1,098
Views
2
CrossRef citations to date
0
Altmetric
Review Article

A Review on Organic Colorimetric and Fluorescent Chemosensors for the Detection of Zn(II) Ions

ORCID Icon
Pages 1472-1488 | Published online: 02 Feb 2022

References

  • Guo, Y.; Zhao, H.; Han, Y.; Liu, X.; Guan, S.; Zhang, Q.; Bian, X. Simultaneous Spectrophotometric Determination of Trace Copper, Nickel, and Cobalt Ions in Water Samples Using Solid Phase Extraction Coupled with Partial Least Squares Approaches. Spectrochim Acta A Mol. Biomol. Spectrosc. 2017, 173, 532–536. DOI: 10.1016/j.saa.2016.10.003.
  • Piriya, V. S.,A.; Joseph, P.; Daniel, S. C. G. K.; Lakshmanan, S.; Kinoshita, T.; Muthusamy, S. Colorimetric Sensors for Rapid Detection of Various Analytes. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 78, 1231–1245. DOI: 10.1016/j.msec.2017.05.018.
  • Jeong, U.; Kim, Y. Colorimetric Detection of Heavy Metal Ions Using Aminosilane. J. Ind. Eng. Chem. 2015, 31, 393–396. DOI: 10.1016/j.jiec.2015.07.014.
  • Ye, B. F.; Zhao, Y. J.; Cheng, Y.; Li, T. T.; Xie, Z. Y.; Zhao, X. W.; Gu, Z. Z. Colorimetric Photonic Hydrogel Aptasensor for the Screening of Heavy Metal Ions. Nanoscale 2012, 4, 5998–6003. DOI: 10.1039/c2nr31601c.
  • Zhang, Y.; Wang, W.; Li, R.; Zhang, E.; Li, Z.; Tang, L.; Han, B.; Hou, X.; Wang, J. J. A Novel Rhodamine-Based Colorimetric and Fluorometric Probe for Simultaneous Detection of Multi-Metal Ions. Spectrochim Acta A Mol. Biomol. Spectrosc. 2020, 230, 118050. DOI: 10.1016/j.saa.2020.118050.
  • Liu, A.; Yang, L.; Zhang, Z.; Zhang, Z.; Xu, D. A Novel Rhodamine-Based Colorimetric and Fluorescent Sensor for the Dual-Channel Detection of Cu2+ and Fe3+ in Aqueous Solutions. Dye. Pigment 2013, 99, 472–479. DOI: 10.1016/j.dyepig.2013.06.007.
  • Formica, M.; Fusi, V.; Giorgi, L.; Micheloni, M. New Fluorescent Chemosensors for Metal Ions in Solution. Coord. Chem. Rev 2012, 256, 170–192. DOI: 10.1016/j.ccr.2011.09.010.
  • Ambrosi, G.; Ciattini, S.; Formica, M.; Fusi, V.; Giorgi, L.; Macedi, E.; Micheloni, M.; Paoli, P.; Rossi, P.; Zappia, G. A New Versatile Solvatochromic Amino-Macrocycle. From Metal Ions to Cell Sensing in Solution and in the Solid State. Chem. Commun. 2009, 2009, 7039–7041. DOI: 10.1039/b913435b.
  • Garrett, R. G. Natural Sources of Metals to the Environment. Hum. Ecol. Risk Assess 2000, 6, 945–963. DOI: 10.1080/10807030091124383.
  • Buccolieri, A.; Buccolieri, G.; Dell'Atti, A.; Perrone, M. R.; Turnone, A. Natural Sources and Heavy Metals. Ann. Chim. 2006, 96, 167–181. DOI: 10.1002/adic.200690017.
  • Jayant Kulkarni, S. Heavy Metal Pollution: Sources, Effects, and Control Methods. In Hazardous Waste Management and Health Risks; Marfe, G., Di Stefano, C., Eds.; Bentham Science Publishers: Al Sharjah, 2020; pp. 97–112. DOI: 10.2174/9789811454745120010008.
  • Emenike, E. C.; Iwuozor, K. O.; Anidiobi, S. U. Heavy Metal Pollution in Aquaculture: Sources, Impacts and Mitigation Techniques. Biol. Trace Elem. Res. 2021, 1-17. DOI: 10.1007/S12011-021-03037-X.
  • Yang, Q.; Li, Z.; Lu, X.; Duan, Q.; Huang, L.; Bi, J. A Review of Soil Heavy Metal Pollution from Industrial and Agricultural Regions in China: Pollution and Risk Assessment. Sci. Total Environ. 2018, 642, 690–700. DOI: 10.1016/j.scitotenv.2018.06.068.
  • Yi, Q.; Huang, C. Review of Heavy Metal Pollution by Mining. E3S Web Conf. 2019, 118, 1–4. DOI: 10.1051/e3sconf/201911804028.
  • Brown, K. H.; Wuehler, S. E.; Peerson, J. M. The Importance of Zinc in Human Nutrition and Estimation of the Global Prevalence of Zinc Deficiency. Food Nutr. Bull. 2001, 22, 113–125. DOI: 10.1177/156482650102200201.
  • Bonaventura, P.; Benedetti, G.; Albarède, F.; Miossec, P. Zinc and Its Role in Immunity and Inflammation. Autoimmun. Rev. 2015, 14, 277–285. DOI: 10.1016/j.autrev.2014.11.008.
  • Salgueiro, M. J.; Zubillaga, M.; Lysionek, A.; Sarabia, M. I.; Caro, R.; De Paoli, T.; Hager, A.; Weill, R.; Boccio, J. Zinc as an Essential Micronutrient: A Review. Nutr. Res. 2000, 20, 737–755. DOI: 10.1016/S0271-5317(00)00163-9.
  • Bhattacharya, P. T.; Misra, S. R.; Hussain, M. Nutritional Aspects of Essential Trace Elements in Oral Health and Disease: An Extensive Review. Scientifica. (Cairo) 2016, 2016, 5464373. DOI: 10.1155/2016/5464373.
  • Wani, A. L.; Parveen, N.; Ansari, M. O.; Ahmad, M. F.; Jameel, S.; Shadab, G. G. H. A. Zinc: An Element of Extensive Medical Importance. Curr. Med. Res. Pract. 2017, 7, 90–98. DOI: 10.1016/j.cmrp.2017.02.006.
  • Roohani, N.; Hurrell, R.; Kelishadi, R.; Schulin, R. Zinc and Its Importance for Human Health: An Integrative Review. Journal of Research in Medical Sciences 2013, 18, 144–157. DOI: 10.1016/j.foodpol.2013.06.008.
  • Tuerk, M. J.; Fazel, N. Zinc Deficiency. Curr. Opin. Gastroenterol. 2009, 25, 136–143. DOI: 10.1097/MOG.0b013e328321b395.
  • Prasad, A. S. Discovery and Importance of Zinc in Human Nutrition. Federation Proceedings 1984, 2829–2834.
  • Ibs, K. H.; Rink, L. Zinc-Altered Immune Function.J. Nutr. 2003, 133, 1452S–11456. DOI: 10.1093/jn/133.5.1452S.
  • Plum, L. M.; Rink, L.; Haase, H. The Essential Toxin: Impact of Zinc on Human Health. Int. J. Environ. Res. Public Health. 2010, 7, 1342–1365. DOI: 10.3390/ijerph7041342.
  • Påhlsson, A. M. B. Toxicity of Heavy Metals (Zn, Cu, Cd, Pb) to Vascular Plants. Water Air Soil Pollut. 1989, 47, 287–319. DOI: 10.1007/BF00279329.
  • Khan, S.; Chen, X.; Almahri, A.; Allehyani, E. S.; Alhumaydhi, F. A.; Ibrahim, M. M.; Ali, S. Recent Developments in Fluorescent and Colorimetric Chemosensors Based on Schiff Bases for Metallic Cations Detection: A Review. J. Environ. Chem. Eng. 2021, 9, 106381. DOI: 10.1016/j.jece.2021.106381.
  • Berhanu, A. L.; Gaurav; Mohiuddin, I.; Malik, A. K.; Aulakh, J. S.; Kumar, V.; Kim, K. H. A Review of the Applications of Schiff Bases as Optical Chemical Sensors. TrAC - Trends Anal. Chem. 2019, 116, 4–91. DOI: 10.1016/j.trac.2019.04.025.
  • Kumar, M.; Puri, A. A Review of Permissible Limits of Drinking Water. Indian J. Occup. Environ. Med. 2012, 16, 40–44. DOI: 10.4103/0019-5278.99696.
  • Allen, R. O.; Brookhart, W. Determination of Copper in Complex Matrices by Neutron Activation Analysis Using X-Ray Detection. Anal. Chem. 1974, 46, 1297–1299. DOI: 10.1021/ac60345a055.
  • Shijo, Y.; Sato, H.; Uehara, N.; Aratake, S. Simultaneous Determination of Trace Amounts of Copper, Nickel and Vanadium in Sea-Water by High-Performance Liquid Chromatography after Extraction and Back-Extraction. Analyst 1996, 121, 325–328. DOI: 10.1039/an9962100325.
  • Bansod, B. K.; Kumar, T.; Thakur, R.; Rana, S.; Singh, I. A Review on Various Electrochemical Techniques for Heavy Metal Ions Detection with Different Sensing Platforms. Biosens. Bioelectron. 2017, 94, 443–455. DOI: 10.1016/j.bios.2017.03.031.
  • Ghaedi, M.; Ahmadi, F.; Shokrollahi, A. Simultaneous Preconcentration and Determination of Copper, Nickel, Cobalt and Lead Ions Content by Flame Atomic Absorption Spectrometry. J. Hazard. Mater. 2007, 142, 272–278. DOI: 10.1016/j.jhazmat.2006.08.012.
  • Lu, Q.; Yang, S.; Sun, D.; Zheng, J.; Li, Y.; Yu, J.; Su, M. Direct Determination of Cu by Liquid Cathode Glow Discharge-Atomic Emission Spectrometry. Spectrochim. Acta Part B at. Spectrosc. 2016, 125, 136–139. DOI: 10.1016/j.sab.2016.09.019.
  • Gäbler, H. E.; Bahr, A.; Mieke, B. Determination of the Interchangeable Heavy-Metal Fraction in Soils by Isotope Dilution Mass Spectrometry. Fresenius’ J. Anal. Chem. 1999, 365, 409–414. DOI: 10.1007/s002160051632.
  • Wang, S.; Forzani, E. S.; Tao, N. Detection of Heavy Metal Ions in Water by High-Resolution Surface Plasmon Resonance Spectroscopy Combined with Anodic Stripping Voltammetry. Anal. Chem. 2007, 79, 4427–4432. DOI: 10.1021/AC0621773/SUPPL_FILE/AC0621773SI20070226_071019.PDF.
  • Stanisz, E.; Zgoła-Grześkowiak, A. In Situ Metathesis Ionic Liquid Formation Dispersive Liquid-Liquid Microextraction for Copper Determination in Water Samples by Electrothermal Atomic Absorption Spectrometry. Talanta 2013, 115, 178–183. DOI: 10.1016/j.talanta.2013.04.063.
  • Shih, T. T.; Hsu, I. H.; Chen, S. N.; Chen, P. H.; Deng, M. J.; Chen, Y.; Lin, Y. W.; Sun, Y. C. A Dipole-Assisted Solid-Phase Extraction Microchip Combined with Inductively Coupled Plasma-Mass Spectrometry for Online Determination of Trace Heavy Metals in Natural Water. Analyst 2015, 140, 600–608. DOI: 10.1039/c4an01421a.
  • Popova, O. V.; Sursyakova, V. V.; Burmakina, G. V.; Rubaylo, A. I. Determination of Iron and Copper Ions in Cognacs by Capillary Electrophoresis. J. Anal. Chem. 2015, 70, 198–202. DOI: 10.1134/S1061934814120120.
  • Muhammad, M.; Khan, S.; Fayaz, H. Charge-Transfer Complex–Based Spectrophotometric Method for the Determination of Mesotrione in Environmental Samples. Environ. Monit. Assess 2021, 193, 681. DOI: 10.1007/S10661-021-09432-0.
  • Rout, K.; Manna, A. K.; Sahu, M.; Patra, G. K. A Guanidine Based Bis Schiff Base Chemosensor for Colorimetric Detection of Hg(II) and Fluorescent Detection of Zn(II) Ions. Inorganica Chim. Acta 2019, 486, 733–741. DOI: 10.1016/j.ica.2018.11.021.
  • Peralta-Domínguez, D.; Rodríguez, M.; Ramos-Ortíz, G.; Maldonado, J. L.; Meneses-Nava, M. A.; Barbosa-García, O.; Santillan, R.; Farfán, N. A Schiff Base Derivative from Cinnamaldehyde for Colorimetric Detection of Ni2+ in Water. Sens. Actuators, B Chem. 2015, 207, 511–517. DOI: 10.1016/j.snb.2014.09.100.
  • Yıldız, M.; Demir, N.; Ünver, H.; Sahiner, N. Synthesis, Characterization, and Application of a Novel Water-Soluble Polyethyleneimine-Based Schiff Base Colorimetric Chemosensor for Metal Cations and Biological Activity. Sens. Actuators B Chem. 2017, 252, 55–61. DOI: 10.1016/j.snb.2017.05.159.
  • Tang, X.; Han, J.; Wang, Y.; Ni, L.; Bao, X.; Wang, L.; Zhang, W. A Multifunctional Schiff Base as a Fluorescence Sensor for Fe3+ and Zn2+ ions, and a colorimetric sensor for Cu2+ and applications. Spectrochim Acta A Mol. Biomol. Spectrosc. 2017, 173, 721–726. DOI: 10.1016/j.saa.2016.10.028.
  • Kaur, B.; Kaur, N.; Kumar, S. Colorimetric Metal Ion Sensors – a Comprehensive Review of the Years 2011–2016. Coord. Chem. Rev. 2018, 358, 13–69. DOI: 10.1016/j.ccr.2017.12.002.
  • Long, D.; Yu, H. A Synergistic Coordination Strategy for Colorimetric Sensing of Chromium(III) Ions Using Gold Nanoparticles. Anal. Bioanal. Chem. 2016, 408, 8551–8557. DOI: 10.1007/s00216-016-9990-1.
  • Wang, L.; Zhang, C.; He, H.; Zhu, H.; Guo, W.; Zhou, S.; Wang, S.; Zhao, J. R.; Zhang, J. Cellulose-Based Colorimetric Sensor with N, S Sites for Ag + Detection. Int. J. Biol. Macromol. 2020, 163, 593–602. DOI: 10.1016/j.ijbiomac.2020.07.018.
  • Saleem, M.; Rafiq, M.; Hanif, M. Organic Material Based Fluorescent Sensor for Hg2+: A Brief Review on Recent Development. J. Fluoresc. 2017, 27, 31–58. DOI: 10.1007/s10895-016-1933-x.
  • Zhang, Z.; Lu, S.; Sha, C.; Xu, D. A Single Thiourea-Appended 1,8-Naphthalimide Chemosensor for Three Heavy Metal Ions: Fe3+, Pb2+, and Hg2+. Sens. Actuators, B Chem. 2015, 208, 258–266. DOI: 10.1016/j.snb.2014.10.136.
  • Wang, J.; Chu, S.; Kong, F.; Luo, L.; Wang, Y.; Zou, Z. Designing a Smart Fluorescence Chemosensor within the Tailored Channel of Mesoporous Material for Sensitively Monitoring Toxic Heavy Metal Ions Pb(II). Sensors Actuators B Chem 2010, 150, 25–35. DOI: 10.1016/j.snb.2010.07.050.
  • Dhineshkumar, E.; Iyappan, M.; Anbuselvan, C. A Novel Dual Chemosensor for Selective Heavy Metal Ions Al3+, Cr3+ and Its Applicable Cytotoxic Activity, HepG2 Living Cell Images and Theoretical Studies. J. Mol. Struct. 2020, 1210, 128033. DOI: 10.1016/j.molstruc.2020.128033.
  • Mahajan, P. G.; Dige, N. C.; Vanjare, B. D.; Kamaraj, E.; Seo, S. Y.; Lee, K. H. Nano Molar Level Chromogenic and Fluorogenic Sensing of Heavy Metal Ions Using Multi-Responsive Novel Schiff Base as a Dual Mode Chemosensor. J. Photochem. Photobiol. A Chem. 2019, 385, 112089. DOI: 10.1016/j.jphotochem.2019.112089.
  • Kou, S.; Nam, S. W.; Shumi, W.; Lee, M. H.; Bae, S. W.; Du, J.; Kim, J. S.; Hong, J. I.; Peng, X.; Yoon, J.; Park, S. Microfluidic Detection of Multiple Heavy Metal Ions Using Fluorescent Chemosensors. Bull. Korean Chem. Soc 2009, 30, 1173–1176. DOI: 10.5012/BKCS.2009.30.5.1173.
  • Khan, F. A.; Parasuraman, K.; Sadhu, K. K. Azacrown-Oxabridged Macrocycle: A Novel Hybrid Fluorogenic Chemosensor for Transition and Heavy Metal Ions. Chem. Commun. 2009, 2009, 2399–2401. DOI: 10.1039/b820479a.
  • Wang, L.; Pan, Y. Q.; Wang, J. F.; Zhang, Y.; Ding, Y. J. A Highly Selective and Sensitive Half-Salamo-Based Fluorescent Chemosensor for Sequential Detection of Pb(II) Ion and Cys. J. Photochem. Photobiol. A Chem. 2020, 400, 112719. DOI: 10.1016/j.jphotochem.2020.112719.
  • Bakir, E. M.; Sayed, A. R.; El-Lateef, H. M. A. Colorimetric Detection of Hg2+ Ion Using Fluorescein/Thiourea Sensor as a Receptor in Aqueous Medium. J. Photochem. Photobiol. A Chem 2022, 422, 113569. DOI: 10.1016/j.jphotochem.2021.113569.
  • Upadhyay, S.; Singh, A.; Sinha, R.; Omer, S.; Negi, K. Colorimetric Chemosensors for D-Metal Ions: A Review in the past, Present and Future Prospect. J. Mol. Struct. 2019, 1193, 89–102. DOI: 10.1016/j.molstruc.2019.05.007.
  • Udhayakumari, D.; Naha, S.; Velmathi, S. Colorimetric and Fluorescent Chemosensors for Cu2+. a Comprehensive Review from the Years 2013–15. Anal. Methods 2017, 9, 552–578. DOI: 10.1039/C6AY02416E.
  • Nural, Y.; Keleş, E.; Aydıner, B.; Seferoğlu, N.; Atabey, H.; Seferoğlu, Z. New Naphthoquinone-Imidazole Hybrids: Synthesis, Anion Recognition Properties, DFT Studies and Acid Dissociation Constants. J. Mol. Liq. 2021, 327, 114855. DOI: 10.1016/j.molliq.2020.114855.
  • Keleş, E.; Aydıner, B.; Nural, Y.; Seferoğlu, N.; Şahin, E.; Seferoğlu, Z. Cover Feature: A New Mechanism for Selective Recognition of Cyanide in Organic and Aqueous Solution. Eur. J. Org. Chem. 2020, 2020, 4640–4640. DOI: 10.1002/ejoc.202001038.
  • Gemili, M.; Nural, Y.; Keleş, E.; Aydıner, B.; Seferoğlu, N.; Şahin, E.; Sarı, H.; Seferoğlu, Z. Novel 1,4-Naphthoquinone N-Aroylthioureas: Syntheses, Crystal Structure, Anion Recognition Properties, DFT Studies and Determination of Acid Dissociation Constants. J. Mol. Liq. 2018, 269, 920–932. DOI: 10.1016/j.molliq.2018.08.054.
  • Visscher, A.; Bachmann, S.; Schnegelsberg, C.; Teuteberg, T.; Mata, R. A.; Stalke, D. Highly Selective and Sensitive Fluorescence Detection of Zn(2+) and Cd(2+) Ions by Using an Acridine Sensor. Dalton Trans. 2016, 45, 5689–5699. DOI: 10.1039/c6dt00557h.
  • Bhattacharyya, A.; Makhal, S. C.; Guchhait, N. Evaluating the Merit of a Diethylamino Coumarin-Derived Thiosemicarbazone as an Intramolecular Charge Transfer Probe: Efficient Zn(II) Mediated Emission Swing from Green to Yellow. Photochem. Photobiol. Sci. 2019, 18, 2031–2041. DOI: 10.1039/c9pp00108e.
  • Lu, X.; Zhu, W.; Xie, Y.; Li, X.; Gao, Y.; Li, F.; Tian, H. Near-IR Core-Substituted Naphthalenediimide Fluorescent Chemosensors for Zinc Ions: Ligand Effects on PET and ICT Channels. Chemistry 2010, 16, 8355–8364. DOI: 10.1002/chem.201000461.
  • Bae, S. W.; Kim, E.; Shin, I. S.; Park, S. B.; Hong, J. I. Fluorescent Chemosensor for Biological Zinc Ions. Supramol. Chem. 2013, 25, 2–6. DOI: 10.1080/10610278.2012.720020.
  • Azadbakht, R.; Keypour, H.; Amiri Rudbari, H.; Mohammad Zaheri, A. H.; Menati, S. Synthesis and Characterization of Two New Fluorescent Macrocycles: A Novel Fluorescent Chemosensor for Zinc Ion. J. Lumin. 2012, 132, 1860–1866. DOI: 10.1016/j.jlumin.2012.02.035.
  • Gao, H.; Wu, X. A 3-Hydroxyflavone Derivative as Fluorescence Chemosensor for Copper and Zinc Ions. Chem. Heterocycl. Comp. 2018, 54, 125–129. DOI: 10.1007/s10593-018-2243-9.
  • Budri, M.; Naik, G.; Patil, S.; Kadolkar, P.; Gudasi, K.; Inamdar, S. An ESIPT Blocked Highly ICT Based Molecular Probe to Sense Zn (II) Ion through Turn on Optical Response: Experimental and Theoretical Studies. J. Photochem. Photobiol. A Chem 2020, 390, 112298. DOI: 10.1016/j.jphotochem.2019.112298.
  • Priyangga, K. T. A.; Kurniawan, Y. S.; Ohto, K.; Jumina, J. Review on Calixarene Fluorescent Chemosensor Agents for Various Analytes. J. Multidiscip. Appl. Nat. Sci. 2022, 2, 23–40. DOI: 10.47352/jmans.2774-3047.101.
  • Upadhyay, S.; Singh, A.; Sinha, R.; Negi, K.; Bhardwaj, P.; Sarswati, S. Colorimetric Chemosensors for D-Metal Ions: Short Communication. SSRN Electron. J. 2018. DOI: 10.2139/SSRN.3299234.
  • Moura, N. M. M.; Núñez, C.; Santos, S. M.; Faustino, M. A. F.; Cavaleiro, J. A. S.; Neves, M. G. P. M. S.; Capelo, J. L.; Lodeiro, C. Synthesis, Spectroscopy Studies, and Theoretical Calculations of New Fluorescent Probes Based on Pyrazole Containing Porphyrins for Zn(II), Cd(II), and Hg(II) Optical Detection. Inorg. Chem. 2014, 53, 6149–6158. DOI: 10.1021/ic500634y.
  • Ying, F. P.; Lu, H. S.; Yi, X. Q.; Xu, Y. Q.; Lv, Y. Y. A Porphyrin Platform for Ratiometric Fluorescence Monitoring of Zn2+ Ion. Sens. Actuators, B Chem. 2021, 340, 1–10. DOI: 10.1016/j.snb.2021.129997.
  • Li, C. Y.; Zhang, X. B.; Dong, Y. Y.; Ma, Q. J.; Han, Z. X.; Zhao, Y.; Shen, G. L.; Yu, R. Q. A Porphyrin Derivative Containing 2-(Oxymethyl)Pyridine Units Showing Unexpected Ratiometric Fluorescent Recognition of Zn2+ with High Selectivity. Anal. Chim. Acta. 2008, 616, 214–221. DOI: 10.1016/j.aca.2008.04.024.
  • Tang, L.; Cai, M.; Zhou, P.; Zhao, J.; Huang, Z.; Zhong, K.; Hou, S.; Bian, Y. Relay Recognition by Modulating ESIPT: A Phenylbenzimidazole Derived Sensor for Highly Selective Ratiometric Fluorescent Recognition of Zn2+ and S2- in Water. J. Lumin. 2014, 147, 179–183. DOI: 10.1016/j.jlumin.2013.11.024.
  • Hsieh, W. H.; Wan, C. F.; Liao, D. J.; Wu, A. T. A Turn-on Schiff Base Fluorescence Sensor for Zinc Ion. Tetrahedron Lett. 2012, 53, 5848–5851. DOI: 10.1016/j.tetlet.2012.08.058.
  • Das, B.; Jana, A.; Mahapatra, A.; Das; Chattopadhyay, D.; Dhara, A.; Mabhai, S.; Dey, S. Fluorescein Derived Schiff Base as Fluorimetric Zinc (II) Sensor via 'turn on' response and its application in live cell imaging. Spectrochim Acta A Mol. Biomol. Spectrosc. 2019, 212, 222–231. DOI: 10.1016/j.saa.2018.12.053.
  • Li, Y.; Li, K.; He, J. A “Turn-on” Fluorescent Chemosensor for the Detection of Zn(II) in Aqueous Solution at Neutral PH and Its Application in Live Cells imaging. Talanta 2016, 153, 381–385. DOI: 10.1016/j.talanta.2016.03.040.
  • Yan, J.; Fan, L.; Qin, J. C.; Li, C. R.; Yang, Z. Y. A Novel and Resumable Schiff-Base Fluorescent Chemosensor for Zn(II). Tetrahedron Lett. 2016, 57, 2910–2914. DOI: 10.1016/j.tetlet.2016.05.079.
  • So, H.; Cho, H.; Lee, H.; Tran, M. C.; Kim, K. T.; Kim, C. Detection of Zinc (II) and Hypochlorite by a Thiourea-Based Chemosensor via Two Emission Channels and Its Application in Vivo. Microchem. J. 2020, 155, 104788. DOI: 10.1016/j.microc.2020.104788.
  • Padhan, S. K.; Palei, J.; Rana, P.; Murmu, N.; Sahu, S. N. Sequential Displacement Strategy for Selective and Highly Sensitive Detection of Zn2+, Hg2+ and S2- ions: An approach toward a molecular keypad lock. Spectrochim Acta A Mol. Biomol. Spectrosc. 2019, 208, 271–284. DOI: 10.1016/j.saa.2018.10.016.
  • Jiang, S.; Chen, S.; Wang, Z.; Guo, H.; Yang, F. First Fluorescence Sensor for Simultaneously Detecting Three Kinds of IIB Elements (Zn2+, Cd2+ and Hg2+) Based on Aggregation-Induced Emission. Sens. Actuators, B Chem 2020, 308, 127734. DOI: 10.1016/j.snb.2020.127734.
  • Narayanaswamy, N.; Maity, D.; Govindaraju, T. Reversible Fluorescence Sensing of Zn 2+ Based on Pyridine-Constrained Bis(Triazole-Linked Hydroxyquinoline) Sensor. Supramol. Chem. 2011, 23, 703–709. DOI: 10.1080/10610278.2011.611245.
  • Vosough Razavi, B.; Badiei, A.; Lashgari, N.; Mohammadi Ziarani, G. 2,6-Bis(2-Benzimidazolyl)Pyridine Fluorescent Red-Shifted Sensor for Recognition of Zinc(II) and a Calorimetric Sensor for Iron Ions. J. Fluoresc. 2016, 26, 1723–1728. DOI: 10.1007/s10895-016-1863-7.
  • Lee, H. G.; Lee, J. H.; Jang, S. P.; Park, H. M.; Kim, S. J.; Kim, Y.; Kim, C.; Harrison, R. G. Zinc Selective Chemosensor Based on Pyridyl-Amide Fluorescence. Tetrahedron 2011, 67, 8073–8078. DOI: 10.1016/j.tet.2011.08.049.
  • Xiao, S.; Liu, Z.; Zhao, J.; Pei, M.; Zhang, G.; He, W. A Novel Fluorescent Sensor Based on Imidazo[1,2-a]Pyridine for Zn2. +. RSC Adv. 2016, 6, 27119–27125. DOI: 10.1039/C6RA01800A.
  • Karmegam, M. V.; Karuppannan, S.; Christopher Leslee, D. B.; Subramanian, S.; Gandhi, S. Phenothiazine-Rhodamine-Based Colorimetric and Fluorogenic 'Turn-On' Sensor for Zn2+ and Bioimaging Studies in Live Cells. Luminescence 2020, 35, 90–97. DOI: 10.1002/bio.3701.
  • Xue, J.; Tian, L. m.; Yang, Z. y. A Novel Rhodamine-Chromone Schiff-Base as Turn-on Fluorescent Probe for the Detection of Zn(II) and Fe(III) in Different Solutions. J. Photochem. Photobiol. A Chem. 2019, 369, 77–84. DOI: 10.1016/j.jphotochem.2018.10.026.
  • Roy, A.; Shee, U.; Mukherjee, A.; Mandal, S. K.; Roy, P. Rhodamine-Based Dual Chemosensor for Al 3+ and Zn 2+ Ions with Distinctly Separated Excitation and Emission Wavelengths. ACS Omega 2019, 4, 6864–6875. DOI: 10.1021/acsomega.9b00475.
  • Fan, L.; Qin, J. C.; Li, T. R.; Wang, B. D.; Yang, Z. Y. A Novel Rhodamine Chromone-Based “off-on” Chemosensor for the Differential Detection of Al(III) and Zn(II) in Aqueous Solutions. Sens. Actuators, B Chem. 2014, 203, 550–556. DOI: 10.1016/j.snb.2014.07.017.
  • Kotha, S.; Goyal, D.; Banerjee, S.; Datta, A. A Novel Di-Triazole Based Peptide as a Highly Sensitive and Selective Fluorescent Chemosensor for Zn2+ Ions. Analyst 2012, 137, 2871–2875. DOI: 10.1039/c2an35222b.
  • Sinha, S.; Mukherjee, T.; Mathew, J.; Mukhopadhyay, S. K.; Ghosh, S. Triazole-Based Zn2+-Specific Molecular Marker for Fluorescence Bioimaging. Anal. Chim. Acta. 2014, 822, 60–68. DOI: 10.1016/j.aca.2014.03.002.
  • Tamanini, E.; Katewa, A.; Sedger, L. M.; Todd, M. H.; Watkinson, M. A Synthetically Simple, Click-Generated Cyclam-Based zinc(II) sensor. Inorg. Chem. 2009, 48, 319–324. DOI: 10.1021/ic8017634.
  • Tang, Y.; Huang, Y.; Lu, L.; Wang, C.; Sun, T.; Zhu, J.; Zhu, G.; Pan, J.; Jin, Y.; Liu, A.; Wang, M. Synthesis of a New Pyrene-Devived Fluorescent Probe for the Detection of Zn2+. Tetrahedron Lett. 2018, 59, 3916–3922. DOI: 10.1016/j.tetlet.2018.09.038.
  • Yoon, S. A.; Lee, J.; Lee, M. H. A Ratiometric Fluorescent Probe for Zn2+ Based on Pyrene-Appended Naphthalimide-Dipicolylamine. Sensors Actuators, B Chem 2018, 258, 50–55. DOI: 10.1016/j.snb.2017.11.126.
  • Ma, J.; Sheng, R.; Wu, J.; Liu, W.; Zhang, H. A New Coumarin-Derived Fluorescent Sensor with Red-Emission for Zn 2+ in Aqueous Solution. Sens. Actuators, B Chem. 2014, 197, 364–369. DOI: 10.1016/j.snb.2014.03.017.
  • Fu, J.; Yao, K.; Li, B.; Mei, H.; Chang, Y.; Xu, K. Coumarin-Based Colorimetric-Fluorescent Sensors for the Sequential Detection of Zn2+ Ion and Phosphate Anions and Applications in Cell Imaging. Spectrochim Acta A Mol. Biomol. Spectrosc. 2020, 228, 117790. DOI: 10.1016/j.saa.2019.117790.
  • Yanfang, S.; Hualai, W.; Hui, B. A Coumarin-Based Turn-on Chemosensor for Selective Detection of Zn(II) and Application in Live Cell Imaging. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2020, 228, 117746. DOI: 10.1016/j.saa.2019.117746.
  • Mukherjee, S.; Talukder, S. A Reversible Luminescent Quinoline Based Chemosensor for Recognition of Zn2+ Ions in Aqueous Methanol Medium and Its Logic Gate Behavior. J. Lumin. 2016, 177, 40–47. DOI: 10.1016/j.jlumin.2016.04.016.
  • Wang, P.; Wu, J. A Highly Sensitive Turn-on Fluorescent Chemosensor for Recognition of Zn(II) Ions and Its Application in Live Cells Imaging. J. Photochem. Photobiol. A Chem. 2020, 386, 112111. DOI: 10.1016/j.jphotochem.2019.112111.
  • Pandith, A.; Uddin, N.; Choi, C. H.; Kim, H. S. Highly Selective Imidazole-Appended 9,10-N,N′-Diaminomethylanthracene Fluorescent Probe for Switch-on Zn2+ Detection and Switch-off H2PO4− and CN − Detection in 80% Aqueous DMSO, and Applications to Sequential Logic Gate Operations. Sens. Actuators B Chem. 2017, 247, 840–849. DOI: 10.1016/j.snb.2017.03.112.
  • Venkatesan, V.; Selva Kumar, R.; Ashok Kumar, S. K.; Sahoo, S. K. Visible Colorimetric Sensing of Zn2+ and CN − by Diaminomaleonitrile Derived Schiff’s Base and Its Applications to Pharmaceutical and Food Sample Analysis. Inorg. Chem. Commun. 2021, 130, 108708. DOI: 10.1016/j.inoche.2021.108708.
  • Karuppusamy, P.; Sarveswari, S. A Simple Diaminomaleonitrile Based Molecular Probe for Selective Detection of Cu(II) and Zn(II) Ions in Semi-Aqueous Medium. Inorganica Chim. Acta 2021, 515, 120073. DOI: 10.1016/j.ica.2020.120073.
  • Acharyya, S.; Gharami, S.; Sarkar, D.; Ghosh, P.; Murmu, N.; Mondal, T. K. A Thioether Containing Reversible Fluorescence “Turn-on” Chemosensor for Selective Detection of Zinc(II): Applications in Live Cell Imaging and Inhibit Logic Gate. J. Mol. Struct. 2021, 1224, 129179. DOI: 10.1016/j.molstruc.2020.129179.
  • Li, Y.; Niu, Q.; Wei, T.; Li, T. Novel Thiophene-Based Colorimetric and Fluorescent Turn-on Sensor for Highly Sensitive and Selective Simultaneous Detection of Al3+ and Zn2+ in water and food samples and its application in bioimaging. Anal. Chim. Acta. 2019, 1049, 196–212. DOI: 10.1016/j.aca.2018.10.043.
  • Mati, S. S.; Chall, S.; Konar, S.; Rakshit, S.; Bhattacharya, S. C. Pyrimidine-Based Fluorescent Zinc Sensor: Photo-Physical Characteristics, Quantum Chemical Interpretation and Application in Real Samples. Sensors Actuators, B Chem 2014, 201, 204–212. DOI: 10.1016/j.snb.2014.04.058.
  • Yuan, C.; Li, S.; Wu, Y.; Lu, L.; Zhu, M. Zn(II)-Selective and Sensitive Fluorescent Chemosensor Based on Steric Constrains and Inhibition of ESIPT. Sens. Actuators, B Chem 2017, 242, 1035–1042. DOI: 10.1016/j.snb.2016.09.149.
  • Singhal, D.; Althagafi, I.; Kumar, A.; Yadav, S.; Prasad, A. K.; Pratap, R. Thieno[3,2-: C] Pyran: An ESIPT Based Fluorescence “Turn-on” Molecular Chemosensor with AIE Properties for the Selective Recognition of Zn2 + Ion. New J. Chem. 2020, 44, 12019–12026. DOI: 10.1039/D0NJ02236E.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.