potential of Carotenoid Pigments from Microalgae: Current Trends and Future Prospects. Crit. Rev. Food Sci. Nutr. 2019, 59, 1880–1902. DOI: 10.1080/10408398.2018.1432561.
  • Oslan, S. N. H.; Shoparwe, N. F.; Yusoff, A. H.; Rahim, A. A.; Chang, C. S.; Tan, J. S.; Oslan, S. N.; Arumugam, K.; Ariff, A.; Bin; Sulaiman, A. Z.; et al. A Review on Haematococcus Pluvialis Bioprocess Optimization of Green and Red Stage Culture Conditions for the Production of Natural Astaxanthin. Biomolecules 2021, 11, 256. DOI: 10.3390/biom11020256.
  • Zheng, Y. G.; Hu, Z. C.; Wang, Z.; Shen, Y. C. Large-Scale Production of Astaxanthin by Xanthophyllomyces Dendrorhous. Food Bioprod. Process 2006, 84, 164–166. DOI: 10.1205/fbp.05030.
  • Sajjad, W.; Din, G.; Rafiq, M.; Iqbal, A.; Khan, S.; Zada, S.; Ali, B.; Kang, S. Pigment Production by Cold-adapted Bacteria and Fungi: Colorful Tale of Cryosphere with Wide Range Applications. Extremophiles 2020, 24, 447–473. DOI: 10.1007/s00792-020-01180-2.
  • Kharangate-Lad, A.; Bhosle, S. Studies on Siderophore and Pigment Produced by an Adhered Bacterial Strain Halobacillus Trueperi MXM-16 from the Mangrove Ecosystem of Goa, India. Indian J. Microbiol. 2016, 56, 461–466. DOI: 10.1007/s12088-016-0591-7.
  • Sasidharan, P.; Raja, R.; Karthik, C.; Sharma, R. P, I. A. Isolation and Characterization of Yellow Pigment Producing Exiguobacterium Sps. J. Biochem. Technol. 2013, 4, 632–635.
  • Numan, M.; Bashir, S.; Mumtaz, R.; Tayyab, S.; Rehman, N. U.; Khan, A. L.; Shinwari, Z. K.; Al-Harrasi, A. Therapeutic Applications of Bacterial Pigments : A Review of Current Status and Future Opportunities. 3 Biotech. 2018, 8, 1–15. DOI: 10.1007/s13205-018-1227-x.
  • Mussagy, C. U.; Winterburn, J.; Santos-Ebinuma, V. C.; Pereira, J. F. B. Production and Extraction of Carotenoids Produced by Microorganisms. Appl. Microbiol. Biotechnol. 2019, 103, 1095–1114. DOI: 10.1007/s00253-018-9557-5.
  • Mendes-Silva, T. D. C. D.; Andrade, R. F. D. S.; Ootani, M. A.; Mendes, P. V. D.; Sá, R. A. D. Q. C. D.; Silva, M. R. F. D.; Souza, K. S.; Correia, M. T. D. S.; Silva, M. V. D.; Oliveira, M. B. M. D. Biotechnological Potential of Carotenoids Produced by Extremophilic Microorganisms and Application Prospects for the Cosmetics Industry. Adv. Microbiol. 2020, 10, 397–410. DOI: 10.4236/aim.2020.108029.
  • Narsing Rao, M. P.; Xiao, M.; Li, W. J. Fungal and Bacterial Pigments: Secondary Metabolites with Wide Applications. Front. Microbiol. 2017, 8, 1113. DOI: 10.3389/fmicb.2017.01113.
  • Rapoport, A.; Guzhova, I.; Bernetti, L.; Buzzini, P.; Kieliszek, M.; Kot, A. M. Carotenoids and Some Other Pigments from Fungi and Yeasts. Metabolites 2021, 11, 92. DOI: 10.3390/metabo11020092.
  • Rana, B.; Bhattacharyya, M.; Patni, B.; Arya, M.; Joshi, G. K. The Realm of Microbial Pigments in the Food Color Market. Front. Sustain. Food Syst. 2021, 5, 603892. DOI: 10.3389/fsufs.2021.603892.
  • Ram, S.; Mitra, M.; Shah, F.; Tirkey, S. R.; Mishra, S. Bacteria as an Alternate Biofactory for Carotenoid Production: A Review of Its Applications, Opportunities and Challenges. J. Funct. Foods 2020, 67, 103867. DOI: 10.1016/j.jff.2020.103867.
  • Jinendiran, S.; Boopathi, S.; Sivakumar, N.; Selvakumar, G. Functional Characterization of Probiotic Potential of Novel Pigmented Bacterial Strains for Aquaculture Applications. Probiotics Antimicrob. Proteins 2019, 11, 186–197. DOI: 10.1007/s12602-017-9353-z.
  • Venil, C. K.; Dufossé, L.; Renuka Devi, P. Bacterial Pigments: Sustainable Compounds with Market Potential for Pharma and Food Industry. Front. Sustain. Food Syst. 2020, 4, 1–17. DOI: 10.3389/fsufs.2020.00100.
  • Velmurugan, P.; Venil, C. K.; Veera Ravi, A.; Dufossé, L. Marine Bacteria is the Cell Factory to Produce Bioactive Pigments: A Prospective Pigment Source in the Ocean. Front. Sustain. Food Syst. 2020, 4, 589655. DOI: 10.3389/fsufs.2020.589655.
  • Pailliè-Jiménez, M. E.; Stincone, P.; Brandelli, A. Natural Pigments of Microbial Origin. Front. Sustain. Food Syst. 2020, 4, 1–8. DOI: 10.3389/fsufs.2020.590439.
  • Mussagy, C. U.; Khan, S.; Kot, A. M. Current Developments on the Application of Microbial Carotenoids as an Alternative to Synthetic Pigments. Crit. Rev. Food Sci. Nutr. 2021. DOI: 10.1080/10408398.2021.1908222.
  • Zhu, Y.; Graham, J. E.; Ludwig, M.; Xiong, W.; Alvey, R. M.; Shen, G.; Bryant, D. A. Roles of Xanthophyll Carotenoids in Protection against Photoinhibition and Oxidative Stress in the Cyanobacterium Synechococcus Sp. Strain PCC 7002. Arch. Biochem. Biophys. 2010, 504, 86–99. DOI: 10.1016/j.abb.2010.07.007.
  • Maoka, T. Carotenoids as Natural Functional Pigments. J. Nat. Med. 2020, 74, 1–16. DOI: 10.1007/s11418-019-01364-x.
  • Frengova, G. I.; Beshkova, D. M. Carotenoids from Rhodotorula and Phaffia: Yeasts of Biotechnological Importance. J. Ind. Microbiol. Biotechnol. 2009, 36, 163–180. DOI: 10.1007/s10295-008-0492-9.
  • Córdova, P.; Baeza, M.; Cifuentes, V.; Alcaíno, J. Microbiological Synthesis of Carotenoids: Pathways and Regulation. In Progress in Carotenoid Research Pigments; Queiroz Zepka, L., Jacob-Lopes, E., Rosso, V. V., Eds.; IntechOpen: London, 2018; pp 63–83. DOI: 10.5772/intechopen.78343.
  • Niu, F. X.; Lu, Q.; Bu, Y. F.; Liu, J. Z. Metabolic Engineering for the Microbial Production of Isoprenoids: Carotenoids and Isoprenoid-Based Biofuels. Synth. Syst. Biotechnol. 2017, 2, 167–175. DOI: 10.1016/j.synbio.2017.08.001.
  • Wang, C.; Zhao, S.; Shao, X.; Park, J.; Bin; Jeong, S. H.; Park, H. J.; Kwak, W. J.; Wei, G.; Kim, S. W. Challenges and Tackles in Metabolic Engineering for Microbial Production of Carotenoids. Microb. Cell Fact. 2019, 18, 1–8. DOI: 10.1186/s12934-019-1105-1.
  • Zhang, C. Biosynthesis of Carotenoids and Apocarotenoids by Microorganisms and Their Industrial Potential. In Progress in Carotenoid Research Pigments; Queiroz Zepka, L., Jacob-Lopes, E., Rosso, V. V., Eds.; BoD – Books on Demand: Norderstedt, Germany, 2018; pp 85–105. DOI: 10.5772/intechopen.79061.
  • Rowles, J. L.; Erdman, J. W. Carotenoids and Their Role in Cancer Prevention. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2020, 1865, 158613. DOI: 10.1016/j.bbalip.2020.158613.
  • Perera, C. O.; Yen, G. M. Functional Properties of Carotenoids in Human Health. Int. J. Food Prop. 2007, 10, 201–230. DOI: 10.1080/10942910601045271.
  • Bohn, T.; Desmarchelier, C.; El, S. N.; Keijer, J.; Van Schothorst, E.; Rühl, R.; Borel, P. β-Carotene in the Human Body: Metabolic Bioactivation Pathways - From Digestion to Tissue Distribution and Excretion. Proc. Nutr. Soc. 2019, 78, 68–87. DOI: 10.1017/S0029665118002641.
  • Pérez-Gálvez, A.; Roca, M. Recent Developments in the Analysis of Carotenoids by Mass Spectrometry. In Progress in Carotenoid Research; IntechOpen: London, 2018; pp 17–44. DOI: 10.5772/intechopen.79755.
  • Kumar, S. V.; Taylor, G.; Hasim, S.; Collier, C. P.; Farmer, A. T.; Campagna, S. R.; Bible, A. N.; Doktycz, M. J.; Morrell-Falvey, J. Loss of Carotenoids from Membranes of Pantoea Sp. YR343 Results in Altered Lipid Composition and Changes in Membrane Biophysical Properties. Biochim. Biophys. Acta. Biomembr. 2019, 1861, 1338–1345. DOI: 10.1016/j.bbamem.2019.05.009.
  • Nemer, G.; Louka, N.; Vorobiev, E.; Salameh, D.; Nicaud, J.-M.; Maroun, R. G.; Koubaa, M. Mechanical Cell Disruption Technologies for the Extraction of Dyes and Pigments from Microorganisms: A Review. Fermentation 2021, 7, 36. DOI: 10.3390/fermentation7010036.
  • Larrosa, A. P. Q.; Camara, Á. S.; Moura, J. M.; Pinto, L. A. A. Spirulina Sp. Biomass Dried/Disrupted by Different Methods and Their Application in Biofilms Production. Food Sci. Biotechnol. 2018, 27, 1659–1665. DOI: 10.1007/s10068-018-0397-y.
  • Sowmya, R.; Sachindra, N. M. Carotenoid Production by Formosa Sp. KMW, a Marine Bacteria of Flavobacteriaceae Family: Influence of Culture Conditions and Nutrient Composition. Biocatal. Agric. Biotechnol. 2015, 4, 559–567. DOI: 10.1016/j.bcab.2015.08.018.
  • Park, W. S.; Kim, H. J.; Li, M.; Lim, D. H.; Kim, J.; Kwak, S. S.; Kang, C. M.; Ferruzzi, M. G.; Ahn, M. J. Two Classes of Pigments, Carotenoids and c-Phycocyanin, in Spirulina Powder and Their Antioxidant Activities. Molecules 2018, 23, 2065. DOI: 10.3390/molecules23082065.
  • Gu, Z.; Deming, C.; Yongbin, H.; Zhigang, C.; Feirong, G. Optimization of Carotenoids Extraction from Rhodobacter Sphaeroides. LWT - Food Sci. Technol. 2008, 41, 1082–1088. DOI: 10.1016/j.lwt.2007.07.005.
  • Niero, H.; da Silva, M. A. C.; de Felicio, R.; Trivella, D. B. B.; Lima, A. O. d S. Carotenoids Produced by the Deep-Sea Bacterium Erythrobacter Citreus LAMA 915: Detection and Proposal of Their Biosynthetic Pathway. Folia Microbiol. (Praha) 2021, 66, 441–456. DOI: 10.1007/s12223-021-00858-0.
  • Montero, O.; Macìas-Sánchez, M. D.; Lama, C. M.; Lubián, L. M.; Mantell, C.; Rodríguez, M.; De La Ossa, E. M. Supercritical CO2 Extraction of β-Carotene from a Marine Strain of the Cyanobacterium Synechococcus Species. J. Agric. Food Chem. 2005, 53, 9701–9707. DOI: 10.1021/jf051283n.
  • Ron, E. Y. C.; Plaza, M.; Kristjansdottir, T.; Sardari, R. R. R.; Bjornsdottir, S. H.; Gudmundsson, S.; Hreggvidsson, G. O.; Turner, C.; van Niel, E. W. J.; Nordberg-Karlsson, E. Characterization of Carotenoids in Rhodothermus Marinus. MicrobiologyOpen 2018, 7, 7:e536. DOI: 10.1002/mbo3.536.
  • Sowmya, R.; Sachindra, N. M. Biochemical and Molecular Characterization of Carotenogenic Flavobacterial Isolates from Marine Waters. Pol. J. Microbiol. 2016, 65, 77–88. DOI: 10.5604/17331331.1197278.
  • Pelz, A.; Wieland, K. P.; Putzbach, K.; Hentschel, P.; Albert, K.; Götz, F. Structure and Biosynthesis of Staphyloxanthin from Staphylococcus Aureus. J. Biol. Chem. 2005, 280, 32493–32498. DOI: 10.1074/jbc.M505070200.
  • Mijts, B. N.; Lee, P. C.; Schmidt-Dannert, C. Identification of a Carotenoid Oxygenase Synthesizing Acyclic Xanthophylls: Combinatorial Biosynthesis and Directed Evolution. Chem. Biol. 2005, 12, 453–460. DOI: 10.1016/j.chembiol.2005.02.010.
  • Kim, S. H.; Lee, P. C. Functional Expression and Extension of Staphylococcal Staphyloxanthin Biosynthetic Pathway in Escherichia Coli. J. Biol. Chem. 2012, 287, 21575–21583. DOI: 10.1074/jbc.M112.343020.
  • Hartz, P.; Milhim, M.; Trenkamp, S.; Bernhardt, R.; Hannemann, F. Characterization and Engineering of a Carotenoid Biosynthesis Operon from Bacillus Megaterium. Metab. Eng. 2018, 49, 47–58. DOI: 10.1016/j.ymben.2018.07.017.
  • Kim, J. H.; Kang, H. J.; Yu, B. J.; Kim, S. C.; Lee, P. C. Planococcus Faecalis Sp. Nov., a Carotenoid-producing Species Isolated from Stools of Antarctic Penguins. Int. J. Syst. Evol. Microbiol. 2015, 65, 3373–3378. DOI: 10.1099/ijsem.0.000423.
  • Heo, J.; Kim, S. H.; Lee, P. C. New Insight into the Cleavage Reaction of Nostoc Sp. Strain PCC 7120 Carotenoid Cleavage Dioxygenase in Natural and Nonnatural Carotenoids. Appl. Environ. Microbiol. 2013, 79, 3336–3345. DOI: 10.1128/AEM.00071-13.
  • Ganapathy, A.; Jayavel, S.; Natesan, S. Draft Genome Sequence of Carotenoid Producing Yellow Pigmented Planococcus Maritimus MKU009. J. Genomics. 2016, 4, 23–25. DOI: 10.7150/jgen.15533.
  • Shindo, K.; Endo, M.; Miyake, Y.; Wakasugi, K.; Morritt, D.; Bramley, P. M.; Fraser, P. D.; Kasai, H.; Misawa, N. Methyl 5-glucosyl-5,6-dihydro-apo-4,4'-lycopenoate, a Novel Antioxidative glyco-C(30)-carotenoic Acid Produced by a Marine Bacterium Planococcus maritimus [Corrected]. J. Antibiot. (Tokyo) 2008, 61, 729–735. DOI: 10.1038/ja.2008.86.
  • Widyastuti, Y.; Nugraheni, S. A.; Khoeri, M. M.; Kusmita, L.; Radjasa, O. K. Characterization of Carotenoid Pigments from Bacterial Symbionts of Seagrass Thalassia Hemprichii Knowledge Management on Low Emission Strategy into Coastal Management in NTB and NTB Province View Project DNA Barcoding View Project CHARACTERIZATION oF CAR. J. Coast. Dev. 2010, 14, 51–60. DOI: 10.13140/RG.2.1.3348.6562.
  • Chen, Y.; Xie, B.; Yang, J.; Chen, J.; Sun, Z. Identification of Microbial Carotenoids and Isoprenoid Quinones from Rhodococcus Sp. B7740 and Its Stability in the Presence of Iron in Model Gastric Conditions. Food Chem. 2018, 240, 204–211. DOI: 10.1016/j.foodchem.2017.06.067.
  • Tao, L.; Cheng, Q. Novel Beta-carotene Ketolases from Non-photosynthetic Bacteria for Canthaxanthin Synthesis. Mol. Genet. Genomics. 2004, 272, 530–537. DOI: 10.1007/s00438-004-1083-8.
  • Tao, L.; Wagner, L. W.; Rouvière, P. E.; Cheng, Q. Metabolic Engineering for Synthesis of Aryl Carotenoids in Rhodococcus. Appl. Microbiol. Biotechnol. 2006, 70, 222–228. DOI: 10.1007/s00253-005-0064-0.
  • Arpin, N.; Liaaen-Jensen, S.; Trouilloud, M. Bacterial Carotenoids. 38. C 50 -carotenoids. 9. Isolation of Decaprenoxanthin Mono- and Diglucoside from an Arthrobacter sp. Acta Chem. Scand. 1972, 26, 2524–2526. DOI: 10.3891/acta.chem.scand.26-2524.
  • Takaichi, S.; Maoka, T.; Akimoto, N.; Carmona, M. L.; Yamaoka, Y. Carotenoids in a Corynebacterineae, Gordonia Terrae AIST-1: Carotenoid Glucosyl Mycoloyl Esters. Biosci. Biotechnol. Biochem. 2008, 72, 2615–2622. DOI: 10.1271/bbb.80299.
  • Applique, L. D. M.; Alimentaires, I. Production of Carotenoids by Brevibacterium Linens: Variation among Strains, Kinetic Aspects and HPLC Profiles. J. Ind. Microbiol. Biotechnol. 2000, 24, 64–70. DOI: 10.1038/sj.jim.2900761.
  • Hyeon, J. W.; Jeon, C. O. Roseomonas Aerofrigidensis Sp. Nov., Isolated from an Air Conditioner. Int. J. Syst. Evol. Microbiol. 2017, 67, 4039–4044. DOI: 10.1099/ijsem.0.002246.
  • Ramana, V. V.; Sasikala, C.; Ramaprasad, E. V. V.; Ramana, C. V. Description of Ectothiorhodospira Salini Sp. Nov. J. Gen. Appl. Microbiol. 2010, 56, 313–319. DOI: 10.2323/jgam.56.313.
  • Zhao, C.; Yue, H.; Cheng, Q.; Chen, S.; Yang, S. What Caused the Formation of the Absorption Maximum at 421 Nm in Vivo Spectra of Rhodopseudomonas Palustris. Photochem. Photobiol. 2014, 90, 1287–1292. DOI: 10.1111/php.12334.
  • Ramaprasad, E. V. V.; Sasikala, C.; Ramana, C. V. Neurosporene is the Major Carotenoid Accumulated by Rhodobacter Viridis JA737. Biotechnol. Lett. 2013, 35, 1093–1097. DOI: 10.1007/s10529-013-1181-y.
  • Rahul, K.; Azmatunnisa, M.; Sasikala, C. H.; Ramana, C. V. Hoeflea Olei Sp. Nov., a Diesel-Oil-Degrading, Anoxygenic, Phototrophic Bacterium Isolated from Backwaters and Emended Description of the Genus Hoeflea. Int. J. Syst. Evol. Microbiol. 2015, 65, 2403–2409. DOI: 10.1099/ijs.0.000277.
  • Buddhi, S.; Suresh, G.; Gupta, D.; Sasikala, C.; Ramana, C. V. Afifella Aestuarii Sp. Nov., a Phototrophic Bacterium. Int. J. Syst. Evol. Microbiol. 2020, 70, 327–333. DOI: 10.1099/ijsem.0.003756.
  • Jiménez, M. E. P.; Pinilla, C. M. B.; Rodrigues, E.; Brandelli, A. Extraction and Partial Characterisation of Antioxidant Pigment Produced by Chryseobacterium Sp. Kr6. Nat. Prod. Res. 2019, 33, 1541–1549. DOI: 10.1080/14786419.2017.1423304.
  • Alvares, J. J.; Furtado, I. J. Characterization of Multicomponent Antioxidants from Haloferax alexandrinus GUSF-1 (KF796625). 3 Biotech. 2021, 11, 58–12. DOI: 10.1007/s13205-020-02584-9.
  • Kulichevskaya, I. S.; Guzev, V. S.; Gorlenko, V. M.; Liesack, W.; Dedysh, S. N. Rhodoblastus Sphagnicola Sp. Nov., a Novel Acidophilic Purple Non-Sulfur Bacterium from Sphagnum Peat Bog. Int. J. Syst. Evol. Microbiol. 2006, 56, 1397–1402. DOI: 10.1099/ijs.0.63962-0.
  • Asker, D. High Throughput Screening and Profiling of High-Value Carotenoids from a Wide Diversity of Bacteria in Surface Seawater. Food Chem. 2018, 261, 103–111. DOI: 10.1016/j.foodchem.2018.03.109.
  • Liu, H.; Tan, K. S.; Zhang, X.; Zhang, H.; Cheng, D.; Ting, Y.; Li, S.; Ma, H.; Zheng, H. Comparison of Gut Microbiota between Golden and Brown Noble Scallop Chlamys Nobilis and Its Association with Carotenoids. Front. Microbiol. 2020, 11, 36. DOI: 10.3389/fmicb.2020.00036.
  • Yokoyama, A.; Izumida, H.; Miki, W. Production of Astaxanthin and 4-Ketozeaxanthin by the Marine Bacterium. Agrobact. Aurantiac. Biosci. Biotechnol. Biochem. 1994, 58, 1842–1844. DOI: 10.1271/bbb.58.1842.
  • Liu, H.; Zhang, C.; Zhang, X.; Tan, K.; Zhang, H.; Cheng, D.; Ye, T.; Li, S.; Ma, H.; Zheng, H. A Novel Carotenoids-Producing Marine Bacterium from Noble Scallop Chlamys Nobilis and Antioxidant Activities of Its Carotenoid Compositions. Food Chem. 2020, 320, 126629. DOI: 10.1016/j.foodchem.2020.126629.
  • Asker, D.; Beppu, T.; Ueda, K. Sphingomonas Astaxanthinifaciens Sp. Nov., a Novel Astaxanthin-Producing Bacterium of the Family Sphingomonadaceae Isolated from Misasa, Tottori, Japan. FEMS Microbiol. Lett. 2007, 273, 140–148. DOI: 10.1111/j.1574-6968.2007.00760.x.
  • Ye, R. W.; Yao, H.; Stead, K.; Wang, T.; Tao, L.; Cheng, Q.; Sharpe, P. L.; Suh, W.; Nagel, E.; Arcilla, D.; et al. Construction of the Astaxanthin Biosynthetic Pathway in a Methanotrophic Bacterium Methylomonas Sp. Strain 16a. J. Ind. Microbiol. Biotechnol. 2007, 34, 289–299. DOI: 10.1007/s10295-006-0197-x.
  • Ye, R. W.; Stead, K. J.; Yao, H.; He, H. Mutational and Functional Analysis of the Beta-carotene Ketolase Involved in the Production of Ccanthaxanthin and Astaxanthin. Appl. Environ. Microbiol. 2006, 72, 5829–5837. DOI: 10.1128/AEM.00918-06.
  • Mageswari, A.; Subramanian, P.; Srinivasan, R.; Karthikeyan, S.; Gothandam, K. M. Astaxanthin from Psychrotrophic Sphingomonas Faeni Exhibits Antagonism against Food-Spoilage Bacteria at Low Temperatures. Microbiol. Res. 2015, 179, 38–44. DOI: 10.1016/j.micres.2015.06.010.
  • Silva, T. P.; Paixão, S. M.; Alves, L. Ability of: Gordonia Alkanivorans Strain 1B for High Added Value Carotenoids Production. RSC Adv. 2016, 6, 58055–58063. DOI: 10.1039/C6RA08126F.
  • Lorquin, J.; Molouba, F.; Dreyfus, B. L. Identification of the Carotenoid Pigment Canthaxanthin from Photosynthetic Bradyrhizobium Strains. Appl. Environ. Microbiol. 1997, 63, 1151–1154. DOI: 10.1128/aem.63.3.1151-1154.1997.
  • Venugopalan, V.; Tripathi, S. K.; Nahar, P.; Saradhi, P. P.; Das, R. H.; Gautam, H. K. Characterization of Canthaxanthin Isomers Isolated from a New Soil Dietzia Sp. and Their Antioxidant Activities. J. Microbiol. Biotechnol. 2013, 23, 237–245. DOI: 10.4014/jmb.1203.03032.
  • Graham, J. E.; Lecomte, J. T. J.; Bryant, D. A. Synechoxanthin, an Aromatic C40 Xanthophyll That is a Major Carotenoid in the Cyanobacterium Synechococcus Sp. PCC 7002. J. Nat. Prod. 2008, 71, 1647–1650. DOI: 10.1021/np800310b.
  • Asker, D.; Beppu, T.; Ueda, K. Mesoflavibacter Zeaxanthinifaciens Gen. Nov., Sp. Nov., a Novel Zeaxanthin-Producing Marine Bacterium of the Family Flavobacteriaceae. Syst. Appl. Microbiol. 2007, 30, 291–296. DOI: 10.1016/j.syapm.2006.12.003.
  • Sarnaik, A.; Nambissan, V.; Pandit, R.; Lali, A. Recombinant Synechococcus Elongatus PCC 7942 for Improved Zeaxanthin Production under Natural Light Conditions. Algal Res. 2018, 36, 139–151. DOI: 10.1016/j.algal.2018.10.021.
  • Berry, A.; Janssens, D.; Hümbelin, M.; Jore, J. P. M.; Hoste, B.; Cleenwerck, I.; Vancanneyt, M.; Bretzel, W.; Mayer, A. F.; Lopez-Ulibarri, R.; et al. Paracoccus Zeaxanthinifaciens Sp. Nov., a Zeaxanthin-Producing Bacterium. Int. J. Syst. Evol. Microbiol. 2003, 53, 231–238. DOI: 10.1099/ijs.0.02368-0.
  • Henke, N. A.; Frohwitter, J.; Peters-Wendisch, P.; Wendisch, V. F. Carotenoid Production by Recombinant Corynebacterium Glutamicum: Strain Construction, Cultivation, Extraction, and Quantification of Carotenoids and Terpenes. In Methods in Molecular Biology; Humana Press Inc.: Totowa, NJ, 2018; Vol. 1852. pp 127–141. DOI: 10.1007/978-1-4939-8742-9_8.
  • Antolak, H.; Oracz, J.; Otlewska, A.; Żyżelewicz, D.; Kręgiel, D. Identification of Carotenoids and Isoprenoid Quinones from Asaia Lannensis and Asaia Bogorensis. Molecules 2017, 22, 1608. DOI: 10.3390/molecules22101608.
  • Rezaeeyan, Z.; Safarpour, A.; Amoozegar, M. A.; Babavalian, H.; Tebyanian, H.; Shakeri, F. High Carotenoid Production by a Halotolerant Bacterium, Kocuria Sp. Strain QWT-12 and Anticancer Activity of Its Carotenoid. EXCLI J. 2017, 16, 840–851. DOI: 10.17179/excli2017-218.
  • Jinendiran, S.; Dahms, H. U.; Dileep Kumar, B. S.; Kumar Ponnusamy, V.; Sivakumar, N. Diapolycopenedioic-Acid-Diglucosyl Ester and Keto-Myxocoxanthin Glucoside Ester: Novel Carotenoids Derived from Exiguobacterium Acetylicum S01 and Evaluation of Their Anticancer and anti-Inflammatory Activities. Bioorg. Chem. 2020, 103, 104149. DOI: 10.1016/j.bioorg.2020.104149.
  • Jinendiran, S.; Dileep Kumar, B. S.; Dahms, H. U.; Arulanandam, C. D.; Sivakumar, N. Optimization of Submerged Fermentation Process for Improved Production of β-Carotene by Exiguobacterium Acetylicum S01. Heliyon 2019, 5, e01730. DOI: 10.1016/j.heliyon.2019.e01730.
  • Fukaya, Y.; Takemura, M.; Koyanagi, T.; Maoka, T.; Shindo, K.; Misawa, N. Structural and Functional Analysis of the Carotenoid Biosynthesis Genes of a Pseudomonas Strain Isolated from the Excrement of Autumn Darter. Biosci. Biotechnol. Biochem. 2018, 82, 1043–1052. DOI: 10.1080/09168451.2017.1398069.
  • Mercadante, A. Z.; Rodrigues, D. B.; Petry, F. C.; Mariutti, L. R. B. Carotenoid Esters in Foods - A Review and Practical Directions on Analysis and Occurrence. Food Res. Int. 2017, 99, 830–850. DOI: 10.1016/j.foodres.2016.12.018.
  • Cerón-García, M. C.; González-López, C. V.; Camacho-Rodríguez, J.; López-Rosales, L.; García-Camacho, F.; Molina-Grima, E. Maximizing Carotenoid Extraction from Microalgae Used as Food Additives and Determined by Liquid Chromatography (HPLC). Food Chem. 2018, 257, 316–324. DOI: 10.1016/j.foodchem.2018.02.154.
  • Reis-Mansur, M. C. P. P.; Cardoso-Rurr, J. S.; Silva, J. V. M. A.; de Souza, G. R.; Cardoso, V. D. S.; Mansoldo, F. R. P.; Pinheiro, Y.; Schultz, J.; Lopez Balottin, L. B.; da Silva, A. J. R.; et al. Carotenoids from UV-Resistant Antarctic Microbacterium Sp. LEMMJ01. Sci. Rep. 2019, 9, 9554. DOI: 10.1038/s41598-019-45840-6.
  • Mishra, N. N.; Liu, G. Y.; Yeaman, M. R.; Nast, C. C.; Proctor, R. A.; McKinnell, J.; Bayer, A. S. Carotenoid-Related Alteration of Cell Membrane Fluidity Impacts Staphylococcus Aureus Susceptibility to Host Defense Peptides. Antimicrob. Agents Chemother. 2011, 55, 526–531. DOI: 10.1128/AAC.00680-10.
  • Choi, J. Y.; Lee, K.; Lee, P. C. Characterization of Carotenoid Biosynthesis in Newly Isolated Deinococcus Sp. AJ005 and Investigation of the Effects of Environmental Conditions on Cell Growth and Carotenoid Biosynthesis. Mar. Drugs 2019, 17, 705. DOI: 10.3390/md17120705.
  • Jing, Y.; Liu, H.; Xu, W.; Yang, Q. Amelioration of the DSS-Induced Colitis in Mice by Pretreatment with 4,4'-diaponeurosporene-producing Bacillus subtilis. Exp. Ther. Med. 2017, 14, 6069–6073. DOI: 10.3892/etm.2017.5282.
  • Iwata, S.; Imai, T.; Shimazawa, M.; Ishibashi, T.; Hayashi, M.; Hara, H.; Nakamura, S. Protective Effects of the Astaxanthin Derivative, Adonixanthin, on Brain Hemorrhagic Injury. Brain Res. 2018, 1698, 130–138. DOI: 10.1016/j.brainres.2018.08.009.
  • Vila, E.; Hornero-Méndez, D.; Azziz, G.; Lareo, C.; Saravia, V. Carotenoids from Heterotrophic Bacteria Isolated from Fildes Peninsula, King George Island, Antarctica. Biotechnol. Rep. (Amst). 2019, 21, e00306. DOI: 10.1016/j.btre.2019.e00306.
  • Manzoni Maroneze, M.; Jacob-Lopes, E.; Queiroz Zepka, L.; Roca, M.; Pérez-Gálvez, A. Esterified Carotenoids as New Food Components in Cyanobacteria. Food Chem. 2019, 287, 295–302. DOI: 10.1016/j.foodchem.2019.02.102.
  • López, G.-D.; Suesca, E.; Álvarez-Rivera, G.; Rosato, A. E.; Ibáñez, E.; Cifuentes, A.; Leidy, C.; Carazzone, C. Carotenogenesis of Staphylococcus Aureus: New Insights and Impact on Membrane Biophysical Properties. Biochim. Biophys. Acta. Mol. Cell Biol. Lipids. 2021, 1866, 158941. DOI: 10.1016/j.bbalip.2021.158941.
  • Saha, S.; Walia, S.; Sharma, K.; Banerjee, K. Suitability of Stationary Phase for LC Analysis of Biomolecules. Crit. Rev. Food Sci. Nutr. 2020, 60, 2856–2873. DOI: 10.1080/10408398.2019.1665494.
  • Turcsi, E.; Nagy, V.; Deli, J. Study on the Elution Order of Carotenoids on Endcapped C18 and C30 Reverse Silica Stationary Phases. A Review of the Database. J. Food Compos. Anal. 2016, 47, 101–112. DOI: 10.1016/j.jfca.2016.01.005.
  • Jin, H.; Lao, Y. M.; Zhou, J.; Zhang, H. J.; Cai, Z. H. Simultaneous Determination of 13 Carotenoids by a Simple C18 Column-Based Ultra-High-Pressure Liquid Chromatography Method for Carotenoid Profiling in the Astaxanthin-Accumulating Haematococcus Pluvialis. J. Chromatogr. A. 2017, 1488, 93–103. DOI: 10.1016/j.chroma.2017.01.088.
  • Kaiser, P.; Geyer, R.; Surmann, P.; Fuhrmann, H. LC-MS Method for Screening Unknown Microbial Carotenoids and Isoprenoid Quinones. J. Microbiol. Methods. 2012, 88, 28–34. DOI: 10.1016/j.mimet.2011.10.001.
  • Bridoux, M. C.; Sobiechowska, M.; Pérez-Fuentetaja, A.; Alben, K. T. LC-PDA/APCIitMS Identification of Algal Carotenoid and Oxysterol Precursors to Fatty Acid Esters in Hydrolyzed Extracts of the Freshwater Mussel Dreissena Bugensis. Anal. Bioanal. Chem. 2017, 409, 6745–6760. DOI: 10.1007/s00216-017-0562-9.
  • Abate-Pella, D.; Freund, D. M.; Slovin, J. P.; Hegeman, A. D.; Cohen, J. D. An Improved Method for Fast and Selective Separation of Carotenoids by LC-MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1067, 34–37. DOI: 10.1016/j.jchromb.2017.09.039.
  • Hrvolová, B.; Martínez-Huélamo, M.; Colmán-Martínez, M.; Hurtado-Barroso, S.; Lamuela-Raventós, R. M.; Kalina, J. Development of an Advanced HPLC–MS/MS Method for the Determination of Carotenoids and Fat-Soluble Vitamins in Human Plasma. Int. J. Mol. Sci. 2016, 17, 1719. DOI: 10.3390/ijms17101719.
  • Schex, R.; Lieb, V. M.; Jiménez, V. M.; Esquivel, P.; Schweiggert, R. M.; Carle, R.; Steingass, C. B. HPLC-DAD-APCI/ESI-MSn Analysis of Carotenoids and α-Tocopherol in Costa Rican Acrocomia Aculeata Fruits of Varying Maturity Stages. Food Res. Int. 2018, 105, 645–653. DOI: 10.1016/j.foodres.2017.11.041.
  • Gallego, R.; Martínez, M.; Cifuentes, A.; Ibáñez, E.; Herrero, M. Development of a Green Downstream Process for the Valorization of Porphyridium Cruentum Biomass. Molecules 2019, 24, 1564. DOI: 10.3390/molecules24081564.
  • Gallego, R.; Arena, K.; Dugo, P.; Mondello, L.; Ibáñez, E.; Herrero, M. Application of Compressed Fluid-based Extraction and Purification Procedures to Obtain Astaxanthin-enriched Extracts from Haematococcus pluvialis and Characterization by Comprehensive Two-dimensional Liquid Chromatography Coupled to Mass Spectrometry. Anal. Bioanal. Chem. 2020, 412, 589–599. DOI: 10.1007/s00216-019-02287-y.
  • Castro-Puyana, M.; Pérez-Sánchez, A.; Valdés, A.; Ibrahim, O. H. M.; Suarez-Álvarez, S.; Ferragut, J. A.; Micol, V.; Cifuentes, A.; Ibáñez, E.; García-Cañas, V. García-Cañas, V. Pressurized Liquid Extraction of Neochloris Oleoabundans for the Recovery of Bioactive Carotenoids with anti-Proliferative Activity against Human Colon Cancer Cells. Food Res. Int. 2017, 99, 1048–1055. DOI: 10.1016/j.foodres.2016.05.021.
  • van Breemen, R. B. Mass, Spectrometry of Carotenoids. In Current Protocols in Food Analytical Chemistry; John Wiley & Sons: Hoboken, NJ, 2001; pp F2.4.1–F2.4.13. DOI: 10.3891/acta.chem.scand.28b-0385.
  • Carnevale, J.; Cole, E. R.; Nelson, D.; Shannon, J. S. Chemical Ionization Mass Spectrometry of Carotenoids. Biol. Mass Spectrom. 1978, 5, 641–546. DOI: 10.1002/bms.1200051109.
  • Breemen, R. B.; Van; Schmitz, H. H.; Schwartz, S. J. Fast Atom Bombardment Tandem Mass Spectrometry of Carotenoids. J. Agric. Food Chem. 1995, 43, 384–389. DOI: 10.1021/jf00050a024.
  • Van Breemen, R. B.; Dong, L.; Pajkovic, N. D. Atmospheric Pressure Chemical Ionization Tandem Mass Spectrometry of Carotenoids. Int. J. Mass Spectrom. 2012, 312, 163–172. DOI: 10.1016/j.ijms.2011.07.030.
  • Huang, S.; Xu, J.; Wu, J.; Hong, H.; Chen, G.; Jiang, R.; Zhu, F.; Liu, Y.; Ouyang, G. Rapid Detection of Five Anesthetics in Tilapias by in Vivo Solid Phase Microextraction Coupling with Gas Chromatography-Mass Spectrometry. Talanta 2017, 168, 263–268. DOI: 10.1016/j.talanta.2017.03.045.
  • Schöner, T. A.; Gassel, S.; Osawa, A.; Tobias, N. J.; Okuno, Y.; Sakakibara, Y.; Shindo, K.; Sandmann, G.; Bode, H. B. Aryl Polyenes, a Highly Abundant Class of Bacterial Natural Products, Are Functionally Related to Antioxidative Carotenoids. Chembiochem 2016, 17, 247–253. DOI: 10.1002/cbic.201500474.
  • Stafsnes, M. H.; Dybwad, M.; Brunsvik, A.; Bruheim, P. Large Scale MALDI-TOF MS Based Taxa Identification to Identify Novel Pigment Producers in a Marine Bacterial Culture Collection. Anton. Leeuwenhoek 2013, 103, 603–615. DOI: 10.1007/s10482-012-9844-6.
  • Yoshida, K.; Ueda, S.; Maeda, I. Carotenoid Production in Bacillus Subtilis Achieved by Metabolic Engineering. Biotechnol. Lett. 2009, 31, 1789–1793. DOI: 10.1007/s10529-009-0082-6.
  • Manikandan, M.; Hasan, N.; Wu, H. F. Rapid Detection of Haloarchaeal Carotenoids via Liquid-Liquid Microextraction Enabled Direct TLC MALDI-MS. Talanta 2013, 107, 167–175. DOI: 10.1016/j.talanta.2013.01.005.
  • Neto, F. C.; Guaratini, T.; Costa-Lotufo, L.; Colepicolo, P.; Gates, P. J.; Lopes, N. P. Re-Investigation of the Fragmentation of Protonated Carotenoids by Electrospray Ionization and Nanospray Tandem Mass Spectrometry. Rapid Commun. Mass. Spectrom. 2016, 30, 1540–1548. DOI: 10.1002/rcm.7589.
  • Rivera, S.; Vilaró, F.; Canela, R. Determination of Carotenoids by Liquid Chromatography/Mass Spectrometry: Effect of Several Dopants. Anal. Bioanal. Chem. 2011, 400, 1339–1346. DOI: 10.1007/s00216-011-4825-6.
  • Zerres, S.; Stahl, W. Carotenoids in Human Skin. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 158588. DOI: 10.1016/j.bbalip.2019.158588.
  • Clugston, R. D. Carotenoids and Fatty Liver Disease: Current Knowledge and Research Gaps. Biochim. Biophys. Acta. Mol. Cell Biol. Lipids 2020, 1865, 158597. DOI: 10.1016/j.bbalip.2019.158597.
  • Silva, T. R. E.; Silva, L. C. F.; de Queiroz, A. C.; Alexandre Moreira, M. S.; de Carvalho Fraga, C. A.; de Menezes, G. C. A.; Rosa, L. H.; Bicas, J.; de Oliveira, V. M.; Duarte, A. W. F. Pigments from Antarctic Bacteria and Their Biotechnological Applications. Crit. Rev. Biotechnol. 2021, 41, 809–826. DOI: 10.1080/07388551.2021.1888068.
  • Osawa, A.; Ishii, Y.; Sasamura, N.; Morita, M.; Kasai, H.; Maoka, T.; Shindo, K. Characterization and Antioxidative Activities of Rare C(50) Carotenoids-sarcinaxanthin, Sarcinaxanthin Monoglucoside, and Sarcinaxanthin Diglucoside-obtained from Micrococcus yunnanensis. J. Oleo Sci. 2010, 59, 653–659. DOI: 10.5650/jos.59.653.
  • Wagener, S.; Völker, T.; De Spirt, S.; Ernst, H.; Stahl, W. 3. 3,3'-Dihydroxyisorenieratene and Isorenieratene Prevent UV-induced DNA Damage in Human Skin Fibroblasts. Free Radic. Biol. Med. 2012, 53, 457–463. DOI: 10.1016/j.freeradbiomed.2012.05.022.
  • Wen, X.; Huang, A.; Hu, J.; Zhong, Z.; Liu, Y.; Li, Z.; Pan, X.; Liu, Z. Neuroprotective Effect of Astaxanthin against Glutamate-Induced Cytotoxicity in HT22 Cells: Involvement of the Akt/GSK-3β Pathway. Neuroscience 2015, 303, 558–568. DOI: 10.1016/j.neuroscience.2015.07.034.
  • Zhang, X. S.; Zhang, X.; Wu, Q.; Li, W.; Zhang, Q. R.; Wang, C. X.; Zhou, X. M.; Li, H.; Shi, J. X.; Zhou, M. L. Astaxanthin Alleviates Early Brain Injury following Subarachnoid Hemorrhage in Rats: Possible Involvement of Akt/Bad Signaling. Mar. Drugs. 2014, 12, 4291–4310. DOI: 10.3390/md12084291.
  • Johnson, E. J.; Vishwanathan, R.; Johnson, M. A.; Hausman, D. B.; Davey, A.; Scott, T. M.; Green, R. C.; Miller, L. S.; Gearing, M.; Woodard, J.; et al. Relationship between Serum and Brain Carotenoids, Tocopherol, and Retinol Concentrations and Cognitive Performance in the Oldest Old from the Georgia Centenarian Study. J. Aging Res. 2013, 2013, 1–13. DOI: 10.1155/2013/951786.
  • Honda, M. Nutraceutical and Pharmaceutical Applications of Carotenoids. In Pigments from Microalgae Handbook; Springer International Publishing: Cham, Switzerland, 2020; pp 449–469. DOI: 10.1007/978-3-030-50971-2_18.
  • Maeda, H.; Hosokawa, M.; Sashima, T.; Miyashita, K. Dietary Combination of Fucoxanthin and Fish Oil Attenuates the Weight Gain of White Adipose Tissue and Decreases Blood Glucose in Obese/Diabetic KK-Ay Mice. J. Agric. Food Chem. 2007, 55, 7701–7706. DOI: 10.1021/jf071569n.
  • Stahl, W. Sies, H. β-Carotene and Other Carotenoids in Protection from Sunlight. Am. J. Clin. Nutr. 2012, 96, 1179–1184. DOI: 10.3945/ajcn.112.034819.
  • Lee, C. M. Fifty Years of Research and Development of Cosmeceuticals: A Contemporary Review. J. Cosmet. Dermatol. 2016, 15, 527–539. DOI: 10.1111/jocd.12261.
  • Rowles, J. L.; Ranard, K. M.; Applegate, C. C.; Jeon, S.; An, R.; Erdman, J. W. Processed and Raw Tomato Consumption and Risk of Prostate Cancer: A Systematic Review and dose-response meta-analysis. Prostate Cancer Prostatic Dis. 2018, 21, 319–336. DOI: 10.1038/s41391-017-0005-x.
  • Abar, L.; Vieira, A. R.; Aune, D.; Stevens, C.; Vingeliene, S.; Navarro Rosenblatt, D. A.; Chan, D.; Greenwood, D. C.; Norat, T. Blood Concentrations of Carotenoids and Retinol and Lung Cancer Risk: An Update of the WCRF-AICR Systematic Review of Published Prospective Studies. Cancer Med. 2016, 5, 2069–2083. DOI: 10.1002/cam4.676.
  • Grewe, C.; Menge, S.; Griehl, C. Enantioselective Separation of All-E-Astaxanthin and Its Determination in Microbial Sources. J. Chromatogr. A. 2007, 1166, 97–100. DOI: 10.1016/j.chroma.2007.08.002.
  • Bories, G.; Brantom, P.; J. B. De, B.; Chesson, A.; Sandro, P.; Debski, B.; Dierick, N.; Franklin, A.; Gropp, J.; Halle, I. Opinion of the Scientific Panel on Additives and Products or Substances Used in Animal Feed (FEEDAP) on Safety and Efficacy of Panaferd-AX (Red Carotenoid-Rich Bacterium Paracoccus Carotinifaciens) as Feed Additive for Salmon and Trout. EFSA J. 2007, 5, 1–30. DOI: 10.2903/j.efsa.2007.546.
  • Kirti, K.; Amita, S.; Priti, S.; Mukesh Kumar, A.; Jyoti, S. Colorful World of Microbes: Carotenoids and Their Applications. Adv. Biol. 2014, 2014, 1–13. DOI: 10.1155/2014/837891.
  • Manikandan, K.; Felix, N.; Prabu, E. A Review on the Application and Effect of Carotenoids with Respect to Canthaxanthin in the Culture of Fishes and Crustaceans. Int. J. Fish. Aquat. Stud. 2020, 8, 128–133. DOI: 10.22271/fish.2020.v8.i5b.2314.
  • Pasarin, D.; Rovinaru, C. Sources of Carotenoids and Their Uses as Animal Feed Additives - a Review. Sci. Papers-Ser. D-Anim. Sci. 2018, 61, 74–85.
  • Masetto, A.; Flores-Cotera, L. B.; Díaz, C.; Langley, E.; Sanchez, S. Application of a Complete Factorial Design for the Production of Zeaxanthin by Flavobacterium Sp. J. Biosci. Bioeng. 2001, 92, 55–58. DOI: 10.1263/jbb.92.55.
  • Barreiro C.; Barredo, J. L. Carotenoids Production: A Healthy and Profitable Industry. In Microbial Carotenoids. Methods in Molecular Biology; Barreiro, C., Barredo, J. L., Eds.; Humana Press: New York, NY, 2018; Vol. 1852. DOI: 10.1007/978-1-4939-8742-9_2.
  • Dufossé, L. Microbial Pigments from Bacteria, Yeasts, Fungi, and Microalgae for the Food and Feed Industries; Elsevier Inc.: Amsterdam, Netherlands, 2018; Vol. 7. DOI: 10.1016/C2016-0-00380-7.
  • Synthesize, O. T. Methods of Administering Probiotic Organisms That Synthesize Carotenoid Compounds in Sity to Enhance Human Helth and Nutrition. US Patent 113–653 B2, 2015.
  • Sahli, K.; Gomri, M. A.; Esclapez, J.; Gómez-Villegas, P.; Ghennai, O.; Bonete, M. J.; León, R.; Kharroub, K. Bioprospecting and Characterization of Pigmented Halophilic Archaeal Strains from Algerian Hypersaline Environments with Analysis of Carotenoids Produced by Halorubrum Sp. BS2. J. Basic Microbiol. 2020, 60, 624–638. DOI: 10.1002/jobm.202000083.
  • Thanapimmetha, A.; Suwaleerat, T.; Saisriyoot, M.; Chisti, Y.; Srinophakun, P. Production of Carotenoids and Lipids by Rhodococcus Opacus PD630 in Batch and Fed-Batch Culture. Bioprocess Biosyst. Eng. 2017, 40, 133–143. DOI: 10.1007/s00449-016-1681-y.
  • Zalazar, L.; Pagola, P.; Miró, M. V.; Churio, M. S.; Cerletti, M.; Martínez, C.; Iniesta-Cuerda, M.; Soler, A. J.; Cesari, A.; De Castro, R. Bacterioruberin Extracts from a Genetically Modified Hyperpigmented Haloferax Volcanii Strain: Antioxidant Activity and Bioactive Properties on Sperm Cells. J. Appl. Microbiol. 2019, 126, 796–810. DOI: 10.1111/jam.14160.
  • Joshi, C.; Singhal, R. S. Zeaxanthin Production by Paracoccus Zeaxanthinifaciens ATCC 21588 in a Lab-Scale Bubble Column Reactor: Artificial Intelligence Modelling for Determination of Optimal Operational Parameters and Energy Requirements. Korean J. Chem. Eng. 2018, 35, 195–203. DOI: 10.1007/s11814-017-0253-4.
  • Gharibzahedi, S. M. T.; Razavi, S. H.; Mousavi, M. Feeding Strategies for the Improved Biosynthesis of Canthaxanthin from Enzymatic Hydrolyzed Molasses in the Fed-Batch Fermentation of Dietzia Natronolimnaea HS-1. Bioresour. Technol. 2014, 154, 51–58. DOI: 10.1016/j.biortech.2013.12.013.
  • Hirasawa, K.; Tsubokura, A. Method for Separating Carotenoid. US Patent 8,853,460 B2, Oct. 7, 2014.
  • Asker, D.; Awad, T. S.; Beppu, T.; Ueda, K. Purification and Identification of Astaxanthin and Its Novel Derivative Produced by Radio-Tolerant Sphingomonas Astaxanthinifaciens. Methods Mol. Biol. 2018, 1852, 171–192. DOI: 10.1007/978-1-4939-8742-9_10.
  • Asker, D.; Awad, T. S.; Beppu, T.; Ueda, K. Screening, Isolation, and Identification of Zeaxanthin-Producing Bacteria. In Microbial Carotenoids: Methods and Protocols, Methods in Molecular Biology; Springer New York: New York, NY, 2018; Vol. 1852, pp 193–209. DOI: 10.1007/978-1-4939-8742-9_11.
  • Gallego, R.; Alves, M. J.; Tardif, C.; Ibáñez, E.; Parreira, C.; Herrero, M.; Guerra, T. Simultaneous Extraction and Purification of Fucoxanthin from Tisochrysis Lutea Microalgae Using Compressed Fluids. J. Separat. Sci. 2020, 43, 1–11. DOI: 10.1002/jssc.202000021.
  • Wang, N. N.; Li, C. M.; Li, Y. X.; Du, Z. J. Aquimarina Celericrescens Sp. Nov., Isolated from Seawater. Int. J. Syst. Evol. Microbiol. 2018, 68, 1683–1688. DOI: 10.1099/ijsem.0.002733.
  • Wu, Y. H.; Zhou, P.; Jian, S. L.; Liu, Z. S.; Wang, C. S.; Oren, A.; Xu, X. W. Pontibacter Amylolyticus Sp. Nov., Isolated from a Deep-Sea Sediment Hydrothermal Vent Field. Int. J. Syst. Evol. Microbiol. 2016, 66, 1760–1767. DOI: 10.1099/ijsem.0.000944.
  • Xamxidin, M.; Wu, Y. H.; Jian, S. L.; Zhou, Y. D.; Wang, C. S.; Tohty, D.; Xu, X. W. Aquaticitalea Lipolytica Gen. Nov., Sp. Nov., Isolated from Antarctic Seawater. Int. J. Syst. Evol. Microbiol. 2016, 66, 2657–2663. DOI: 10.1099/ijsem.0.001101.
  • Neelam, D. K.; Agrawal, A.; Tomer, A. K.; Bandyopadhayaya, S.; Sharma, A.; Jagannadham, M. V.; Mandal, C. C.; Dadheech, P. K. A Piscibacillus Sp. Isolated from a Soda Lake Exhibits Anticancer Activity against Breast Cancer Mda-Mb-231 Cells. Microorganisms 2019, 7, 34. DOI: 10.3390/microorganisms7020034.
  • Zhou, L. Y.; Yu, Z. L.; Xu, W.; Mu, D. S.; Du, Z. J. Maribellus Luteus Gen. Nov., Sp. Nov., a Marine Bacterium in the Family Prolixibacteraceae Isolated from Coastal Seawater. Int. J. Syst. Evol. Microbiol. 2019, 69, 2388–2394. DOI: 10.1099/ijsem.0.003495.
  • Geng, Y.; Zhang, Y.; Qin, K.; Liu, J.; Tian, J.; Huang, Y.; Wei, Z.; Zhang, F.; Peng, F. Sphingomonas Paeninsulae Sp. Nov., Isolated from Soil Sampled at Fildes Peninsula, Antarctica. Int. J. Syst. Evol. Microbiol. 2019, 69, 3702–3709. DOI: 10.1099/ijsem.0.003504.
  • Liu, Y. H.; Fang, B. Z.; Dong, Z. Y.; Li, L.; Mohamad, O. A. A.; Zhang, Y. G.; Egamberdieva, D.; Xiao, M.; Li, W. J. Croceibacterium Gen. Nov., with Description of Croceibacterium Ferulae Sp. Nov., an Endophytic Bacterium Isolated from Ferula Sinkiangensis k. m. Shen and Reclassification of Porphyrobacter Mercurialis as Croceibacterium Mercuriale Comb. Nov. Int. J. Syst. Evol. Microbiol. 2019, 69, 2547–2554. DOI: 10.1099/ijsem.0.003540.
  • Cai, H.; Cui, H.; Zeng, Y.; An, M.; Jiang, H. Sandarakinorhabdus Cyanobacteriorum Sp. Nov., a Novel Bacterium Isolated from Cyanobacterial Aggregates in a Eutrophic Lake. Int. J. Syst. Evol. Microbiol. 2018, 68, 730–735. DOI: 10.1099/ijsem.0.002571.
  • Chun, B. H.; Lee, Y.; Jin, H. M.; Jeon, C. O. Cloacibacterium Caeni Sp. Nov., Isolated from Activated Sludge. Int. J. Syst. Evol. Microbiol. 2017, 67, 1688–1692. DOI: 10.1099/ijsem.0.001841.
  • Jia, L.; Feng, X.; Zheng, Z.; Han, L.; Hou, X.; Lu, Z.; Lv, J. Polymorphobacter Fuscus Sp. Nov., Isolated from Permafrost Soil, and Emended Description of the Genus Polymorphobacter. Int. J. Syst. Evol. Microbiol. 2015, 65, 3920–3925. DOI: 10.1099/ijsem.0.000514.