307
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Liquid-Phase Microextraction Approaches for Preconcentration and Analysis of Chiral Compounds: A Review on Current Advances

, , , & ORCID Icon
Pages 1623-1637 | Published online: 17 Feb 2022

References

  • Casado, N.; Valimaña-Traverso, J.; García, M. Á.; Marina, M. L. Enantiomeric Determination of Drugs in Pharmaceutical Formulations and Biological Samples by Electrokinetic Chromatography. Crit. Rev. Anal. Chem. 2020, 50, 554–584. DOI: 10.1080/10408347.2019.1670043.
  • Nakanishi, T.; Yamakawa, N.; Asahi, T.; Shibata, N.; Ohtani, B.; Osaka, T. Chiral Discrimination between Thalidomide Enantiomers Using a Solid Surface with Two-Dimensional Chirality. Chirality 2004, 16, S36–S39. DOI: 10.1002/chir.20039.
  • Wang, X.-F.; Sun, Y.,-K.; Sun, K.; Ding, Y.-Z.; Yuan, R.-J. Separation and Pharmacology of Chiral Compounds in Traditional Chinese Medicine. Anal. Lett. 2017, 50, 33–49. DOI: 10.1080/00032719.2016.1169540.
  • Fortuna, A.; Alves, G.; Falcão, A. Chiral Chromatographic Resolution of Antiepileptic Drugs and Their Metabolites: A Challenge from the Optimization to the Application. Biomed. Chromatogr. 2014, 28, 27–58. DOI: 10.1002/bmc.3004.
  • Luo, M.; Liu, D.; Zhou, Z.; Wang, P. A New Chiral Residue Analysis Method for Triazole Fungicides in Water Using Dispersive Liquid-Liquid Microextraction (DLLME). Chirality 2013, 25, 567–574. DOI: 10.1002/chir.22172.
  • Hamidi, S.; Jouyban, A. Pre-Concentration Approaches Combined with Capillary Electrophoresis in Bioanalysis of Chiral Cardiovascular Drugs. Pharm. Sci. 2015, 21, 229–243. http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/57268. DOI: 10.15171/PS.2015.42.
  • Kiran, M.; Yadav, P.; Deolekar, P.; Thakre, V. Chiral Chemistry in Pharmacology-A Review. Int. J. Pharm. Res. Allied Sci. 2012, 1, 7–10.
  • Ward, T. J.; Ward, K. D. Chiral Separations: A Review of Current Topics and Trends. Anal. Chem. 2012, 84, 626–635. DOI: 10.1021/ac202892w.
  • Rocco, A.; Aturki, Z.; Fanali, S. Chiral Separations in Food Analysis. Trends Anal. Chem. 2013, 52, 206–225. DOI: 10.1016/j.trac.2013.05.022.
  • Wang, S.-Y.; Li, L.; Xiao, Y.; Wang, Y. Recent Advances in Cyclodextrins-Based Chiral-Recognizing Platforms. Trends Anal. Chem. 2019, 121, 115691. DOI: 10.1016/j.trac.2019.115691.
  • Carasek, E.; Merib, J. Membrane-Based Microextraction Techniques in Analytical Chemistry: A Review. Anal. Chim. Acta 2015, 880, 8–25. DOI: 10.1016/j.aca.2015.02.049.
  • Płotka-Wasylka, J.; Owczarek, K.; Namieśnik, J. Modern Solutions in the Field of Microextraction Using Liquid as a Medium of Extraction. Trends Anal. Chem. 2016, 85, 46–64. DOI: 10.1016/j.trac.2016.08.010.
  • Tabani, H.; Nojavan, S.; Alexovič, M.; Sabo, J. Recent Developments in Green Membrane-Based Extraction Techniques for Pharmaceutical and Biomedical Analysis. J. Pharm. Biomed. Anal. 2018, 160, 244–267. DOI: 10.1016/j.jpba.2018.08.002.
  • Majd, M.; Yazdanpanah, M.; Bayatloo, M. R.; Nojavan, S. Recent Advances and Applications of Cyclodextrins in Magnetic Solid Phase Extraction. Talanta 2021, 229, 122296. DOI: 10.1016/j.talanta.2021.122296.
  • Nojavan, S.; Mahdavi, P.; Bayatloo, M. R.; Chalavi, S. Application of Magnetic Nanomaterials in Bioanalysis. In Magnetic Nanomaterials in Analytical Chemistry; Ahmadi, M., Afkhami, A., Madrakian, T., Eds.; Elsevier: Amsterdam, 2021; pp 121–154. DOI: 10.1016/B978-0-12-822131-0.00001-7.
  • Chen, L.; Wang, J.; Xu, T.; Feng, X.; Huang, C.; Shen, X. Recent Sample Pretreatment Methods for Determination of Selective Serotonin Reuptake Inhibitors (SSRIs) in Biological samples. J. Pharm. Biomed. Anal. 2021, 206, 114364. DOI: 10.1016/j.jpba.2021.114364.
  • Jalili, V.; Barkhordari, A.; Paull, B.; Ghiasvand, A. Microextraction and Determination of Poly-and Perfluoroalkyl Substances, Challenges, and Future Trends. Crit. Rev. Anal. Chem. DOI: 10.1080/10408347.2021.1964345.
  • Song, Y.; Feng, X.-S. Sample Preparation and Analytical Methods for Steroid Hormones in Environmental and Food Samples: An Update Since 2012. Crit. Rev. Anal. Chem. 2021, 1–19. DOI: 10.1080/10408347.2021.1936446.
  • Navas, M. J.; Jiménez-Moreno, A. M.; Bueno, J. M.; Sáez-Plaza, P.; Asuero, A. G. Analysis and Antioxidant Capacity of Anthocyanin Pigments. Part III: An Introduction to Sample Preparation and Extraction. Crit. Rev. Anal. Chem. 2012, 42, 284–312. DOI: 10.1080/10408347.2012.680341.
  • Jagirani, M. S.; Ozalp, O.; Soylak, M. New Trend in the Extraction of Pesticides from the Environmental and Food Samples Applying Microextraction Based Green Chemistry Scenario: A Review. Crit. Rev. Anal. Chem. 2021, 1–27. DOI: 10.1080/10408347.2021.1874867.
  • Ho, T. S.; Pedersen-Bjergaard, S.; Rasmussen, K. E. Recovery, Enrichment and Selectivity in Liquid-Phase Microextraction: comparison with Conventional Liquid-Liquid Extraction. J. Chromatogr. A. 2002, 963, 3–17. DOI: 10.1016/S0021-9673(02)00215-7.
  • Kubáň, P.; Boček, P. Direct Coupling of Supported Liquid Membranes to Capillary Electrophoresis for Analysis of Complex Samples: A Tutorial. Anal. Chim. Acta 2013, 787, 10–23. DOI: 10.1016/j.aca.2013.04.065.
  • Esrafili, A.; Baharfar, M.; Tajik, M.; Yamini, Y.; Ghambarian, M. Two-Phase Hollow Fiber Liquid-Phase Microextraction. Trends Anal. Chem. 2018, 108, 314–322. DOI: 10.1016/j.trac.2018.09.015.
  • Nia, N. N.; Hadjmohammadi, M. R. Amino Acids-Based Hydrophobic Natural Deep Eutectic Solvents as a Green Acceptor Phase in Two-Phase Hollow Fiber-Liquid Microextraction for the Determination of Caffeic Acid in Coffee, Green Tea, and Tomato Samples. Microchem. J. 2021, 164, 106021. DOI: 10.1016/j.microc.2021.106021.
  • Fakhari, A. R.; Tabani, H.; Nojavan, S. Miniaturized Hollow Fibre Assisted Liquid-Phase Microextraction and Gas Chromatography for Determination of Trace Concentration of Sufentanil and Alfentanil in Biological Samples. Drug Test Anal. 2013, 5, 589–595. DOI: 10.1002/dta.1387.
  • Rasmussen, K. E.; Pedersen-Bjergaard, S.; Krogh, M.; Ugland, H. G.; Grønhaug, T. Development of a Simple in-Vial Liquid-Phase Microextraction Device for Drug Analysis Compatible with Capillary Gas Chromatography, Capillary Electrophoresis and High-Performance Liquid Chromatography. J. Chromatogr. A. 2000, 873, 3–11. DOI: 10.1016/S0021-9673(99)01163-2.
  • Gjelstad, A. Three-Phase Hollow Fiber Liquid-Phase Microextraction and Parallel Artificial Liquid Membrane Extraction. Trends Anal. Chem. 2019, 113, 25–31. DOI: 10.1016/j.trac.2019.01.007.
  • Venson, R.; Korb, A.-S.; Cooper, G. A Review of the Application of hollow-fiber liquid-phase microextraction in bioanalytical methods - A systematic approach with focus on forensic toxicology. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2019, 1108, 32–53. DOI: 10.1016/j.jchromb.2019.01.006.
  • Simões, R. A.; de Oliveira, A. R. M.; Bonato, P. S. Hollow Fiber-Based Liquid-Phase Microextraction (HF-LPME) of Isradipine and Its Main Metabolite Followed by Chiral HPLC Analysis: application to an in Vitro Biotransformation Study. Anal. Bioanal. Chem. 2011, 399, 2435–2443. DOI: 10.1007/s00216-010-4635-2.
  • Hatami, M.; Farhadi, K. Application of Hollow Fiber-Supported Liquid-Phase Microextraction Coupled with HPLC for the Determination of Guaifenesin Enantiomer-Protein Binding. Biomed. Chromatogr. 2012, 26, 875–880. DOI: 10.1002/bmc.1746.
  • Zeng, L.; Liu, Q.; Yi, Q.; Tang, K.; Van der Bruggen, B. Van Der Bruggen, B. Novel Chiral Drug Recovery and Enantioseparation Method: Hollow Fiber Membrane Extraction and in Situ Coupling of Back-Extraction with Crystallization. Ind. Eng. Chem. Res. 2020, 59, 13735–13743. DOI: 10.1021/acs.iecr.0c02123.
  • da Fonseca, P.; Bonato, P. S. Chiral HPLC Analysis of Venlafaxine Metabolites in Rat Liver Microsomal Preparations after LPME Extraction and Application to an in Vitro Biotransformation Study. Anal. Bioanal. Chem. 2010, 396, 817–824. DOI: 10.1007/s00216-009-3271-1.
  • da Fonseca, P.; Bonato, P. S. Hollow-Fiber Liquid-Phase Microextraction and Chiral LC-MS/MS Analysis of Venlafaxine and its Metabolites in Plasma. Bioanalysis 2013, 5, 721–730. DOI: 10.4155/bio.13.22.
  • Hatami, M.; Farhadi, K. Analysis of Ketoprofen Enantiomers in Human and Rat Plasma by Hollow-Fiber-Based Liquid-Phase Microextraction and Chiral Mobile-Phase Additive HPLC. Can. J. Chem. 2013, 91, 1252–1257. DOI: 10.1139/cjc-2013-0228.
  • Barth, T.; Simões, R. A.; Pupo, M. T.; Okano, L. T.; Bonato, P. S. Stereoselective Liquid Chromatographic Determination of 1'-Oxobufuralol and 1'-Hydroxybufuralol in Rat Liver Microsomal Fraction Using Hollow-Fiber Liquid-Phase Microextraction for Sample Preparation. J. Sep. Sci. 2011, 34, 3578–3586. DOI: 10.1002/jssc.201100464.
  • Dos Santos Magalhães, I. R.; Bonato, P. S. Two-Step Liquid-Phase Microextraction and High-Performance Liquid Chromatography for the Simultaneous Analysis of the Enantiomers of Mefloquine and Its Main Metabolite Carboxymefloquine in Plasma. Anal. Bioanal. Chem. 2009, 393, 1805–1813. DOI: 10.1007/s00216-009-2620-4.
  • Andersen, S.; Halvorsen, T. G.; Pedersen-Bjergaard, S.; Rasmussen, K. E.; Tanum, L.; Refsum, H. Stereospecific Determination of Citalopram and Desmethylcitalopram by Capillary Electrophoresis and Liquid-Phase Microextraction. J. Pharmaceut. Biomed. 2003, 33, 263–273. DOI: 10.1016/S0731-7085(03)00264-4.
  • Lai, S.; Tang, S.; Xie, J.; Cai, C.; Chen, X.; Chen, C. Highly Efficient Chiral Separation of Amlodipine Enantiomers via Triple Recognition Hollow Fiber Membrane Extraction. J. Chromatogr. A. 2017, 1490, 63–73. DOI: 10.1016/j.chroma.2017.02.018.
  • Abolhasani, J.; Jafariyan, H. R.; Mahdi Khataei, M.; Hosseinzadeh-Khanmiri, R.; Ghorbani-Kalhor, E.; Hassanpour, A. Hollow Fiber Supported Liquid-Phase Microextraction Combined with Maltodextrin-Modified Capillary Electrophoresis for the Determination of Citalopram Enantiomers in Urine Samples. Anal. Methods 2015, 7, 2012–2019. DOI: 10.1039/C4AY02377C.
  • de Santana, F. J. M.; de Oliveira, A. R. M.; Bonato, P. S. Chiral Liquid Chromatographic Determination of Mirtazapine in Human Plasma Using Two-Phase Liquid-Phase Microextraction for Sample Preparation. Anal. Chim. Acta 2005, 549, 96–103. DOI: 10.1016/j.aca.2005.06.030.
  • dos Santos Magalhães, I. R.; Sueli Bonato, P. Enantioselective Determination of Chloroquine and Its n-Dealkylated Metabolites in Plasma Using Liquid-Phase Microextraction and LC-MS. J. Sep. Sci. 2008, 31, 3106–3116. DOI: 10.1002/jssc.200800320.
  • dos Santos Magalhães, I. R.; Bonato, P. S. Liquid-Phase Microextraction Combined with High-Performance Liquid Chromatography for the Enantioselective Analysis of Mefloquine in Plasma Samples. J. Pharm. Biomed. Anal. 2008, 46, 929–936. DOI: 10.1016/j.jpba.2007.01.043.
  • de Santana, F. J. M.; Bonato, P. S. Enantioselective Analysis of Mirtazapine and Its Two Major Metabolites in Human Plasma by Liquid chromatography-Mass Spectrometry After Three-Phase Liquid-Phase Microextraction. Anal. Chim. Acta 2008, 606, 80–91. DOI: 10.1016/j.aca.2007.10.037.
  • Andersen, S.; Halvorsen, T. G.; Pedersen-Bjergaard, S.; Rasmussen, K. E. Liquid-Phase Microextraction Combined with Capillary Electrophoresis, a Promising Tool for the Determination of Chiral Drugs in Biological Matrices. J. Chromatogr. A. 2002, 963, 303–312. DOI: 10.1016/S0021-9673(02)00223-6.
  • de Oliveira, A. R. M.; Cardoso, C. D.; Bonato, P. S. Stereoselective Determination of Hydroxychloroquine and Its Metabolites in Human Urine by Liquid-Phase Microextraction and CE. Electrophoresis 2007, 28, 1081–1091. DOI: 10.1002/elps.200600420.
  • Wang, Y.; Liu, Y.; Han, J.; Wang, L.; Chen, T.; Ni, L. Selective Extraction and Preconcentration of Trace Lead (II) in Medicinal Plant-Based Ionic Liquid Hollow Fiber Liquid Phase Microextraction System Using Dicyclohexyl-18-Crown-6 as Membrane Carrier. Anal. Methods 2015, 7, 2339–2346. DOI: 10.1039/C4AY02625J.
  • Ge, D.; Lee, H. K. Ultra-Hydrophobic Ionic Liquid 1-Hexyl-3-Methylimidazolium Tris (Pentafluoroethyl) Trifluorophosphate Supported Hollow-Fiber Membrane Liquid–Liquid–Liquid Microextraction of Chlorophenols. Talanta 2015, 132, 132–136. DOI: 10.1016/j.talanta.2014.08.074.
  • Mogaddam, M. R. A.; Farajzadeh, M. A.; Mohebbi, A.; Nemati, M. Hollow Fiber-Liquid Phase Microextraction Method Based on a New Deep Eutectic Solvent for Extraction and Derivatization of Some Phenolic Compounds in Beverage Samples Packed in Plastics. Talanta 2020, 216, 120986. DOI: 10.1016/j.talanta.2020.120986.
  • Pedersen-Bjergaard, S.; Rasmussen, K. E. Electrokinetic Migration across Artificial Liquid membranes. New Concept for Rapid Sample Preparation of Biological Fluids. J. Chromatogr. A. 2006, 1109, 183–190. DOI: 10.1016/j.chroma.2006.01.025.
  • Pedersen-Bjergaard, S. Electromembrane Extraction-Looking into the Future. Anal. Bioanal. Chem. 2019, 411, 1687–1693. DOI: 10.1007/s00216-018-1512-x.
  • Drouin, N.; Kubáň, P.; Rudaz, S.; Pedersen-Bjergaard, S.; Schappler, J. Electromembrane Extraction: Overview of the Last Decade. Trends Anal. Chem. 2019, 113, 357–363. DOI: 10.1016/j.trac.2018.10.024.
  • Tabani, H.; Alexovič, M.; Sabo, J.; Payán, M. R. An Overview on the Recent Applications of Agarose as a Green Biopolymer in Micro-Extraction-Based Sample Preparation Techniques. Talanta 2021, 224, 121892. DOI: 10.1016/j.talanta.2020.121892.
  • Nojavan, S.; Fakhari, A. R. Electro Membrane Extraction Combined with Capillary Electrophoresis for the Determination of Amlodipine Enantiomers in Biological samples. J. Sep. Sci. 2010, 33, 3231–3238. DOI: 10.1002/jssc.201000242.
  • Fakhari, A. R.; Tabani, H.; Nojavan, S.; Abedi, H. Electromembrane Extraction Combined with Cyclodextrin-Modified Capillary Electrophoresis for the Quantification of Trimipramine Enantiomers. Electrophoresis 2012, 33, 506–515. DOI: 10.1002/elps.201100426.
  • Tabani, H.; Fakhari, A. R.; Shahsavani, A.; Gharari Alibabaou, H. Electrically Assisted Liquid-Phase Microextraction Combined with Capillary Electrophoresis for Quantification of Propranolol Enantiomers in Human Body Fluids. Chirality 2014, 26, 260–267. DOI: 10.1002/chir.22308.
  • Fakhari, A. R.; Tabani, H.; Behdad, H.; Nojavan, S.; Taghizadeh, M. Electrically-Enhanced Microextraction Combined with Maltodextrin-Modified Capillary Electrophoresis for Quantification of Tolterodine Enantiomers in Biological Samples. Microchem. J. 2013, 106, 186–193. DOI: 10.1016/j.microc.2012.06.010.
  • Fakhari, A. R.; Mohammadi Kosalar, H.; Asadi, S.; Hasheminasab, K. S. Surfactant-Assisted Electromembrane Extraction Combined with Cyclodextrin-Modified Capillary Electrophoresis for the Separation and Quantification of Tranylcypromine Enantiomers in Biological Samples. J. Sep. Sci. 2018, 41, 475–482. DOI: 10.1002/jssc.201700488.
  • Rezaee, M.; Assadi, Y.; Hosseini, M. –R. M.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of Organic Compounds in Water Using Dispersive Liquid-Liquid Microextraction. J. Chromatogr. A. 2006, 1116, 1–9. DOI: 10.1016/j.chroma.2006.03.007.
  • Kokosa, J. M.; Dispersive Liquid-Liquid Microextraction. In Liquid-Phase Extraction; Poole, C. F. Ed.; Elsevier: Amsterdam, 2020; pp 473–497. DOI: 10.1016/B978-0-12-816911-7.00016-5.
  • Hamidi, S.; Soltani, S.; Jouyban, A. A Dispersive Liquid-Liquid Microextraction and Chiral Separation of Carvedilol in Human Plasma Using Capillary Electrophoresis. Bioanalysis 2015, 7, 1107–1117. DOI: 10.4155/bio.15.51.
  • Hatami, M.; Farhadi, K.; Abdollahpour, A. Using Dispersive Liquid-Liquid Microextraction and Liquid Chromatography for Determination of Guaifenesin Enantiomers in Human Urine. J. Sep. Sci. 2011, 34, 2933–2939. DOI: 10.1002/jssc.201100520.
  • Wang, Z. R.; Hsieh, M. M. Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction Coupled with Field-Amplified Capillary Electrophoresis for Sensitive and Quantitative Determination of Fluoxetine and Norfluoxetine Enantiomers in Biological Fluids. Anal. Bioanal. Chem. 2020, 412, 5113–5123. DOI: 10.1007/s00216-020-02441-x.
  • Farhadi, K.; Hatami, M.; Forough, M.; Molaei, R. Dispersive Liquid-Liquid Microextraction of Propranolol Enantiomers from Human Plasma based on the Solidification of a Floating Organic Droplet. Bioanalysis 2013, 5, 701–710. DOI: 10.4155/bio.13.23.
  • Jing, X.; Huang, X.; Wang, H.; Xue, H.; Wu, B.; Wang, X.; Jia, L. Popping Candy-Assisted Dispersive Liquid-Liquid Microextraction for Enantioselective Determination of Prothioconazole and its Chiral Metabolite in Water, Beer, Baijiu, and Vinegar Samples by HPLC. Food Chem. 2021, 348, 129147. DOI: 10.1016/j.foodchem.2021.129147.
  • Meng, L.; Wang, B.; Luo, F.; Shen, G.; Wang, Z.; Guo, M. Application of Dispersive Liquid-Liquid Microextraction and CE with UV Detection for the Chiral Separation and Determination of the Multiple Illicit Drugs on Forensic Samples. Forensic Sci. Int. 2011, 209, 42–47. DOI: 10.1016/j.forsciint.2010.12.003.
  • Hsieh, M.-M.; Chiu, T.-C.; Chen, S.-H. Fast Determination of Five Chiral Antipsychotic Drugs Using Dispersive Liquid–Liquid Microextraction Combined with Capillary Electrophoresis. Anal. Methods 2020, 12, 2002–2008. DOI: 10.1039/C9AY02776A.
  • Hamidi, S.; Jouyban, A. Capillary Electrophoresis with UV Detection, on-Line Stacking and off-Line Dispersive Liquid–Liquid Microextraction for Determination of Verapamil Enantiomers in Plasma. Anal. Methods 2015, 7, 5820–5829. DOI: 10.1039/C5AY00916B.
  • Xiong, J.; Hu, B. Comparison of Hollow Fiber Liquid Phase Microextraction and Dispersive liquid-liquid microextraction for the determination of organosulfur pesticides in environmental and beverage samples by gas chromatography with flame photometric detection. J. Chromatogr. A. 2008, 1193, 7–18. DOI: 10.1016/j.chroma.2008.03.072.
  • López-Darias, J.; Germán-Hernández, M.; Pino, V.; Afonso, A. M. Dispersive Liquid–Liquid Microextraction versus Single-Drop Microextraction for the Determination of Several Endocrine-Disrupting Phenols from Seawaters. Talanta 2010, 80, 1611–1618. DOI: 10.1016/j.talanta.2009.09.057.
  • Martín, J.; Buchberger, W.; Alonso, E.; Himmelsbach, M.; Aparicio, I. Comparison of Different Extraction Methods for the Determination of Statin Drugs in Wastewater and River Water by HPLC/Q-TOF-MS. Talanta 2011, 85, 607–615. DOI: 10.1016/j.talanta.2011.04.017.
  • Quigley, A.; Cummins, W.; Connolly, D. Dispersive Liquid-Liquid Microextraction in the Analysis of Milk and Dairy Products: A Review. J. Chem 2016, 2016, 1–12. DOI: 10.1155/2016/4040165.
  • Moradi, M.; Yamini, Y.; Feizi, N. Development and Challenges of Supramolecular Solvents in Liquid-Based Microextraction Methods. Trends Anal. Chem. 2021, 138, 116231. DOI: 10.1016/j.trac.2021.116231.
  • Ballesteros-Gómez, A.; Lunar, L.; Sicilia, M. D.; Rubio, S. Hyphenating Supramolecular Solvents and Liquid Chromatography: Tips for Efficient Extraction and Reliable Determination of Organics. Chromatographia 2019, 82, 111–124. DOI: 10.1007/s10337-018-3614-1.
  • Lara, A. B.; Caballo, C.; Sicilia, M. D.; Rubio, S. Quick and Sensitive Enantioselective Determination of Permethrin in Fruits and Vegetables by Combining Supramolecular Solvents and Chiral Liquid Chromatography-Tandem Mass Spectrometry. J Agric Food Chem. 2020, 68, 9014–9023. DOI: 10.1021/acs.jafc.0c02533.
  • Caballo, C.; Sicilia, M. D.; Rubio, S. Enantioselective Analysis of Non-Steroidal Anti-Inflammatory Drugs in Freshwater Fish based on Microextraction with a Supramolecular Liquid and Chiral Liquid Chromatography-Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2015, 407, 4721–4731. DOI: 10.1007/s00216-015-8675-5.
  • Jagirani, M. S.; Soylak, M. Microextraction Technique Based New Trends in Food Analysis. Crit. Rev. Anal. Chem. 2020, 1–32. DOI: 10.1080/10408347.2020.1846491.
  • Jalili, V.; Zendehdel, R.; Barkhordari, A. Supramolecular Solvent-Based Microextraction Techniques for Sampling and Preconcentration of Heavy Metals: A Review. Rev. Anal. Chem. 2021, 40, 93–107. DOI: 10.1515/revac-2021-0130.
  • Ballesteros-Gómez, A.; Sicilia, M. D.; Rubio, S. Supramolecular Solvents in the Extraction of Organic Compounds. A Review. Anal. Chim. Acta 2010, 677, 108–130. DOI: 10.1016/j.aca.2010.07.027.
  • Lara, A.; Caballo, C.; Sicilia, M.; Rubio, S. Halogen Bonding for Increasing Efficiency in Liquid-Liquid Microextraction: Application to the Extraction of Hexabromocyclododecane Enantiomers in River Water. J. Chromatogr. A. 2019, 1600, 95–104. DOI: 10.1016/j.chroma.2019.04.058.
  • Zhao, W.; Zhao, J.; Zhao, H.; Cao, Y.; Liu, W. Supramolecular Solvent-Based Vortex-Mixed Microextraction: Determination of Chiral Triazole Fungicide in Beer Samples. Chirality 2018, 30, 302–309. DOI: 10.1002/chir.22798.
  • Lara, A.; Caballo, C.; Sicilia, M.; Rubio, S. Enantiomer-Specific Determination of Hexabromocyclododecane in Fish by Supramolecular Solvent-Based Single-Step Sample Treatment and Liquid Chromatography-Tandem Mass Spectrometry. Anal. Chim. Acta 2012, 752, 62–68. DOI: 10.1016/j.aca.2012.09.039.
  • Caballo, C.; Sicilia, M.; Rubio, S. Stereoselective Quantitation of Mecoprop and Dichlorprop in Natural Waters by Supramolecular Solvent-Based Microextraction, Chiral Liquid Chromatography and Tandem Mass Spectrometry. Anal. Chim. Acta 2013, 761, 102–108. DOI: 10.1016/j.aca.2012.11.044.
  • Caballo, C.; Sicilia, M.; Rubio, S. Fast, Simple and Efficient Supramolecular Solvent-Based Microextraction of Mecoprop and Dichlorprop in Soils Prior to their Enantioselective Determination by Liquid Chromatography-Tandem Mass Spectrometry. Talanta 2014, 119, 46–52. DOI: 10.1016/j.talanta.2013.10.043.
  • Feizi, N.; Yamini, Y.; Moradi, M.; Karimi, M.; Salamat, Q.; Amanzadeh, H. A New Generation of Nano-Structured Supramolecular Solvents Based on Propanol/Gemini Surfactant for Liquid Phase Microextraction. Anal. Chim. Acta 2017, 953, 1–9. DOI: 10.1016/j.aca.2016.11.007.
  • Salamat, Q.; Yamini, Y.; Moradi, M.; Karimi, M.; Nazraz, M. Novel Generation of Nano-Structured Supramolecular Solvents Based on an Ionic Liquid as a Green Solvent for Microextraction of Some Synthetic Food Dyes. New J. Chem. 2018, 42, 19252–19259. DOI: 10.1039/C8NJ03943G.
  • Seebunrueng, K.; Dejchaiwatana, C.; Santaladchaiyakit, Y.; Srijaranai, S. Development of Supramolecular Solvent Based Microextraction Prior to High Performance Liquid Chromatography for Simultaneous Determination of Phenols in Environmental Water. RSC Adv. 2017, 7, 50143–50149. DOI: 10.1039/C7RA07780G.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.