389
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Developments of Microextraction (Extraction) Procedures for Sample Preparation of Antidepressants in Biological and Water Samples, a Review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & show all
Pages 1285-1312 | Published online: 26 Dec 2021

References

  • Lim, G. Y.; Tam, W. W.; Lu, Y.; Ho, C. S.; Zhang, M. W.; Ho, R. C. Prevalence of Depression in the Community from 30 Countries between 1994 and 2014. Sci. Rep. 2018, 8, 1. DOI: 10.1038/s41598-018-21243-x.
  • LeMoult, J.; Gotlib, I. H. Depression: A Cognitive Perspective. Clin. Psychol. Rev. 2019, 69, 51–66. DOI: 10.1016/j.cpr.2018.06.008.
  • Johnston, K. M.; Powell, L. C.; Anderson, I. M.; Szabo, S.; Cline, S. The Burden of Treatment-Resistant Depression: A Systematic Review of the Economic and Quality of Life Literature. J. Affect. Disord. 2019, 242, 195–210. DOI: 10.1016/j.jad.2018.06.045.
  • Sullivan, M. D. Depression Effects on Long-Term Prescription Opioid Use, Abuse, and Addiction. Clin. J. Pain. 2018, 34, 878–884. DOI: 10.1097/AJP.0000000000000603.
  • Ghorbani, M.; Aghamohammadhasan, M.; Shams, A.; Tajfirooz, F.; Pourhassan, R.; Khosravi, S. R. B.; Karimi, E.; Jampour, A. Ultrasonic Assisted Magnetic Dispersive Solid Phase Microextraction for Preconcentration of Two Nonsteroidal Anti-Inflammatory Drugs in Real Water, Biological and Milk Samples Employing an Experimental Design. Microchem. J. 2019, 145, 1026–1035. DOI: 10.1016/j.microc.2018.12.019.
  • Ghorbani, M.; Chamsaz, M.; Rounaghi, G. H. Ultrasound-Assisted Magnetic Dispersive Solid-Phase Microextraction: A Novel Approach for the Rapid and Efficient Microextraction of Naproxen and Ibuprofen Employing Experimental Design with High-Performance Liquid Chromatography. J. Sep. Sci. 2016, 39, 1082–1089. DOI: 10.1002/jssc.201501246.
  • Ghorbani, M.; Akbarzade, S.; Aghamohammadhasan, M.; Seyedin, O.; Lahoori, N. A. Pre-Concentration and Determination of Cadmium and Lead Ions in Real Water, Soil and Food Samples Using a Simple and Sensitive Green Solvent-Based Ultrasonic Assisted Dispersive Liquid–Liquid Microextraction and Graphite Furnace Atomic Absorption Spectrometry. Anal. Methods. 2018, 10, 2041–2047. DOI: 10.1039/C8AY00398J.
  • Ali, I.; Gupta, V. K.; Aboul‐Enein, H. Y.; Hussain, A. Hyphenation in Sample Preparation: advancement from the Micro to the Nano World. J. Sep. Sci. 2008, 31, 2040–2053. DOI: 10.1002/jssc.200800123.
  • Ali, I. Nano-Hyphenation Technologies. Lab. Plus Int. 2009,  April/May issue.
  • Ali, I.; Suhail, M.; Alharbi, O. M.; Hussain, I. Advances in Sample Preparation in Chromatography for Organic Environmental Pollutants Analyses. J. Liq. Chromatogr. Relat. Technol. 2019, 42, 137–160. DOI: 10.1080/10826076.2019.1579739.
  • Ghorbani, M.; Aghamohammadhassan, M.; Chamsaz, M.; Akhlaghi, H.; Pedramrad, T. Dispersive Solid Phase Microextraction. TRAC, Trends Anal. Chem. 2019, 118, 793–809. DOI: 10.1016/j.trac.2019.07.012.
  • Uddin, M. N.; Samanidou, V. F.; Papadoyannis, I. N. Bio-Sample Preparation and Analytical Methods for the Determination of Tricyclic Antidepressants. Bioanalysis. 2011, 3, 97–118. DOI: 10.4155/bio.10.160.
  • Şentürk, Z.; Saka, C.; Teğin, İ. Analytical Methods for Determination of Selective Serotonin Reuptake Inhibitor Antidepressants. Rev. Anal. Chem. 2011, 30, 87. DOI: 10.1515/revac.2011.018.
  • Soares, S.; Barroso, M.; Gallardo, E. A Review of Current Bioanalytical Approaches in Sample Pretreatment Techniques for the Determination of Antidepressants in Biological Specimens. Rev. Anal. Chem. 2021, 40, 12–32. DOI: 10.1515/revac-2021-0124.
  • Mirnaghi, F. S.; Goryński, K.; Rodriguez-Lafuente, A.; Boyacı, E.; Bojko, B.; Pawliszyn, J. Microextraction versus Exhaustive Extraction Approaches for Simultaneous Analysis of Compounds in Wide Range of Polarity. J. Chromatogr. A. 2013, 1316, 37–43. DOI: 10.1016/j.chroma.2013.09.084.
  • Ternes, T. A. Analytical Methods for the Determination of Pharmaceuticals in Aqueous Environmental Samples. TRAC, Trends Anal. Chem. 2001, 20, 419–434. DOI: 10.1016/S0165-9936(01)00078-4.
  • Kataoka, H. New Trends in Sample Preparation for Clinical and Pharmaceutical Analysis. TRAC, Trends Anal. Chem. 2003, 22, 232–244. DOI: 10.1016/S0165-9936(03)00402-3.
  • Woźniakiewicz, M.; Wietecha-Posłuszny, R.; Garbacik, A.; Kościelniak, P. Microwave-Assisted Extraction of Tricyclic Antidepressants from Human Serum Followed by High Performance Liquid Chromatography Determination. J. Chromatogr. A. 2008, 1190, 52–56. DOI: 10.1016/j.chroma.2008.03.013.
  • Wietecha-Posłuszny, R.; Garbacik, A.; Woźniakiewicz, M.; Kościelniak, P. Microwave-Assisted Hydrolysis and Extraction of Tricyclic Antidepressants from Human Hair. Anal. Bioanal. Chem. 2011, 399, 3233–3240. DOI: 10.1007/s00216-010-4440-y.
  • Costa Junior, I. L.; Machado, C. S.; Pletsch, A. L.; Torres, Y. R. Simultaneous HPLC-PDA Determination of Commonly Prescribed Antidepressants and Caffeine in Sludge from Sewage Treatment Plants and River Sediments in the Itaipu Reservoir Region, Paraná, Brazil. Int. J. Environ. Anal. Chem. 2020, 100, 1004–1020. DOI: 10.1080/03067319.2019.1646738.
  • Sarafraz-Yazdi, A.; Amiri, A. Liquid-Phase Microextraction. TRAC, Trends Anal. Chem. 2010, 29, 1–14. DOI: 10.1016/j.trac.2009.10.003.
  • Comitre, A. L. D.; Reis, B. F. Automatic Flow Procedure Based on Multicommutation Exploiting Liquid-Liquid Extraction for Spectrophotometric Lead Determination in Plant Material. Talanta 2005, 65, 846–852. DOI: 10.1016/j.talanta.2004.08.018.
  • Urbánek, L.; Solichová, D.; Melichar, B.; Dvořák, J.; Svobodová, I.; Solich, P. Optimization and Validation of a High Performance Liquid Chromatography Method for the Simultaneous Determination of Vitamins a and E in Human Serum Using Monolithic Column and Diode-Array Detection. Anal. Chim. Acta. 2006, 573-574, 267–272. DOI: 10.1016/j.aca.2006.02.032.
  • Urbánek, L.; Krčmová, L.; Solichová, D.; Melichar, B.; Opletalová, V.; Solich, P. Development and Validation of a Liquid Chromatography Method for the Simultaneous Determination of Alpha-Tocopherol, Retinol and Retinyl Esters in Human Serum Using a Monolithic Column for the Monitoring of Anticancer Therapy Side Effects. J. Sep. Sci. 2006, 29, 2485–2493. DOI: 10.1002/jssc.200600153.
  • Płotka-Wasylka, J.; Szczepańska, N.; de La Guardia, M.; Namieśnik, J. Modern Trends in Solid Phase Extraction: New Sorbent Media. TRAC, Trends Anal. Chem. 2016, 77, 23–43. DOI: 10.1016/j.trac.2015.10.010.
  • Azzouz, A.; Kailasa, S. K.; Lee, S. S.; Rascón, A. J.; Ballesteros, E.; Zhang, M.; Kim, K.-H. Review of Nanomaterials as Sorbents in Solid-Phase Extraction for Environmental Samples. TRAC, Trends Anal. Chem. 2018, 108, 347–369. DOI: 10.1016/j.trac.2018.08.009.
  • Buszewski, B.; Szultka, M. Past, Present, and Future of Solid Phase Extraction: A Review. Crit. Rev. Anal. Chem. 2012, 42, 198–213. DOI: 10.1080/07373937.2011.645413.
  • Chen, L.; Wang, H.; Zeng, Q.; Xu, Y.; Sun, L.; Xu, H.; Ding, L. On-Line Coupling of Solid-Phase Extraction to Liquid Chromatography - A Review. J. Chromatogr. Sci. 2009, 47, 614–623. DOI: 10.1093/chromsci/47.8.614.
  • Fontanals, N.; Marcé, R.; Borrull, F. New Hydrophilic Materials for Solid-Phase Extraction. TRAC, Trends Anal. Chem. 2005, 24, 394–406. DOI: 10.1016/j.trac.2005.01.012.
  • Lindsey, M. E.; Meyer, M.; Thurman, E. M. Analysis of Trace Levels of Sulfonamide and Tetracycline Antimicrobials in Groundwater and Surface Water Using Solid-Phase Extraction and Liquid Chromatography/Mass Spectrometry. Anal. Chem. 2001, 73, 4640–4646. DOI: 10.1021/ac010514w.
  • Golet, E. M.; Alder, A. C.; Hartmann, A.; Ternes, T. A.; Giger, W. Trace Determination of Fluoroquinolone Antibacterial Agents in Urban Wastewater by Solid-Phase Extraction and Liquid Chromatography with Fluorescence Detection. Anal. Chem. 2001, 73, 3632–3638. DOI: 10.1021/ac0015265.
  • Weigel, S.; Kallenborn, R.; Hühnerfuss, H. Simultaneous Solid-Phase Extraction of Acidic, Neutral and Basic Pharmaceuticals from Aqueous Samples at Ambient (Neutral) pH and Their Determination by Gas Chromatography-Mass Spectrometry. J. Chromatogr. A. 2004, 1023, 183–195. DOI: 10.1016/j.chroma.2003.10.036.
  • Uddin, M. N.; Samanidou, V. F.; Papadoyannis, I. N. Development and Validation of an HPLC Method for the Determination of Benzodiazepines and Tricyclic Antidepressants in Biological Fluids after Sequential SPE. J. Sep. Sci. 2008, 31, 2358–2370. DOI: 10.1002/jssc.200800079.
  • Lee, X. P.; Hasegawa, C.; Kumazawa, T.; Shinmen, N.; Shoji, Y.; Seno, H.; Sato, K. Determination of Tricyclic Antidepressants in Human Plasma Using Pipette Tip Solid-Phase Extraction and Gas Chromatography-Mass Spectrometry. J. Sep. Sci. 2008, 31, 2265–2271. DOI: 10.1002/jssc.200700627.
  • Chen, D.; Zheng, H.-B.; Huang, Y.-Q.; Hu, Y.-N.; Yu, Q.-W.; Yuan, B.-F.; Feng, Y.-Q. Magnetic Solid Phase Extraction Coupled with Desorption Corona Beam Ionization-Mass Spectrometry for Rapid Analysis of Antidepressants in Human Body Fluids. Analyst. 2015, 140, 5662–5670. DOI: 10.1039/c5an00992h.
  • Zare, F.; Ghaedi, M.; Daneshfar, A. Solid Phase Extraction of Antidepressant Drugs Amitriptyline and Nortriptyline from Plasma Samples Using Core-Shell Nanoparticles of the Type Fe3O4@ZrO2@ N-Cetylpyridinium, and Their Subsequent Determination by HPLC with UV Detection. Microchim. Acta. 2015, 182, 1893–1902. DOI: 10.1007/s00604-015-1499-3.
  • Saber, A. L. On-Line Solid Phase Extraction Coupled to Capillary LC-ESI-MS for Determination of Fluoxetine in Human Blood Plasma. Talanta. 2009, 78, 295–299. DOI: 10.1016/j.talanta.2008.11.016.
  • Bordin, D. C. M.; Alves, M. N. R.; de Campos, E. G.; De Martinis, B. S. Disposable Pipette Tips Extraction: Fundamentals, Applications and State of the Art. J. Sep. Sci. 2016, 39, 1168–1172. DOI: 10.1002/jssc.201500932.
  • Chaves, A. R.; Moura, B. H.; Caris, J. A.; Rabelo, D.; Queiroz, M. E. C. The Development of a New Disposable Pipette Extraction Phase Based on Polyaniline Composites for the Determination of Levels of Antidepressants in Plasma Samples. J. Chromatogr. A. 2015, 1399, 1–7. DOI: 10.1016/j.chroma.2015.04.027.
  • Fresco-Cala, B.; Mompó-Roselló, Ó.; Simó-Alfonso, E. F.; Cárdenas, S.; Herrero-Martínez, J. M. Carbon Nanotube-Modified Monolithic Polymethacrylate Pipette Tips for (Micro) Solid-Phase Extraction of Antidepressants from Urine Samples. Mikrochim. Acta. 2018, 185, 127. DOI: 10.1007/s00604-017-2659-4.
  • Kataoka, H. Recent Advances in Solid-Phase Microextraction and Related Techniques for Pharmaceutical and Biomedical Analysis. CPA. 2005, 1, 65–84. DOI: 10.2174/1573412052953373.
  • Kataoka, H. Current Developments and Future Trends in Solid-Phase Microextraction Techniques for Pharmaceutical and Biomedical Analyses. Anal. Sci. 2011, 27, 893–905. DOI: 10.2116/analsci.27.893.
  • Kokosa, J. M. Selecting an Extraction Solvent for a Greener Liquid Phase Microextraction (LPME) Mode-Based Analytical Method. TRAC, Trends Anal. Chem. 2019, 118, 238–247. DOI: 10.1016/j.trac.2019.05.012.
  • Kokosa, J. M. Recent Trends in Using Single-Drop Microextraction and Related Techniques in Green Analytical Methods. TRAC, Trends Anal. Chem. 2015, 71, 194–204. DOI: 10.1016/j.trac.2015.04.019.
  • Hamidi, S.; Alipour-Ghorbani, N. Liquid-Phase Microextraction of Biomarkers: A Review on Current Methods. J. Liq. Chromatogr. Relat. Technol. 2017, 40, 853–861. DOI: 10.1080/10826076.2017.1374291.
  • Marcinkowski, Ł.; Pena-Pereira, F.; Kloskowski, A.; Namieśnik, J. Opportunities and Shortcomings of Ionic Liquids in Single-Drop Microextraction. TRAC, Trends Anal. Chem. 2015, 72, 153–168. DOI: 10.1016/j.trac.2015.03.024.
  • Yamini, Y.; Rezazadeh, M.; Seidi, S. Liquid-Phase Microextraction – The Different Principles and Configurations. TRAC, Trends Anal. Chem. 2019, 112, 264–272. DOI: 10.1016/j.trac.2018.06.010.
  • Park, Y.-K.; Choi, K.; Ahmed, A. Y. B. H.; ALOthman, Z. A.; Chung, D. S. Selective Preconcentration of Amino Acids and Peptides Using Single Drop Microextraction in-Line Coupled with Capillary Electrophoresis. J. Chromatogr. A. 2010, 1217, 3357–3361. DOI: 10.1016/j.chroma.2010.03.029.
  • Kaykhaii, M.; Noorinejad, S. Salt Saturated Single Drop Microextraction of Gold from Water Samples and Its Determination by Graphite Furnace Atomic Absorption Spectrometry. J. Anal. At. Spectrom. 2014, 29, 875. DOI: 10.1039/c4ja00005f.
  • Ponnusamy, V. K.; Ramkumar, A.; Jen, J.-F. Microwave Assisted Headspace Controlled-Temperature Single Drop Microextraction for Liquid Chromatographic Determination of Chlorophenols in Aqueous Samples. Microchim. Acta. 2012, 179, 141–148. DOI: 10.1007/s00604-012-0877-3.
  • Yazdi, A. S.; Razavi, N. Separation and Determination of Amitriptyline and Nortriptyline in Biological Samples Using Single-Drop Microextraction with GC. Chromatographia. 2011, 73, 549–557. DOI: 10.1007/s10337-010-1900-7.
  • Wu, H.-F.; Kailasa, S. K.; Yan, J.-Y.; Chin, C.-C.; Ku, H.-Y. Comparison of Single-Drop Microextraction with Microvolume Pipette Extraction Directly Coupled with Capillary Electrophoresis for Extraction and Separation of Tricyclic Antidepressant Drugs. J. Ind. Eng. Chem. 2014, 20, 2071–2076. DOI: 10.1016/j.jiec.2013.09.034.
  • Mosavian, M. H.; Es' Haghi, Z.; Razavi, N.; Banihashemi, S. Pre-Concentration and Determination of Amitriptyline Residues in Waste Water by Ionic Liquid Based Immersed Droplet Microextraction and HPLC. J. Pharm. Anal. 2012, 2, 361–365. DOI: 10.1016/j.jpha.2012.07.007.
  • Bagheri, H.; Khalilian, F.; Babanezhad, E.; Es-Haghi, A.; Rouini, M.-R. Modified Solvent Microextraction with Back Extraction Combined with Liquid Chromatography-Fluorescence Detection for the Determination of Citalopram in Human Plasma. Anal. Chim. Acta. 2008, 610, 211–216. DOI: 10.1016/j.aca.2008.01.047.
  • Zarei, A. R.; Nedaei, M.; Ghorbanian, S. A. Ferrofluid of Magnetic Clay and Menthol Based Deep Eutectic Solvent: application in Directly Suspended Droplet Microextraction for Enrichment of Some Emerging Contaminant Explosives in Water and Soil Samples. J. Chromatogr. A. 2018, 1553, 32–42. DOI: 10.1016/j.chroma.2018.04.023.
  • Sarafraz-Yazdi, A.; Raouf-Yazdinejad, S.; Es’haghi, Z. Directly Suspended Droplet Microextraction and Analysis of Amitriptyline and Nortriptyline by GC. Chroma. 2007, 66, 613–617. DOI: 10.1365/s10337-007-0373-9.
  • Tapadia, K.; Shrivas, K.; Upadhyay, L. S. B. GC–MS Coupled with Hollow-Fiber Drop-to-Drop Solvent Microextraction for Determination of Antidepressants Drugs in Human Blood Sample. Chromatographia. 2011, 74, 437–442. DOI: 10.1007/s10337-011-2096-1.
  • Jagtap, P. K.; Tapadia, K. Pharmacokinetic Determination and Analysis of Nortriptyline Based on GC-MS Coupled with Hollow-Fiber Drop-to-Drop Solvent Microextraction Technique. Bioanalysis. 2018, 10, 143–152. DOI: 10.4155/bio-2017-0207.
  • Andersen, S.; Halvorsen, T. G.; Pedersen-Bjergaard, S.; Rasmussen, K. E. Liquid-Phase Microextraction Combined with Capillary Electrophoresis, a Promising Tool for the Determination of Chiral Drugs in Biological Matrices. J. Chromatogr. A. 2002, 963, 303–312. DOI: 10.1016/S0021-9673(02)00223-6.
  • Yazdi, A. S.; Es’haghi, Z. Two-Step Hollow Fiber-Based, Liquid-Phase Microextraction Combined with High-Performance Liquid Chromatography: A New Approach to Determination of Aromatic Amines in Water. J. Chromatogr. A. 2005, 1082, 136–142. DOI: 10.1016/j.chroma.2005.05.102.
  • Esrafili, A.; Yamini, Y.; Shariati, S. Hollow Fiber-Based Liquid Phase Microextraction Combined with High-Performance Liquid Chromatography for Extraction and Determination of Some Antidepressant Drugs in Biological Fluids. Anal. Chim. Acta. 2007, 604, 127–133. DOI: 10.1016/j.aca.2007.10.012.
  • Abolhasani, J.; Jafariyan, H. R.; Mahdi Khataei, M.; Hosseinzadeh-Khanmiri, R.; Ghorbani-Kalhor, E.; Hassanpour, A. Hollow Fiber Supported Liquid-Phase Microextraction Combined with Maltodextrin-Modified Capillary Electrophoresis for the Determination of Citalopram Enantiomers in Urine Samples. Anal. Methods. 2015, 7, 2012–2019. DOI: 10.1039/C4AY02377C.
  • de Freitas, D. F.; Porto, C. E. D.; Vieira, E. P.; de Siqueira, M. E. P. B. Three-Phase, Liquid-Phase Microextraction Combined with High Performance Liquid Chromatography-Fluorescence Detection for the Simultaneous Determination of Fluoxetine and Norfluoxetine in Human Plasma. J. Pharm. Biomed. Anal. 2010, 51, 170–177. DOI: 10.1016/j.jpba.2009.07.017.
  • Sajid, M.; Alhooshani, K. Dispersive Liquid-Liquid Microextraction Based Binary Extraction Techniques Prior to Chromatographic Analysis: A Review. TRAC, Trends Anal. Chem. 2018, 108, 167–182. DOI: 10.1016/j.trac.2018.08.016.
  • Tan, Y. H.; Chai, M. K.; Wong, L. S. A review on extraction solvents in the dispersive liquid-liquid microextraction. 2018.
  • Ito, R.; Ushiro, M.; Takahashi, Y.; Saito, K.; Ookubo, T.; Iwasaki, Y.; Nakazawa, H. Improvement and Validation the Method Using Dispersive Liquid-Liquid Microextraction with In Situ Derivatization Followed by Gas Chromatography-Mass Spectrometry for Determination of Tricyclic Antidepressants in Human Urine Samples. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879, 3714–3720. DOI: 10.1016/j.jchromb.2011.10.012.
  • Chen, J.; Xiong, C.; Ruan, J.; Su, Z. Dispersive Liquid-Liquid Microextraction Combined with High-Performance Liquid Chromatography for the Determination of Clozapine and Chlorpromazine in Urine. J. Huazhong Univ. Sci. Technol. Med. Sci. 2011, 31, 277–284. DOI: 10.1007/s11596-011-0266-x.
  • Fahimirad, B.; Asghari, A.; Bazregar, M.; Rajabi, M.; Fahimi, E. Application of Tandem Dispersive Liquid-Liquid Microextraction for the Determination of Doxepin, Citalopram, and Fluvoxamine in Complicated Samples. J. Sep. Sci. 2016, 39, 4828–4834. DOI: 10.1002/jssc.201600673.
  • Zare, F.; Ghaedi, M.; Daneshfar, A. Ionic-Liquid-Based Surfactant-Emulsified Microextraction Procedure Accelerated by Ultrasound Radiation Followed by High-Performance Liquid Chromatography for the Simultaneous Determination of Antidepressant and Antipsychotic Drugs. J. Sep. Sci. 2015, 38, 844–851. DOI: 10.1002/jssc.201401078.
  • Chen, X.; Zheng, S.; Le, J.; Qian, Z.; Zhang, R.; Hong, Z.; Chai, Y. Ultrasound-Assisted Low-Density Solvent Dispersive Liquid-Liquid Microextraction for the Simultaneous Determination of 12 New Antidepressants and 2 Antipsychotics in Whole Blood by Gas Chromatography-Mass Spectrometry. J. Pharm. Biomed. Anal. 2017, 142, 19–27. DOI: 10.1016/j.jpba.2017.04.032.
  • Fernández, P.; Taboada, V.; Regenjo, M.; Morales, L.; Alvarez, I.; Carro, A.; Lorenzo, R. Optimization of Ultrasound Assisted Dispersive Liquid-Liquid Microextraction of Six Antidepressants in Human Plasma Using Experimental Design. J. Pharm. Biomed. Anal. 2016, 124, 189–197. DOI: 10.1016/j.jpba.2016.02.041.
  • Alizadeh Nabil, A. A.; Nouri, N.; Farajzadeh, M. A. Determination of Three Antidepressants in Urine Using Simultaneous Derivatization and Temperature-Assisted Dispersive Liquid-Liquid Microextraction Followed by Gas Chromatography-Flame Ionization Detection. Biomed. Chromatogr. 2015, 29, 1094–1102. DOI: 10.1002/bmc.3396.
  • Arabkhani, B.; Goudarzi, N.; Bagherian, G.; Chamjangali, M. A. Application of Tandem Dispersive Liquid–Liquid Microextraction as an Efficient Method for Preconcentration of Two Antidepressant Drugs in Real Samples Combined with High Performance Liquid Chromatography. J. Chromatogr. Sci. 2021, bmab038. DOI: 10.1093/chromsci/bmab038.
  • Mofazzeli, F.; Asaadi Shirvan, H.; Mohammadi, F. Extraction and Determination of Tricyclic Antidepressants in Real Samples Using Air‐Dispersed Liquid–Liquid Microextraction Prior to Gas Chromatography and Flame Ionization Detection. J. Sep. Sci. 2018, 41, 4340–4347. DOI: 10.1002/jssc.201800359.
  • Dalgıç Bozyiğit, G.; Fırat Ayyıldız, M.; Selali Chormey, D.; Onkal Engin, G.; Bakırdere, S. Accurate Quantification of Nervous System Drugs in Aqueous Samples at Trace Levels by Binary Solvent Dispersive Liquid-Liquid Microextraction-Gas Chromatography Mass Spectrometry. Environ. Toxicol. Chem. 2021, 40, 1570–1575. DOI: 10.1002/etc.5020.
  • Shafiee, A. H. M.; Shafieeb, M. R. M. Determination of Clozapine by Air Assisted Dispersive Liquid-Liquid Microextraction Based on Solidification of Organic Droplet Followed by HPLC in Human Serum. Adv. J. Chem. A. 2020, 3(2), 111–121. DOI: 10.33945/SAMI/AJCA.2020.2.1.
  • Salamat, Q.; Yamini, Y.; Moradi, M.; Farahani, A.; Feizi, N. Extraction of Antidepressant Drugs in Biological Samples Using Alkanol-Based Nano Structured Supramolecular Solvent Microextraction Followed by Gas Chromatography with Mass Spectrometric Analysis. J. Sep. Sci. 2019, 42, 1620–1628. DOI: 10.1002/jssc.201801152.
  • Vilková, M.; Płotka-Wasylka, J.; Andruch, V. The Role of Water in Deep Eutectic Solvent-Base Extraction. J. Mol. Liq. 2020, 304, 112747. DOI: 10.1016/j.molliq.2020.112747.
  • Mohebbi, A.; Farajzadeh, M. A.; Nemati, M.; Sarhangi, N.; Afshar Mogaddam, M. R. Development of Green Sodium Sulfate-Induced Solidification of Floating Organic Droplets-Dispersive Liquid Phase Microextraction Method: Application to Extraction of Four Antidepressants. Biomed. Chromatogr. 2019, 33, e4642. DOI: 10.1002/bmc.4642.
  • Moghadam, A. G.; Rajabi, M.; Asghari, A. Efficient and Relatively Safe Emulsification Microextraction Using a Deep Eutectic Solvent for Influential Enrichment of Trace Main anti-Depressant Drugs from Complicated Samples. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1072, 50–59. DOI: 10.1016/j.jchromb.2017.09.042.
  • Gupta, M.; Jain, A.; Verma, K. K. Determination of Amoxapine and Nortriptyline in Blood Plasma and Serum by Salt-Assisted Liquid-Liquid Microextraction and High-Performance Liquid Chromatography. J. Sep. Sci. 2010, 33, 3774–3780. DOI: 10.1002/jssc.201000434.
  • Asl, Y. A.; Yamini, Y.; Seidi, S. Development of a Microfluidic-Chip System for Liquid-Phase Microextraction Based on Two Immiscible Organic Solvents for the Extraction and Preconcentration of Some Hormonal Drugs. Talanta. 2016, 160, 592–599. DOI: 10.1016/j.talanta.2016.07.063.
  • Mohamad Hanapi, N. S.; Sanagi, M. M.; Ismail, A. K.; Wan Ibrahim, W. A.; Saim, N.; Wan Ibrahim, W. N. Ionic Liquid-Impregnated Agarose Film Two-Phase Micro-Electrodriven Membrane Extraction (IL-AF-μ-EME) for the Analysis of Antidepressants in Water Samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1046, 73–80. DOI: 10.1016/j.jchromb.2017.01.028.
  • Zeeb, M.; Farahani, H. Trace Determination of Duloxetine in Human Plasma by a Novel Ionic Liquid-Based Ultrasound-Assisted In Situ Solvent Formation Microextraction and High-Performance Liquid Chromatography. Anal. Bioanal. Chem. Res. 2018, 5, 183.
  • Mohammadi, P.; Ghorbani, M.; Mohammadi, P.; Keshavarzi, M.; Rastegar, A.; Aghamohammadhassan, M.; Saghafi, A. Dispersive Micro Solid-Phase Extraction with Gas Chromatography for Determination of Diazinon and Ethion Residues in Biological, Vegetables and Cereal Grain Samples, Employing D-Optimal Mixture Design. Microchem. J. 2021, 160, 105680. DOI: 10.1016/j.microc.2020.105680.
  • Jeannot, M. A.; Przyjazny, A.; Kokosa, J. M. Single Drop Microextraction-Development, Applications and Future Trends. J. Chromatogr. A. 2010, 1217, 2326–2336. DOI: 10.1016/j.chroma.2009.10.089.
  • Reyes-Garces, N.; Gionfriddo, E.; Gómez-Ríos, G. A.; Alam, M. N.; Boyacı, E.; Bojko, B.; Singh, V.; Grandy, J.; Pawliszyn, J. Advances in Solid Phase Microextraction and Perspective on Future Directions. Anal. Chem. 2018, 90, 302–360. DOI: 10.1021/acs.analchem.7b04502.
  • Risticevic, S.; Lord, H.; Gorecki, T.; Arthur, C. L.; Pawliszyn, J. Protocol for Solid-Phase Microextraction Method Development. Nat. Protoc. 2010, 5, 122–139. DOI: 10.1038/nprot.2009.179.
  • Ghorbani, M.; Pedramrad, T.; Aghamohammadhasan, M.; Seyedin, O.; Akhlaghi, H.; Lahoori, N. A. Simultaneous Clean-up and Determination of Cu (II), Pb (II) and Cr (III) in Real Water and Food Samples Using a Magnetic Dispersive Solid Phase Microextraction and Differential Pulse Voltammetry with a Green and Novel Modified Glassy Carbon Electrode. Microchem. J. 2019, 147, 545–554. DOI: 10.1016/j.microc.2019.03.072.
  • Gionfriddo, E.; Boyacı, E.; Pawliszyn, J. New Generation of Solid-Phase Microextraction Coatings for Complementary Separation Approaches: A Step toward Comprehensive Metabolomics and Multiresidue Analyses in Complex Matrices. Anal. Chem. 2017, 89, 4046–4054. DOI: 10.1021/acs.analchem.6b04690.
  • Pawliszyn, J. Handbook of Solid Phase Microextraction. Elsevier: London, 2011.
  • Piri-Moghadam, H.; Alam, M. N.; Pawliszyn, J. Review of Geometries and Coating Materials in Solid Phase Microextraction: opportunities, Limitations, and Future Perspectives. Anal. Chim. Acta. 2017, 984, 42–65. DOI: 10.1016/j.aca.2017.05.035.
  • Ghorbani, M.; Ariavand, S.; Aghamohammadhasan, M.; Seyedin, O. Synthesis and Optimization of a Green and Efficient Sorbent for Removal of Three Heavy Metal Ions from Wastewater Samples: Kinetic, Thermodynamic, and Isotherm Studies. J. Iran. Chem. Soc. 2021, 18, 1947–1963. DOI: 10.1007/s13738-021-02161-8.
  • Gordi, Z.; Ghorbani, M.; Ahmadian Khakhiyani, M. Adsorptive Removal of Enrofloxacin with Magnetic Functionalized Graphene Oxide@ Metal-Organic Frameworks Employing D-Optimal Mixture Design. Water Environ. Res. 2020, 92, 1935–1947. DOI: 10.1002/wer.1346.
  • Lamas, J. P.; Salgado-Petinal, C.; García-Jares, C.; Llompart, M.; Cela, R.; Gómez, M. Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry for the Analysis of Selective Serotonin Reuptake Inhibitors in Environmental Water. J. Chromatogr. A. 2004, 1046, 241–247. DOI: 10.1016/j.chroma.2004.06.099.
  • Alves, C.; Fernandes, C.; José dos Santos Neto, A.; Rodrigues, J. C.; Costa Queiroz, M. E.; Lanças, F. M. Optimization of the SPME Parameters and Its Online Coupling with HPLC for the Analysis of Tricyclic Antidepressants in Plasma Samples. J. Chromatogr. Sci. 2006, 44, 340–346. DOI: 10.1093/chromsci/44.6.340.
  • Bj, G. S.; Rh, C. Q.; Me, C. Q. Simultaneous Determination of Nontricyclic Antidepressants in Human Plasma by Solid-Phase Microextraction and Liquid Chromatography (SPME-LC). J. Anal. Toxicol. 2007, 31, 313.
  • Grandy, J. J.; Lashgari, M.; Vander Heide, H.; Poole, J.; Pawliszyn, J. Introducing a Mechanically Robust SPME Sampler for the On-Site Sampling and Extraction of a Wide Range of Untargeted Pollutants in Environmental Waters. Environ. Pollut. 2019, 252, 825–834. DOI: 10.1016/j.envpol.2019.06.013.
  • Chaves, A. R.; Júnior, G. C.; Queiroz, M. E. C. Solid-Phase Microextraction Using Poly(Pyrrole) Film and Liquid Chromatography with UV Detection for Analysis of Antidepressants in Plasma Samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009, 877, 587–593. DOI: 10.1016/j.jchromb.2008.12.070.
  • Jafari, M.; Sedghi, R.; Ebrahimzadeh, H. A Platinum Wire Coated with a Composite Consisting of Poly Pyrrole and Poly (ɛ-Caprolactone) for Solid Phase Microextraction of the Antidepressant Imipramine Prior to Its Determination via Ion Mobility Spectrometry. Microchim. Acta. 2016, 183, 805–812. DOI: 10.1007/s00604-015-1719-x.
  • Abedi, H.; Ebrahimzadeh, H.; Ghasemi, J. B. Solid Phase Headspace Microextraction of Tricyclic Antidepressants Using a Directly Prepared Nanocomposite Consisting of Graphene, CTAB and Polyaniline. Microchim. Acta. 2015, 182, 633–641. DOI: 10.1007/s00604-014-1367-6.
  • Barati, E.; Alizadeh, N. Simultaneous Determination of Sertraline, Imipramine and Alprazolam in Human Plasma Samples Using Headspace Solid Phase Microextraction Based on a Nanostructured Polypyrrole Fiber Coupled to Ion Mobility Spectrometry. Anal. Methods. 2020, 12, 930–937. DOI: 10.1039/C9AY02001B.
  • Es’haghi, Z.; Rezaeifar, Z. Sol-Gel Approach for Fabrication of Solid-Phase Microextraction Hollow Fiber: An Efficient Adsorbent for Enrichment of Trace Levels of Antidepressant Drug, Fluoxetine. Biq. Iran. J. Anal. Chem. 2015, 2, 43.
  • Ghorbani, M.; Chamsaz, M.; Rounaghi, G. H. Glycine Functionalized Multiwall Carbon Nanotubes as a Novel Hollow Fiber Solid-Phase Microextraction Sorbent for Pre-Concentration of Venlafaxine and o-Desmethylvenlafaxine in Biological and Water Samples Prior to Determination by High-Performance Liquid Chromatography. Anal. Bioanal. Chem. 2016, 408, 4247–4256. DOI: 10.1007/s00216-016-9518-8.
  • Ghorbani, M.; Esmaelnia, M.; Aghamohammadhasan, M.; Akhlaghi, H.; Seyedin, O.; Azari, Z. A. Preconcentration and Determination of Fluoxetine and Norfluoxetine in Biological and Water Samples with β-Cyclodextrin Multi-Walled Carbon Nanotubes as a Suitable Hollow Fiber Solid Phase Microextraction Sorbent and High Performance Liquid Chromatography. J. Anal. Chem. 2019, 74, 540–549. DOI: 10.1134/S1061934819060030.
  • Fernández-Amado, M.; Prieto-Blanco, M.; López-Mahía, P.; Muniategui-Lorenzo, S.; Prada-Rodríguez, D. Strengths and Weaknesses of in-Tube Solid-Phase Microextraction: A Scoping Review. Anal. Chim. Acta. 2016, 906, 41–57. DOI: 10.1016/j.aca.2015.12.007.
  • Piri-Moghadam, H.; Lendor, S.; Pawliszyn, J. Development of a Biocompatible in-Tube Solid-Phase Microextraction Device: A Sensitive Approach for Direct Analysis of Single Drops of Complex Matrixes. Anal. Chem. 2016, 88, 12188–12195. DOI: 10.1021/acs.analchem.6b03160.
  • Moliner-Martinez, Y.; Herráez-Hernández, R.; Verdú-Andrés, J.; Molins-Legua, C.; Campíns-Falcó, P.; Verdú-Andrés, J.; Molins-Legua, C.; Campíns-Falcó, P. Recent Advances of in-Tube Solid-Phase Microextraction. TRAC, Trends Anal. Chem. 2015, 71, 205–213. DOI: 10.1016/j.trac.2015.02.020.
  • Queiroz, M. E. C.; Oliveira, E. B.; Breton, F.; Pawliszyn, J. Immunoaffinity In-Tube Solid Phase Microextraction Coupled with Liquid Chromatography-Mass Spectrometry for Analysis of Fluoxetine in Serum Samples. J. Chromatogr. A. 2007, 1174, 72–77. DOI: 10.1016/j.chroma.2007.09.026.
  • Silva, B. J. G.; Lanças, F. M.; Queiroz, M. E. C. Determination of Fluoxetine and Norfluoxetine Enantiomers in Human Plasma by Polypyrrole-Coated Capillary In-Tube Solid-Phase Microextraction Coupled with Liquid Chromatography-Fluorescence Detection. J. Chromatogr. A. 2009, 1216, 8590–8597. DOI: 10.1016/j.chroma.2009.10.034.
  • Zheng, M.-M.; Wang, S.-T.; Hu, W.-K.; Feng, Y.-Q. In-Tube Solid-Phase Microextraction Based on Hybrid Silica Monolith Coupled to Liquid Chromatography-Mass Spectrometry for Automated Analysis of Ten Antidepressants in Human Urine and Plasma. J. Chromatogr. A. 2010, 1217, 7493–7501. DOI: 10.1016/j.chroma.2010.10.002.
  • Shamsayei, M.; Yamini, Y.; Asiabi, H. Polythiophene/Graphene Oxide Nanostructured Electrodeposited Coating for on-Line Electrochemically Controlled in-Tube Solid-Phase Microextraction. J. Chromatogr. A. 2016, 1475, 8–17. DOI: 10.1016/j.chroma.2016.11.003.
  • Wei, F.; Fan, J.; Zheng, M. M.; Feng, Y. Q. Combining Poly (Methacrylic Acid-Co-Ethylene Glycol Dimethacrylate) Monolith Microextraction and Octadecyl Phosphonic Acid-Modified Zirconia-Coated CEC with Field-Enhanced Sample Injection for Analysis of Antidepressants in Human Plasma and Urine. Electrophoresis. 2010, 31, 714–723. DOI: 10.1002/elps.200900425.
  • Cai, J.; Zhu, G.-T.; He, X.-M.; Zhang, Z.; Wang, R.-Q.; Feng, Y.-Q. Polyoxometalate Incorporated Polymer Monolith Microextraction for Highly Selective Extraction of Antidepressants in Undiluted Urine. Talanta. 2017, 170, 252–259. DOI: 10.1016/j.talanta.2017.04.020.
  • Vejar-Vivar, C.; García-Valverde, M. T.; Mardones, C.; Lucena, R.; Cárdenas, S. Polydopamine Coated Hypodermic Needles as a Microextraction Device for the Determination of Tricyclic Antidepressants in Oral Fluid by Direct Infusion MS/MS. RSC Adv. 2021, 11, 22683–22690. DOI: 10.1039/D1RA02721B.
  • Abdel-Rehim, M. New Trend in Sample Preparation: On-line Microextraction in Packed Syringe for Liquid and Gas Chromatography Applications. I. Determination of Local Anaesthetics in Human Plasma Samples Using Gas Chromatography-Mass Spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2004, 801, 317–321. DOI: 10.1016/j.jchromb.2003.11.042.
  • Pereira, J. A.; Gonçalves, J.; Porto-Figueira, P.; Figueira, J. A.; Alves, V.; Perestrelo, R.; Medina, S.; Câmara, J. S. Current Trends on Microextraction by Packed Sorbent - Fundamentals, Application Fields, Innovative Improvements and Future Applications. Analyst. 2019, 144, 5048–5074. DOI: 10.1039/c8an02464b.
  • Duan, C.; Shen, Z.; Wu, D.; Guan, Y. Recent Developments in Solid-Phase Microextraction for On-Site Sampling and Sample Preparation. TRAC, Trends Anal. Chem. 2011, 30, 1568–1574. DOI: 10.1016/j.trac.2011.08.005.
  • Yang, L.; Said, R.; Abdel-Rehim, M. Sorbent, Device, Matrix and Application in Microextraction by Packed Sorbent (MEPS): A Review. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1043, 33–43. DOI: 10.1016/j.jchromb.2016.10.044.
  • Chaves, A. R.; Leandro, F. Z.; Carris, J. A.; Queiroz, M. E. C. Microextraction in Packed Sorbent for Analysis of Antidepressants in Human Plasma by Liquid Chromatography and Spectrophotometric Detection. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2010, 878, 2123–2129. DOI: 10.1016/j.jchromb.2010.06.023.
  • Rani, S.; Kumar, A.; Malik, A. K.; Singh, B. Quantification of Tricyclic and Nontricyclic Antidepressants in Spiked Plasma and Urine Samples Using Microextraction in Packed Syringe and Analysis by LC and GC-MS. Chromatographia. 2011, 74, 235–242. DOI: 10.1007/s10337-011-2052-0.
  • Alves, V.; Gonçalves, J.; Conceição, C.; Teixeira, H. M.; Câmara, J. S. An Improved Analytical Strategy Combining Microextraction by Packed Sorbent Combined with Ultra High Pressure Liquid Chromatography for the Determination of Fluoxetine, Clomipramine and Their Active Metabolites in Human Urine. J. Chromatogr. A. 2015, 1408, 30–40. DOI: 10.1016/j.chroma.2015.07.021.
  • Bagheri, H.; Banihashemi, S.; Zandian, F. K. Microextraction of Antidepressant Drugs into Syringes Packed with a Nanocomposite Consisting of Polydopamine, Silver Nanoparticles and Polypyrrole. Microchim. Acta. 2016, 183, 195–202. DOI: 10.1007/s00604-015-1606-5.
  • Magalhães, P.; Alves, G.; Llerena, A.; Falcão, A. Therapeutic Drug Monitoring of Fluoxetine, Norfluoxetine and Paroxetine: A New Tool Based on Microextraction by Packed Sorbent Coupled to Liquid Chromatography. J. Anal. Toxicol. 2017, 41, 631–638. DOI: 10.1093/jat/bkx043.
  • Fuentes, A. M. A.; Fernández, P.; Fernández, A. M.; Carro, A. M.; Lorenzo, R. A. Microextraction by Packed Sorbent Followed by Ultra High Performance Liquid Chromatography for the Fast Extraction and Determination of Six Antidepressants in Urine. J. Sep. Sci. 2019, 42, 2053–2061. DOI: 10.1002/jssc.201900060.
  • Hosseini, E.; Chamsaz, M.; Ghorbani, M. A Novel Ultrasonic Assisted Dispersive Solid Phase Microextraction for Preconcentration of Beryllium Ion in Real Samples Using CeO2 Nanoparticles and Its Determination by Flame Atomic Absorption Spectrometry. Eurasian J. Anal. Chem. 2017, 13, 1. DOI: 10.12973/ejac/78074.
  • Mohammadi, P.; Masrournia, M.; Es' Haghi, Z.; Pordel, M. Determination of Four Antiepileptic Drugs with Solvent Assisted Dispersive Solid Phase Microextraction–Gas Chromatography–Mass Spectrometry in Human Urine Samples. Microchem. J. 2020, 159, 105542. DOI: 10.1016/j.microc.2020.105542.
  • Ghorbani, M.; Aghamohammadhassan, M.; Ghorbani, H.; Zabihi, A. Trends in Sorbent Development for Dispersive Micro-Solid Phase Extraction. Microchem. J. 2020, 158, 105250. DOI: 10.1016/j.microc.2020.105250.
  • Asgharinezhad, A. A.; Karami, S.; Ebrahimzadeh, H.; Shekari, N.; Jalilian, N. Polypyrrole/Magnetic Nanoparticles Composite as an Efficient Sorbent for Dispersive Micro-Solid-Phase Extraction of Antidepressant Drugs from Biological Fluids. Int. J. Pharm. 2015, 494, 102–112. DOI: 10.1016/j.ijpharm.2015.08.001.
  • Dil, E. A.; Ghaedi, M.; Asfaram, A.; Mehrabi, F.; Bazrafshan, A. A.; Ghaedi, A. M. Trace Determination of Safranin O Dye Using Ultrasound Assisted Dispersive Solid-Phase Micro Extraction: Artificial Neural Network-Genetic Algorithm and Response Surface Methodology. Ultrason. Sonochem. 2016, 33, 129–140. DOI: 10.1016/j.ultsonch.2016.04.031.
  • Ghorbani, M.; Chamsaz, M.; Rounaghi, G. H.; Aghamohammadhasani, M.; Seyedin, O.; Lahoori, N. A. Development of a Novel Ultrasonic-Assisted Magnetic Dispersive Solid-Phase Microextraction Method Coupled with High Performance Liquid Chromatography for Determination of Mirtazapine and Its Metabolites in Human Urine and Water Samples Employing Experimental Design. Anal. Bioanal. Chem. 2016, 408, 7719–7729. DOI: 10.1007/s00216-016-9869-1.
  • Ghorbani, M.; Chamsaz, M.; Aghamohammadhasan, M.; Shams, A. Ultrasonic Assisted Magnetic Dispersive Solid Phase Microextraction for Pre Concentration of Serotonin-Norepinephrine Reuptake Inhibitor Drugs. Anal. Biochem. 2018, 551, 7–18. DOI: 10.1016/j.ab.2018.05.003.
  • Kamaruzaman, S.; Sanagi, M. M.; Yahaya, N.; Wan Ibrahim, W. A.; Endud, S.; Wan Ibrahim, W. N. Magnetic Micro‐Solid‐Phase Extraction Based on Magnetite‐MCM‐41 with Gas Chromatography–Mass Spectrometry for the Determination of Antidepressant Drugs in Biological Fluids. J. Sep. Sci. 2017, 40, 4222–4233. DOI: 10.1002/jssc.201700549.
  • Ghorbani, M.; Mohammadi, P.; Keshavarzi, M.; Saghi, M. H.; Mohammadi, M.; Shams, A.; Aghamohammadhasan, M. Simultaneous Determination of Organophosphorus Pesticides Residues in Vegetable, Fruit Juice, and Milk Samples with Magnetic Dispersive Micro Solid-Phase Extraction and Chromatographic Method; Recruitment of Simplex Lattice Mixture Design for Optimization of Novel Sorbent Composites. Anal. Chim. Acta. 2021, 1178, 338802. DOI: 10.1016/j.aca.2021.338802.
  • Safari, M.; Shahlaei, M.; Yamini, Y.; Shakorian, M.; Arkan, E. Magnetic Framework Composite as Sorbent for Magnetic Solid Phase Extraction Coupled with High Performance Liquid Chromatography for Simultaneous Extraction and Determination of Tricyclic Antidepressants. Anal. Chim. Acta. 2018, 1034, 204–213. DOI: 10.1016/j.aca.2018.06.023.
  • Fahimirad, B.; Rajabi, M.; Elhampour, A. A Rapid and Simple Extraction of Anti-Depressant Drugs by Effervescent Salt-Assisted Dispersive Magnetic Micro Solid-Phase Extraction Method Using New Adsorbent Fe3O4@SiO2@N3. Anal. Chim. Acta. 2019, 1047, 275–284. DOI: 10.1016/j.aca.2018.10.028.
  • He, M.; Chen, B.; Hu, B. Recent Developments in Stir Bar Sorptive Extraction. Anal. Bioanal. Chem. 2014, 406, 2001–2026. DOI: 10.1007/s00216-013-7395-y.
  • Melo, L.; Nogueira, A.; Lancas, F.; Queiroz, M. Polydimethylsiloxane/Polypyrrole Stir Bar Sorptive Extraction and Liquid Chromatography (SBSE/LC-UV) Analysis of Antidepressants in Plasma Samples. Anal. Chim. Acta. 2009, 633, 57–64. DOI: 10.1016/j.aca.2008.11.042.
  • Ide, A.; Nogueira, J. New-Generation Bar Adsorptive Microextraction (BAμE) Devices for a Better Eco-User-Friendly Analytical Approach–Application for the Determination of Antidepressant Pharmaceuticals in Biological Fluids. J. Pharm. Biomed. Anal. 2018, 153, 126–134. DOI: 10.1016/j.jpba.2018.02.001.
  • Oliveira, M. N.; Gonçalves, O. C.; Ahmad, S. M.; Schneider, J. K.; Krause, L. C.; Neng, N. R.; Caramão, E. B.; Nogueira, J. M. Application of Bar Adsorptive Microextraction for the Determination of Levels of Tricyclic Antidepressants in Urine Samples. Molecules. 2021, 26, 3101. DOI: 10.3390/molecules26113101.
  • Mohammadkhani, E.; Yamini, Y.; Rezazadeh, M.; Seidi, S. Electromembrane Surrounded Solid Phase Microextraction Using Electrochemically Synthesized Nanostructured Polypyrrole Fiber. J. Chromatogr. A. 2016, 1443, 75–82. DOI: 10.1016/j.chroma.2016.03.067.
  • Zilfidou, E.; Kabir, A.; Furton, K. G.; Samanidou, V. Fabric Phase Sorptive Extraction: current State of the Art and Future Perspectives. Separations. 2018, 5, 40. DOI: 10.3390/separations5030040.
  • Kazantzi, V.; Anthemidis, A. Fabric Sol–Gel Phase Sorptive Extraction Technique: A Review. Separations. 2017, 4, 20. DOI: 10.3390/separations4020020.
  • Lioupi, A.; Kabir, A.; Furton, K. G.; Samanidou, V. Fabric Phase Sorptive Extraction for the Isolation of Five Common Antidepressants from Human Urine Prior to HPLC-DAD Analysis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1118–1119, 171–179. DOI: 10.1016/j.jchromb.2019.04.045.
  • Mohebbi, A.; Yaripour, S.; Farajzadeh, M. A.; Mogaddam, M. R. A. Combination of Dispersive Solid Phase Extraction and Deep Eutectic Solvent-Based Air-Assisted Liquid-Liquid Microextraction Followed by Gas Chromatography-Mass Spectrometry as an Efficient Analytical Method for the Quantification of Some Tricyclic Antidepressant Drugs in Biological Fluids. J. Chromatogr. A. 2018, 1571, 84–93. DOI: 10.1016/j.chroma.2018.08.022.
  • Jalilian, N.; Asgharinezhad, A. A.; Ebrahimzadeh, H.; Molaei, K.; Karami, S. Magnetic Solid Phase Extraction Based on Modified Magnetite Nanoparticles Coupled with Dispersive Liquid–Liquid Microextraction as an Efficient Method for Simultaneous Extraction of Hydrophobic and Hydrophilic Drugs. Chromatographia. 2018, 81, 1569–1578. DOI: 10.1007/s10337-018-3612-3.
  • Gupta, V.; Ali, I.; Agarwal, S. Enantiomeric Analysis of Citalopram in Human Plasma by SPE and Chiral HPLC Method. Int. J. Electrochem. Sci. 2011, 6, 5639.
  • Ali, I.; Hussain, A.; Saleem, K.; Aboul-Enein, H. Separation and Identification of Antidepressant Drugs in Human Plasma by Solid-Phase Extraction-Thin-Layer Chromatography. JPC-J. Planar Chromatogr.-Mod. TLC. 2013, 26, 349–353. DOI: 10.1556/JPC.26.2013.4.10.
  • Marumo, A.; Kumazawa, T.; Lee, X.-P.; Hasegawa, C.; Suzuki, O.; Sato, K. Utility of Disk Solid-Phase Extraction for Whole Blood Samples: Analysis of Some Tetracyclic Antidepressants by Gas Chromatography with Nitrogen-Phosphorus Detection. Forensic Toxicol. 2008, 26, 13–18. DOI: 10.1007/s11419-008-0045-y.
  • de Santana, F. J. M.; Bonato, P. S. Enantioselective Analysis of Mirtazapine and Its Two Major Metabolites in Human Plasma by Liquid Chromatography-Mass Spectrometry after Three-Phase Liquid-Phase Microextraction. Anal. Chim. Acta. 2008, 606, 80–91. DOI: 10.1016/j.aca.2007.10.037.
  • dos Santos, M. F.; Yamada, A.; Seulin, S. C.; Leyton, V.; Pasqualucci, C. A. G.; Muñoz, D. R.; Yonamine, M. Liquid-Phase Microextraction and Gas Chromatographic-Mass Spectrometric Analysis of Antidepressants in Vitreous Humor: Study of Matrix Effect of Human and Bovine Vitreous and Saline Solution. J. Anal. Toxicol. 2016, 40, 187–193. DOI: 10.1093/jat/bkv141.
  • Vaghar-Lahijani, G.; Aberoomand-Azar, P.; Saber-Tehrani, M.; Soleimani, M. Application of Ionic Liquid-Based Ultrasonic-Assisted Microextraction Coupled with HPLC for Determination of Citalopram and Nortriptyline in Human Plasma. J. Liq. Chromatogr. Relat. Technol. 2017, 40, 1–7. DOI: 10.1080/10826076.2016.1274999.
  • Runfola, M.; Lima, D. L.; Fonseca, A. P.; Barbosa, Z. Optimization of a Dispersive Liquid-Liquid Microextraction Method Followed by UHPLC Analysis for Fluoxetine Quantification in Environmental Water Resources. J. Sep. Sci. 2018, 41, 4246–4252. DOI: 10.1002/jssc.201800727.
  • Vaghar-Lahijani, G.; Saber-Tehrani, M.; Aberoomand-Azar, P.; Soleimani, M. Extraction and Determination of Two Antidepressant Drugs in Human Plasma by Dispersive Liquid-Liquid Microextraction—HPLC. J. Anal. Chem. 2018, 73, 145–151. DOI: 10.1134/S1061934818020144.
  • Lima, D. L.; Silva, C. P.; Otero, M. Dispersive Liquid-Liquid Microextraction for the Quantification of Venlafaxine in Environmental Waters. J. Environ. Manage. 2018, 217, 71–77. DOI: 10.1016/j.jenvman.2018.03.060.
  • Wang, Z. R.; Hsieh, M. M. Ultrasound-assisted Dispersive Liquid-Liquid Microextraction Coupled with Field-Amplified Capillary Electrophoresis for Sensitive and Quantitative Determination of Fluoxetine and Norfluoxetine Enantiomers in Biological Fluids. Anal. Bioanal. Chem. 2020, 412, 5113–5123. DOI: 10.1007/s00216-020-02441-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.