590
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Analytical Methods for the Determination of Major Drugs Used for the Treatment of COVID-19. A Review

, &
Pages 1698-1732 | Published online: 23 Feb 2022

References

  • Kaul, D. An Overview of Coronaviruses Including the SARS-2 Coronavirus-Molecular Biology, Epidemiology and Clinical Implications. Curr. Med. Res. Pract. 2020, 10, 54–64. DOI: 10.1016/j.cmrp.2020.04.001.
  • WHO. Coronavirus disease 2019 (COVID-19) Situation Report–51, 2020, https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf?sfvrsn=1ba62e57_10. (accessed Jan 22, 2021).
  • Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic Characterization and Epidemiology of 2019 Novel Coronavirus: implications for Virus Origins and Receptor Binding. Lancet 2020, 395, 565–574. DOI: 10.1016/S0140-6736(20)30251-8.
  • Zhang, T.; Wu, Q.; Zhang, Z. Probable Pangolin Origin of SARS-CoV-2 Associated with the COVID-19 Outbreak. Curr. Biol. 2020, 30, 1346–1351. DOI: 10.1016/j.cub.2020.03.022.
  • Liu, P.; Chen, W.; Chen, J. P. Viral Metagenomics Revealed Sendai Virus and Coronavirus Infection of Malayan Pangolins (Manis Javanica). Viruses 2019, 11, 979. DOI: 10.3390/v11110979.
  • Wang, P. Combination of Serological Total Antibody and RT-PCR Test for Detection of SARS-COV-2 Infections. J. Virol Methods 2020, 283, 113919. DOI: 10.1016/j.jviromet.2020.113919.
  • Udugama, B.; Kadhiresan, P.; Kozlowski, H. N.; Malekjahani, A.; Osborne, M.; Li, V. Y. C.; Chen, H.; Mubareka, S.; Gubbay, J. B.; Chan, W. C. W. Diagnosing COVID-19: The Disease and Tools for Detection. ACS Nano. 2020, 14, 3822–3835. DOI: 10.1021/acsnano.0c02624.
  • Majumder, J.; Minko, T. Recent Developments on Therapeutic and Diagnostic Approaches for COVID-19. AAPS J. 2021, 23, 14. DOI: 10.1208/s12248-020-00532-2.
  • Carter, L. J.; Garner, L. V.; Smoot, J. W.; Li, Y.; Zhou, Q.; Saveson, C. J.; Sasso, J. M.; Gregg, A. C.; Soares, D. J.; Beskid, T. R.; et al. Assay Techniques and Test Development for COVID-19 Diagnosis. ACS Cent. Sci. . 2020, 6, 591–605. DOI: 10.1021/acscentsci.0c00501.
  • Bhagat, S.; Yadava, N.; Shaha, J.; Davea, H.; Swarajb, S.; Tripathib, S.; Singh, S. Novel Corona Virus (COVID-19) Pandemic: current Status and Possible Strategies for Detection and Treatment of the Disease. Expert Rev. Anti-Infective Therapy 2020. DOI: 10.1080/14787210.2021.1835469.
  • Neagu, M.; Constantin, C.; Surcel, M. Testing Antigens, Antibodies, and Immune Cells in COVID-19 as a Public Health Topic—Experience and Outlines. IJERPH. 2021, 18, 13173. DOI: 10.3390/ijerph182413173.
  • Yüce, M.; Filiztekin, E.; Gasia Ozkaya, K. COVID-19 Diagnosis -A Review of Current Methods. Biosens. Bioelectron. 2021, 172, 112752. DOI: 10.1016/j.bios.2020.112752.
  • Focosi, D.; Anderson, A. O.; Tang, J. W.; Tuccori, M. Convalescent Plasma Therapy for COVID-19: State of the Art. Clin. Microbiol. Rev. 2020, 33, e00072–20. https://doi.org/10.1128/cmr.00072-20.
  • Wooding, D. J.; H. Bach, H. Treatment of COVID-19 with Convalescent Plasma: lessons from past Coronavirus Outbreaks. Clin. Microbiol. Infect. 2020, 26, 1436–1446. DOI: 10.1016/j.cmi.2020.08.005.
  • Moreira-Soto, A.; Arguedas, M.; Brenes, H.; Buján, W.; Corrales-Aguilar, E.; Díaz, C.; Echeverri, A.; Flores-Díaz, M.; Gómez, A.; Hernández, A.; et al. High Efficacy of Therapeutic Equine Hyperimmune Antibodies against SARS-CoV-2 Variants of Concern. Front Med (Lausanne) 2021, 8, 735853. DOI: 10.3389/fmed.2021.735853.
  • Tabll, A. A.; Shahein, Y. E.; Omran, M. M.; Elnakib, M. M.; Ragheb, A. A.; Amer, K. E. A Review of Monoclonal Antibodies in COVID-19: Role in Immunotherapy, Vaccine Development and Viral Detection. HAB. 2021, 29, 179–191. DOI DOI: 10.3233/HAB-20044.
  • Detoc, M.; Bruel, S.; Frappe, P.; Tardy, B.; Botelho-Nevers, E.; Gagneux-Brunon, A. A. Intention to Participate in a COVID-19 Vaccine Clinical Trial and to Get Vaccinated against COVID-19 in France during the Pandemic. Vaccine 2020, 38, 7002–7006. DOI: 10.1016/j.vaccine.2020.09.041.
  • Abdulah, D. M. Prevalence and Correlates of COVID-19 Vaccine Hesitancy in the General Public in Iraqi Kurdistan: A Cross-Sectional Study. J. Med. Virol. 2021, 93, 6722–6731. DOI: 10.1002/jmv.27255.
  • Kwok, K. O.; Li, K. K.; Wei, W. I.; Tang, A.; Yeung, S.; Wong, S. S.; Lee, S. Editor's Choice: Influenza Vaccine Uptake, COVID-19 Vaccination Intention and Vaccine Hesitancy Among Nurses: A Survey. Int. J. Nurs. Stud. 2021, 114, 103854. DOI: 10.1016/j.ijnurstu.2020.103854.
  • Amar, H.; Kelkar, J. A.; Blake, A.; Cherabuddi, K.; Cornett, H.; McKee, B. L.; Cogle, C. R. Vaccine Enthusiasm and Hesitancy in Cancer Patients and the Impact of a Webinar. Healthcare 2021, 9, 351. DOI: 10.3390/healthcare9030351.
  • Our World in Data. Statistic and Research. Coronavirus (COVID-19) Vaccinations, 2021. https://ourworldindata.org/covid-vaccinations. (accessed Nov 26, 2021).
  • Harvey, W. T.; Carabelli, A. M. B.; Jackson, B.; Gupta, R. K.; Thomson, E. C.; Harrison, E. M.; Ludden, C.; Reeve, R.; Rambaut, A.; Peacock, S. J.; Robertson, D. L.; COVID-19 Genomics UK (COG-UK) Consortium. SARS-CoV-2 Variants, Spike Mutations and Immune Escape. Nat. Rev. Microbiol. 2021, 19, 409–424. DOI: 10.1038/s41579-021-00573-0.
  • Villamagna, A. H.; Gore, S. J.; Lewis, J. S.; Doggett, J. S. The Need for Antiviral Drugs for Pandemic Coronaviruses from a Global Health Perspective. Front. Med. 2020, 7, 596587. DOI: 10.3389/fmed.2020.596587.
  • Frecer, V.; Miertus, S. Antiviral Agents against COVID-19: structure-Based Design of Specific Peptidomimetic Inhibitors of SARS-CoV-2 Main Protease. RSC Adv. 2020, 10, 40244–40263. DOI: 10.1039/D0RA08304F.
  • Shin, D.; Mukherjee, R.; Grewe, D.; Bojkova, D.; Baek, K.; Bhattacharya, A.; Schulz, L.; Widera, M.; Mehdipour, A. R.; Tascher, G.; et al. Papain-like Protease Regulates SARS-CoV-2 Viral Spread and Innate Immunity. Nature 2020, 587, 657–662. DOI: 10.1038/s41586-020-2601-5.
  • Eastman, R. T.; Roth, J. S.; Brimacombe, K. R.; Simeonov, A.; Shen, M.; Patnaik, S.; Hall, M. D. Remdesivir: A Review of Its Discovery and Development Leading to Emergency Use Authorization for Treatment of COVID-19. ACS Cent. Sci. 2020, 6, 672–683. DOI: 10.1021/acscentsci.0c00489.
  • Nahar, L.; Guo, M.; Sarker, S. D. A Review on the Latest Advances in Extraction and Analysis of Artemisinin. Phytochem. Anal. 2020, 31, 5–14. DOI: 10.1002/pca.2873.
  • Shrivastava, A. Analytical Methods for the Determination of Hydroxychloroquine in Various Matrices. Int. J. App. Pharm. 2020, 12, 55–61. DOI: 10.22159/ijap.2020v12i4.38408.
  • El Mhammedi, M. A.; Saqrane, S.; Lahrich, S.; Laghrib, F.; El Bouabi, Y.; Farahi, A.; Bakasse, M. Current Trends in Analytical Methods for the Determination of Hydroxychloroquine and Its Application as Treatment for COVID-19. Chem. Select 2020, 5, 14602–14612. DOI: 10.1002/slct.202003361.
  • Trajano Velozo, C.; Mendes Cabral, L.; Costa Pinto, E.; Pereira de Sousa, V. Lopinavir/Ritonavir: A Review of Analytical Methodologies for the Drug Substances, Pharmaceutical Formulations and Biological Matrices. Crit. Rev. Anal. Chem. 2021. DOI: 10.1080/10408347.2021.1920364.
  • Al-Tannak, N. F.; Novotny, L.; Alhunayan, A. Remdesivir—Bringing Hope for COVID-19 Treatment. Sci. Pharm. 2020, 88, 29. DOI: 10.3390/scipharm88020029.
  • Acquavia, M. A.; Foti, L.; Pascale, R.; Nicolò, A.; Brancaleone, V.; Cataldi, T. R. I.; Martelli, G.; Scrano, L.; Bianco, G. Detection and Quantification of Covid-19 Antiviral Drugs in Biological Fluids and Tissues. Talanta 2021, 224, 121862. doi.org/ DOI: 10.1016/j.talanta.2020.121862.
  • Sherazi, T. H. S.; Mahesar, S. A.; Sirajuddin, S.; Malah, M. A. Brief Overview of Frequently Used Macrolides and Analytical Techniques for Their Assessment. Curr. Anal. Chem. 2019, 15, 324–338. DOI: 10.2174/1573411014666180501100131.
  • Aboras, S. I.; Abdine, H. H.; Ragab, M. A. A.; Korany, M. A. A Review on Analytical Strategies for the Assessment of Recently Approved Direct Acting Antiviral Drugs. Crit. Rev. Anal. Chem. 2021. DOI: 10.1080/10408347.2021.1923456.
  • Esposito, M. C.; Araújo Santos, A. L.; Bonfilio, R.; de Araújo, M. B. A Critical Review of Analytical Methods in Pharmaceutical Matrices for Determination of Corticosteroids. Crit. Rev. Anal. Chem. 2020, 50, 111–124. DOI: 10.1080/10408347.2019.1581050.
  • Grein, J.; Ohmagari, N.; Shin, D.; Diaz, G.; Asperges, E.; Castagna, A.; Feldt, T.; Green, G.; Green, M. L.; Lescure, F. X.; et al. Compassionate Use of Remdesivir for Patients with Severe Covid-19. N. Engl. J. Med. . 2020, 382, 2327–2336. DOI: 10.1056/NEJMoa2007016.
  • Singh, A. K.; Singh, A.; Singh, R.; Misra, A. Remdesivir in COVID-19: A Critical Review of Pharmacology, Preclinical and Clinical Studies. Diabetes Metab. Synd. 2020, 14, 641–648. DOI: 10.1016/j.dsx.2020.05.018.
  • Pandey, A. A.; Nikam, A. N.; Shreya, A. B.; Mutalik, S. P.; Gopalan, D. D.; Kulkarni, S. S.; Padya, B. S.; Fernandes, G. G.; Mutalik, S. S.; Prassl, R. Potential Therapeutic Targets for Combating SARS-CoV-2: Drug Repurposing, Clinical Trials and Recent Advancements. Life Sci. 2020, 256, 117883. DOI: 10.1016/j.lfs.2020.117883.
  • Hung, I. F.-N.; Lung, K.-C.; Tso, E. Y.-K.; Liu, R.; Chung, T. W.-H.; Chu, M.-Y.; Ng, Y.-Y.; Lo, J.; Chan, J.; Tam, A. R.; et al. Triple Combination of Interferon Beta-1b, Lopinavir-Ritonavir, and Ribavirin in the Treatment of Patients Admitted to Hospital with COVID-19: An Open-Label, Randomised, Phase 2 Trial. Lancet 2020, 395, 1695–1704. DOI: 10.1016/S0140-6736(20)31042-4.
  • WHO-2019-nCoV-clinical-2020.5. Clinical Management of COVID-19, Interim Guidance. 2020. https://apps.who.int/iris/handle/10665/332196. (accessed Jan 29, 2021).
  • Shih, H. I.; Wu, C. J.; Tu, Y. F.; Chi, C. Y. Fighting COVID-19: A Quick Review of Diagnoses, Therapies, and Vaccines. Biomed. J. 2020, 43, 341–354. DOI: 10.1016/j.bj.2020.05.021.
  • Li, L.; Li, R.; Wu, Z.; Yang, X.; Zhao, M.; Liu, J.; Chen, D. Therapeutic Strategies for Critically Ill Patients with COVID-19. Ann. Intensive Care. 2020, 10, 45. DOI: 10.1186/s13613-020-00661-z.
  • Chu, C. M.; Cheng, V. C. C.; Hung, I. F. N.; Wong, M. M. L.; Chan, K. H.; Chan, K. S.; Kao, R. Y. T.; Poon, L. L. M.; Wong, C. L. P.; Guan, Y.; et al. Role of Lopinavir/Ritonavir in the Treatment of SARS: initial Virological and Clinical Findings. Thorax 2004, 59, 252–256. DOI: 10.1136/thorax.2003.012658.
  • Sheahan, T. P.; Sims, A. C.; Leist, S. R.; Schäfer, A. A.; Won, J. J.; Brown, A. J.; Montgomery, S. A.; Hogg, A. A.; Babusis, D.; Clarke, D.; et al. Comparative Therapeutic Efficacy of Remdesivir and Combination Lopinavir, Ritonavir, and Interferon Beta against MERS-CoV. Nat. Commun. 2020, 11, 222. DOI: 10.1038/s41467-019-13940-6.
  • Deng, L.; Li, C.; Zeng, Q.; Liu, X.; Li, X.; Zhang, H.; Hong, Z.; Xia, J. Arbidol Combined with LPV/r versus LPV/r Alone against Corona Virus Disease 2019: A Retrospective Cohort Study. J. Infect. 2020, 81, 1–5. DOI: 10.1016/j.jinf.2020.03.002.
  • Kim, E. J.; Choi, S. H.; Park, J. S.; Kwon, Y. S.; Lee, J.; Kim, Y.; Lee, S. Y.; Choi, E. Y. Use of Darunavir-Cobicistat as a Treatment Option for Critically Ill Patients with SARS-CoV-2 Infection. Yonsei Med. J. 2020, 61, 826–830. DOI: 10.3349/ymj.2020.61.9.826.
  • Liu, J.; Cao, R.; Xu, M.; Wang, X.; Zhang, H.; Hu, H.; Li, Y.; Hu, Z.; Zhong, W.; Wang, M. Hydroxychloroquine, a Less Toxic Derivative of Chloroquine, is Effective in Inhibiting SARS-CoV-2 Infection in Vitro. Cell Discov. 2020, 6, 16–20. DOI: 10.1038/s41421-020-0156-0.
  • Sun, X.; Ni, Y.; Zhang, M. Rheumotologitsts' View on the Use of Hydroxychloroquine to Treat COVID-19. Emerg. Microbes Infect. 2020, 9, 830–832. DOI: 10.1080/22221751.2020.1760145.
  • Gautret, P.; Lagier, J. C.; Parola, P.; Hoang, V. T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V. E.; et al. Hydroxychloroquine and Azithromycin as a Treatment of COVID-19: results of an Open-Label Non-Randomized Clinical Trial, International. J. Antimicrob. Agents 2020, 56, 105949. DOI: 10.1016/j.ijantimicag.2020.105949.
  • Cheong, D. H. J.; Tan, D. W. S.; Wong, F. W. S.; Tran, T. Anti-Malarial Drug, Artemisinin and Its Derivatives for the Treatment of Respiratory Diseases. Pharmacol. Res. 2020, 158, 104901. DOI: 10.1016/j.phrs.2020.104901.
  • Cao, R.; Hu, H.; Li, Y.; Wang, X.; Xu, M.; Liu, J.; Zhang, H.; Yan, Y. Y.; Zhao, L.; Li, W.; et al. Anti-SARS-CoV-2 Potential of Artemisinins In Vitro. ACS Infect. Dis. 2020, 6, 2524–2531. DOI: 10.1021/acsinfecdis.0c00522.
  • Nair, M. S.; Huang, Y.; Fidock, D. A.; Polyak, S. J.; Wagoner, J.; Towler, M. J.; Weathers, P. J. Artemisia Annua L. Extracts Inhibit the in Vitro Replication of SARS-CoV-2 and Two of Its Variants. J. Ethnopharmacol. 2021, 274, 114016. DOI: 10.1016/j.jep.2021.114016.
  • Das, G.; Ghosh, S.; Garg, S.; Ghosh, S.; Jana, A.; Samat, R.; Mukherjee, N.; Roy, R.; Ghosh, S. An Overview of Key Potential Therapeutic Strategies for Combat in the COVID-19 Battle. RSC Adv. 2020, 10, 28243–28266. DOI: 10.1039/D0RA05434H.
  • Xu, X.; Han, M.; Li, T.; Sun, W.; Wang, D.; Fu, B.; Zhou, Y.; Zheng, X.; Yang, Y.; Li, X.; et al. Effective Treatment of Severe COVID-19 Patients with Tocilizumab. Proc. Natl. Acad. Sci. U S A 2020, 117, 10970–10975. DOI: 10.1073/pnas.2005615117.
  • Singh, A. K.; Majumdar, S.; Singh, R.; Misra, A. Role of Corticosteroid in the Management of COVID-19: A Systemic Review and a Clinician’s Perspective. Diabetes Metab. Synd. 2020, 14, 971–978. DOI: 10.1016/j.dsx.2020.06.054.
  • Luo, P.; Liu, Y.; Qiu, L.; Liu, X.; Liu, D.; Li, J. Tocilizumab Treatment in COVID-19: A Single Center Experience. J. Med. Virol. 2020, 92, 814–818. DOI: 10.1002/jmv.25801.
  • Zhang, C.; Wu, Z.; Li, J. W.; Zhao, H.; Wang, G. Q. Cytokine Release Syndrome in Severe COVID-19: interleukin-6 Receptor Antagonist Tocilizumab May Be the Key to Reduce Mortality. Int. J. Antimicrob. Agents 2020, 55, 105954. doi.org/ DOI: 10.1016/j.ijantimicag.2020.105954.
  • Ranieri, G.; Patruno, R.; Ruggieri, E.; Montemurro, S.; Valerio, P.; Ribatti, D. Vascular Endothelial Growth Factor (VEGF) as a Target of Bevacizumab in Cancer: From the Biology to the Clinic. Curr. Med. Chem. 2006, 13, 1845–1857. DOI: 10.2174/092986706777585059.
  • Hossein-Khannazer, N.; Shokoohian, B.; Shpichka, A.; Aghdaei, H. A.; Timashev, P.; Vosough, M. Novel Therapeutic Approaches for Treatment of COVID-19. J. Mol. Med. (Berl) 2020, 98, 789–803. doi.org/ DOI: 10.1007/s00109-020-01927-6.
  • Hansen, J.; Baum, A.; Pascal, K. E.; Russo, V.; Giordano, S.; Wloga, E.; Fulton, B. O.; Yan, Y.; Koon, K.; Patel, K.; et al. Studies in Humanized Mice and Convalescent Humans Yield a SARS-CoV-2 Antibody Cocktail. Science 2020, 369, 1010–1014. DOI: 10.1126/science.abd0827.
  • Baum, A.; Fulton, B. O.; Wloga, E.; Copin, R.; Pascal, K. E.; Russo, V.; Giordano, S.; Lanza, K.; Negron, N.; Ni, M.; et al. Antibody Cocktail to SARS-CoV-2 Spike Protein Prevents Rapid Mutational Escape Seen with Individual Antibodies. Science 2020, 369, 1014–1018. DOI: 10.1126/science.abd0831.
  • Richardson, P.; Griffin, I.; Tucker, C.; Smith, D.; Oechsle, O.; Phelan, A.; Rawling, M.; Savory, E.; Stebbing, J. Baricitinib as Potential Treatment for 2019-nCoV Acute Respiratory Disease. Lancet 2020, 395, E30–E31. DOI: 10.1016/s0140-6736(20)30304-4.
  • Penman, S. L.; Kiy, R. T.; Jensen, R. L.; Beoku-Betts, C.; Alfirevic, A.; Back, D.; Khoo, S. H.; Owen, A.; Pirmohamed, M.; Park, B. K.; et al. Safety Perspectives on Presently Considered Drugs for the Treatment of COVID-19. Br. J. Pharmacol. 2020, 177, 4353–4374. DOI: 10.1111/bph.15204.
  • Coronavirus disease (COVID-19): Dexamethasone, https://www.who.int/news-room/q-a-detail/coronavirus-disease-covid-19-dexamethasone., last updated Oct 16, 2020. (accessed February 8, 2021)
  • Caly, L.; Druce, J. D.; Catton, M. G.; Jans, D. A.; Wagstaff, K. M. The FDA-Approved Drug Ivermectin Inhibits the Replication of SARS-CoV-2 in Vitro. Antiviral Res. 2020, 178, 104787. DOI: 10.1016/j.antiviral.2020.104787.
  • Wang, J. Analytical Electrochemistry, 3rd ed.; John Wiley & Sons, New York, 2006.
  • Ahmadi, R.; Noroozian, E.; Jassbi, A. R. Preconcentration and Determination of Artemisinin in Selected Iranian Artemisia Species by SPE–LC–MS Using Poly(N,N′-Methylenebisacrylamide) as Sorbent Material. J. Iran. Chem. Soc. 2020, 17, 159–165. DOI: 10.1007/s13738-019-01754-8.
  • Bilici, M. Synthesis of a Novel Molecularly Imprinted Polymer for the Sensitive and Selective Determination of Artemisinin in Urine Based on Solid-Phase Extraction (SPE) and Determination with High-Performance Liquid Chromatography (HPLC). Anal. Lett. 2021, 54, 1145–1161. DOI: 10.1080/00032719.2020.1795187.
  • Ruan, J.; Liu, Z.; Qiu, F.; Shi, H.; Wang, M. Simultaneous Quantification of Five Sesquiterpene Components after Ultrasound Extraction in Artemisia Annua L. by an Accurate and Rapid UPLC–PDA Assay. Molecules 2019, 24, 1530. DOI: 10.3390/molecules24081530.
  • Wang, Y.; Wang, Y.; Sun, Y. Quantitative Determination of Artemisinin in Rat Hemolyzed Plasma by an HPLC–HRMS Method. Biomed. Chromatogr. 2020, 34, 4696. DOI: 10.1002/bmc.4696.
  • Eichner, F.; Spangenberg, B. Optimized Determination of Caffeine, Equol, and Artemisinin by High-Performance Thin-Layer Chromatography–Direct Analysis in Real Rime–Rime of Flight–Mass Spectrometry. J. Planar Chromatogr. 2019, 32, 197–203. DOI: 10.1556/1006.2019.32.3.4.
  • Ioannidis, L. A.; Nikolaou, P.; Panagiotopoulos, A.; Vassi, A.; Topoglidis, E. Microperoxidase-11 Modified Mesoporous SnO2 Film Electrodes for the Detection of Antimalarial Drug Artemisinin. Anal. Methods 2019, 11, 3117–3125. DOI: 10.1039/C9AY00764D.
  • Protti, M.; Mandrioli, R.; Mandrone, M.; Cappadone, C.; Farruggia, G.; Chiocchio, I.; Malucelli, E.; Isani, G.; Poli, F.; Mercolini, L. Analysis of Artemisia Annua Extracts and Related Products by High Performance Liquid Chromatography-Tandem Mass Spectrometry Coupled to Sample Treatment Miniaturization. J. Pharmaceut. Biomed. Anal. 2019, 174, 81–88. DOI: 10.1016/j.jpba.2019.05.044.
  • Zhu, S.; Yan, X.; Sun, J.; Zhao, X. E.; Wang, X. A Novel and Sensitive Fluorescent Assay for Artemisinin with Graphene Quantum Dots Based on Inner Filter Effect. Talanta 2019, 200, 163–168. DOI: 10.1016/j.talanta.2019.03.058.
  • Qiu, F.; Wu, F.; Lu, X.; Zhang, C.; Li, J.; Gong, M.; Wang, M. Quality Evaluation of the Artemisinin-Producing Plant Artemisia Annua L. based on Simultaneous Quantification of Artemisinin and Six Synergistic Components and Hierarchical Cluster Analysis. Ind. Crop. Prod. 2018, 118, 131–141. DOI: 10.1016/j.indcrop.2018.03.043.
  • Waffo, A. F. T.; Yesildag, C.; Caserta, G.; Katz, S.; Zebger, I.; Lensen, M. C.; Wollenberger, U.; Scheller, F. W.; Altintas, Z. Fully Electrochemical MIP Sensor for Artemisinin. Sens. Actuators B Chem. 2018, 275, 163–173. DOI: 10.1016/j.snb.2018.08.018.
  • Muginova, S. V.; Vakhranyova, E. S.; Myasnikova, D. A.; Kazarian, S. G.; Shekhovtsova, T. N. Fluorescence-Based Artemisinin Sensing Using a Pyronin B-Doped Cellulose Film Reconstituted from Ionic Liquid. Anal. Lett. 2018, 51, 870–891. DOI: 10.1080/00032719.2017.1361434.
  • Zhou, J.; Sun, X.; Wang, K. Sensitive Artemisinin Electrochemical Sensor Based on Polymerized Molecularly Imprinted Membranes. Int. J. Electrochem. Sci. 2016, 11, 3114–3122. DOI: 10.20964/110403114.
  • Wang, C.; Zholudov, Y. T.; Nsabimana, A.; Xu, G.; Li, J. Sensitive and Selective Electrochemical Detection of Artemisinin Based on Its Reaction with p-Aminophenylboronic Acid. Anal. Chim. Acta. 2016, 937, 39–42. DOI: 10.1016/j.aca.2016.07.026.
  • Kundu, S.; Das, A.; Ghosh, B. Optimized Extraction of Artemisinin from Artemisia Annua L. and Corroborated Quantitative Analysis Using High-Performance Thin-Layer Chromatography. J. Planar Chromatogr. 2016, 29, 341–346. DOI: 10.1556/1006.2016.29.5.3.
  • Baomiao, M.; Kai, Y.; Changlei, L.; Peilong, X.; Qin, R.; Lin, C.; Qi, X.; Xian, T.; Guozhang, J.; Chaoying, L. Study on Determination of Synephrine and Artemisinin in Phellinus Vaninii by High Performance Capillary Electrophoresis. AJFST. 2015, 7, 7–10. DOI: 10.19026/ajfst.7.1254.
  • Graves, R. A.; Ledet, G.; Nation, C. A.; Showers, P. R.; Pramar, Y.; Mandal, T.; Bostanian, L. A. An Ultra-High-Pressure Chromatographic Method for the Determination of Artemisinin. Drug Dev. Ind. Pharm. 2015, 41, 819–824. DOI: 10.3109/03639045.2014.908900.
  • Bai, H.; Wang, C.; Chen, J.; Peng, J.; Cao, Q. A Novel Sensitive Electrochemical Sensor Based on in-Situ Polymerized Molecularly Imprinted Membranes at Graphene Modified Electrode for Artemisinin Determination. Biosens. Bioelectron. 2015, 64, 352–358. DOI: 10.1016/j.bios.2014.09.034.
  • El-Yazbi, A. F.; Khamis, E. F.; Youssef, R. M.; El-Sayed, M. A.; Aboukhalil, F. M. Green Analytical Methods for Simultaneous Determination of Compounds Having Relatively Disparate Absorbance; Application to Antibiotic Formulation of Azithromycin and Levofloxacin. Heliyon 2020, 6, e04819. DOI: 10.1016/j.heliyon.2020.e04819.
  • Vajdle, O.; Šekuljica, S.; Guzsvány, V.; Nagy, L.; Kónya, Z.; Avramov Ivić, M.; Mijin, D.; Petrović, S.; Anojčić, J. Use of Carbon Paste Electrode and Modified by Gold Nanoparticles for Selected Macrolide Antibiotics Determination as Standard and in Pharmaceutical Preparations. J. Electroanal. Chem. 2020, 873, 114324. DOI: 10.1016/j.jelechem.2020.114324.
  • Rebelo, P.; Pacheco, J. G.; Cordeiro, M. N. D. S.; Melo, A.; Delerue-Matos, C. Azithromycin Electrochemical Detection Using a Molecularly Imprinted Polymer Prepared on a Disposable Screen-Printed Electrode. Anal. Methods 2020, 12, 1486–1494. DOI: 10.1039/C9AY02566A.
  • Stoian, I. A.; Iacob, B. C.; Dudaș, C. L.; Barbu-Tudoran, L.; Bogdan, D.; Marian, I. O.; Bodoki, E.; Oprean, R. Biomimetic Electrochemical Sensor for the Highly Selective Detection of Azithromycin in Biological Samples. Biosens. Bioelectron. 2020, 155, 112098. DOI: 10.1016/j.bios.2020.112098.
  • Benedetti, B.; Majone, M.; Cavaliere, C.; Montone, C. M.; Fatone, F.; Frison, N.; Laganà, A.; Capriotti, A. L. Determination of Multi-Class Emerging Contaminants in Sludge and Recovery Materials from Wastewater Treatment Plants: Development of a Modified QuEChERS Method Coupled to LC–MS/MS. Microchem. J. 2020, 155, 104732. DOI: 10.1016/j.microc.2020.10473.
  • Voigt, A. M.; Skutlarek, D.; Timm, C.; Schreiber, C.; Felder, C.; Exner, M.; Faerber, H. A. Liquid Chromatography-Tandem Mass Spectrometry as a Fast and Simple Method for the Determination of Several Antibiotics in Different Aqueous Matrices. Environ. Chem. 2020, 17, 54–74. DOI: 10.1071/EN19115.
  • Lan, C.; Yin, D.; Yang, Z.; Zhao, W.; Chen, Y.; Zhang, W.; Zhang, S. Determination of Six Macrolide Antibiotics in Chicken Sample by Liquid Chromatography-Tandem Mass Spectrometry Based on Solid Phase Extraction. J. Anal. Methods Chem. . 2019, 2019, 6849457. DOI: 10.1155/2019/6849457.
  • Ranjan Sahoo, D.; Sahoo, S. Development and Validation of a Rapid Solid-Phase Extraction: Ultrafast Liquid Chromatographic Method for the Estimation of Azithromycin and Its Major Related Substances in Human Plasma and Dosage Forms Using a Novel Polyfunctional Silyl Reagent-Bonded Core–Shell Column. Chromatographia 2019, 82, 1489–1500.
  • Magréault, S.; Leroux, S.; Touati, J.; Storme, T.; Jacqz-Aigrain, E. UPLC/MS/MS Assay for the Simultaneous Determination of Seven Antibiotics in Human serum-Application to Pediatric Studies. J. Pharm. Biomed. Anal. 2019, 174, 256–262. DOI: 10.1016/j.jpba.2019.03.004.
  • Huang, W.; Qiu, Q.; Chen, M.; Shi, J.; Huang, X.; Kong, Q.; Long, D.; Chen, Z.; Yan, S. Determination of 18 Antibiotics in Urine Using LC-QqQ-MS/MS. J. Chromatog. B. 2019, 1105, 176–183. DOI: 10.1016/j.jchromb.2018.12.019.
  • Licul-Kucera, V.; Ladányi, M.; Hizsnyik, G.; Záray, G.; Mihucz, V. G. A Filtration Optimized on-Line SPE–HPLC–MS/MS Method for Determination of Three Macrolide Antibiotics Dissolved and Bound to Suspended Solids in Surface Water. Microchem. J. 2019, 148, 480–492. DOI: 10.1016/j.microc.2019.05.015.
  • Amelin, V. G.; Bol’shakov, D. S. Sample Preparation, Identification, and Determination of Twelve Macrolides in Raw Food Materials and Food Products Using High-Resolution Mass Spectrometry. Moscow Univ. Chem. Bull. 2019, 74, 63–69. DOI: 10.3103/S0027131419020032.
  • De Paula, C. E. R.; Almeida, V. G. K.; Borges, R. M.; Cassella, R. J. Spectrophotometric Determination of Azithromycin in Pharmaceutical Formulations Employing the Reaction with Alizarin. Rev. Virtual Quim 2019, 11, 1081–1096.
  • Chavada, V. D.; Bhatt, N. M.; Sanyal, M.; Shrivastav, P. S. Simultaneous Determination of Azithromycin and Levofloxacin in Pharmaceuticals by Charge Transfer Complexation with Alizarin Red S Using an Absorption-Factor Method. Turk. J. Chem. 2018, 42, 36–49. DOI: 10.3906/kim-1703-79.
  • Ji, S.; Li, T.; Yang, W.; Shu, C.; Li, D.; Wang, Y.; Ding, L. A Hollow Porous Molecularly Imprinted Polymer as a Sorbent for the Extraction of 7 Macrolide Antibiotics Prior to Their Determination by HPLC-MS/MS. Microchim. Acta 2018, 185, 203. DOI: 10.1007/s00604-018-2728-3.
  • Hu, L.; Zhou, T.; Feng, J.; Jin, H.; Tao, Y.; Luo, D.; Mei, S.; Lee, Y. A Rapid and Sensitive Molecularly Imprinted Electrochemiluminescence Sensor for Azithromycin Determination in Biological Samples. J. Electroanal. Chem. 2018, 813, 1–8. DOI: 10.1016/j.jelechem.2018.02.010.
  • Jafari, S.; Dehghani, M.; Nasirizadeh, N.; Azimzadeh, M. An Azithromycin Electrochemical Sensor Based on an Aniline MIP Film Electropolymerized on a Gold Nano Urchins/Graphene Oxide Modified Glassy Carbon Electrode. J. Electroanal. Chem 2018, 829, 27–34. DOI: 10.1016/j.jelechem.2018.09.053.
  • Jagdish, M.; Nagargoje, B.; Gurumukhi, V.; Ratnaparkhi, D. G.; Warade, P. P.; Kumbhar, D. D.; Bakal, R. L.; Manmode, R. S. Application of Simultaneous Equation Method for the Determination of Azithromycin and Cefixime Trihydrate in Tablet Formulation. Rese. J. Pharm. Technol. 2017, 10, 108. DOI: 10.5958/0974-360X.2017.00025.7.
  • Song, X.; Zhou, T.; Li, J.; Su, Y.; Xie, J.; He, L. Determination of Macrolide Antibiotics Residues in Pork Using Molecularly Imprinted Dispersive Solid-Phase Extraction Coupled with LC-MS/MS. J. Sep. Sci. 2018, 41, 1138–1148. DOI: 10.1002/jssc.201700973.
  • Abou Assi, R.; Darwis, Y.; Abdulbaqi, I. M.; Asif, S. M. Development and Validation of a Stability-Indicating RP-HPLC Method for the Detection and Quantification of Azithromycin in Bulk, and Self-Emulsifying Drug Delivery System (SEDDs) Formulation. J. Appl. Pharm. Sci. 2017, 7, 020.
  • Radosavljević, K. D.; Lović, J. D.; Mijin, D. Ž.; Petrović, S. D.; Jadranin, M. B.; Mladenović, A. R.; Avramov Ivić, M. L. Degradation of Azithromycin Using Ti/RuO2 Anode as Catalyst Followed by DPV, HPLC–UV and MS Analysis. Chem. Pap. 2017, 71, 1217–1224. DOI: 10.1007/s11696-016-0115-2.
  • Senta, I.; Krizman-Matasic, I.; Terzic, S.; Ahel, M. Comprehensive Determination of Macrolide Antibiotics, Their Synthesis Intermediates and Transformation Products in Wastewater Effluents and Ambient Waters by Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. A. 2017, 1509, 60–68. DOI: 10.1016/j.chroma.2017.06.005.
  • Monteiro, M. A.; Spisso, B. F.; Ferreira, R. G.; Pereira, M. U.; Grutes, J. V.; de Andrade, B. R. G.; d’Avila, L. A. Development and Validation of Liquid Chromatography-Tandem Mass Spectrometry Methods for Determination of Beta-Lactams, Macrolides, Fluoroquinolones, Sulfonamides and Tetracyclines in Surface and Drinking Water from Rio De Janeiro, Brazil. J. Braz. Chem. Soc. 2018, 29, 801–813.
  • Zhou, W.; Ling, Y.; Liu, T.; Zhang, Y.; Li, J.; Li, H.; Wu, W.; Jiang, S.; Feng, F.; Yuan, F.; Zhang, F. Simultaneous Determination of 16 Macrolide Antibiotics and 4 Metabolites in Milk by Using Quick, Easy, Cheap, Effective, Rugged, and Safe Extraction (QuEChERS) and High Performance Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr. B. 2017, 1061–1062, 411–420.
  • Chavada, V. D.; Bhatt, N. M.; Sanyal, M.; Shrivastav, P. S. Surface Plasmon Resonance Based Selective and Sensitive Colorimetric Determination of Azithromycin Using Unmodified Silver Nanoparticles in Pharmaceuticals and Human Plasma. Spectrochim. Acta A: Mol. Biomol. Spectr. 2017, 170, 97–103. DOI: 10.1016/j.saa.2016.07.011.
  • Vajdle, O.; Guzsvány, V.; Škorić, D.; Csanádi, J.; Petković, M.; Avramov-Ivić, M.; Kónya, Z.; Petrović, S.; Bobrowski, A. Voltammetric Behavior and Determination of the Macrolide Antibiotics Azithromycin, Clarithromycin and Roxithromycin at a Renewable Silver – Amalgam Film Electrode. Electrochim. Acta 2017, 229, 334–344. DOI: 10.1016/j.electacta.2017.01.146.
  • Paul, P.; Duchateau, T.; Sänger-van de Griend, C.; Adams, E.; Van Schepdael, A. Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity Detection Method Development and Validation for the Determination of Azithromycin, Clarithromycin, and Clindamycin. J. Sep. Sci. 2017, 40, 3535–3544. DOI: 10.1002/jssc.201700560.
  • Perveen, R.; Mushtaq, M. N.; Hussain, M. A.; Naeem-Ul-Hassan, M.; Sher, M. Development and Validation of an RP-HPLC-UV Method for the Bioequivalence of Two Different Formulations of Azithromycin, Lat. Am. J. Pharm. 2017, 36, 2190–2195.
  • Mahmoudi, A.; Boukhechem, M. S. Novel Liquid Chromatographic Method for the Simultaneous Evaluation of Erythromycin and Azithromycin in Human Urine. JMES 2017, 8, 1953–1959.
  • Bouklouze, A.; Kharbach, M.; Cherrah, Y.; Vander Heyden, Y. Azithromycin Assay in Drug Formulations: Validation of a HPTLC Method with a Quadratic Polynomial Calibration Model Using the Accuracy Profile Approach. Ann. Pharm. Fr. 2017, 75, 112–120. DOI: 10.1016/j.pharma.2016.08.004.
  • Zhou, T.; Yang, H.; Jin, Z.; Liu, Q.; Song, X.; He, L.; Fang, B.; Meng, C. Determination of Azithromycin Residue in Pork Using a Molecularly Imprinted Monolithic Microcolumn Coupled to Liquid Chromatography with Tandem Mass Spectrometry. J. Sep. Sci. 2016, 39, 1339–1346. DOI: 10.1002/jssc.201501249.
  • Zhou, T.; Tao, Y.; Jin, H.; Song, B.; Jing, T.; Luo, D.; Zhou, Y.; Zhou, Y.; Lee, Y.-I.; Mei, S. Fabrication of a Selective and Sensitive Sensor Based on Molecularly Imprinted Polymer/Acetylene Black for the Determination of Azithromycin in Pharmaceuticals and Biological Samples. PLoS One. 2016, 11, e0147002. DOI: 10.1371/journal.pone.0147002.
  • Alarfaj, N. A.; El-Tohamy, M. F. A Sensitive Capillary Zone Electrophoresis Separation and Determination of Trovafloxacin and Azithroycin in Their Compliance Pak: Applications Stability –Indicating Studies. Int. J. Electrochem. Sci. 2015, 10, 2291–2305.
  • Liao, Q. G.; Hu, L. F.; Luo, L. G. A Chitosan–Polypyrrole@Fe3O4 Nanocomposite for Magnetic Solid-Phase Extraction of Macrolides from Swine Urine Samples. Anal. Methods 2015, 7, 2806–2812. DOI: 10.1039/C4AY02907K.
  • Sahoo, D. K.; Sahu, P. K. Chemometric Approach for RP-HPLC Determination of Azithromycin, Secnidazole, and Fluconazole Using Response Surface Methodology. J. Liq. Chromatog. Relat. Technol 2015, 38, 750–758. DOI: 10.1080/10826076.2014.968664.
  • Thangadurai, S. Gas Chromatographic–Mass Spectrometric Determination of Azithromycin in Biological Fluids. J. Anal. Sci. Technol. 2015, 6, 18. DOI DOI: 10.1186/s40543-015-0059-0.
  • Kamble, R. N.; Kumar, A. P.; Mehta, P. P. RP-HPLC Analytical Method Development and Validation for Azithromycin and Levofloxacin in Tablet Dosage Form. Int. J. Pharm. Sci. Rev. Res. 2015, 31, 162–165.
  • Wang, Z.; Song, X.; Zhou, T.; Bian, K.; Zhang, F.; He, L.; Liu, Q. Simultaneous Determination of Ten Macrolides Drugs in Feeds by High Performance Liquid Chromatography with Evaporation Light Scattering Detection. RSC Adv. 2015, 5, 1491–1499. DOI: 10.1039/C4RA12623H.
  • Habler, K.; Brugel, M.; Teupser, D.; Liebchen, U.; Scharf, C.; Schonermarck, U.; Vogeser, M.; Paal, M. Simultaneous Quantification of Seven Repurposed COVID-19 Drugs Remdesivir (plus Metabolite GS-441524), Chloroquine, Hydroxychloroquine, Lopinavir, Ritonavir, Favipiravir and Azithromycin by a Two-Dimensional Isotope Dilution LC–MS/MS Method in Human Serum. J. Pharmac. Biomed. Anal. 2021, 196, 113935. DOI: 10.1016/j.jpba.2021.113935.
  • Sok, V.; Marzan, F.; Gingrich, D.; Aweeka, F.; Huang, L. Development and Validation of an LC-MS/MS Method for Determination of Hydroxychloroquine, Its Two Metabolites, and Azithromycin in EDTA-Treated Human Plasma. PLoS One. 2021, 16, e0247356–17. DOI: 10.1371/journal.pone.0247356.
  • Li, Y.; Luo, Y.; Li, L.; Cheng, H.; Huang, W. Preparation and Application of Electrochemiluminescence Sensor by Immobilizing Tris(2, 2′-Bipyridine) Ruthenium(II) on the Surface of Gold Electrode with Silica Sol/nano-Au/PVP/L-Cysteine. Electrochemistry 2015, 83, 155–160. DOI: 10.5796/electrochemistry.83.155.
  • Ajima, U.; Onah, J. O.; Onyekwelu, J. U. Quantitative Determination of Azithromycin by Extractive Ion-Pair Spectrophotometry Using Methyl Orange as Ion Pairing Agent. Der Pharma Chem. 2015, 7, 160–167. http://derpharmachemica.com/archive.html.
  • Ezzeldin, E.; Iqbal, M.; Asiri, Y. A.; Ali, A. A.; Alam, P.; El-Nahhas, T. A Hydrophilic Interaction Liquid Chromatography–Tandem Mass Spectrometry Quantitative Method for Determination of Baricitinib in Plasma, and Its Application in a Pharmacokinetic Study in Rats. Molecules 2020, 25, 1600. DOI: 10.3390/molecules25071600.
  • Veeraraghavan, S.; Thappali, S. R. S.; Viswanadha, S.; Vakkalanka, S.; Rangaswamy, M. Simultaneous Quantification of Baricitinib and Methotrexate in Rat Plasma by LC-MS/MS: application to a Pharmacokinetic Study. Sci. Pharm. 2016, 84, 347–359. DOI: 10.3797/scipharm.1510-08.
  • Mannurkar, M. M.; Hamrapurkar, P. D. Development and Validation of RP-HPLC Method for Baricitinib Using Quality by Design Approach and Its Application to Stability Studies. Intern. J. Pharm. Qual. Assur. 2021, 12, 40–47. DOI: 10.25258/ijpqa.12.1.
  • Gnegel, G.; Hauk, C.; Neci, R.; Mutombo, G.; Nyaah, F.; Wistuba, D.; Hafele-Abah, C.; Heide, L. Identification of Falsified Chloroquine Tablets in Africa at the Time of the COVID-19 Pandemic. Am. J. Trop. Med. Hyg. 2020, 103, 73–76. DOI: 10.4269/ajtmh.20-0363.
  • Saka, C. Analytical Methods on Determination in Pharmaceuticals and Biological Materials of Chloroquine as Available for the Treatment of COVID-19. Crit. Rev. Anal. Chem 2020, 1–16. DOI: 10.1080/10408347.2020.1781592.
  • Castro e Souza, M. A.; Fernandes Araújo Reis, N.; de Souza Batista, L.; da Costa César, I. C.; Fernandes, C.; Pianetti, G. A. An Easy and Rapid Spectrophotometric Method for Determination of Chloroquine Diphosphate in Tablets. CPA. 2019, 16, 5–11. DOI: 10.2174/1573412914666180730123426.
  • Annuryanti, F.; Darmawati, A.; Miatmoko, A. Kustiawan, Development and Validation of Spectrophotometry UV-Vis Method for Determination of Primaquine and Chloroquine in Liposome Dosage Form. Res. J. Pharm. Tech. 2020, 13, 1293–1296.
  • Srivastava, M.; Tiwari, P.; Kumar Mall, V.; Srivastava, S. K.; Prakash, R. Voltammetric Determination of the Antimalarial Drug Chloroquine Using a Glassy Carbon Electrode Modified with Reduced Graphene Oxide on WS2 Quantum Dots. Microchim. Acta 2019, 186, 415. DOI: 10.1007/s00604-019-3525-3.
  • Kaewkhao, K.; Chotivanich, K.; Winterberg, M.; Day, N. P. J.; Tarning, J.; Blessborn, D. High Sensitivity Methods to Quantify Chloroquine and Its Metabolite in Human Blood Samples Using LC-MS/MS. Bioanalysis 2019, 11, 333–347. DOI: 10.4155/bio-2018-0202.
  • Neha, T.; Pal, S. A.; Kumar, C. A.; Shukla, S. K. High Performance Thin Layer Chromatographic Method for Detection and Determination of Chloroquine in Forensic Samples. Intern. J. Med. Toxicol. Legal Med. 2019, 22, 123–124.
  • Gallay, J.; Prod’hom, S.; Mercier, T.; Bardinet, C.; Spaggiari, D.; Pothin, E.; Buclin, T.; Genton, B.; Decosterd, L. A. LC–MS/MS Method for the Simultaneous Analysis of Seven Antimalarials and Two Active Metabolites in Dried Blood Spots for Applications in Field Trials: Analytical and Clinical Validation. J. Pharm. Biomed. Anal. 2018, 154, 263–277. DOI: 10.1016/j.jpba.2018.01.017.
  • Coelho, A. S.; Pontes Chagas, C. E.; Maia de Pádua, R.; Pianetti, G. A.; Fernandes, C. A Comprehensive Stability-Indicating HPLC Method for Determination of Chloroquine in Active Pharmaceutical Ingredient and Tablets: Identification of Oxidation Impurities. J. Pharm. Biomed. Anal. 2017, 145, 248–254. DOI: 10.1016/j.jpba.2017.06.023.
  • Wang, Z.-Z.; Lu, H.-Y.; Shang, D.-W.; Ni, X.-J.; Zhang, M.; Wen, Y.-G. Development and Validation of an HILIC–MS/MS Method by One-Step Precipitation or Chloroquine in Miniature Pig Plasma. Bioanalysis 2016, 8, 1159–1171. DOI: 10.4155/bio-2015-0032.
  • Kanakapura, B.; Penmatsa, V. K.; Umakanthappa, C. Stability-Indicating UV-Spectrophotometric Assay of Chloroquine Phosphate in Pharmaceuticals. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 251.
  • Miranda, T. A.; Silva, P. H. R.; Pianetti, G. A.; César, I. C. Simultaneous Quantitation of Chloroquine and Primaquine by UPLC-DAD and Comparison with a HPLC-DAD Method. Malaria J. 2015, 14, 29–36.
  • Gouget, H.; Noé, G.; Barrail-Tran, A.; Furlan, V. UPLC–MS/MS Method for the Simultaneous Quantification of Bictegravir and 13 Others Antiretroviral Drugs plus Cobicistat and Ritonavir Boosters in Human Plasma. J. Pharm. Biom. Anal. 2020, 181, 113057. DOI: 10.1016/j.jpba.2019.113057.
  • Harini, U.; Pawar, A. Development and Validation of Stability Indicating Simultaneous UV Spectrophotometric Method for Determination of Emtricitabine, Tenofovir Disoproxil Fumarate, Cobicistat, and Elvitegravir in Pure and Pharmaceutical Dosage Form. Asian J. Pharm. Clin. Res. 2018, 11, 177–184. DOI: 10.22159/ajpcr.2018.v11i4.22897.
  • Devi, K.; Kannappan, N. Development of an RP-HPLC Method for Multicomponent Tablet Formulation Containing Cobicistat and Darunavir. Int. J. Res. Pharm. Sci. 2018, 9, 691–695. DOI: 10.26452/ijrps.v9i3.1547.
  • Simiele, M.; Ariaudo, A.; De Nicolò, A.; Favata, F.; Ferrante, M.; Carcieri, C.; Bonora, S.; Di Perri, G.; D’Avolio, A. UPLC–MS/MS Method for the Simultaneous Quantification of Three New Antiretroviral Drugs, Dolutegravir, Elvitegravir and Rilpivirine, and Other Thirteen Antiretroviral Agents plus Cobicistat and Ritonavir Boosters in Human Plasma. J. Pharm. Biom. Anal. 2017, 138, 223–230. DOI: 10.1016/j.jpba.2017.02.002.
  • Dilly Penchala, S.; Fawcett, S.; Else, L.; Egan, D.; Amara, A.; Elliot, E.; Challenger, E.; Back, D.; Boffito, M.; Khoo, S. The Development and Application of a Novel LC–MS/MS Method for the Measurement of Dolutegravir, Elvitegravir and Cobicistat Inhuman Plasma. J. Chromatog. B. 2016, 1027, 174–180. DOI: 10.1016/j.jchromb.2016.05.040.
  • Masthannamma, S. K.; Anil Kumar, T.; Bhagya Srivani, G.; Anantha Sridhar, T.; Siva Sankar Naik, B.; Vinay Kumar, V. Stability-Indicating Validated Reversed Phase-High Performance Liquid Chromatography Method for Simultaneous Determination of Cobicistat and Atazanavir Sulfate in Bulk and Pharmaceutical Dosage Form. Asian J. Pharm. Clin. Res. 2016, 9, 62–70.
  • Runja, C.; Ravi Kumar, P.; Rao Avanapu, S. A Validated Stability Indicating RP-HPLC Method for the Determination of Emtricitabine, Tenofovir Disoproxil Fumarate, Elvitegravir and Cobicistat in Pharmaceutical Dosage Form. J. Chromatogr. Sci. 2016, 54, 759–764. DOI: 10.1093/chromsci/bmw004.
  • Nalini, M. V. S. S.; Veni, P. R. K.; Babu, B. H. Determination of Darunavir and Cobicistat Simultaneously Using Stability Indicating RP-HPLC Method. Marmara Pharm. J. 2016, 20, 293–302. DOI: 10.12991/mpj.20162036176.
  • Panigrahy, U. P.; Kumar Reddy, A. S. A Novel Validated RP-HPLC Method for the Simultaneous Estimation of Atazanavir Sulphate and Cobicistat in Bulk and Pharmaceutical Dosage Form. Int. J. Pharm. Sci. Rev. Res 2016, 36, 82–89.
  • Rizwan, S. H.; Sastry, V. G.; Gazi, S.; Imad, Q.; Bhameshan, K. M. A New and Validated Stability Indicating RP-HPLC Analysis of Darunavir and Cobicistat in Bulk Drug and Tablet Dosage Form. Int. J. Pharm. Sci. Rev. Res. 2016, 36, 180–185.
  • Nagasarapu, M. R.; Dannana, G. S. Development and Validation of Stability-Indicating HPLC-DAD Method for Simultaneous Determination of Emtricitabine, Elvetegravir, Cobicistat and Tenofovir in Their Tablet Dosage Forms. IJPER 2016, 50, 205–211. DOI: 10.5530/ijper.50.1.25.
  • Gummaluri, R. K.; Parthasarathi, T. V. N.; Anjanamadhulika, G. Simultaneous Method for Determination of Emtricitabine, Tenofovir Disoproxil Fumarate, Elvitegravir and Cobicistat in Tablets by HPLC. Indian J. Pharm. Sci. 2016, 78, 532–537.
  • Zheng, Y.; Aboura, R.; Boujaafar, S.; Lui, G.; Hirt, D.; Bouazza, N.; Foissac, F.; Treluyer, J. M.; Benaboud Gana, S. I. HPLC-MS/MS Method for the Simultaneous Quantification of Dolutegravir, Elvitegravir, Rilpivirine, Darunavir, Ritonavir, Raltegravir and Raltegravir-β-d-Glucuronide in Human Plasma. J. Pharm. Biom. Anal. 2020, 182, 113119. DOI: 10.1016/j.jpba.2020.113119.
  • Vanaja, M.; Sreeramulu, J. Stability Indicating Determination of Darunavir with HPLC in Blood Plasma Samples. RJC 2019, 12, 839–848. DOI: http://dx.doi.org/10.31788/RJC.2019.1225118.
  • Nie, H.; Mo, H.; Byrn, S. R. Investigating the Physicochemical Stability of Highly Purified Darunavir Ethanolate Extracted from PREZISTA® Tablets. AAPS PharmSciTech 2018, 19, 2407–2417. DOI: 10.1208/s12249-018-1036-x.
  • Suvarna, V. M.; Sangave, P. C. HPLC Estimation, Ex Vivo Everted Sac Permeability and in Vivo Pharmacokinetic Studies of Darunavir. J. Chromatogr. Sci. 2018, 56, 307–316. DOI: 10.1093/chromsci/bmx113.
  • Wang, L.; Zhao, J.; Zhang, R.; Mi, L.; Shen, X.; Zhou, N.; Feng, T.; Jing, J.; Liu Zhang, X. S. Drug-Drug Interactions Between PA-824 and Darunavir Based on Pharmacokinetics in Rats by LC-MS-MS. J. Chromatogr. Sci. 2018, 56, 327–335. DOI: 10.1093/chromsci/bmy002.
  • Parameswara Rao, K. Validation of Visible Spectrophotometric Methods of Darunavir in Pure and Dosage Forms. Der Pharma Chemica 2016, 8, 54–61.
  • Priya, D. S.; Sankar, D. G.; Masthanamma, S. K. Stability-Indicating Reversed-Phase High Performance Liquid Chromatography Method for the Simultaneous Estimation of Darunavir and Ritonavir. Asian J. Pharm. Clin. Res. 2016, 9, 71–76.
  • Vijayalakshmi, R.; Naga Sri Ramya, Y.; Dimple Mani, A.; Dhanaraju, M. D. Spectrophotometric Determination of Darunavir Ethanolate by Condensation Technique. Int. J. Pharm. Tech, Res. 2016, 9, 301–306.
  • Malliarjuna Rao, N.; Gowri Sankar, D. Simultaneous Quantification of Novel Antiretroviral Drug Combination by Stability-Indicating High Performance Liquid Chromatography Method. Indian J. Pharm. Sci. 2016, 78, 755–762.
  • Kashish, G.; Nisha, P.; Hiren, K. Analytical Techniques in the Analysis of Darunavir and Ritonavir: A Review. CPA. 16, 447–455. doi:10.2174/1573412915666190206124808.
  • Charbe, N.; Baldelli, S.; Cozzi, V.; Castoldi, S.; Cattaneo, D.; Clementi, E. Development of an HPLC-UV Assay Method for the Simultaneous Quantification of Nine Antiretroviral Agents in the Plasma of HIV-Infected Patients. J. Pharm. Anal. 2016, 6, 396–403. DOI: 10.1016/j.jpha.2016.05.008.
  • Parameswara Rao, K. Determination of Darunavir in Pharmaceutical Dosage Form. Der Pharmacia Lettre 2016, 8, 64–69.
  • Parameswara Rao, K.; Ramesh, B. V.; Prasad, C. S.; Ramana, G. V.; Rao, M. C. Validated Isocratic Reversed Phase Liquid Chromatographic Method for the Determination of Darunavir in Pure and Formulations. Der Pharmacia Lettre 2016, 8, 222–228.
  • Mantena, B. P. V.; Rao, S. V.; Appa Rao, K. M.; Ramakrishna, K.; Srikanth Reddy, R. Method Development and Validation for the Determination of Four Potential Impurities Present in Darunavir Tablets by Reverse Phase–Ultra-Performance Liquid Chromatography Coupled with Diode-Array Detector. J. Liquid Chromatogr. Related Technol. 2015, 38, 1236–1246. DOI: 10.1080/10826076.2015.1037449.
  • Ramesh, B.; Manjula, N.; Ramakrishna, S.; Sita Devi, P. Direct Injection HILIC-MS/MS Analysis of Darunavir in Rat Plasma Applying Supported Liquid Extraction. J. Pharm. Anal. 2015, 5, 43–50. DOI: 10.1016/j.jpha.2014.05.001.
  • Deshpande, P. B.; Butle, S. R. Development and Validation of Stability Indicating HPTLC Method for Determination of Darunavir Ethanolate and Ritonavir. Int. J. Pharm. Pharm. Sci. 2015, 7, 66–71.
  • Jain, H. K.; Jadhav, U. S. Development and Validation of RP-HPLC Method for Estimation of Darunavir Ethanolate in Bulk and Tablets. Int. J. Pharm. Pharm. Sci. 2015, 7, 386–389.
  • Reddy, A. V. B.; Jaafar, J.; Aris, A. B.; Majid, Z. A.; Umar, K.; Talib, J.; Madhavi, G. Development and Validation of a Rapid Ultra High Performance Liquid Chromatography with Tandem Mass Spectrometry Method for the Simultaneous Determination of Darunavir, Ritonavir, and Tenofovir in Human Plasma: Application to Human Pharmacokinetics. J. Sep. Science 2015, 38, 2580–2587. DOI: 10.1002/jssc.201500250.
  • Yamada, E.; Takagi, R.; Sudo, K.; Kato, S. Determination of Abacavir, Tenofovir, Darunavir, and Raltegravir in Human Plasma and Saliva Using Liquid Chromatography Coupled with Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2015, 114, 390–397. DOI: 10.1016/j.jpba.2015.06.0050731-7085.
  • Reckers, A.; Wu, A. H. B.; Ong, C. M.; Gandhi, M.; Metcalfe, J.; Gerona, R. A Combined Assay for Quantifying Remdesivir and Its Metabolite, along with Dexamethasone, in Serum. J. Antimicrob. Chemother. 2021, 76, 1865–1873. DOI: 10.1093/jac/dkab094.
  • Kim, N. S.; Moon, S. H.; Choi, H. S.; Lee, J. H.; Park, S.; Kang, H. Simultaneous Separation and Determination of 20 Potential Adulterant Antigout and Antiosteoporosis Pharmaceutical Compounds in Herbal Food Products Using LC with Electrospray Ionization MS/MS and LC with Quadrupole-Time-of-Flight MS. J. Sep. Sci. 2020, 43, 2750–2765. DOI: 10.1002/jssc.201901204.
  • Kim, N. S. J.; Kim, J. N. Y.; Lim, N. Y.; Lee, J. H.; Park, S.; Kang, H. Simultaneous Determination of Illegal Drug Substances in Dietary Supplements for Gout and Osteoporosis Using Ultra-Performance Liquid Chromatography and Liquid Chromatography-Quadrupole-Time-of-Flight Mass Spectrometry. J. Pharm. Biomed. Anal. 2020, 179, 113003. DOI: 10.1016/j.jpba.2019.113003.
  • Ural, M. N.; Kotan, A. A Simple and Rapid LC-MS/MS Method for Determination of Dexamethasone in Bovine Milk. Mac. Vet. Rev. 2020, 43, 69–73. DOI: 10.2478/macvetrev-2020-0014.
  • Shen, X.; Chang, H.; Sun, Y.; Wan, Y. Determination and Occurrence of Natural and Synthetic Glucocorticoids in Surface Waters. Environ. Int. 2020, 134, 105278. DOI: 10.1016/j.envint.2019.105278.
  • Saad, M. N.; Essam, H. M.; Elzanfaly, E. S.; Amer, S. M. Economic Chromatographic Methods for Simultaneous Quantitation of Some Fluoroquinolones and Corticosteroids Present in Different Binary Ophthalmic Formulations. J. Liquid Chromatogr. Related Technol. 2020, 43, 271–281. DOI: 10.1080/10826076.2020.1725041.
  • Abdelwahab, N. S.; Ali, N. W.; Zaki, M. M.; Sharkawi, S. M. Z.; Abdelkawy, M. M. Simultaneous Determination of Thalidomide and Dexamethasone in Rat Plasma by Validated HPLC and HPTLC with Pharmacokinetic Study. J. Chromatogr. Sci. 2019, 57, 130–138. DOI: 10.1093/chromsci/bmy094.
  • Guo, P.; Chen, G.; Shu, H.; Li, P.; Yu, P.; Chang, C.; Wang, Y.; Fu, Q. Monodisperse Molecularly Imprinted Microsphere Cartridges Coupled with HPLC for Selective Analysis of Dexamethasone and Hydrocortisone in Cosmetics by Using Matrix Solid-Phase Dispersion. Anal. Methods 2019, 11, 3687–3696. DOI: 10.1039/C9AY01196J.
  • Xu, Q. Incorporating Solid-Phase Extraction into Compendial Procedures for the Determination of Dexamethasone and Impurities in Low-Dose Drug Products. J. Pharm. Biomed. Anal. 2019, 175, 112773. DOI: 10.1016/j.jpba.2019.07.021.
  • Prakash, K.; Sireesha, K. R. HPLC-UV Method for Simultaneous Determination of Sparfloxacin and Dexamethasone Sodium Phosphate in Eye Drops. Pak. J. Pharm. Sci. 2019, 32, 1057–1061.
  • Ibrahim, F. A.; Elmansi, H.; Fathy, M. E. Green RP-HPLC Method for Simultaneous Determination of Moxifloxacin Combinations: Investigation of the Greenness for the Proposed Method. Microchem. J. 2019, 148, 151–161. DOI: 10.1016/j.microc.2019.04.074.
  • Montazeralmahdi, V.; Sheibani, A.; Reza Shishehbore, M. First- and Third-Derivative Spectrophotometry for Simultaneous Determination of Dexamethasone and Cytarabine in Pharmaceutical Formulations and Biological Fluids. J. Appl. Spectrosc. 2019, 86, 843–847. DOI: 10.1007/s10812-019-00904-3.
  • Beguiristain, I.; Alongi, A.; Rúbies, A.; Granados, M. Analysis of Corticosteroids in Samples of Animal Origin Using QuEChERS and Ultrahigh-Performance Liquid Chromatography Coupled to High-Resolution Mass Spectrometry. Anal. Bioanal. Chem. 2019, 411, 449–457. DOI: 10.1007/s00216-018-1459-y.
  • Alimohammadi, S.; Kiani, M. A.; Imani, M.; Rafii-Tabar, H.; Sasanpour, P. Electrochemical Determination of Dexamethasone by Graphene Modified Electrode: Experimental and Theoretical Investigations. Sci. Rep. 2019, 9, 11775. DOI: 10.1038/s41598-019-47420-0.
  • Primpray, V.; Chailapakul, O.; Tokeshi, M.; Rojanarata, T.; Laiwattanapaisal, W. A Paper-Based Analytical Device Coupled with Electrochemical Detection for the Determination of Dexamethasone and Prednisolone in Adulterated Traditional Medicines. Anal. Chim. Acta. 2019, 1078, 16–23. DOI: 10.1016/j.aca.2019.05.072.
  • Demir, E.; Inam, O.; Inam, R.; Aboul-Enein, H. Y. Voltammetric Determination of Ophthalmic Drug Dexamethasone Using Poly-Glycine Multi Walled Carbon Nanotubes Modified Paste Electrode. Curr. Anal. Chem. 2018, 14, 83–89. DOI: 10.2174/1573411013666161219161320.
  • Shammout, M. J. A.; Elif Basci, N. Validated Ultra Performance Liquid Chromatography-Tandem Mass Spectrometric Method for Determination of Betamethasone or Dexamethasone in Pharmaceuticals. Curr. Pharm. Anal. 2018, 14, 68–75.
  • Matta, M. K.; Narayanasamy, S.; Thomas, C. D.; Xu, L.; Stewart, S.; Chockalingam, A.; Patel, V.; Rouse, R. A Sensitive UPLC-APCI-MS/MS Method for the Determination of Dexamethasone and Its Application in an Ocular Tissue Distribution Study in Rabbits following Topical Administration. Anal. Methods 2018, 10, 2307–2316. DOI: 10.1039/C8AY00283E.
  • Dermis, S.; Buker, E.; Ertekin, Z. C.; Korkmaz, E.; Dinc, E. Quantitative Determination of Dexamethasone in Pharmaceutical Tablets with Continuous Wavelet Transforms. Asian J. Chem. 2018, 30, 2567–2570. DOI: 10.14233/ajchem.2018.21618.
  • Smajdor, J.; Piech, R.; Paczosa-Bator, B. Highly Sensitive Voltammetric Determination of Dexamethasone on Amalgam Film Electrode. Electroanal. Chem. 2018, 809, 147–152. DOI: 10.1016/j.jelechem.2017.12.042.
  • Nusai, K.; Doungdee, Greener, P. Rapid and Reliable UHPLC Using 1-Alkyl-3-Methylimidazolium-Based Ionic Liquids as the Mobile Phase Additives for Simultaneous Determination of Steroids and Antihistamines Residues in Herbal Medicines. Chiang Mai J. Sci. 2018, 45, 380–403.
  • Du, W.; Zhang, B.; Guo, P.; Chen, G.; Chang, C.; Fu, Q. Facile Preparation of Magnetic Molecularly Imprinted Polymers for the Selective Extraction and Determination of Dexamethasone in Skincare Cosmetics Using HPLC. J. Sep. Sci. 2018, 41, 2441–2452. DOI: 10.1002/jssc.201701195.
  • Long, W.-J.; Wu, H.-L.; Wang, T.; Xie, L.-X.; Hu, Y.; Fang, H.; Cheng, L.; Ding, Y.-J.; Yu, R.-Q. Chemometrics-Assisted Liquid Chromatography with Full Scan Mass Spectrometry for the Interference-Free Determination of Glucocorticoids Illegally Added to Face Masks. J. Sep. Sci. 2018, 41, 3527–3537. DOI: 10.1002/jssc.201800333.
  • Goh, S. X. L.; Goh, H. A.; Lee, H. K. Automation of Ionic Liquid Enhanced Membrane Bag-Assisted-Liquid Phase Microextraction with Liquid Chromatography-Tandem Mass Spectrometry for Determination of Glucocorticoids in Water. Anal. Chim. Acta 2018, 1035, 77–86. DOI: 10.1016/j.aca.2018.07.031.
  • Ferreira, M. S.; Marquez, C. R.; dos Santos, D. A.; Gabbai, J. J.; Martho, A. C.; Yamanouchi Brandão, A. H.; Barella, K. A.; Riccio, M. F.; Noboli, A. C.; Serafim Júnior, P. Validation of Direct Method to Quantify Dexamethasone in Human Aqueous Humor by LC–MS/MS. Bioanalysis 2018, 10, 1361–1370. DOI: 10.4155/bio-2018-0079.
  • Farid, N. F.; Naguib, I. A.; Moatamed, R. S.; El Ghobashy, M. R. TLC-Densitometric and RP-HPLC Methods for Simultaneous Determination of Dexamethasone and Chlorpheniramine Maleate in the Presence of Methylparaben and Propylparaben. J. AOAC Int. 2017, 100, 51–58. DOI: 10.5740/jaoacint.16-0179.
  • Razzaq, S. N.; Ashfaq, M.; Khan, I. U.; Mariam, I.; Razzaq, S. S.; Mustafa, G.; Zubair, M. Stability Indicating RP-HPLC Method for Simultaneous Determination of Gatifloxacin and Dexamethasone in Binary Combination. Braz. J. Pharm. Sci. 2017, 53, e:15177. DOI: http://dx.doi.org/10.1590/s2175-97902017000115177.
  • Razzaq, S. N.; Ashfaq, M.; Mariam, I.; Khan, I. U.; Razzaq, S. S.; Mustafa, G. Stability Indicating RP-HPLC Method for Simultaneous Determination of Ciprofloxacin and Dexamethasone in Binary Combination. J. Chil. Chem. Soc. 2017, 62, 3572–3577. DOI: http://dx.doi.org/10.4067/s0717-97072017000303572.
  • Razzaq, S. N.; Ashfaq, M.; Khan, I. U.; Mariam, I.; Razzaq, S. S.; Azeem, W. Simultaneous Determination of Dexamethasone and Moxifloxacin in Pharmaceutical Formulations Using Stability Indicating HPLC Method. Arabian J. Chem. 2017, 10, 321–328. DOI: 10.1016/j.arabjc.2014.11.016.
  • Chen, F.-C.; Wang, L.-H.; Guo, J.; Shi, X.-Y.; Fang, B.-X. Simultaneous Determination of Dexamethasone, Ondansetron, Granisetron, Tropisetron, and Azasetron in Infusion Samples by HPLC with DAD Detection. J. Anal. Methods Chem. 2017, 2017, 1–7. ID 6749087, DOI: 10.1155/2017/6749087.
  • Huang, Y.; Zheng, Z.; Huang, L.; Yao, H.; Wu, X. S.; Li, S.; Lin, D. Optimization of Dispersive Liquid-Phase Microextraction Based on Solidified Floating Organic Drop Combined with High-Performance Liquid Chromatography for the Analysis of Glucocorticoid Residues in Food. J. Pharm. Biomed. Anal. 2017, 138, 363–372. DOI: 10.1016/j.jpba.2017.02.026.
  • Fatahi, A.; Malakooti, R.; Shahlaei, M. Electrocatalytic Oxidation and Determination of Dexamethasone at an Fe3O4/PANI–CuII Microsphere Modified Carbon Ionic Liquid Electrode. RSC Adv. 2017, 7, 11322–11330. DOI: 10.1039/C6RA26125F.
  • Prieto, E.; Vispe, E.; Otín-Mallada, S.; Garcia-Martin, E.; Polo-Llorens, V.; Fraile, J. M.; Pablo, L. E.; Mayoral, J. A. Determination of Three Corticosteroids in the Biologic Matrix of Vitreous Humor by HPLC-Tandem Mass Spectrometry: Method Development and Validation. Curr. Eye Res. 2017, 42, 244–251. DOI: 10.1080/02713683.2016.1183795.
  • Kim, N. S.; Yoo, G. J.; Lee, J. H.; Park, H.-J.; Cho, S.; Shin, D. W.; Kim, Y.; Baek, S. Y. Determination of 43 Prohibited Glucocorticoids in Cosmetic Products Using a Simultaneous LC-MS/MS Method. Anal. Methods 2017, 9, 2104–2115. DOI: 10.1039/C6AY03065C.
  • Bianchi, F.; Mattarozzi, M.; Riboni, N.; Mora, P.; Gandolfi, S. A.; Careri, M. A Rapid Microextraction by Packed Sorbent - Liquid Chromatography Tandem Mass Spectrometry Method for the Determination of Dexamethasone Disodium Phosphate and Dexamethasone in Aqueous Humor of Patients with Uveitis. J. Pharm. Biomed. Anal. 2017, 142, 343–347. DOI: 10.1016/j.jpba.2017.05.025.
  • AlAani, H.; Alnukkary, Y. Stability-Indicating HPLC Method for Simultaneous Determination of Chloramphenicol, Dexamethasone Sodium Phosphate and Tetrahydrozoline Hydrochloride in Ophthalmic Solution. Adv. Pharm. Bull. 2016, 6, 137–141. DOI: 10.15171/apb.2016.020.
  • El-Kosasy, A. M.; Abdel-Aziz, O.; Magdy, N.; El Zahar, N. M. Spectrophotometric and Chemometric Methods for Determination of Imipenem, Ciprofloxacin Hydrochloride, Dexamethasone Sodium Phosphate, Paracetamol and Cilastatin Sodium in Human Urine. Spectrochim. Acta, Part A. 2016, 157, 26–33. DOI: 10.1016/j.saa.2015.12.011.
  • Maher, H. M.; Alzoman, N. Z.; Shehata, S. M. Simultaneous Determination of Selected Tyrosine Kinase Inhibitors with Corticosteroids and Antiemetics in Rat Plasma by Solid Phase Extraction and Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry: Application to Pharmacokinetic Interaction Studies. J. Pharm. Biomed. Anal. 2016, 124, 216–227.
  • Feng, J.; Liu, X.; Li Y.; Duan, G. Microwave-Assisted Enzymatic Hydrolysis Followed by Extraction with Restricted Access Nanocomposites for Rapid Analysis of Glucocorticoids Residues in Liver Tissue. Talanta, 2016, 159, 155–162.
  • Shu, C.; Zeng, T.; Gao, S.; Xia, T.; Huang, L.; Zhang F.; Chen, W. LC–MS/MS Method for Simultaneous Determination of Thalidomide, Lenalidomide, Cyclophosphamide, Bortezomib, Dexamethasone and Adriamycin in Serum of Multiple Myeloma Patients. J. Chromatogr. B. 2016, 1028, 111–119.
  • Golubović, J. B.; Otašević, B. M.; Protić, A. D.; Stanković, A. M.; Zečević, M. L. Liquid Chromatography/Tandem Mass Spectrometry for Simultaneous Determination of Undeclared Corticosteroids in Cosmetic Creams. Rapid Commun. Mass Spectrom 2015, 29, 2319–2327. DOI: 10.1002/rcm.7403.
  • Akhoundi-Khalafi, A. M.; Shishehbore, M. R. A New Technique for Quantitative Determination of Dexamethasone in Pharmaceutical and Biological Samples Using Kinetic Spectrophotometric Method. Int. J. Anal. Chem. 2015, 2015, 439271. DOI: 10.1155/2015/439271.
  • El-Rahman, A.; Lotfy, M. K.; Hegazy, H. M.; Rezk, M. A.; Omran, M. R.; Rostom, Y. A Novel Sensor for Determination of Dexamethasone Disodium Phosphate in Different Pharmaceutical Formulations. Anal. Bioanal. Electrochem. 2015, 7, 752–763.
  • Carlsson, H.; Hjorton, K.; Abujrais, S.; Rönnblom, L.; Åkerfeldt, T.; Kultima, K. Measurement of Hydroxychloroquine in Blood from SLE Patients Using LC-HRMS-Evaluation of Whole Blood, Plasma, and Serum as Sample Matrices. Arthritis Res. Ther. 2020, 22, 125. DOI: 10.1186/s13075-020-02211-1.
  • Luo, X.; Peng, Y.; Ge, W. A Sensitive and Optimized HPLC-FLD Method for the Simultaneous Quantification of Hydroxychloroquine and Its Two Metabolites in Blood of Systemic Lupus Erythematosus Patients. J. Chromatogr. Sci. 2020, 58, 600–605. DOI: 10.1093/chromsci/bmaa023.
  • Millet, A.; Citterio-Quentin, A.; Gagnieu, M.-C.; Parant, F.; Guitton, J. Potential Interference of Hydroxychloroquine-Glucuronide Metabolite on Therapeutic Drug Monitoring of Hydroxychloroquine Using a Mass Spectrometry Detector. Clin. Chem. Lab. Med. 2020, 58, 1165–1167. DOI: 10.1515/cclm-2020-0481.
  • Dongala, T.; Katari, N. K.; Palakurthi, A. K.; Katakam, L. N. R.; Marisetti, V. M. Stability Indicating LC Method Development for Hydroxychloroquine Sulfate Impurities as Available for Treatment of COVID-19 and Evaluation of Risk Assessment Prior to Method Validation by Quality by Design Approach. Chromatographia 2020, 83, 1269–1281. DOI: 10.1007/s10337-020-03945-5.
  • El-Koussi, W. M.; Atia, N. N.; Saleh, G. A.; Hammam, N. Innovative HPTLC Method for Simultaneous Determination of Ternary Mixture of Certain DMARDs in Real Samples of Rheumatoid Arthritis Patients: An Application of Quality by Design Approach. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2019, 1124, 135–145. DOI: 10.1016/j.jchromb.2019.05.038.
  • Noé, G.; Amoura, Z.; Combarel, D.; Lori, L.; Tissot, N.; Seycha, A.; Funck-Brentano, C.; Zahr, N. Development and Validation of a Fast Ultra-High Performance Liquid Chromatography-Fluorescent Method for the Quantification of Hydroxychloroquine and Its Metabolites in Patients With Lupus. Ther. Drug Monit. 2019, 41, 476–482. DOI: 10.1097/FTD.0000000000000614.
  • Parvinizadeh, F.; Daneshfar, A. Fabrication of a Magnetic Metal–Organic Framework Molecularly Imprinted Polymer for Extraction of anti-Malaria Agent Hydroxychloroquine. New J. Chem. 2019, 43, 8508–8516. DOI: 10.1039/C9NJ01385G.
  • Khalil, M. M.; Abed El-Aziz, G. M.; Ashry, A. Potentiometric Sensors Based on Hydroxychloroquine Phosphotungstate Ion-Pair and β-Cyclodextrin Ionophore for Improved Determination of Hydroxychloroquine Sulfate. J. Iran. Chem. Soc. 2018, 15, 2411–2421. DOI: 10.1007/s13738-018-1430-z.
  • Qu, Y.; Brady, K.; Apilado, R.; O'Malley, T.; Reddy, S.; Chitkara, P.; Ibarra, C.; Alexander, R. V.; Dervieux, T. Capillary Blood Collected on Volumetric Absorptive Microsampling (VAMS) Device for Monitoring Hydroxychloroquine in Rheumatoid Arthritis Patients. J. Pharm. Biomed. Anal. 2017, 140, 334–341. DOI: 10.1016/j.jpba.2017.03.047.
  • Ghoreishi, S. M.; Attaran, A. M.; Amin, A. M.; Khoobi, A. Multiwall Carbon Nanotube-Modified Electrode as a Nanosensor for Electrochemical Studies and Stripping Voltammetric Determination of an Antimalarial Drug. RSC Adv. 2015, 5, 14407–14415. DOI: 10.1039/C4RA16357E.
  • Khalil, M. M.; Issa, Y. M.; El Sayed, G. A. Modified Carbon Paste and Polymeric Membrane Electrodes for Determination of Hydroxychloroquine Sulfate in Pharmaceutical Preparations and Human Urine. RSC Adv. 2015, 5, 83657–83667. DOI: 10.1039/C5RA16250E.
  • Singh, A.; Roopkishora, Singh, C. L.; Gupta, R.; Kumar, S.; Kumar, M. Development and Validation of Reversed-Phase High Performance Liquid Chromatographic Method for Hydroxychloroquine Sulphate. Indian J. Pharm. Sci. 2015, 77, 586–591. DOI: 10.4103/0250-474x.169038.
  • Qu, Y.; Noe, G.; Breaud, A. R.; Vidal, M.; Clarke, W. A.; Zahr, N.; Dervieux, T.; Costedoat-Chalumeau, N.; Blanchet, B. Development and Validation of a Clinical HPLC Method for the Quantification of Hydroxychloroquine and Its Metabolites in Whole Blood. Future Sci. OA 2015, 1, FSO26. DOI: 10.4155/fso.15.24.
  • Austin, D.; John, C.; Hunt, B. J.; Carling, R. S. Validation of a Liquid Chromatography Tandem Mass Spectrometry Method for the Simultaneous Determination of Hydroxychloroquine and Metabolites in Human Whole Blood. Clin. Chem. Lab. Med. 2020, 58, 2047–20611. DOI: 10.1515/cclm-2020-0610.
  • Xiong, X.; Wang, K.; Tang, T.; Fang, J.; Chen, Y. Development of a Chiral HPLC Method for the Separation and Quantification of Hydroxychloroquine Enantiomers. Sci. Rep. 2021, 11, 8017. DOI: 10.1038/s41598-021-87511-5.
  • Bodur, S.; Erarpat, S.; Günkara, Ö. T.; Bakırdere, S. Accurate and Sensitive Determination of Hydroxychloroquine Sulfate Used on COVID-19 Patients in Human Urine, Serum and Saliva Samples by GC-MS. J. Pharm. Anal. 2021, 11, 278–283. DOI: 10.1016/j.jpha.2021.01.006.
  • Singh, A.; Sharma, P.K, R.; Gupta, R.; Mondal, N.; Kumar, S.; Kumar, M. Development and Validation of UV-Spectrophotometric Method for the Estimation of Hydroxychloroquine Sulphate, Indian. J. Chem. Tech. 2016, 23, 237–239. http://hdl.handle.net/123456789/34265.
  • Hoff, R. B.; Molognoni, L.; Deolindo, C. T. P.; Vargas, M. O.; Kleemann, C. R.; Daguer, H. Determination of 62 Veterinary Drugs in Feeding Stuffs by Novel Pressurized Liquid Extraction Methods and LC-MS/MS. J. Chromatog. B. 2020, 1152, 122232. DOI: 10.1016/j.jchromb.2020.122232.
  • Felici, E.; Wang, C. C.; Casado, C.; Vicario, A.; Pereyra, V.; Gòmez, M. R. Preconcentration and Post-Column Fluorescent Derivatization for the Environmental Water Monitoring of an Antihelmintic Macrocyclic Drug Used in Livestock. Heliyon 2019, 5, e02025. DOI: 10.1016/j.heliyon.2019.e02025.
  • Moschou, I. C.; Dasenaki, M. E.; Thomaidis, N. S. Ionization Study and Simultaneous Determination of Avermectins and Milbemycines in Fish Tissue by LC-ESI-MS/MS. J. Chromatogr. B. 2019, 1104, 134–140. DOI: 10.1016/j.jchromb.2018.11.017.
  • Kumar Devaka, N. V. S.; Madhusudhan Rao, V. Chromatographic Quantification of Ivermectin and Pranziquantel in the Tablets Using Stability Indicating RP-HPLC Method. Pharm. Sci. 2019, 25, 254–261. DOI: 10.15171/PS.2019.41.
  • Wani, G. P.; Jadhav, S. B. RP-HPLC and HPTLC Stability Indicating Assay Methods for Ivermectin in Bulk and Tablet Dosage Form. Ind. Dru. 2018, 55, 32–42. DOI: 10.53879/id.55.03.11143.
  • Morbidelli, E.; Rambaldi, J.; Ricci Bitti, L.; Zaghini, A.; Barbarossa, A. A Quick and Simple Method for the Determination of Ivermectin in Dog Plasma by LC–MS/MS. MethodsX 2018, 5, 1503–1507. DOI: 10.1016/j.mex.2018.11.011.
  • Duthaler, U.; Suenderhauf, C.; Gaugler, S.; Vetter, B.; Krähenbühl, S.; Hammann, F. Development and Validation of an LC-MS/MS Method for the Analysis of Ivermectin in Plasma, Whole Blood, and Dried Blood Spots Using a Fully Automatic Extraction System. J. Pharm. Biomed. Anal. 2019, 172, 18–25. DOI: 10.1016/j.jpba.2019.04.007.
  • Fatoki, O. S.; Opeolu, B. O.; Genthe, B.; Olatunji, O. S. Multi-Residue Method for the Determination of Selected Veterinary Pharmaceutical Residues in Surface Water Around Livestock Agricultural Farms. Heliyon 2018, 4, e01066. DOI: 10.1016/j.heliyon.2018.e01066.
  • Ortiz, A. J.; Cortez, V.; Azzouz, A.; Verdù, J. R. Isolation and Determination of Ivermectin in Post-Mortem and in Vivo Tissues of Dung Beetles Using a Continuous Solid Phase Extraction Method Followed by LC-ESI+-MS/MS . PLoS One. 2017, 12, e0172202. DOI: 10.1371/journal.pone.0172202.
  • Hoyos, O. D. E.; Cuartas, O. Y. A.; Peñuela, M. G. A. Development and Validation of a Highly Sensitive Quantitative/Confirmatory Method for the Determination of Ivermectin Residues in Bovine Tissues by UHPLC-MS/MS . Food Chem. 2017, 221, 891–897. DOI: 10.1016/j.foodchem.2016.11.077.
  • Liu, Y.; Yu, L.; Wang, Z.; Yang, Q.; Dong, J.; Yang, Y.; Ai, X. [Simultaneous Determination of Seven Avermectin Residues in Aquatic Products by Modified QuEChERS Combined with High-Performance Liquid Chromatography-Tandem Mass Spectrometry]. Se Pu 2017, 35, 1276–1285. DOI: 10.3724/SP.J.1123.2017.09019.
  • Saad, A. S.; Ismail, N. S.; Soliman, M.; Zaazaa, H. E. Validated Stability-Indicating RP-HPLC Method for Simultaneous Determination of Clorsulon and Ivermectin Employing Plackett-Burman Experimental Design for Robustness Testing. J. AOAC Int. 2016, 99, 571–578. DOI: 10.5740/jaoacint.15-0128.
  • Pimentel-Trapero, D.; Sonseca-Yepes, A.; Moreira-Romero, S.; Hernández-Carrasquilla, M. Determination of Macrocyclic Lactones in Bovine Liver Using QuEChERS and HPLC with Fluorescence Detection. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2016, 1015–1016, 166–172. DOI: 10.1016/j.jchromb.2016.01.055.
  • Travassos Lemos, M. A.; Alves Matos, C.; Fabri de Resende, M.; Bardy Prado, R.; Andrade Donagemma, R.; Duarte Pereira Netto, A. Development, Validation, and Application of a Method for Selected Avermectin Determination in Rural Waters Using High Performance Liquid Chromatography and Fluorescence Detection. Ecotoxicol. Environ. Saf. 2016, 133, 424–432. DOI: 10.1016/j.ecoenv.2016.07.038.
  • Lourencao, B. C.; Medeiros, R. A.; Scherrer Thomasi, S.; Ferreira, A. G.; Rocha-Filho, R. C.; Fatibello-Filho, O. Amperometric Flow-Injection Determination of the Anthelmintic Drugs Ivermectin and Levamisole Using Electrochemically Pretreated Boron-Doped Diamond Electrodes. Sensors and Actuators B 2016, 222, 181–189. DOI: 10.1016/j.snb.2015.08.036.
  • Macedo, F.; Teixeira Marsico, E.; Conte-Júnior, C. A.; Fabri de Resende, M.; Figueiredo Brasil, T.; Duarte Pereira Netto, A. Development and Validation of a Method for the Determination of Low-Ppb Levels of Macrocyclic Lactones in Butter, Using HPLC-Fluorescence. Food Chem. 2015, 179, 239–245. DOI: 10.1016/j.foodchem.2015.01.046.
  • Rúbies, A.; Antkowiak, S.; Granados, M.; Companyó, R.; Centrich, F. Determination of Avermectins: A QuEChERS Approach to the Analysis of Food Samples. Food Chem. 2015, 181, 57–63. DOI: 10.1016/j.foodchem.2015.02.067.
  • Deepthi, D. K.; Deepthi, K.; Jane, M.; Hemanth, K. Estimation of Lopinavir by RP-HPLC. Rese. J. Pharm. Technol. 2019, 12, 251–253. DOI: 10.5958/0974-360X.2019.00047.7.
  • Qin, C.; Feng, W.; Chu, Y. J.; Lee, J. B.; Berton, M.; Bettonte, S.; Teo, Y. Y.; Stocks, M. J.; Fischer, P. M.; Gershkovich, P. Development and Validation of a Cost-Effective and Sensitive Bioanalytical HPLC-UV Method for Determination of Lopinavir in Rat and Human Plasma. Biomed. Chromatogr. 2020, 4934, e4934. DOI: 10.1002/bmc.4934.
  • Chu, L.; Wu, Y.; Duan, C.; Yang, J.; Yang, H.; Xie, Y.; Zhang, Q.; Qiao, S.; Li, X.; Shen, Z.; Deng, H. Simultaneous Quantitation of Zidovudine, Efavirenz, Lopinavir and Ritonavir in Human Hair by Liquid Chromatography-Atmospheric Pressure Chemical Ionization-Tandem Mass Spectrometry. J. Chromatogr. B. 2018, 1097–1098, 54–63. DOI: 10.1016/j.jchromb.2018.08.031.
  • Namratha, S.; Vijayalakshmi, A. Method Development and Validation of Lopinavir in Tablet Dosage Form Using Reversed-Phase High-Performance Liquid Chromatography. Asian J. Pharm. Clin. Res. 2018, 11, 1–4. DOI: 10.22159/ajpcr.2018.v11s4.31715.
  • Abafe, O. A.; Späth, J.; Fick, J.; Jansson, S.; Buckley, C.; Stark, A.; Pietruschka, B.; Martincigh, B. S. LC-MS/MS Determination of Antiretroviral Drugs in Influents and Effluents from Wastewater Treatment Plants in KwaZulu-Natal, South Africa. Chemosphere 2018, 200, 660–670. DOI: 10.1016/j.chemosphere.2018.02.105.
  • Sichilongo, K.; Mwando, E.; Sepako, E.; Massele, A. Comparison of Efficiencies of Selected Sample Extraction Techniques for the Analysis of Selected Antiretroviral Drugs in Human Plasma Using LC-MS. J. Pharm. Toxicol. Methods 2018, 89, 1–8. DOI: 10.1016/j.vascn.2017.10.001.
  • Mwando, Jr., E.; Massele, A.; Sepako, E.; Sichilongo, K. A Method Employing SPE, MRM LC-MS/MS and a THF–Water Solvent System for the Simultaneous Determination of Five Antiretroviral Drugs in Human Blood Plasma. Anal. Methods 2017, 9, 450–458. DOI: 10.1039/C6AY02442D.
  • Shi, M.; Li, J.; Gan, H.; Zheng, Y.; Meng, Z.; Dou, G. Development of LC-MS/MS Method for Rapid Quantification of Lopinavir/Ritonavir (Kaletra) in Human Plasma. J. Int. Pharmaceut. Res. 2016, 1, 162–166.
  • Wang, M.; Halquist, M. S.; Zhang, Y.; Gerk, P. M. Simultaneous Determination of Lopinavir and Three Ester Prodrugs by LC-MS/MS in lysates of BeWo cells. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2015, 975, 84–90. DOI: 10.1016/j.jchromb.2014.10.032.
  • Hiremath, S. N.; Bhirud, C. H. Development and Validation of a Stability Indicating HPLC Method for the Simultaneous Analysis of Lopinavir and Ritonavir in Fixed-Dose Combination Tablets. J. Taibah Univ. Med. Sci. 2015, 10, 271–277. DOI: 10.1016/j.jtumed.2014.11.006.
  • Sireesha, D.; Ajitha, M.; Narayana, K. R. Simultaneous Bioanalysis of Prodrug Oseltamivir and Its Metabolite Oseltamivir Carboxylic Acid in Human Plasma by LC/MS/MS Method and Its Application to Disposition Kinetics. CPA. 2020, 16, 143–152. DOI: 10.2174/1573412914666181011125120.
  • Kiguchi, O.; Ishii, T.; Watanabe, T.; Konno, R.; Matsubuchi, A.; Kobayashi, T. Determination of Oseltamivir Phosphate and Its Metabolite with Other Pharmaceuticals in Surface Waters Using Solid Phase Extraction and Isotope Dilution Liquid Chromatography/Tandem Mass Spectrometry. Int. J. Environ. Anal. Chem. 2020, 100, 346–360. DOI: 10.1080/03067319.2019.1637425.
  • Hassib, S. T.; Taha, E. A.; Elkady, E. F.; Barakat, G. H. RP-LC Method for the Determination of Seven Antiviral Drugs and Bioanalytical Application for Simultaneous Determination of Lamivudine and Penciclovir in Human Plasma. Chromatographia 2018, 81, 289–301.
  • Omar, M. A.; Derayea, S. M.; Mostafa, I. M. Selectivity Improvement for Spectrofluorimetric Determination of Oseltamivir Phosphate in Human Plasma and in the Presence of Its Degradation Product. J. Fluoresc. 2017, 27, 1323–1330. DOI: 10.1007/s10895-017-2066-6.
  • Wu, H.; Wang, J.; Yang, H.; Li, G.; Zeng, Y.; Xia, W.; Li, Z.; Qian, M. Development and Application of an in-Cell Cleanup Pressurized Liquid Extraction with Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry to Detect Prohibited Antiviral Agents Sensitively in Livestock and Poultry Feces. J. Chromatogr. A. 2017, 1488, 10–16. DOI: 10.1016/j.chroma.2017.01.070.
  • Mu, P.; Xu, N.; Chai, T.; Jia, Q.; Yin, Z.; Yang, S.; Qian, Y.; Qiu, J. Simultaneous Determination of 14 Antiviral Drugs and Relevant Metabolites in Chicken Muscle by UPLC-MS/MS After QuEChERS Preparation. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016, 1023–1024, 17–23. DOI: 10.1016/j.jchromb.2016.04.036.
  • Hamza, S. M.; Rizk, N. M. H.; Matter, H. A. B. A New Ion Selective Electrode Method for Determination of Oseltamivir Phosphate (Tamiflu) and Its Pharmaceutical Applications. Arabian J. Chem. 2017, 10, S236–S243. DOI: 10.1016/j.arabjc.2012.07.029.
  • Omar, M. A.; Derayea, S. M.; Mostafa, I. M. Development and Validation of a Stability Indicating Spectrofluorimetric Method for the Determination of H1N1 Antiviral Drug (Oseltamivir Phosphate) in Human Plasma through the Hantzsch Reaction. RSC Adv. 2015, 5, 27735–27742. DOI: 10.1039/C4RA16650G.
  • Avataneo, V.; de Nicolò, A.; Cusato, J.; Antonucci, M.; Manca, A.; Palermiti, A.; Waitt, C.; Walimbwa, S.; Lamorde, M.; di Perri, G.; D’Avolio, A. Development and Validation of a UHPLC-MS/MS Method for Quantification of the Prodrug Remdesivir and Its Metabolite GS-441524: A Tool for Clinical Pharmacokinetics of SARS-CoV-2/COVID-19 and Ebola Virus Disease. J. Antimicrob. Chemother. 2020, 7, 1772–1777.
  • Alvarez, J.-C.; Moine, P.; Etting, I.; Annane, D.; Larabi, I. A. Quantification of Plasma Remdesivir and Its Metabolite GS-441524 Using Liquid Chromatography Coupled to Tandem Mass Spectrometry. Application to a Covid-19 Treated Patient. Clin. Chem. Lab. Med. 2020, 58, 1461–1468. DOI: 10.1515/cclm-2020-0612.
  • Xiao, D.; John Ling, K. H.; Tarnowski, T.; Humeniuk, R.; German, P.; Mathias, A.; Chu, J.; Chen, Y.-S.; van Ingen, E. Validation of LC-MS/MS Methods for Determination of Remdesivir and Its Metabolites GS-441524 and GS-704277 in Acidified Human Plasma and Their Application in COVID-19 Related Clinical Studies. Anal. Biochem. 2021, 617, 114118. DOI: 10.1016/j.ab.2021.114118.
  • Nguyen, R.; Goodell, J. C.; Shankarappa, P. S.; Zimmerman, S.; Yin, T.; Peer, C. J.; Figg, W. D. Development and Validation of a Simple, Selective, and Sensitive LC-MS/MS Assay for the Quantification of Remdesivir in Human Plasma. J. Chromatog. B. 2021, 1171, 122641. DOI: 10.1016/j.jchromb.2021.122641.
  • Pasupuleti, R. R.; Tsai, P.-C.; Ponnusamy, V. K.; Pugazhendhi, A. Rapid Determination of Remdesivir (SARS-CoV-2 Drug) in Human Plasma for Therapeutic Drug Monitoring in COVID-19-Patients. Process Biochem. 2021, 102, 150–156. DOI: 10.1016/j.procbio.2020.12.014.
  • Sharma, P.; Narenderan, S. T.; Meyyanathan, S. N.; Sangamithra, R.; Sourabh Sanjay, M.; Babu, B.; Kalaivani, M. A Novel Analytical Liquid Chromatography–Tandem Mass Spectrometry Method for the Estimation of Ribavirin in Bulk and Pharmaceutical Formulation. J. Appl. Pharm. Sci. 2020, 10, 96–100.
  • Conti, M.; Matulli Cavedagna, T.; Ramazzotti, E.; Mancini, R.; Calza, L.; Rinaldi, M.; Badia, L.; Guardigni, V.; Viale, P.; Verucchi, G. Multiplexed Therapeutic Drug Monitoring (TDM) of Antiviral Drugs by LC–MS/MS. Clin. Mass Spectrom. 2018, 7, 6–17. DOI: 10.1016/j.clinms.2017.12.002.
  • Youssef, A. A.; Magdy, N.; Hussein, L. A.; El-Kosasy, A. M. Validated RP-HPLC Method for Simultaneous Determination of Ribavirin, Sofosbuvir and Daclatasvir in Human Plasma: A Treatment Protocol Administered to HCV Patients in Egypt. J. Chrom. Sci. 2019, 57, 636–643.
  • Ma, J.-K.; Huang, X.-C.; Wei, S.-L. Rapid Determination of Antiviral Medication Ribavirin in Different Feedstuffs Using a Novel Magnetic Molecularly Imprinted Polymer Coupled with High-Performance Liquid Chromatography. J. Sep. Sci. 2019, 42, 3372–3381. DOI: 10.1002/jssc.201900576.
  • Wei, S.; Shao, L.; Zhang, S.; Cheng, H.; Liang, W. Detection of Ribavirin in Environmental and Biological Samples via Optical Chemical Sensor. JEB. 2019, 40, 497–508. DOI: 10.22438/jeb/40/3(SI)/Sp-14.
  • Baker, M. M.; Hammad, S. F.; Belal, T. S. Development and Validation of a Versatile HPLC-DAD Method for Simultaneous Determination of the Antiviral Drugs Daclatasvir, Ledipasvir, Sofosbuvir and Ribavirin in Presence of Seven Potential Impurities. Application to Assay of Dosage Forms and Dissolution Studies. Drug Dev. Ind. Pharm. 2019, 45, 1111–1119. DOI: 10.1080/03639045.2019.1593444.
  • Wang, X.; Shen, W.; Zhang, X.; Guo, S.; Gao, Y.; Li, X.; Feng, F.; Yang, G. Indirect Electrochemical Determination of Ribavirin Using Boronic Acid-Diol Recognition on a 3-Aminophenylboronic Acid-Electrochemically Reduced Graphene Oxide Modified Glassy Carbon Electrode (APBA/ERGO/GCE). Anal. Letters 2019, 52, 1900–1913. DOI: 10.1080/00032719.2019.1576716.
  • El-Shaboury, S. R.; El-Gizawy, S. M.; Atia, N. N.; Abo-Zeid, M. N. Validated Spectrodensitometric Method for Simultaneous Estimation of Sofosbuvir, Ribavirin and Saxagliptin in Their Pure and Pharmaceutical Dosage Forms. CPA. 2018, 14, 212–218. DOI: 10.2174/1573412913666170210151615.
  • Abdel Gaber, A. A.; Ahmed, S. A.; Abdel Rahim, A. M. Cathodic Adsorptive Stripping Voltammetric Determination of Ribavirin in Pharmaceutical Dosage Form, Urine and Serum. Arabian J. Chem. 2017, 10, S2175–S2181. DOI: 10.1016/j.arabjc.2013.07.051.
  • Zhang, R.-P.; Zhang, Y.-N.; Zheng, X.-K.; Wang, B.-B.; You, J.-F. Determination of Ribavirin in Rat Plasma by UPLC-MS/MS: Application to a Pharmacokinetic Study. Lat. Am. J. Pharm. 2016, 3, 118–123.
  • Wu, Y.-L.; Chen, R.-X.; Zhu, L.; Lv, Y.; Zhu, Y.; Zhao, J. Determination of Ribavirin in Chicken Muscle by Quick, Easy, Cheap, Effective, Rugged and Safe Method and Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2016, 1012–1013, 55–60. DOI: 10.1016/j.jchromb.2016.01.016.
  • Belal, F.; Sharaf El-Din, M. K.; Eid, M. I.; El-Gamal, R. M. Validated Stability-Indicating Liquid Chromatographic Method for the Determination of Ribavirin in the Presence of Its Degradation Products: Application to Degradation Kinetics. J. Chromatogr. Sci. 2015, 53, 603–611. DOI: 10.1093/chromsci/bmu092.
  • Jimmerson, L. C.; Ray, M. L.; Bushman, L. R.; Anderson, P. L.; Klein, B.; Rower, J. E.; Zheng, J.-H.; Kiser, J. J. Measurement of Intracellular Ribavirin Mono-, di- and Triphosphate Using Solid Phase Extraction and LC–MS/MS Quantification. J. Chromatogr. B. 2015, 978–979, 163–172. DOI: 10.1016/j.jchromb.2014.11.032.
  • Shi, X.; Zhu, D.; Lou, J.; Zhu, B.; Hu, A.-R.; Gan, D. Evaluation of a Rapid Method for the Simultaneous Quantification of Ribavirin, Sofosbuvir and Its Metabolite in Rat Plasma by UPLC–MS/MS. J. Chromatogr. B. 2015, 1002, 353–357. DOI: 10.1016/j.jchromb.2015.08.038.
  • Baje, S. I.; Jyothi, B.; Madhavi, N. RP-HPLC Method for Simultaneous Estimation of Ritonavir, Ombitasvir and Paritaprevir in Tablet Dosage Forms and Their Stress Degradation Studies. Int. J. App. Pharm. 2019, 11, 193–210. DOI: 10.22159/ijap.2019v11i2.28141.
  • Farouk, F.; Wahba, D.; Mogawer, S.; Elkholy, S.; Elmeligui, A.; Abdelghani, R.; Ibahim, S. Development and Validation of a New LC–MS/MS Analytical Method for Direct-Acting Antivirals and Its Application in End-Stage Renal Disease Patients. Eur. J. Drug Metabol. Pharmacokin. 2020, 45, 89–99.
  • Ibrahim, A. E.; Saraya, R. E.; Saleh, H.; Elhenawee, M. Development and Validation of Eco-Friendly micellar-HPLC and HPTLC-Densitometry Methods for the Simultaneous Determination of Paritaprevir, Ritonavir and Ombitasvir in Pharmaceutical Dosage Forms. Heliyon 2019, 5, e01518. DOI: 10.1016/j.heliyon.2019.e01518.
  • Kasula, P.; Nanda Kumar, K. V. Simultaneous Estimation of Atazanavir Sulfate and Ritonavir in Marketed Formulations – UV Spectroscopic Three Wavelength Method. Ind. Dru. 2018, 55, 58–61. DOI: 10.53879/id.55.03.10825.
  • Mantripragada, M. K. V. V. N.; Rao, S. V.; Nutulapati, V. V. S.; Mantena, B. P. V. Simultaneous Determination of Impurities of Atazanavir and Ritonavir in Tablet Dosage Form by Using Reversed-Phase Ultra Performance Liquid Chromatographic Method. J. Chromatogr. Sci. 2018, 56, 270–284. DOI: 10.1093/chromsci/bmx110.
  • Al-Zoman, N. Z.; Maher, H. M.; Al-Subaie, A. Eco-Friendly Micellar Electrokinetic Capillary Chromatographic Method for the Simultaneous Determination of Newly Developed Antiviral Agents in Pharmaceutical Formulations. J. Liq. Chromatogr. Rel. Techn. 2018, 41, 973–981. DOI: 10.1080/10826076.2018.1538884.
  • Kuna, M.; Dannana, G. S. Development and Validation of Stability Indicating Reverse-Phase High Performance Liquid Chromatography Method for the Simultaneous Quantification of Saquinavir, Ritonavir, and Amprenavir. Asian J. Pharm. Clin. Res. 2018, 11, 390–396. DOI: 10.22159/ajpcr.2018.v11i6.25205.
  • Hemanth, A. K. K.; Sudha, V.; Leelavathi, A.; Ramachandran, G. A Rapid Isocratic High-Performance Liquid Chromatography (HPLC-UV) Method for the Quantification of Ritonavir in Human Plasma. Int. J. Pharm. Pharm. Sci. 2016, 8, 64–68.
  • Ariaudo, A.; Favata, F.; De Nicolò, A.; Simiele, M.; Paglietti, L.; Boglione, L.; Cardellino, C. S.; Carcieri, C.; Di Perri, G.; D’Avolio, A. D’Avolio, a.; a UHPLC–MS/MS Method for the Quantification of Direct Antiviral Agents Simeprevir, Daclatasvir, Ledipasvir, Sofosbuvir/GS-331007, Dasabuvir, Ombitasvir and Paritaprevir, Together with Ritonavir, in Human Plasma. J. Pharmac. Biomed. Anal. 2016, 125, 369–375. DOI: 10.1016/j.jpba.2016.04.031.
  • Narendra, A.; Annapurna, M. M. Quantification of Arbidol by RP-HPLC with Photo Diode Array Detection. Asian J. Pharmac. 2018, 12, S553.
  • Annapurna, M. M.; Valli, D. S.; Chaitanya, S. M. New Stability Indicating Ultrafast Liquid Chromatographic Method for the Determination of Umifenovir in Tablets. Int. J. Green Pharmacy 2018, 12, S194.
  • Delello Di Filippo, L.; dos Santos, K. C.; Hanck-Silva, G.; de Lima, F. T.; Daflon Gremião, M. P.; Marlus Chorilli, M. A Critical Review of Biological Properties, Delivery Systems and Analytical/Bioanalytical Methods for Determination of Bevacizumab. Crit. Rev. Anal. Chem. 2021, 51, 445–453. DOI: 10.1080/10408347.2020.1743641.
  • Gaspar, P.; Ibrahim, S.; Sobsey, C. A.; Richard, V. R.; Spatz, A.; Zahedi, R. P.; Borchers, C. H. Direct and Precise Measurement of Bevacizumab Levels in Human Plasma Based on Controlled Methionine Oxidation and Multiple Reaction Monitoring. ACS Pharmacol. Transl. Sci. 2020, 3, 1304–1309. DOI: 10.1021/acsptsci.0c00134.
  • He, J.; Meng, L.; Ruppel, J.; Yang, J.; Kaur, S.; Xu, K. Automated, Generic Reagent and Ultratargeted 2D-LC-MS/MS Enabling Quantification of Biotherapeutics and Soluble Targets down to pg/mL Range in Serum. Anal. Chem. 2020, 92, 9412–9420. DOI: 10.1021/acs.analchem.0c01910.
  • Makki, A. A.; Massot, V.; Byrne, H. J.; Respaud, R.; Bertrand, D.; Mohammed, E.; Chourpa, I.; Bonnier, F. Understanding the Discrimination and Quantification of Monoclonal Antibodies Preparations Using Raman Spectroscopy. J. Pharm. Biomed. Anal. 2021, 194, 113734. DOI: 10.1016/j.jpba.2020.113734.
  • Derenne, A.; Derfoufi, K.-M.; Cowper, B.; Delporte, C.; Goormaghtigh, E. FTIR Spectroscopy as an Analytical Tool to Compare Glycosylation in Therapeutic Monoclonal Antibodies. Anal. Chim. Acta. 2020, 1112, 62–71. DOI: 10.1016/j.aca.2020.03.038.
  • Kumar, A.; Bhaskara, B.; Chikkaveeraiah, V.; Venna, R.; Brorson, K.; Agarabi, C. High Performance Size Exclusion Chromatography and High-Throughput Dynamic Light Scattering as Orthogonal Methods to Screen for Aggregation and Stability of Monoclonal Antibody Drug Products. J. Pharm. Sci. 2020, 109, 3330–3339. DOI: 10.1016/j.xphs.2020.08.013.
  • Zhong, X.; Nayak, S.; Guo, L.; Raidas, S.; Zhao, Y.; Weiss, R.; Andisik, M.; Elango, C.; Sumner, G.; Irvin, S. C.; et al. Liquid Chromatography-Multiple Reaction Monitoring-Mass Spectrometry Assay for Quantitative Measurement of Therapeutic Antibody Cocktail REGEN-COV Concentrations in COVID-19 Patient Serum. Anal. Chem. 2021, 93, 12889–12898. DOI: 10.1021/acs.analchem.1c01613.
  • Irvin, S. C.; Ganguly, S.; Weiss, R.; Elango, C.; Zhong, X.; Mao, Y.; Yan, H.; Li, N.; Sumner, G.; Turner, K. C.; et al. REGEN-COV® Antibody Cocktail Bioanalytical Strategy: Comparison of LC-MRM-MS and Immunoassay Methods for Drug Quantification. Bioanalysis 2021, 13, 1827–1836. DOI: 10.4155/bio-2021-0190.
  • Takada, M.; Ohba, Y.; Kamiya, S.; Kabashima, T.; Nakashima, K. Simple and Rapid Analysis of Tocilizumab Using HPLC-Fluorescence Detection Method . Luminescence 2019, 34, 347–352. DOI: 10.1002/bio.3615.
  • Iwamoto, N.; Takanashi, M.; Yokoyama, K.; Yonezawa, A.; Denda, M.; Hashimoto, M.; Tanaka, M.; Ito, H.; Matsuura, M.; Yamamoto, S.; et al. Multiplexed Monitoring of Therapeutic Antibodies for Inflammatory Diseases Using Fab-Selective Proteolysis nSMOL Coupled with LC-MS. J. Immunol. Methods. 2019, 472, 44–54. DOI: 10.1016/j.jim.2019.06.014.
  • Navas, N.; Hermosilla, J.; Torrente-López, A.; Hernández-Jiménez, J.; Cabeza, J.; Pérez-Robles, R.; Salmerón-García, A. Use of Subcutaneous Tocilizumab to Prepare Intravenous Solutions for COVID-19 Emergency Shortage: Comparative Analytical Study of Physicochemical Quality Attributes. J. Pharm. Anal. 2020, 10, 532–545. DOI: 10.1016/j.jpha.2020.06.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.