445
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Authentication of Herbal Medicines Based on Modern Analytical Technology Combined with Chemometrics Approach: A Review

, , &
Pages 1393-1418 | Published online: 06 Jan 2022

References

  • World Health Organization. General Guidelines for Methodologies on Research and Evaluation of Traditional Medicine; World Health Organization: Switzerland, Geneva, 2000.
  • Sendker, J.; Sheridan, H. Toxicology of Herbal Products; Springer International: Switzerland, Cham, 2017. DOI: 10.1007/978-3-319-43806-1_3.
  • Kong, D. X.; Li, X. J.; Zhang, H. Y. Where is the Hope for Drug Discovery? Let History Tell the Future. Drug Discov Today 2009, 14, 115–119. DOI: 10.1016/j.drudis.2008.07.002.
  • Shu, Z. H.; Li, X. Q.; Rahman, K.; Zheng, C. J.; Qin, L. P. Chemical Fingerprint and Quantitative Analysis for the Quality Evaluation of Vitex Negundo Seeds by RP-HPLC Coupled with Hierarchical Clustering Analysis. J. Sep. Science. 2016, 39, 279–286. DOI: 10.1002/jssc.201500796.
  • Longobardi, F.; Innamorato, V.; Di Gioia, A.; Ventrella, A.; Lippolis, V.; Logrieco, A. F.; Catucci, L.; Agostiano, A. Geographical Origin Discrimination of Lentils (Lens Culinaris Medik.) Using 1H NMR Fingerprinting and Multivariate Statistical Analyses. Food Chem. 2017, 237, 743–748. DOI: 10.1016/j.foodchem.2017.05.159.
  • Liu, L.; Zuo, Z. T.; Wang, Y. Z.; Xu, F. R. A Fast Multi-Source Information Fusion Strategy Based on FTIR Spectroscopy for Geographical Authentication of Wild Gentiana rigescens. Microchem. J. 2020, 159, 105360. DOI: 10.1016/j.microc.2020.105360.
  • Tankeu, S.; Vermaak, I.; Chen, W. Y.; Sandasi, M.; Viljoen, A. Differentiation between Two “Fang Ji” Herbal Medicines, Stephania tetrandra and the Nephrotoxic Aristolochia fangchi, Using Hyperspectral Imaging. Phytochemistry. 2016, 122, 213–222. DOI: 10.1016/j.phytochem.2015.11.008.
  • Lan, Z.; Zhang, Y.; Sun, Y.; Ji, D.; Wang, S.; Lu, T.; Cao, H.; Meng, J. Quantitative Detection of the Discrepant Compounds in Differently Processed Curcumae Rhizoma Products by FT-NIR Combined with VCPA-GA Technology. J. Pharmaceut. Biomed. 2021, 195, 113837. DOI: 10.1016/j.jpba.2020.113837.
  • Gilbert, N. Herbal Medicine Rule Book: Can Western Guidelines Govern Eastern Herbal Traditions? Nature (London). 2011, 480, S98–S99. DOI: 10.1038/480S98a.
  • Liu, X. Y.; Jiang, W. W.; Su, M.; Sun, Y.; Liu, H. M.; Nie, L.; Zang, H. C. Quality Evaluation of Traditional Chinese Medicines Based on Fingerprinting. J. Sep. Sci. 2020, 43, 6–17. DOI: 10.1002/jssc.201900365.
  • Welsh, W. J.; Lin, W. K.; Tersigni, S. H.; Collantes, E.; Duta, R.; Carey, M. S.; Zielinski, W. L.; Brower, J.; Spencer, J. A.; Layloff, T. P. Pharmaceutical Fingerprinting: Evaluation of Neural Networks and Chemometric Techniques for Distinguishing among Same-Product manufacturers. Anal. Chem. 1996, 68, 3473–3482. DOI: 10.1021/ac951164e.
  • Saberi, N.; Akhgari, M.; Bahmanabadi, L.; Bazmi, E.; Mousavi, Z. Determination of Synthetic Pharmaceutical Adulterants in Herbal Weight Gain Supplements Sold in Herb Shops, Tehran, Iran. Daru. 2018, 26, 117–127. DOI: 10.1007/s40199-018-0216-2.
  • Pan, Y.; Zhang, J.; Shen, T.; Zhao, Y. L.; Zuo, Z. T.; Wang, Y. Z.; Li, W. Y. Liquid Chromatography Tandem Mass Spectrometry Combined with Fourier Transform Mid-Infrared Spectroscopy and Chemometrics for Comparative Analysis of Raw and Processed Gentiana rigescens. J. Liq. Chromatogr. R. T. 2015, 38, 1407–1416. DOI: 10.1080/10826076.2015.1053912.
  • Li, C.; Qin, Y. H.; Yang, Q. X.; You, J. H.; Liu, Z. H.; Han, J. M.; Li, E. X.; Zhang, C. M. Multivariate Quantitative Analysis of Quality Trend Based on Non-Volatile Characteristic Components in Different Panax notoginseng Samples Using HPLC. J. Pharmaceut. Biomed. 2020, 182, 113127. DOI: 10.1016/j.jpba.2020.113127.
  • Huang, Y. P.; Wu, Z. W.; Su, R. H.; Ruan, G. H.; Du, F. Y.; Li, G. K. Current Application of Chemometrics in Traditional Chinese Herbal Medicine Research. J. Chromatogr. B. 2016, 1026, 27–35. DOI: 10.1016/j.jchromb.2015.12.050.
  • Gong, F.; Liang, Y. Z.; Fung, Y. S.; Chau, F. T. Correction of Retention Time Shifts for Chromatographic Fingerprints of Herbal Medicines. J. Chromatogr. A. 2004, 1029, 173–183. DOI: 10.1016/j.chroma.2003.12.049.
  • Luo, J. Y.; Chen, G. S.; Liu, D. H.; Wang, Y.; Qi, Q.; Hu, H. Y.; Li, P. Y.; Bai, J.; Du, S. Y.; Lu, Y.; et al. Study on the Material Basis of Houpo Wenzhong Decoction by HPLC Fingerprint, UHPLC-ESI-LTQ-Orbitrap-MS, and Network Pharmacology. Molecules. 2019, 24, 2561. DOI: 10.3390/molecules24142561.
  • Li, X.; Wang, Y. R.; Ma, L.; Cui, J. X.; Hong, W. X. Application of the Quality Evaluation of Traditional Chinese Herbal Medicines Using Chromatography of Fingerprint. J. Biomed. Eng. 2012, 29, 192–196.
  • Goodarzi, M.; Russell, P. J.; Heyden, Y. V. Similarity Analyses of Chromatographic Herbal Fingerprints: A Review. Anal. Chim. Acta. 2013, 804, 16–28. DOI: 10.1016/j.aca.2013.09.017.
  • McKenzie, J. S.; Donarski, J. A.; Wilson, J. C.; Charlton, A. J. Analysis of Complex Mixtures Using High-Resolution Nuclear Magnetic Resonance Spectroscopy and Chemometrics. Prog. Nucl. Mag. Res. Sp. 2011, 59, 336–359. DOI: 10.1016/j.pnmrs.2011.04.003.
  • An, Y. W.; Hu, G.; Yin, G. P.; Zhu, J. J.; Zhang, Q. W.; Wang, Z. M.; Peng, J.; Fan, B. Quantitative Analysis and Discrimination of Steamed and Non-Steamed Rhizomes of Curcuma wenyujin by GC-MS and HPLC. J. Chromatogr. Sci. 2014, 52, 961–970. DOI: 10.1093/chromsci/bmt149.
  • Siouffi, A. M. From Paper to Planar: 60 Years of Thin Layer Chromatography. Sep. Purif. Rev. 2005, 34, 155–180. DOI: 10.1080/15422110500322990.
  • Gotti, R. Capillary Electrophoresis of Phytochemical Substances in Herbal Drugs and Medicinal Plants. J. Pharmaceut. Biomed. 2011, 55, 775–801. DOI: 10.1016/j.jpba.2010.11.041.
  • Liang, Y. Z.; Xie, P. S.; Chan, K. Quality Control of Herbal Medicines. J. Chromatogr. B. 2004, 812, 53–70. DOI: 10.1016/j.jchromb.2004.08.041.
  • Ganzera, M. Quality Control of Herbal Medicines by Capillary Electrophoresis: Potential, Requirements and Applications. Electrophoresis. 2008, 29, 3489–3503. DOI: 10.1002/elps.200700901.
  • Cao, J. L.; Wei, J. C.; Chen, M. W.; Su, H. X.; Wan, J. B.; Wang, Y. T.; Li, P. Application of Two-Dimensional Chromatography in the Analysis of Chinese Herbal Medicines. J. Chromatogr. A. 2014, 1371, 1–14. DOI: 10.1016/j.chroma.2014.10.078.
  • He, M.; Yang, Z. Y.; Yang, T. B.; Ye, Y.; Nie, J.; Hu, Y.; Pan, Y. Chemometrics-Enhanced One-Dimensional/Comprehensive Two-Dimensional Gas Chromatographic Analysis for Bioactive Terpenoids and Phthalides in Chaihu Sugan San Essential Oils. J. Chromatogr. B. 2017, 1052, 158–168. DOI: 10.1016/j.jchromb.2017.03.029.
  • Liang, Y. Z.; Xie, P. S.; Chan, K. Perspective of Chemical Fingerprinting of Chinese Herbs. Planta Med. 2010, 76, 1997–2003. DOI: 10.1055/s-0030-1250541.
  • Peng, C.; Zhu, Y. L.; Yan, F. L.; Su, Y.; Zhu, Y. Q.; Zhang, Z. Y.; Zuo, C. J.; Wu, H.; Zhang, Y. J.; Kan, J. Y.; Peng, D. Y. The Difference of Origin and Extraction Method Significantly Affects the Intrinsic Quality of Licorice: A New Method for Quality Evaluation of Homologous Materials of Medicine and Food. Food Chem. 2021, 340, 127907 DOI: 10.1016/j.foodchem.2020.127907.
  • Zhao, X. S.; Zeng, Y. X.; Zhou, Y. K.; Li, R. T.; M. H. Gas, Y. Chromatography-Mass Spectrometry for Quantitative and Qualitative Analysis of Essential Oil from Curcuma wenyujin Rhizomes. WJTCM. 2021, 7, 138–145. DOI: 10.4103/wjtcm.wjtcm_87_20.
  • Lei, H. B.; Zhang, Y. H.; Zu, X. P.; Ye, J.; Liang, Y. L.; Cheng, T. F.; Zhang, W. D. Comprehensive Profiling of the Chemical Components and Potential Markers in Raw and Processed Cistanche tubulosa by Combining Ultra-High-Performance Liquid Chromatography Coupled with Tandem Mass Spectrometry and MS/MS-Based Molecular Networking. Anal. Bioanal. Chem. 2021, 413, 12–139. DOI: 10.1007/s00216-020-02983-0.
  • Wang, Q. Q.; Zuo, Z. T.; Huang, H. Y.; Wang, Y. Z. Comparison and Quantitative Analysis of Wild and Cultivated Macrohyporia cocos Using Attenuated Total refection-Fourier Transform Infrared Spectroscopy Combined with Ultra-Fast Liquid Chromatography. Spectrochim. Acta. A. 2020, 226, 117633. DOI: 10.1016/j.saa.2019.117633.
  • Bhooma, V.; Nagasathiya, K.; Vairamani, M.; Parani, M. Identification of Synthetic Dyes Magenta III (New Fuchsin) and Rhodamine B as Common Adulterants in Commercial Saffron. Food Chem. 2020, 309, 125793 DOI: 10.1016/j.foodchem.2019.125793.
  • Chen, J. H.; Zhao, H. Q.; Wang, X. R.; Lee, F. S.; Yang, H. H.; Zheng, L. Analysis of Major Alkaloids in Rhizoma coptidis by Capillary Electrophoresis-Electrospray-Time of Flight Mass Spectrometry with Different Background Electrolytes. Electrophoresis. 2008, 29, 2135–2147. DOI: 10.1002/elps.200700797.
  • Sun, S. S.; Li, Y. C.; Zhu, L. J.; Ma, H. Y.; Li, L. P.; Liu, Y. F. Accurate Discrimination of Gastrodia Elata from Different Geographical Origins Using High-Performance Liquid Chromatography Fingerprint Combined with Boosting Partial Least-Squares Discriminant Analysis. J. Sep. Sci. 2019, 42, 2875–2882. DOI: 10.1002/jssc.201900073.
  • Qin, Y. D.; Fang, F. M.; Wang, R. B.; Zhou, J. J.; Li, L. H. Differentiation between Wild and Artificial Cultivated Stephaniae Tetrandrae Radix Using Chromatographic and Flow-Injection Mass Spectrometric Fingerprints with the Aid of Principal Component Analysis. Food Sci. Nutr. 2020, 8, 4223–4231. DOI: 10.1002/fsn3.1717.
  • Xu, X. F.; Cheng, X. L.; Lin, Q. H.; Li, S. S.; Jia, Z.; Han, T.; Lin, R. C.; Wang, D.; Wei, F.; Li, X. R. Identification of Mountain-Cultivated Ginseng and Cultivated Ginseng Using UPLC/oa-TOF MSE with a Multivariate Statistical Sample-Profiling Strategy. J. Ginseng Res. 2016, 40, 344–350. DOI: 10.1016/j.jgr.2015.11.001.
  • Casale, M.; Bagnasco, L.; Zotti, M.; Piazza, S. D.; Sitta, N.; Oliveri, P. A NIR Spectroscopy-Based Efficient Approach to Detect Fraudulent Additions within Mixtures of Dried Porcini Mushrooms. Talanta. 2016, 160, 729–734. DOI: 10.1016/j.talanta.2016.08.004.
  • Jiang, Y.; David, B.; Tu, P. F.; Barbin, Y. Recent Analytical Approaches in Quality Control of Traditional Chinese medicines-a review. Anal. Chim. Acta. 2010, 657, 9–18. DOI: 10.1016/j.aca.2009.10.024.
  • Nugroho, A.; Ritonga, F. D. Rapid Analysis of Adulterated Dexamethasone in Joint-Pain Killer Traditional Herbal Medicine (THM) Using Infrared Spectroscopy. J. Biomed. Eng. 2018, 18, 137–145.
  • Moros, J.; Garrigues, S.; Guardia, M. D. L. Vibrational Spectroscopy Provides a Green Tool for Multi-Component Analysis. TrAC-Trend Anal. Chem. 2010, 29, 578–591. DOI: 10.1016/j.trac.2009.12.012.
  • Cevoli, C.; Gori, A.; Nocetti, M.; Cuibus, L.; Caboni, M. F.; Fabbri, A. FT-NIR and FT-MIR Spectroscopy to Discriminate Competitors, Non Compliance and Compliance Grated Parmigiano Reggiano Cheese. Food Res. Int. 2013, 52, 214–220. DOI: 10.1016/j.foodres.2013.03.016.
  • Wang, Y.; Huang, H. Y.; Zuo, Z. T.; Wang, Y. Z. Comprehensive Quality Assessment of Dendrubium officinale Using ATR-FTIR Spectroscopy Combined with Random Forest and Support Vector Machine Regression. Spectrochim. Acta. A. 2018, 205, 637–648. DOI: 10.1016/j.saa.2018.07.086.
  • Larkin, P. Infrared and Raman Spectroscopy: principles and Spectral Interpretation; Elsevier LTD: Amsterdam, 2017.
  • Chase, D. B. Fourier Transform Raman Spectroscopy. J. Am. Chem. Soc. 1986, 108, 7485–7488. DOI: 10.1021/ja00284a007.
  • Zhang, X. F.; Zhang, S. J.; Gao, B. B.; Qian, Z.; Liu, J. J.; Wu, S. H.; Si, J. P. Identification and Quantitative Analysis of Phenolic Glycosides with Antioxidant Activity in Methanolic Extract of Dendrobium Catenatum Flowers and Selection of Quality Control Herb-Markers. Food Res. Int. 2019, 123, 732–745. DOI: 10.1016/j.foodres.2019.05.040.
  • Park, Y.; Jin, S.; Noda, I.; Jung, Y. M. Emerging Developments in Two-Dimensional Correlation Spectroscopy (2D-COS). J. Mol. Struct. 2020, 1217, 128405. DOI: 10.1016/j.molstruc.2020.128405.
  • Gowen, A.; Odonnell, C.; Cullen, P.; Downey, G.; Frias, J. Hyperspectral Imaging-an Emerging Process Analytical Tool for Food Quality and Safety Control. Trends Food Sci. Tech. 2007, 18, 590–598. DOI: 10.1016/j.tifs.2007.06.001.
  • Barreto, A.; Cruz-Tirado, J. P.; Siche, R.; Quevedo, R. Determination of Starch Content in Adulterated Fresh Cheese Using Hyperspectral Imaging. Food Biosci. 2018, 21, 14–19. DOI: 10.1016/j.fbio.2017.10.009.
  • Mazurek, S.; Fecka, I.; Węglińska, M.; Szostak, R. Quantification of Active Ingredients in Potentilla tormentilla by Raman and Infrared Spectroscopy. Talanta. 2018, 189, 308–314. DOI: 10.1016/j.talanta.2018.07.012.
  • Nie, P. C.; Wu, D.; Sun, D. W.; Cao, F.; Bao, Y. D.; He, Y. Potential of Visible and Near Infrared Spectroscopy and Pattern Recognition for Rapid Quantification of Notoginseng Powder with Adulterants. Sensors (Basel). 2013, 13, 13820–13834. DOI: 10.3390/s131013820.
  • Amirvaresi, A.; Nikounezhad, N.; Amirahmadi, M.; Daraei, B.; Parastar, H. Comparison of Near-Infrared (NIR) and Mid-Infrared (MIR) Spectroscopy Based on Chemometrics for Saffron Authentication and Adulteration Detection. Food Chem. 2021, 344, 128647 DOI: 10.1016/j.foodchem.2020.128647.
  • Burgalossi, A.; Herfst, L.; von Heimendahl, M. V.; Förste, H.; Haskic, K.; Schmidt, M.; Brecht, M. Microcircuits of Functionally Identified Neurons in the Rat Medial Entorhinal Cortex. Neuron (Cambridge, Mass.). 2011, 70, 773–786. DOI: 10.1016/j.neuron.2011.04.003.
  • Ding, Y. G.; Zhang, Q. Z.; Wang, Y. Z. A Fast and Effective Way for Authentication of Dendrobium Species: 2DCOS Combined with ResNet Based on Feature Bands Extracted by Spectrum Standard Deviation. Spectrochim. Acta. A. 2021, 261, 120070. DOI: 10.1016/j.saa.2021.120070.
  • Wu, X. M.; Zhang, Q. Z.; Wang, Y. Z. Traceability of Wild Paris Polyphylla Smith Var. yunnanensis Based on Data Fusion Strategy of FT-MIR and UV-Vis Combined with SVM and Random Forest. Spectrochim. Acta. A. 2018, 205, 479–488. DOI: 10.1016/j.saa.2018.07.067.
  • Tan, C. S.; Leow, S. Y.; Ying, C.; Tan, C. J.; Yoon, T. L.; Chen, J. Y.; Yam, M. F. Comparison of FTIR Spectrum with Chemometric and Machine Learning Classifying Analysis for Differentiating Guan-Mutong a Nephrotoxic and Carcinogenic Traditional Chinese Medicine with Chuan-Mutong. Microchem. J. 2021, 163, 105835. DOI: 10.1016/j.microc.2020.105835.
  • Yang, J.; Yin, C. L.; Miao, X.; Meng, X. R.; Liu, Z. M.; Hu, L. Q. Rapid Discrimination of Adulteration in Radix Astragali Combining Diffuse Reflectance Mid-Infrared Fourier Transform Spectroscopy with Chemometrics. Spectrochim. Acta. A. 2021, 248, 119251. DOI: 10.1016/j.saa.2020.119251.
  • Chen, Y.; Huang, J. F.; Yeap, Z. Q.; Zhang, X.; Wu, S. S.; Ng, C. H.; Yam, M. F. Rapid Authentication and Identification of Different Types of A. roxburghii by Tri-Step FT-IR Spectroscopy. Spectrochim. Acta A. 2018, 199, 271–282. DOI: 10.1016/j.saa.2018.03.061.
  • Li, Y.; Wang, Y. Differentiation and Comparison of Wolfiporia cocos Raw Materials Based on Multi-Spectral Information Fusion and Chemometric Methods. Sci. Rep. 2018, 8, 1–14. DOI: 10.1038/s41598-018-31264-1.
  • Kang, Q.; Ru, Q. G.; Liu, Y.; Xu, L. Y.; Liu, J.; Wang, Y. F.; Zhang, Y. W.; Li, H.; Zhang, Q.; Wu, Q. On-Line Monitoring the Extract Process of Fu-Fang Shuanghua Oral Solution Using near Infrared Spectroscopy and Different PLS Algorithms. Spectrochim. Acta. A. 2016, 152, 431–437. DOI: 10.1016/j.saa.2015.07.098.
  • Chen, Y.; Chen, M.; Zhang, S. Y.; Ma, H.; Wang, J.; Lu, H. W.; Wu, Y. J. Rapid Determination of Geniposide in the Extraction and Concentration Processes of Lanqin Oral Solution by near-Infrared Spectroscopy Coupled with Chemometric Algorithms. Vib. Spectrosc. 2020, 107, 103023. DOI: 10.1016/j.vibspec.2020.103023.
  • Kwon, Y. K.; Bong, Y. S.; Lee, K. S.; Hwang, G. S. An Integrated Analysis for Determining the Geographical Origin of Medicinal Herbs Using ICP-AES/ICP-MS and 1H NMR Analysis. Food Chem. 2014, 161, 168–175. DOI: 10.1016/j.foodchem.2014.03.124.
  • Santamaria-Fernandez, R.; Earn, R.; Wolff, J. C. Detection of Counterfeit Antiviral Drug Heptodin™ and Classification of Counterfeits Using Isotope Amount Ratio Measurements by Multicollector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS) and Isotope Ratio Mass Spectrometry (IRMS). Sci. Justice. 2009, 49, 102–106. DOI: 10.1016/j.scijus.2008.12.003.
  • Okem, A.; Southway, C.; Dhlala, A. R.; Van Staden, J. Determination of Total and Bioavailable Heavy and Trace Metals in South African Commercial Herbal Concoctions Using ICP-OES. S. Afr. J. Bot. 2012, 82, 75–82. DOI: 10.1016/j.sajb.2012.07.005.
  • Li, Y.; Shen, Y.; Yao, C. L.; Guo, D. A. Quality Assessment of Herbal Medicines Based on Chemical Fingerprints Combined with Chemometrics Approach: A Review. J. Pharmaceut. Biomed. 2020, 185, 113215. DOI: 10.1016/j.jpba.2020.113215.
  • Hahn, D. W.; Omenetto, N. Laser-Induced Breakdown Spectroscopy (LIBS), Part I: Review of Basic Diagnostics and Plasma-Particle Interactions: Still-Challenging Issues within the Analytical Plasma Community. Appl. Spectrosc. 2010, 64, 335A–336A. DOI: 10.1366/000370210793561691.
  • Jiang, Y. H.; Kang, J.; Wang, Y. R.; Chen, Y. Q.; Li, R. H. Rapid and Sensitive Analysis of Trace Leads in Medicinal Herbs Using Laser-Induced Breakdown Spectroscopy-Laser-Induced Fluorescence (LIBS-LIF). Appl. Spectrosc. 2019, 73, 1284–1291. DOI: 10.1177/0003702819857740.
  • Vanhoof, C.; Bacon, J. R.; Ellis, A. T.; Fittschen, U. E. A.; Vincze, L. 2019 Atomic Spectrometry Update-a Review of Advances in X-Ray Fluorescence Spectrometry and Its Special Applications. J. Anal. At. Spectrom. 2019, 34, 1750–1767. DOI: 10.1039/C9JA90042J.
  • Eppler, A. S.; Cremers, D. A.; Hickmott, D. D.; Ferris, M. J.; Koskelo, A. C. Matrix Effects in the Detection of Pb and Ba in Soils Using Laser-Induced Breakdown Spectroscopy. Appl. Spectrosc. 1996, 50, 1175–1181. DOI: 10.1366/0003702963905123.
  • Hassan, M.; Sighicelli, M.; Lai, A.; Colao, F.; Ahmed, A. H.; Fantoni, R.; Harith, M. A. Studying the Enhanced Phytoremediation of Lead Contaminated Soils via Laser Induced Breakdown Spectroscopy. Spectrochim. Acta. B 2008, 63, 1225–1229. DOI: 10.1016/j.sab.2008.09.015.
  • Wang, W. J.; Guan, Y.; Zhu, Y. Y. Novel Identification of Donkeyhide Glue by X-Ray Fluorescence. Spectrosc. Spect. Anal. 2007, 27, 1866–1868.
  • Soares, F.; Anzanello, M. J.; Fogliatto, F. S.; Ortiz, R. S.; Mariotti, K. C.; Ferrao, F. M. Enhancing Counterfeit and Illicit Medicines Grouping via Feature Selection and X-Ray Fluorescence (XRF) Spectrometry. J. Pharmaceut. Biomed. 2019, 174, 198–205. DOI: 10.1016/j.jpba.2019.05.064.
  • Ortiz, R. S.; Mariotti, K. C.; Schwab, N. V.; Sabin, G. P.; Rocha, W. F. C.; de Castro, E. V.; Limberger, R. P.; Mayorga, P.; Bueno, M. I.; Romão, W. Fingerprinting of Sildenafil Citrate and Tadalafil Tablets in Pharmaceutical Formulations via X-Ray Fluorescence (XRF) Spectrometry. J. Pharmaceut. Biomed. 2012, 58, 7–11. DOI: 10.1016/j.jpba.2011.09.005.
  • Worku, M.; Upadhayay, H. R.; Latruwe, K.; Taylor, A.; Blake, W.; Vanhaecke, F.; Duchateau, L.; Boeckx, P. Differentiating the Geographical Origin of Ethiopian Coffee Using XRF- and ICP-based multi-element and stable isotope profiling. Food Chem. 2019, 290, 295–307. DOI: 10.1016/j.foodchem.2019.03.135.
  • Behera, P. R.; Nayak, P.; Barik, D. P.; Rautray, T. R.; Thirunavoukkarasu, M.; Chand, P. K. ED-XRF Spectrometric Analysis of Comparative Elemental Composition of in Vivo and in Vitro Roots of Andrographis Paniculata (Burm.f.) Wall. ex Nees-a Multi-Medicinal Herb. Appl. Radiat. Isotopes. 2010, 68, 2229–2236. DOI: 10.1016/j.apradiso.2010.06.019.
  • Pérez-Rodríguez, M.; Dirchwolf, P. M.; Silva, T. V.; Vieira, A. L.; Neto, J. A.; Pellerano, R. G.; Ferreira, E. C. Fast Spark Discharge-Laser-Induced Breakdown Spectroscopy Method for Rice Botanic Origin Determination. Food Chem. 2020, 331, 127051.DOI: 10.1016/j.foodchem.2020.127051.
  • Li, C.; Xia, Z. J.; Du, Y. Z.; Wei, L. X. The Chemical and Structural Analysis of Tibetan Medicine Zhuxi. Spectrosc. Spect. Anal. 2012, 32, 1671–1673. DOI: 10.3964/j.issn.1000-0593(2012)06-1671-03.
  • Li, C. The Chemical and Structural Analysis of Tibetan Medicine Fanshi. Spectrosc. Spect. Anal. 2012, 32, 248–251. DOI: 10.3964/j.issn.1000-0593(2012)01-0248-04.
  • Abbas, O.; Zadravec, M.; Baeten, V.; Mikuš, T.; Lešić, T.; Vulić, A.; Prpić, J.; Jemeršić, L.; Pleadin, J. Analytical Methods Used for the Authentication of Food of Animal Origin. Food Chem. 2018, 246, 6–17. DOI: 10.1016/j.foodchem.2017.11.007.
  • Monakhova, Y. B.; Ruge, W.; Kuballa, T.; Ilse, M.; Winkelmann, O.; Diehl, B.; Thomas, F.; Lachenmeier, D. W. Rapid Approach to Identify the Presence of Arabica and Robusta Species in Coffee Using 1H NMR Spectroscopy. Food Chem. 2015, 182, 178–184. DOI: 10.1016/j.foodchem.2015.02.132.
  • Kim, H. K.; Choi, Y. H.; Verpoorte, R. NMR-Based Metabolomic Analysis of Plants. Nat. Protoc. 2010, 5, 536–549. DOI: 10.1038/nprot.2009.237.
  • Jeener, J. Lecture Presented at Ampere International Summer School II; Basko Polje: Yugoslavia, 1971.
  • Hedenström, M.; Wiklund, S.; Sundberg, B.; Edlund, U. Visualization and Interpretation of OPLS Models Based on 2D NMR Data. Chemometr. Intell Lab. 2008, 92, 110–117. DOI: 10.1016/j.chemolab.2008.01.003.
  • Giraudeau, P. Quantitative 2D Liquid-State NMR. Magn. Reson. Chem. 2014, 52, 259–272. DOI: 10.1002/mrc.4068.
  • Ng, L. K. Analysis by Gas Chromatography/Mass Spectrometry of Fatty Acids and Esters in Alcoholic Beverages and Tobaccos. Anal. Chim. Acta. 2002, 465, 309–318. DOI: 10.1016/S0003-2670(01)01497-0.
  • Au, A. M.; Ko, R.; Boo, F. O.; Hsu, R.; Perez, G.; Yang, Z. Screening Methods for Drugs and Heavy Metals in Chinese Patent Medicines. B. Environ. Contam. Tox. 2000, 65, 112–119. [Database] DOI: 10.1007/s0012800102.
  • Glish, G. L.; Burinsky, D. J. Hybrid Mass Spectrometers for Tandem Mass Spectrometry. J. Am. Soc. Mass Spectr. 2008, 19, 161–172. DOI: 10.1016/j.jasms.2007.11.013.
  • Wang, Y.; Li, C. M.; Huang, L.; Liu, L.; Guo, Y. L.; Ma, L.; Liu, S. Y. Rapid Identification of Traditional Chinese Herbal Medicine by Direct Analysis in Real Time (DART) Mass Spectrometry. Anal. Chim. Acta. 2014, 845, 70–76. DOI: 10.1016/j.aca.2014.06.014.
  • Djelal, H.; Cornée, C.; Tartivel, R.; Lavastre, O.; Abdeltif, A. The Use of HPTLC and Direct Analysis in Real Time-Of-Flight Mass Spectrometry (DART-TOF-MS) for Rapid Analysis of Degradation by Oxidation and Sonication of an Azo Dye. Arab. J. Chem. 2017, 10, S1619–S1628. DOI: 10.1016/j.arabjc.2013.06.003.
  • Choi, J. Y.; Hong, J. H.; Dang, Y. M.; Jamila, N.; Khan, N.; Jo, C. H.; Chun, H. S.; Kim, K. S. Identification Markers of Adulteration in Korean Red Ginseng (Panax Ginseng) Products Using High-Performance Liquid Chromatography (HPLC) and Liquid Chromatography-Mass Spectrometry (LC-MS). Anal. Lett. 2018, 51, 2588–2601. DOI: 10.1080/00032719.2018.1443340.
  • Cheng, Q. Y.; Shou, L. J.; Chen, C.; Shi, S.; Zhou, M. H. Application of Ultra-High-Performance Liquid Chromatography Coupled with LTQ-Orbitrap Mass Spectrometry for Identification, Confirmation and Quantitation of Illegal Adulterated Weight-Loss Drugs in Plant Dietary Supplements. J. Chromatogr. B. 2017, 1064, 92–99. DOI: 10.1016/j.jchromb.2017.09.009.
  • Cai, Z. C.; Wang, C. C.; Chen, C. H.; Zou, L. S.; Chai, C.; Chen, J. L.; Tan, M. X.; Liu, X. H. Quality Evaluation of Lonicerae Japonicae Flos and Lonicerae Flos Based on Simultaneous Determination of Multiple Bioactive Constituents Combined with Multivariate Statistical Analysis. Phytochem. Analysis. 2021, 32, 129–140. DOI: 10.1002/pca.2882.
  • Avula, B.; Smillie, T. J.; Wang, Y. H.; Zweigenbaum, J.; Khan, I. A. Authentication of True Cinnamon (Cinnamon verum) Utilising Direct Analysis in Real Time (DART)-QToF-MS. Food Addit Contam A. 2015, 32, 1–8. DOI: 10.1080/19440049.2014.981763.
  • Wang, Y.; He, T.; Wang, J. J.; Wang, L.; Ren, X. Y.; He, S. H.; Liu, X.,Y.; Dong, Y.; Ma, J.,M.; Song, R. L.; et al. High Performance Liquid Chromatography Fingerprint and Headspace Gas Chromatography-Mass Spectrometry Combined with Chemometrics for the Species Authentication of Curcumae rhizoma. J. Pharmaceut. Biomed. 2021, 202, 114144. DOI: 10.1016/j.jpba.2021.114144.
  • Luo, D. S.; Chen, J.; Gao, L.; Liu, Y. P.; Wu, J. H. Geographical Origin Identification and Quality Control of Chinese Chrysanthemum Flower Teas Using Gas Chromatography-Mass Spectrometry and Olfactometry and Electronic Nose Combined with Principal Component Analysis. Int. J. Food Sci. Technol. 2017, 52, 714–723. DOI: 10.1111/ijfs.13326.
  • Jiang, H.; Yang, L.; Xing, X. D.; Yan, M. L.; Guo, X. Y.; Yang, B. Y.; Wang, Q. H.; Kuang, H. X. Chemometrics Coupled with UPLC-MS/MS for Simultaneous Analysis of Markers in the Raw and Processed Fructus xanthii, and Application to Optimization of Processing Method by BBD Design. Phytomedicine. 2019, 57, 191–202. DOI: 10.1016/j.phymed.2018.12.020.
  • Xie, G. Y.; Xu, Q. H.; Li, R.; Shi, L.; Han, Y.; Zhu, Y.; Wu, G.; Qin, M. J. Chemical Profiles and Quality Evaluation of Buddleja officinalis Flowers by HPLC-DAD and HPLC-Q-TOF-MS/MS. J. Pharmaceut. Biomed. 2019, 164, 283–295. DOI: 10.1016/j.jpba.2018.10.030.
  • Yan, X. M.; Wang, W. J.; Chen, Z. Q.; Xie, Y.; Li, Q. J.; Yu, Z. W.; Hu, H. L.; Wang, Z. G. Quality Assessment and Differentiation of Aucklandiae radix and Vladimiriae radix Based on GC-MS Fingerprint and Chemometrics Analysis: basis for Clinical Application. Anal. Bioanal. Chem. 2020, 412, 1535–1549. DOI: 10.1007/s00216-019-02380-2.
  • Malley, B.; Ramazzotti, D.; Wu, J. T. Secondary Analysis of Electronic Health Records; Springer: Cham, 2016. DOI: 10.1007/978-3-319-43742-2_12.
  • Gerretzen, J.; Szymańska, E.; Jansen, J. J.; Bart, J.; van Manen, H.; van den Heuvel, E. R.; Buydens, L. M. Simple and Effective Way for Data Preprocessing Selection Based on Design of Experiments. Anal. Chem. 2015, 87, 12096–12103. DOI: 10.1021/acs.analchem.5b02832.
  • Bian, X. H.; Wang, K.; Y.; Tan, E. X.; Diwu, P. Y.; Zhang, F.; Guo, Y. G. A Selective Ensemble Preprocessing Strategy for near-Infrared Spectral Quantitative Analysis of Complex Samples. Chemometr. Intell. Lab. 2020, 197, 103916. DOI: 10.1016/j.chemolab.2019.103916.
  • Martens, H.; Stark, E. Extended Multiplicative Signal Correction and Spectral Interference Subtraction: New Preprocessing Methods for Near Infrared Spectroscopy. J. Pharmaceut. Biomed. 1991, 9, 625–635. DOI: 10.1016/0731-7085(91)80188-F.
  • Barnes, R. J.; Dhanoa, M. S.; Lister, S. J. Standard Normal Variate Transformation and De-Trending of near-Infrared Diffuse Reflectance Spectra. Appl. Spectrosc. 1989, 43, 772–777. DOI: 10.1366/0003702894202201.
  • Savitzky, A.; Golay, M. J. E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. DOI: 10.1021/ac60214a047.
  • Cao, R. Y.; Chen, Y.; Shen, M. G.; Chen, J.; Zhou, G.; Wang, C.; Yang, W. A Simple Method to Improve the Quality of NDVI Time-Series Data by Integrating Spatiotemporal Information with the Savitzky-Golay Filter. Remote Sens. Environ. 2018, 217, 244–257. DOI: 10.1016/j.rse.2018.08.022.
  • Du, Q. W.; Zhu, M. T.; Shi, T.; Luo, X.; Gan, B.; Tang, L. J.; Chen, Y. Adulteration Detection of Corn Oil, Rapeseed Oil and Sunflower Oil in Camellia Oil by in Situ Diffuse Reflectance near-Infrared Spectroscopy and Chemometrics. Food Control. 2021, 121, 107577. DOI: 10.1016/j.foodcont.2020.107577.
  • Jurs, P. C. Pattern Recognition Used to Investigate Multivariate Data in Analytical Chemistry. Science. 1986, 232, 1219–1224. DOI: 10.1126/science.3704647.
  • Gad, H. A.; El-Ahmady, S. H.; Abou-Shoer, M. I.; Al-Azizi, M. M. A Modern Approach to the Authentication and Quality Assessment of Thyme Using UV Spectroscopy and Chemometric Analysis. Phytochem. Anal. 2013, 24, 520–526. DOI: 10.1002/pca.2426.
  • Brereton, R. G.; Jansen, J.; Lopes, J.; Marini, F.; Pomerantsev, A.; Rodionova, O.; Roger, J. M.; Walczak, B.; Tauler, R. Chemometrics in Analytical Chemistry-Part I: History, Experimental Design and Data Analysis Tools. Anal. Bioanal. Chem. 2017, 409, 5891–5899. DOI: 10.1007/s00216-017-0517-1.
  • Boukerche, A.; Zheng, L.; Alfandi, O. Outlier Detection: Methods, Models, and Classification. ACM Comput. Surv. 2020, 53, 1–37. DOI: 10.1145/3381028.
  • Han, J. W.; Pei, J.; Micheline, K. Data Mining: concepts and Techniques; Morgan Kaufmann: USA, 2011.
  • Šašić, S.; Gilkison, A.; Henson, M. Multivariate Modeling of Diffuse Reflectance Infrared Fourier Transform (DRIFT) Spectra of Mixtures with Low-Content Polymorphic Impurities with Analysis of Outliers. Int. J. Pharmaceut. 2018, 536, 251–260. DOI: 10.1016/j.ijpharm.2017.11.058.
  • Abdi, H.; Williams, L. J. Principal Component Analysis. Wiley Interdisciplinary Reviews. Wires. Comp. Stat. 2010, 2, 433–459. DOI: 10.1002/wics.101.
  • Pomerantsev, A. L.; Rodionova, O. Y. Popular Decision Rules in SIMCA: Critical Review. J. Chemometr. 2020, 34, e3250. DOI: 10.1002/cem.3250.
  • Pell, R. J. Multiple Outlier Detection for Multivariate Calibration Using Robust Statistical Techniques. Chemometr. Intell. Lab. 2000, 52, 87–104. [Database] DOI: 10.1016/S0169-7439(00)00082-4.
  • Khakimov, B.; Gürdeniz, G.; Engelsen, S. B. Trends in the Application of Chemometrics to Foodomics Studies. Acta Aliment. Hung. 2015, 44, 4–31. DOI: 10.1556/AAlim.44.2015.1.1.
  • da Silva, D. J.; Wiebeck, H. Using PLS, iPLS and SiPLS Linear Regressions to Determine the Composition of LDPE/HDPE Blends: A Comparison between Confocal Raman and ATR-FTIR Spectroscopies. Vib. Spectrosc. 2017, 92, 259–266. DOI: 10.1016/j.vibspec.2017.08.009.
  • Dong, T.; Lin, L.; He, Y.; Nie, P. C.; Qu, F. F.; Xiao, S. P. Density Functional Theory Analysis of Deltamethrin and Its Determination in Strawberry by Surface Enhanced Raman Spectroscopy. Molecules. 2018, 23, 1458. DOI: 10.3390/molecules23061458.
  • Xu, Y.; Zhong, P.; Jiang, A. M.; Shen, X.; Li, X. M.; Xu, Z. L.; Shen, Y. D.; Sun, Y. M.; Lei, H. T. Raman Spectroscopy Coupled with Chemometrics for Food Authentication: A Review. TrAC-Trend. Anal. Chem. 2020, 131, 116017. DOI: 10.1016/j.trac.2020.116017.
  • Biancolillo, A.; Bucci, R.; Magrì, A. L.; Magrì, A. D.; Marini, F. Data-Fusion for Multiplatform Characterization of an Italian Craft Beer Aimed at Its Authentication. Anal. Chim. Acta. 2014, 820, 23–31. DOI: 10.1016/j.aca.2014.02.024.
  • Shen, T.; Yu, H.; Wang, Y. Z. Discrimination of Gentiana and Its Related Species Using IR Spectroscopy Combined with Feature Selection and Stacked Generalization. Molecules. 2020, 25, 1442. DOI: 10.3390/molecules25061442.
  • Luis, C. R.; Cristina, R. S.; Lucia, V.,S.; Estefanía, P. C.; Antonio, G. C. Chromatographic Fingerprinting: An Innovative Approach for Food 'Entitation' and Food authentication-A Tutorial. Anal. Chim. Acta. 2015, 909, 9–23. DOI: 10.1016/j.aca.2015.12.042.
  • Kjeldahl, K.; Bro, R. Some Common Misunderstandings in Chemometrics. J. Chemometr. 2010, 24, 558–564. [Database] DOI: 10.1002/cem.1346.
  • Dai, T. T.; Yang, F. L.; Liu, J. D.; Sun, G. X. Evaluation of the Quality Consistency of Zhenju Jiangya Tablets by Systematic Quantified Fingerprint Method in Combination with Antioxidant Activity and Three Compounds Analyses. Microchem. J. 2019, 150, 104175. DOI: 10.1016/j.microc.2019.104175.
  • Zhang, J.; Sun, G. X. Assessment of Quality Consistency in Traditional Chinese Medicine Using Multi-Wavelength Fusion Profiling by Integrated Quantitative Fingerprint Method: Niuhuang Jiedu Pill as an Example. J. Sep. Sci. 2019, 42, 509–521. DOI: 10.1002/jssc.201800988.
  • Marini, F. Artificial Neural Networks in Foodstuff Analyses: Trends and Perspectives a Review. Anal. Chim. Acta. 2009, 635, 121–131. DOI: 10.1016/j.aca.2009.01.009.
  • Thiangthum, S.; Dejaegher, B.; Goodarzi, M.; Tistaert, C.; Gordien, A. Y.; Hoai, N. N.; Van, M. C.; Quetin-Leclercq, J.; Suntornsuk, L.; Heyden, Y. V. Potentially Antioxidant Compounds Indicated from Mallotus and Phyllanthus Species Fingerprints. J. Chromatogr. B. 2012, 910, 114–121. DOI: 10.1016/j.jchromb.2012.06.025.
  • Tistaert, C.; Chataigné, G.; Dejaegher, B.; Rivière, C.; Nguyen Hoai, N.; Chau Van, M.; Quetin-Leclercq, J.; Vander Heyden, Y. Vander Heyden, Y. Multivariate Data Analysis to Evaluate the Fingerprint Peaks Responsible for the Cytotoxic Activity of Mallotus Species. J. Chromatogr. B. 2012, 910, 103–113. DOI: 10.1016/j.jchromb.2012.10.001.
  • Liu, S. F.; Zhang, G. R.; Qiu, Y.; Wang, X. B.; Guo, L. H.; Zhao, Y. X.; Tong, M.; Wei, L.; Sun, L. X. Quality Evaluation of Shenmaidihuang Pills Based on the Chromatographic Fingerprints and Simultaneous Determination of Seven Bioactive Constituents. J. Sep. Sci. 2016, 39, 4557–4567. DOI: 10.1002/jssc.201600718.
  • Alaerts, G.; Dejaegher, B.; Smeyers-Verbeke, J. Vander Heyden, Y. Recent Developments in Chromatographic Fingerprints from Herbal Products: set-up and Data Analysis. Comb. Chem. High T. Scr. 2010, 13, 900–922. DOI: 10.2174/138620710793360284.
  • Lavine, B. K.; Workman, J. Chemometrics. Anal. Chem. 2013, 85, 705–714. DOI: 10.1021/ac303193j.
  • Zhang, Y. F.; Yang, X. H.; Cai, Z. L.; Fan, S. X.; Zhang, H. Y.; Zhang, Q.; Li, J. B. Online Detection of Watercore Apples by Vis/NIR Full-Transmittance Spectroscopy Coupled with ANOVA Method. Foods. 2021, 10, 2983. DOI: 10.3390/foods10122983.
  • Narenderan, S. T.; Meyyanathan, S. N.; Karri, V. V. S. R. Experimental Design in Pesticide Extraction Methods: A Review. Food Chem. 2019, 289, 384–395. DOI: 10.1016/j.foodchem.2019.03.045.
  • Oliveri, P.; Malegori, C.; Mustorgi, E.; Casale, M. Qualitative Pattern Recognition in Chemistry: theoretical Background and Practical Guidelines. Microchem. J. 2021, 162, 105725. DOI: 10.1016/j.microc.2020.105725.
  • Morais, C. L. M.; Lima, K. M. G. Principal Component Analysis with Linear and Quadratic Discriminant Analysis for Identification of Cancer Samples Based on Mass Spectrometry. J. Braz. Chem. Soc. 2018, 29, 472–481. DOI: 10.21577/0103-5053.20170159.
  • Zhang, A. H.; Sun, H.; Han, Y.; Yan, G. L.; Yuan, Y.; Song, G. C.; Yuan, X. X.; Xie, N.; Wang, X. J. Ultraperformance Liquid Chromatography-Mass Spectrometry Based Comprehensive Metabolomics Combined with Pattern Recognition and Network Analysis Methods for Characterization of Metabolites and Metabolic Pathways from Biological Data Sets. Anal. Chem. 2013, 85, 7606–7612. DOI: 10.1021/ac401793d.
  • Grissa, D.; Pétéra, M.; Brandolini, M.; Napoli, A.; Comte, B.; Pujos-Guillot, E. Pujos-Guillot, E. Feature Selection Methods for Early Predictive Biomarker Discovery Using Untargeted Metabolomic Data. Front. Mol. Biosci. 2016, 3, 30. DOI: 10.3389/fmolb.2016.00030.
  • Wang, J. M.; Liao, X. Y.; Zheng, P. C.; Xue, S. W.; Peng, R. Classification of Chinese Herbal Medicine by Laser-Induced Breakdown Spectroscopy with Principal Component Analysis and Artificial Neural Network. Anal. Lett. 2018, 51, 575–586. DOI: 10.1080/00032719.2017.1340949.
  • Huang, S. J.; Cai, N. G.; Pacheco, P. P.; Narrandes, S.; Wang, Y.; Xu, W. Applications of Support Vector Machine (SVM) Learning in Cancer Genomics. Cancer Genom. Proteom. 2018, 15, 41–45. DOI: 10.21873/cgp.20063.
  • Morais, C. L. M.; Paraskevaidi, M.; Cui, L.; Fullwood, N. J.; Isabelle, M.; Lima, K. M. G.; Martin-Hirsch, P. L.; Sreedhar, H.; Trevisan, J.; Walsh, M. J.; et al. Standardization of Complex Biologically Derived Spectrochemical Datasets. Nat. Protoc. 2019, 14, 1546–1577. DOI: 10.1038/s41596-019-0150-x.
  • D’Archivio, A. A.; Di Vacri, M. L.; Ferrante, M.; Maggi, M. A.; Nisi, S.; Ruggieri, F. Geographical Discrimination of Saffron (Crocus Sativus L.) Using ICP-MS Elemental Data and Class Modeling of PDO Zafferano Dell’ Aquila Produced in Abruzzo (Italy). Food Anal. Method. 2019, 12, 2572–2581. DOI: 10.1007/s12161-019-01610-8.
  • Mees, C.; Souard, F.; Delporte, C.; Deconinck, E.; Stoffelen, P.; Stévigny, C.; Kauffmann, J. M.; Braekeleer, K. D. Identification of Coffee Leaves Using FT-NIR Spectroscopy and SIMCA. Talanta. 2018, 177, 4–11. DOI: 10.1016/j.talanta.2017.09.056.
  • Yang, X. D.; Li, G. L.; Song, J.; Gao, M. J.; Zhou, S. L. Rapid Discrimination of Notoginseng Powder Adulteration of Different Grades Using FT-MIR Spectroscopy Combined with Chemometrics. Spectrochim. Acta. A. 2018, 205, 457–464. DOI: 10.1016/j.saa.2018.07.056.
  • Zhang, S. C.; Li, X. L.; Zong, M.; Zhu, X. F.; Cheng, D. B. Learning k for Knn Classification. ACM T. Intel. Syst. Tec. 2017, 8, 1–19. DOI: 10.1145/2990508.
  • Petrakis, E. A.; Polissiou, M. G. Assessing Saffron (Crocus Sativus L.) Adulteration with Plant-Derived Adulterants by Diffuse Reflectance Infrared Fourier Transform Spectroscopy Coupled with Chemometrics. Talanta. 2017, 162, 558–566. DOI: 10.1016/j.talanta.2016.10.072.
  • Xu, L.; Shi, W.; Cai, C. B.; Zhong, W.; Tu, K. Rapid and Nondestructive Detection of Multiple Adulterants in Kudzu Starch by near Infrared (NIR) Spectroscopy and Chemometrics. LWT-Food Sci. Technol. 2015, 61, 590–595. DOI: 10.1016/j.lwt.2014.12.002.
  • Pan, W.; Wu, M.; Zheng, Z. Z.; Guo, L. H.; Lin, Z. Y.; Qiu, B. Rapid Authentication of Pseudostellaria Heterophylla (Taizishen) from Different Regions by Raman Spectroscopy Coupled with Chemometric Methods. J. Food Sci. 2020, 85, 2004–2009. DOI: 10.1111/1750-3841.15171.
  • Wang, Y. H.; Li, Y.; Ding, J.; Wang, Y.; Chang, Y. Q. Prediction of Binding Affinity for Estrogen Receptor alpha modulators using statistical learning approaches. Mol. Divers. 2008, 12, 93–102. DOI: 10.1007/s11030-008-9080-1.
  • Liu, W.; B.; Zhang, B. Y.; Xin, Z. Q.; Ren, D. B.; Yi, L. Z. GC-MS Fingerprinting Combined with Chemometric Methods Reveals Key Bioactive Components in Acori tatarinowii Rhizoma. IJMS. 2017, 18, 1342. DOI: 10.3390/ijms18071342.
  • Ni, Y. N.; Mei, M. H.; Kokot, S. One- and Two-Dimensional Gas Chromatography-Mass Spectrometry and High Performance Liquid Chromatography-Diode-Array Detector Fingerprints of Complex Substances: A Comparison of Classification Performance of Similar, Complex Rhizoma Curcumae Samples with the Aid of Chemometrics. Anal. Chim. Acta. 2012, 712, 37–44. DOI: 10.1016/j.aca.2011.11.010.
  • Huang, G. B.; Zhu, Q. Y.; Siew, C. K. Extreme Learning Machine: Theory and Applications. Neurocomputing. 2006, 70, 489–501. [Database] DOI: 10.1016/j.neucom.2005.12.126.
  • Pavón, J. L. P.; Del Nogal Sánchez, M.; Pinto, C. G.; Laespada, M. E. F.; Cordero, B. M.; Peña, A. G. Strategies for Qualitative and Quantitative Analyses with Mass Spectrometry-Based Electronic Noses. TrAC-Trend Anal. Chem. 2006, 25, 257–266. DOI: 10.1016/j.trac.2005.09.003.
  • Vapnik, V.; Golowich, S. E.; Smola, A. Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing; Advances in Neural Information Processing Systems: London, England, 1997.
  • Ma, Y. H.; He, H. Q.; Wu, J. Z.; Wang, C. Y.; Chao, K. L.; Huang, Q. Assessment of Polysaccharides from Mycelia of Genus Ganoderma by Mid-Infrared and near-Infrared Spectroscopy. Sci. Rep. 2018, 8, 10. DOI: 10.1038/s41598-017-18422-7.
  • Ma, Y. H.; Zhang, Q. Q.; Zhang, Q. F.; He, H. Q.; Chen, Z.; Zhao, Y.; Wei, D.; Kong, M. G.; Huang, Q. Improved Production of Polysaccharides in Ganoderma lingzhi Mycelia by Plasma Mutagenesis and Rapid Screening of Mutated Strains through Infrared Spectroscopy. PLoS One. 2018, 13, e204266. DOI: 10.1371/journal.pone.0204266.
  • Ma, S. S.; Chen, L.; Li, J.; Wang, Z. Y.; Xin, Z. Q.; Zhang, Y.; Ren, D. B.; Yi, L. Z. Characterization and Authentication of Acori tatarinowii Rhizoma and Its Adulterants by UPLC-Orbitrap-MS/MS Chromatographic Fingerprints, Elements Profiles and Chemometric Methods. Microchem. J. 2019, 144, 285–295. DOI: 10.1016/j.microc.2018.09.017.
  • Nikzad-Langerodi, R.; Ortmann, S.; Pferschy-Wenzig, E. M.; Bochkov, V.; Zhao, Y. M.; Miao, J. H.; Saukel, J.; Ladurner, A.; Heiss, E. H.; Dirsch, V. M.; et al. Assessment of Anti-Inflammatory Properties of Extracts from Honeysuckle (Lonicera sp. L., Caprifoliaceae) by ATR-FTIR Spectroscopy. Talanta. 2017, 175, 264–272. DOI: 10.1016/j.talanta.2017.07.045.
  • Silva, D.; Honorato, N. C.; Pimentel, R. S.; Garrigues, M. F.; Cervera, S.; de la Guardia, M. L. M. Near Infrared Spectroscopy Detection and Quantification of Herbal Medicines Adulterated with Sibutramine. J. Forensic Sci. 2015, 60, 1199–1205. DOI: 10.1111/1556-4029.12884.
  • Zhang, X. B.; Zhao, Y. P.; Guo, L. P.; Qiu, Z. D.; Huang, L. P.; Qu, X. B. Differences in Chemical Constituents of Artemisia annua L. from Different Geographical Regions in China. PLoS One. 2017, 12, e183047. DOI: 10.1371/journal.pone.0183047.
  • Xing, X. H.; Cui, S. W.; Nie, S. P.; Phillips, G. O.; Douglas Goff, H.; Wang, Q. A Review of Isolation Process, Structural Characteristics, and Bioactivities of Water-Soluble Polysaccharides from Dendrobium Plants. Bioact. Carbohydr. Diet. Fibre. 2013, 1, 131–147. DOI: 10.1016/j.bcdf.2013.04.001.
  • Choi, J. Y.; Kim, H. C.; Moon, K. D. Geographical Origin Discriminant Analysis of Chia Seeds (Salvia hispanica L.) Using Hyperspectral Imaging. J. Food Compos. Anal. 2021, 101, 103916. DOI: 10.1016/j.jfca.2021.103916.
  • Wang, L.; Wang, X. H.; Liu, X. Y.; Wang, Y.; Ren, X. Y.; Dong, Y.; Song, R. L.; Ma, J. M.; Fan, Q. Q.; Wei, J.; et al. Fast Discrimination and Quantification Analysis of Curcumae Radix from Four Botanical Origins Using NIR Spectroscopy Coupled with Chemometrics Tools. Spectrochim. Acta A. 2021, 254, 119626. DOI: 10.1016/j.saa.2021.119626.
  • Foschi, M.; D'Archivio, A. A.; Rossi, L. Geographical Discrimination and Authentication of Lentils (Lens culinaris Medik.) by ICP-OES Elemental Analysis and Chemometrics. Food Control. 2020, 118, 107438. DOI: 10.1016/j.foodcont.2020.107438.
  • Chen, X. J.; Wu, D.; He, Y.; Liu, S. Nondestructive Differentiation of Panax Species Using Visible and Shortwave near-Infrared Spectroscopy. Food Bioprocess Technol. 2011, 4, 753–761. DOI: 10.1007/s11947-009-0199-6.
  • Chen, H.; Tan, C.; Li, H. J. Discrimination between Wild-Grown and Cultivated Gastrodia Elata by near-Infrared Spectroscopy and Chemometrics. Vib. Spectrosc. 2021, 113, 103203. DOI: 10.1016/j.vibspec.2020.103203.
  • Cao, P.; Wang, G.; Wei, X. M.; Chen, S. L.; Han, J. P. How to Improve CHMs Quality: Enlighten from CHMs Ecological Cultivation. Chin. Herb. Med. 2021, 13, 301–312. DOI: 10.1016/j.chmed.2021.04.014.
  • Liu, X-d.; Yan, D-h.; Deng, X-m.; Zhao, B.; Xue, X-y.; Wang, S-m.; Zhang, Y.; Meng, J. Quality Assessment of Crude and Processed Leonuri fructus by Chemical and Color Analysis Combined with Chemometric Method. Chin. Herb. Med. 2018, 10, 388–395. DOI: 10.1016/j.chmed.2018.07.006.
  • Zhang, J. S.; Zhong, X.; Li, S. S.; Zhang, G. R.; Liu, X. Metabolic Characterization of Natural and Cultured Ophicordyceps sinensis from Different Origins by 1H NMR Spectroscopy. J. Pharmaceut. Biomed. 2015, 115, 395–401. DOI: 10.1016/j.jpba.2015.07.035.
  • Ma, Z. G.; Yang, Z. Y.; Lu, D. Y.; Dai, L.; Wu, B.; Yao, J. S. Determination of Bioactive Components of Cistanche deserticola (Roucongrong) by High-Performance Liquid Chromatography with Diode Array and Mass Spectrometry Detectors. Anal. Lett. 2014, 47, 2783–2794. DOI: 10.1080/00032719.2014.924012.
  • Wu, X.; Wang, S. P.; Lu, J. R.; Jing, Y.; Li, M. X.; Cao, J. L.; Bian, B. L.; Hu, C. J. Seeing the Unseen of Chinese Herbal Medicine Processing (Paozhi): Advances in New Perspectives. Chin. Med. 2018, 13, 4.DOI: 10.1186/s13020-018-0163-3.
  • Kwon, J.; Kim, N.; Lee, D.; Han, A.; Lee, J. W.; Seo, E.; Lee, J.; Lee, D. Metabolomics Approach for the Discrimination of Raw and Steamed Gastrodia elata Using Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry. J. Pharmaceut. Biomed. 2014, 94, 132–138. DOI: 10.1016/j.jpba.2014.01.032.
  • Wang, Z. B.; Wang, X.; Pei, W. X.; Li, S.; Sun, S. Q.; Zhou, Q.; Chen, J. B. Chemical Transitions of Areca Semen during the Thermal Processing Revealed by Temperature-Resolved ATR-FTIR Spectroscopy and Two-Dimensional Correlation Analysis. J. Mol. Struct. 2018, 1155, 1–6. DOI: 10.1016/j.molstruc.2017.10.098.
  • Ba, Y. Y.; Xiao, R.; Chen, Q. J.; Xie, L. Y.; Xu, R. R.; Yu, P.; Chen, X. Q.; Wu, X. Comprehensive Quality Evaluation of Polygoni Orientalis Fructus and Its Processed Product: chemical Fingerprinting and Simultaneous Determination of Seven Major Components Coupled with Chemometric analyses. Phytochem. Anal. 2021, 32, 141–152. DOI: 10.1002/pca.2890.
  • Sun, F.; Chen, Y.; Wang, K. Y.; Wang, S. M.; Liang, S. W. Identification of Genuine and Adulterated Pinellia ternata by Mid-Infrared (MIR) and near-Infrared (NIR) Spectroscopy with Partial Least Squares-Discriminant Analysis (PLS-DA). Anal. Lett. 2020, 53, 937–959. DOI: 10.1080/00032719.2019.1687507.
  • Ma, X. B.; Wu, Y. J.; Li, Y.; Huang, Y. F.; Liu, Y.; Luo, P.; Zhang, Z. F. Rapid Discrimination of Notopterygium Incisum and Notopterygium franchetii Based on Characteristic Compound Profiles Detected by UHPLC-QTOF-MS/MS Coupled with Multivariate Analysis. Phytochem. Anal. 2020, 31, 355–365. DOI: 10.1002/pca.2902.
  • Sun, W. J.; Zhang, X.; Zhang, Z. Y.; Zhu, R. H. Data Fusion of Near-Infrared and Mid-Infrared Spectra for Identification of Rhubarb. Spectrochim. Acta A. 2017, 171, 72–79. DOI: 10.1016/j.saa.2016.07.039.
  • Sun, L. L.; Wang, M. L.; Ren, X.; Jiang, M. M.; Deng, Y. R. Rapid Authentication and Differentiation of Herbal Medicine Using 1H NMR Fingerprints Coupled with Chemometrics. J. Pharmaceut. Biomed. 2018, 160, 323–329. DOI: 10.1016/j.jpba.2018.08.003.
  • Kar, S.; Tudu, B.; Bag, A. K.; Bandyopadhyay, R. Application of near-Infrared Spectroscopy for the Detection of Metanil Yellow in Turmeric Powder. Food Anal. Methods. 2018, 11, 1291–1302. DOI: 10.1007/s12161-017-1106-9.
  • Dowlatabadi, R.; Farshidfar, F.; Zare, Z.; Pirali, M.; Rabiei, M.; Khoshayand, M. R.; Vogel, H. J. Detection of Adulteration in Iranian Saffron Samples by 1H NMR Spectroscopy and Multivariate Data Analysis Techniques. Metabolomics. 2017, 13, 19. DOI: 10.1007/s11306-016-1155-x.
  • Zheng, X. J.; Zheng, W. L.; Zhou, J. J.; Gao, X.; Liu, Z. H.; Han, N.; Yin, J. Study on the Discrimination between Corydalis Rhizoma and Its Adulterants Based on HPLC-DAD-Q-TOF-MS Associated with Chemometric Analysis. J. Chromatogr. B. 2018, 1090, 110–121. DOI: 10.1016/j.jchromb.2017.10.028.
  • Hu, L. Q.; Yin, C. L. Fourier Transform Infrared Spectroscopy Coupled with Chemometrics for Determining Geographical Origin of Kudzu Root and Detection and Quantification of Adulterants in Kudzu Root. Anal. Methods. 2017, 9, 3643–3652. DOI: 10.1039/C7AY00876G.
  • Deconinck, E.; Cauwenbergh, T.; Bothy, J. L.; Custers, D.; Courselle, P.; De Beer, J. O. Detection of Sibutramine in Adulterated Dietary Supplements Using Attenuated Total Reflectance-Infrared Spectroscopy. J. Pharmaceut. Biomed. 2014, 100, 279–283. DOI: 10.1016/j.jpba.2014.08.009.
  • Vermaak, I.; Viljoen, A.; Lindström, S. W. Hyperspectral Imaging in the Quality Control of Herbal Medicines-The Case of Neurotoxic Japanese Star Anise. J. Pharmaceut. Biomed. 2013, 75, 207–213. DOI: 10.1016/j.jpba.2012.11.039.
  • Wang, Y. H.; Avula, B.; Nanayakkara, N. P. D.; Zhao, J. P.; Khan, I. A. Cassia Cinnamon as a Source of Coumarin in Cinnamon-Flavored Food and Food Supplements in the United States. J. Agric. Food Chem. 2013, 61, 4470–4476. DOI: 10.1021/jf4005862.
  • Shen, Y.; van Beek, T. A.; Claassen, F. W.; Zuilhof, H.; Chen, B.; Nielen, M. W. F. Rapid Control of Chinese Star Anise Fruits and Teas for Neurotoxic Anisatin by Direct Analysis in Real Time High Resolution Mass Spectrometry. J. Chromatogr. A. 2012, 1259, 179–186. DOI: 10.1016/j.chroma.2012.03.058.
  • Xu, M. Z.; Huang, B. B.; Gao, F.; Zhai, C. C.; Yang, Y. Y.; Li, L. L.; Wang, W. Y.; Shi, L. W. Assesment of Adulterated Traditional Chinese Medicines in China. Front. Pharmacol. 2019, 10, 2003–2017. 1446. DOI: 10.3389/fphar.2019.01446.
  • Genualdi, S.; MacMahon, S.; Robbins, K.; Farris, S.; Shyong, N.; DeJager, L. Method Development and Survey of Sudan I-IV in Palm Oil and Chilli Spices in the Washington, DC, Area. Food Addit. Contam. A. 2016, 33, 583–591. DOI: 10.1080/19440049.2016.1147986.
  • Li, S.; Xing, B. C.; Lin, D.; Yi, H. J.; Shao, Q. S. Rapid Detection of Saffron (Crocus sativus L.) Adulterated with Lotus Stamens and Corn Stigmas by near-Infrared Spectroscopy and Chemometrics. Ind. Crop. Prod. 2020, 152, 112539. DOI: 10.1016/j.indcrop.2020.112539.
  • Lafeuille, J. L.; Frégière-Salomon, A.; Michelet, A.; Henry, K. L. A Rapid Non-Targeted Method for Detecting the Adulteration of Black Pepper with a Broad Range of Endogenous and Exogenous Material at Economically Motivating Levels Using Micro-ATR-FT-MIR Imaging. J. Agric. Food Chem. 2020, 68, 390–401. DOI: 10.1021/acs.jafc.9b03865.
  • Li, W.; Xing, L.; Xue, D.; Qu, H. An Authentication Method of Bear Bile Powder Based on the near Infrared Spectroscopy. Spectrosc. Spect. Anal. 2011, 31, 673–676.
  • Fu, J.; Jing, W. G.; Zhang, J.; Chen, S.; Cheng, M.; Liu, A. Research Status and Analysis of Illegal Addition in Chinese Materia Medica Preparations. Chin. Tradit. Herb Drugs. 2014, 45, 437.
  • Laasonen, M.; Harmia-Pulkkinen, T.; Simard, C. L.; Michiels, E.; Räsänen, M.; Vuorela, H. Fast Identification of Echinacea Purpurea Dried Roots Using near-Infrared Spectroscopy. Anal. Chem. 2002, 74, 2493–2499. DOI: 10.1021/ac011108f.
  • Petrakis, E. A.; Cagliani, L. R.; Polissiou, M. G.; Consonni, R. Evaluation of Saffron (Crocus sativus L.) Adulteration with Plant Adulterants by 1H NMR Metabolite Fingerprinting. Food Chem. 2015, 173, 890–896. DOI: 10.1016/j.foodchem.2014.10.107.
  • Qiu, S.; Yang, W. Z.; Yao, C. L.; Qiu, Z. D.; Shi, X. J.; Zhang, J. X.; Hou, J. J.; Wang, Q. R.; Wu, W. Y.; Guo, D. A. Nontargeted Metabolomic Analysis and “Commercial-Homophyletic” Comparison-Induced Biomarkers Verification for the Systematic Chemical Differentiation of Five Different Parts of Panax Ginseng. J. Chromatogr. A. 2016, 1453, 78–87. DOI: 10.1016/j.chroma.2016.05.051.
  • Sundarrajan, M.; Fernandis, A. Z.; Subrahmanyam, G.; Prabhudesai, S.; Krishnamurthy, S. C.; Rao, K. V. Overexpression of G1/S Cyclins and PCNA and Their Relationship to Tyrosine Phosphorylation and Dephosphorylation during Tumor Promotion by Metanil Yellow and Malachite Green. Toxicol. Lett. 2000, 116, 119–130. DOI: 10.1016/S0378-4274(00)00216-2.
  • Wang, X. L.; Feng, Y. C.; Hu, C. Q. Near Infrared Correlation Coefficient Method with Characteristic Spectral Band for the Determination of Illegal Addition of Sildenafil Citrate in Capsules of Chinese Traditional Medicine. Chinese J. Anal. Chem. 2009, 37, 1825–1828.
  • Calahan, J.; Howard, D.; Almalki, A. J.; Gupta, M. P.; Calderón, A. I. Chemical Adulterants in Herbal Medicinal Products: A Review. Planta Med. 2016, 82, 505–515. DOI: 10.1055/s-0042-103495.
  • Steenkamp, V.; Stewart, M. J.; Zuckerman, M. Clinical and Analytical Aspects of Pyrrolizidine Poisoning Caused by South African Traditional Medicines. Ther. Drug Monit. 2000, 22, 302–306. DOI: 10.1097/00007691-200006000-00011.
  • Yee, S. K.; Chu, S. S.; Xu, Y. M.; Choo, P. L. Regulatory Control of Chinese Proprietary Medicines in Singapore. Health Policy. 2005, 71, 133–149. DOI: 10.1016/j.healthpol.2003.09.013.
  • Soni, P. L.; Agarwal, A. The Starch of Pueraria tuberosa-Comparison with Maize Starch. Starch/Stärke. 1983, 35, 4–7. DOI: 10.1002/star.19830350103.
  • Cao, L. L.; Yu, M.; Shu, X. Y.; Hou, D. B. Research on Fingerprint and Quality Evaluation of Aconite Roots Using Thin-Layer Chromatography. Hubei Agricultural. Sci. 2015, 54, 2738–2740. DOI: 10.14088/j.cnki.issn0439-8114.
  • Wang, J. C.; Zhang, M.; Chen, L. H.; Qiao, Y.; Ma, S. Q.; Sun, D.; Si, J. Y.; Liao, Y. H. Determination of Toxic Pyrrolizidine Alkaloids in Traditional Chinese Herbal Medicines by UPLC-MS/MS and Accompanying Risk Assessment for Human Health. Molecules. 2021, 26, 1648. DOI: 10.3390/molecules26061648.
  • Liu, Y. G.; Tan, P.; Li, F.; Qiao, Y. J. Study on the Aconitine-Type Alkaloids of Radix Aconiti Lateralis and Its Processed Products Using HPLC-ESI-MSn. Drug Test. Analysis. 2013, 5, 480–484. DOI: 10.1002/dta.416.
  • Chan, C. O.; Chu, C. C.; Mok, D. K.; Chau, F. T. Analysis of Berberine and Total Alkaloid Content in Cortex Phellodendri by near Infrared Spectroscopy (NIRS) Compared with High-Performance Liquid Chromatography Coupled with Ultra-Visible Spectrometric Detection. Anal. Chim. Acta. 2007, 592, 121–131. DOI: 10.1016/j.aca.2007.04.016.
  • Khongkaew, P.; Phechkrajang, C.; Cruz, J.; Cárdenas, V.; Rojsanga, P. Quantitative Models for Detecting the Presence of Lead in Turmeric Using Raman Spectroscopy. Chemometr. Intell. Lab. 2020, 200, 103994. DOI: 10.1016/j.chemolab.2020.103994.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.