214
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Critical Evaluation of Analytical Methods for the Determination of Anthropogenic Organic Contaminants in Edible Oils: An Overview of the Last Five Years

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1733-1747 | Published online: 17 Feb 2022

References

  • Food and Agriculture Organization of the United Nations (FAO). 2019. FAOSTAT. http://www.fao.org/faostat/es/#data/QCL.
  • Hinrichsen, N. Commercially Available Alternatives to Palm Oil. Lipid Technol. 2016, 28, 65–67. DOI: 10.1002/lite.201600018.
  • Lafarga, T.; Bobo, G.; Aguiló-Aguayo, I. Oil and Oilseed Processing: Opportunities and Challenges; Wiley: New Jersey, 2021.
  • Eom, T.; Cho, H. D.; Kim, J.; Park, M.; An, J.; Kim, M.; Kim, S. H.; Han, S. B. Multiclass Mycotoxin Analysis in Edible Oils Using a Simple Solvent Extraction Method and Liquid Chromatography with Tandem Mass Spectrometry. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2017, 34, 2011–2022. DOI: 10.1080/19440049.2017.1363416.
  • European Union. n.d. Rapid Alert System for Food and Feed (RASFF). Food and Feed Safety Alerts. https://webgate.ec.europa.eu/rasff-window/screen/search (accessed Nov 26, 2021).
  • Botitsi, H.; Tsipi, D.; Economou, A. Current Legislation on Pesticides. In Applications in High Resolution Mass Spectrometry: Food Safety and Pesticide Residue Analysis; Romero-González, R., Garrido Frenich, A. Eds.; Elsevier: Amsterdam, Netherlands, 2017; pp. 83–130. DOI: 10.1016/B978-0-12-809464-8.00001-4.
  • Kotsonis, K.; Burdock, G. Food Toxicology. In Casarett & Doull’s Essentials of Toxicology; Klaassen, C. D., Watkins III, J. B. Eds.; McGraw-Hill Education: New York, 2013; pp. 1305–1356.
  • Ibáñez, R.; Agudo, A.; Berenguer, A.; Jakszyn, P.; Tormo, M. J.; Sanchéz, M. J.; Quirós, J. R.; Pera, G.; Navarro, C.; Martinez, C.; et al. Dietary Intake of Polycyclic Aromatic Hydrocarbons in a Spanish Population. J. Food Prot. 2005, 68, 2190–2195. DOI: 10.4315/0362-028x-68.10.2190.
  • Wu, S.; Gong, G.; Yan, K.; Sun, Y.; Zhang, L. Polycyclic Aromatic Hydrocarbons in Edible Oils and Fatty Foods: Occurrence, Formation, Analysis, Change and Control. In Advances in Food and Nutrition Researc,h; 1st ed.; Elsevier Inc: Amsterdam, Netherlands, 2020; Vol. 93. DOI: 10.1016/bs.afnr.2020.02.001.
  • An, K. J.; Liu, Y. L.; Liu, H. L. Relationship Between Total Polar Components and Polycyclic Aromatic Hydrocarbons in Fried Edible Oil. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2017, 34, 1596–1605. DOI: 10.1080/19440049.2017.1338835.
  • Zhao, X.; Gong, G.; Wu, S. Effect of Storage Time and Temperature on Parent and Oxygenated Polycyclic Aromatic Hydrocarbons in Crude and Refined Vegetable Oils. Food Chem. 2018, 239, 781–788. DOI: 10.1016/j.foodchem.2017.07.016.
  • Buhrke, T.; Weisshaar, R.; Lampen, A. Absorption and Metabolism of the Food Contaminant 3-Chloro-1,2-Propanediol (3-MCPD) and Its Fatty Acid Esters by Human Intestinal Caco-2 Cells. Arch. Toxicol. 2011, 85, 1201–1208. DOI: 10.1007/s00204-011-0657-6.
  • Cho, W. S.; Han, B. S.; Nam, K. T.; Park, K.; Choi, M.; Kim, S. H.; Jeong, J.; Jang, D. D. Carcinogenicity Study of 3-Monochloropropane-1,2-Diol in Sprague-Dawley Rats. Food Chem. Toxicol. 2008, 46, 3172–3177. DOI: 10.1016/j.fct.2008.07.003.
  • Custodio-Mendoza, J. A.; Carro, A. M.; Lage-Yusty, M. A.; Herrero, A.; Valente, I. M.; Rodrigues, J. A.; Lorenzo, R. A. Occurrence and Exposure of 3-Monochloropropanediol Diesters in Edible Oils and Oil-Based Foodstuffs from the Spanish Market. Food Chem. 2019, 270, 214–222. DOI: 10.1016/j.foodchem.2018.07.100.
  • Ioime, P.; Piva, E.; Pozzebon, M.; Pascali, J. P. Automated Sample Preparation and Analysis by Gas Chromatography Tandem Mass Spectrometry (GC-MS/MS) for the Determination of 3- and 2-Monochloropropanediol (MCPD) Esters and Glycidol Esters in Edible Oils . J. Chromatogr. A 2021, 1650, 462253. DOI: 10.1016/j.chroma.2021.462253.
  • Regulation (EC) No 1107/2009, 1 2009.
  • Reglamento (CE) No 396/2005, 2005.
  • European Commission. 2016. EU pesticides data base. http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=pesticide.residue.CurrentMRL&language=EN.
  • Pesticide Residues in Food and Feed. 2016. Codex Alimentarius. http://www.fao.org/fao-who-codexalimentarius/es/.
  • Food and Agriculture Organization of the United Nations (FAO), & World Health Organization (WHO). 2019. MRLs Codex Alimentarius. https://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/commodities-detail/en/?lang=en&c_id=1809.
  • Hidalgo-Ruiz, J. L.; Romero-González, R.; Martinez-Vidal, J. L.; Garrido-Frenich, A. Occurrence and Determination of Contaminants in Edible Oils and Oilseeds. In Oil and Oilsedd Processing. Opportunities and Challenges; Lafarga, T. Bobo, G. Aguiló-Aguayo, I. Eds.; Wiley: New Jersey, 2021.
  • European Commission. COMMISSION REGULATION (EU) No 835/2011 of 19 August 2011. Official Journal of the European Union 2011.
  • International Agency for Research on Cancer. n.d. Agents Classified by the IARC. 2021. https://monographs.iarc.who.int/agents-classified-by-the-iarc/ (accessed Nov 4, 2021).
  • European Union COMMISSION REGULATION (EU) 2020/1322 of 23 September 2020, Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of 3‐Monochloropropanediol (3-MCPD), 3-MCPD Fatty Acid Esters and Glycidyl Fatty Acid Esters in Certain Foods. Official Journal of the European Union 2020. DOI: 10.2903/j.efsa.2016.4426.
  • European Commission. Risks for Human Health Related to the Presence of 3‐ and 2‐Monochloropropanediol (MCPD), and Their Fatty Acid Esters, and Glycidyl Fatty Acid Esters in Food. EFSA J. 2016, 14, 4426. DOI: 10.2903/j.efsa.2016.4426.
  • World Health Organization, & Food and Agriculture Organization of the United Nations (FAO). Evaluation of Certain Food Additives and Contaminants. World Health Organization Technical Report Series, WHO, Italy, 2013; vol. 947.
  • Madej, K.; Kalenik, T. K.; Piekoszewski, W. Sample Preparation and Determination of Pesticides in fat-containing foods. Food Chem. 2018, 269, 527–541. DOI: 10.1016/j.foodchem.2018.07.007.
  • Hidalgo-Ruiz, J. L.; Romero-González, R.; Martínez Vidal, J. L.; Garrido Frenich, A. Monitoring of Polar Pesticides and Contaminants in Edible Oils and Nuts by Liquid Chromatography-Tandem Mass Spectrometry. Food Chem. 2021, 343, 128495. DOI: 10.1016/j.foodchem.2020.128495.
  • Tay, B. Y. P.; Wai, W. H. A Gas Chromatography–Mass Spectrometry Method for the Detection of Chlorpyrifos Contamination in Palm-Based Fatty Acids. J. Am. Oil Chem. Soc. 2021, 98, 881–887. DOI: 10.1002/aocs.12512.
  • Li, Y.; Hu, J.; Yao, Z.; Wang, Q.; Zhang, H. Transfer Assessment of Carbendazim Residues from Rapeseed to Oil Production Determined by HPLC-MS/MS. J. Environ. Sci. Health B 2020, 55, 726–731. DOI: 10.1080/03601234.2020.1780869.
  • Ji, J.; Liu, Y.; Ma, Y. Variations of Polycyclic Aromatic Hydrocarbons in Vegetable Oils during Seed Roasting Pre-Treatment. Polycyclic Aromat. Compd. 2020, 0, 1–14. DOI: 10.1080/10406638.2020.1834414.
  • Hua, J.; Fayyaz, A.; Song, H.; Tufail, M. R.; Gai, Y. Development of a Method Sin-QuEChERS for the Determination of Multiple Pesticide Residues in Oilseed Samples. Qual. Assur. Saf. Crops Foods 2019, 11, 511–516. DOI: 10.3920/QAS2019.1557.
  • Zhou, Q.; Liu, Z.; Liu, F.; Guo, Y.; Li, X. Determination of Desmedipham Residue in 21 Foods by HPLC-MS/MS Combined with a Modified QuEChERS and Mixed-Mode SPE Clean-up Method. J. Food Compos. Anal. 2021, 102, 104004. DOI: 10.1016/j.jfca.2021.104004.
  • Cui, Y.; Ke, R.; Gao, W.; Tian, F.; Wang, Y.; Jiang, G. Analysis of Organochlorine Pesticide Residues in Various Vegetable Oils Collected in Chinese Markets. J. Agric. Food Chem. 2020, 68, 14594–14602. DOI: 10.1021/acs.jafc.0c05227.
  • Zahiri, E.; Khandaghi, J.; Farajzadeh, M. A.; Afshar Mogaddam, M. R. Combination of Dispersive Solid Phase Extraction with Solidification Organic Drop-Dispersive Liquid-Liquid Microextraction Based on Deep Eutectic Solvent for Extraction of Organophosphorous Pesticides From Edible Oil Samples. J. Chromatogr. A 2020, 1627, 461390. DOI: 10.1016/j.chroma.2020.461390.
  • Tarawneh, I. N.; Najjar, A. A.; Salameh, F. F.; Bani Issa, R. S. Multi-Residue Analysis of Organochlorine Pesticides and Carcinogenic Polycyclic Aromatic Hydrocarbons in Jordanian Olive Oil Using Gas Chromatography-Mass Spectrometry: Studies on Pesticides and PAHs in Jordanian Olive Oil. J. Liq. Chromatogr. Relat. Technol. 2020, 43, 819–826. DOI: 10.1080/10826076.2020.1817071.
  • Zhao, L.; Szakas, T.; Churley, M.; Lucas, D. Multi-Class Multi-Residue Analysis Of Pesticides in Edible Oils By Gas Chromatography-Tandem Mass Spectrometry Using Liquid-Liquid Extraction And Enhanced Matrix Removal Lipid Cartridge Cleanup. J. Chromatogr. A 2019, 1584, 1–12. DOI: 10.1016/j.chroma.2018.11.022.
  • Halim, N.; Kuntom, A.; Shinde, R.; Banerjee, K. Determination of Paraquat Residues in Palm Oil by High‐Performance Liquid Chromatography with UV and Tandem Mass Spectrometry. Eur. J. Lipid Sci. Technol. 2019, 121, 1900092. DOI: 10.1002/ejlt.201900092.
  • Taghizadeh, S. F.; Rezaee, R.; Boskabady, M.; Mashayekhi Sardoo, H.; Karimi, G. Exploring the Carcinogenic and Non-Carcinogenic Risk of Chemicals Present in Vegetable Oils. Int. J. Environ. Anal. Chem. 2020. DOI: 10.1080/03067319.2020.1803848.
  • Yousefi, M.; Shemshadi, G.; Khorshidian, N.; Ghasemzadeh-Mohammadi, V.; Fakhri, Y.; Hosseini, H.; Mousavi Khaneghah, A. Polycyclic Aromatic Hydrocarbons (PAHs) Content of Edible Vegetable Oils in Iran: A Risk Assessment Study. Food Chem. Toxicol. 2018, 118, 480–489. DOI: 10.1016/j.fct.2018.05.063.
  • Silva, S. A. d.; Sampaio, G. R.; Torres, E. A. F. d S. Optimization and Validation of a Method Using UHPLC-Fluorescence for the Analysis of Polycyclic Aromatic Hydrocarbons in Cold-Pressed Vegetable Oils. Food Chem. 2017, 221, 809–814. DOI: 10.1016/j.foodchem.2016.11.098.
  • Molle, D. R. D.; Abballe, C.; Gomes, F. M. L.; Furlani, R. P. Z.; Tfouni, S. A. V. Polycyclic Aromatic Hydrocarbons in Canola, Sunflower and Corn Oils and Estimated Daily Intake. Food Control 2017, 81, 96–100. DOI: 10.1016/j.foodcont.2017.05.045.
  • Lehotay, S. J.; Son, K. A.; Kwon, H.; Koesukwiwat, U.; Fu, W.; Mastovska, K.; Hoh, E.; Leepipatpiboon, N. Comparison of QuEChERS Sample Preparation Methods for the Analysis of Pesticide Residues in Fruits and Vegetables. J. Chromatogr. A 2010, 1217, 2548–2560. DOI: 10.1016/j.chroma.2010.01.044.
  • He, Z.; Wang, Y.; Wang, L.; Peng, Y.; Wang, W.; Liu, X. Determination of 255 Pesticides in Edible Vegetable Oils Using QuEChERS Method and Gas Chromatography Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2017, 409, 1017–1030. DOI: 10.1007/s00216-016-0016-9.
  • Theurillat, X.; Dubois, M.; Huertas-Pérez, J. F. A Multi-Residue Pesticide Determination in Fatty Food Commodities by Modified QuEChERS Approach and Gas Chromatography-Tandem Mass Spectrometry. Food Chem. 2021, 353, 129039. DOI: 10.1016/j.foodchem.2021.129039.
  • Miliadis, G.; Tsiantas, P.; Siragakis, G. Problems Encountered in LC-MS/MS Analysis for the Determination of Pesticide Residues in Food. J. Hellenic Vet. Med. Soc. 2018, 68, 635–640. DOI: 10.12681/jhvms.16065.
  • Moreno-González, D.; Alcántara-Durán, J.; Addona, S. M.; Beneito-Cambra, M. Multi-Residue Pesticide Analysis In Virgin Olive Oil By Nanoflow Liquid Chromatography High Resolution Mass Spectrometry. J. Chromatogr. A 2018, 1562, 27–35. DOI: 10.1016/j.chroma.2018.05.053.
  • López-Blanco, R.; Moreno-González, D.; Nortes-Méndez, R.; García-Reyes, J. F.; Molina-Díaz, A.; Gilbert-López, B. Experimental and Theoretical Determination of Pesticide Processing Factors to Model Their Behavior during Virgin Olive Oil Production. Food Chem. 2018, 239, 9–16. DOI: 10.1016/j.foodchem.2017.06.086.
  • Sun, Y.; Wu, S. Analysis of PAHs in Oily Systems Using Modified QuEChERS with EMR-Lipid Clean-up Followed by GC-QqQ-MS. Food Control 2020, 109, 106950. DOI: 10.1016/j.foodcont.2019.106950.
  • Hidalgo-Ruiz, J. L.; Romero-González, R.; Martínez Vidal, J. L.; Garrido Frenich, A. Determination of 3-Monochloropropanediol Esters and Glycidyl Esters in Fatty Matrices by Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A 2021, 1639, 461940. DOI: 10.1016/j.chroma.2021.461940.
  • Jiao, B.; Hu, H.; Shi, A.; Liu, H.; Liu, L.; Wang, Q.; Fu, W.; Adhikari, B. An Improved Method for the Measurement of 3-Monochloropropanediol Esters by Matrix Solid-Phase Dispersion Supported Liquid–Liquid Extraction. Int. J. Food Sci. Technol. 2017, 52, 2404–2411. DOI: 10.1111/ijfs.13524.
  • Tsai, H. Y.; Hsu, J. N.; Fang, C. J.; Su, N. W. Determination of Glycidyl Esters and 3-MCPD Esters in Edible Oils by Sample Pretreatment with the Combination of Lipase Hydrolysis and Modified Quechers for GC-MS Analysis. J. Food Drug Anal. 2021, 29, 153–167. DOI: 10.38212/2224-6614.3202.
  • Hakme, E.; Lozano, A.; Ferrer, C.; Díaz-Galiano, F. J.; Fernández-Alba, A. R. Analysis of Pesticide Residues in Olive Oil and Other Vegetable Oils. TrAC—Trends in Analytical Chemistry 2018, 100, 167–179. DOI: 10.1016/j.trac.2017.12.016.
  • Marin-Saez, J.; López-Ruiz, R.; Romero-González, R.; Garrido-Frenich, A. Multiresidue Methods for Determination of Pesticides and Related Contaminants in Food by Liquid Chromatography. In Hand Book in Separation Science: Liquid Chromatography; Chankvetadze, B. Fanali, S. Haddad, P. Poole, C. Riekkola, M. Eds.; 3rd ed.; Elsevier: New York.
  • Altunoğlu, Y.; Yemişçioğlu, F. Determination of Polycyclic Aromatic Hydrocarbons in Olives Exposed to Three Different Industrial Sources and in Their Respective oils. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2021, 38, 439–451. DOI: 10.1080/19440049.2020.1861340.
  • De-Alwis, J.; Williams, J.; Hird, S.; Adams, S. Evaluation of the Performance of an LC- MS/MS Method for the Determination of Anionic Polar Pesticide Residues in Crops and Foodstuffs Using an Interlaboratory Study. In Waters Application Note, 2021.
  • Wen, Y. Q.; Liu, Y. L.; Xu, L. L.; Yu, W.; Xiu, & Ma, Y. Xiang, Occurrence of Polycyclic Aromatic Hydrocarbons in Various Types of Raw Oilseeds from Different Regions of China. Food Addit. Contam. Part B Surveill. 2017, 10, 275–283. DOI: 10.1080/19393210.2017.1345993.
  • Grössl, M.; Nagy, K. Benefits of Ion Mobility for Analysing Monochloropropane-Diol Esters. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2017, 34, 1131–1139. DOI: 10.1080/19440049.2017.1325014.
  • Likudis, Z.; Costarelli, V.; Vitoratos, A.; Apostolopoulos, C. Determination of Pesticide Residues in Olive Oils with Protected Geographical Indication or Designation of Origin. Int. J. Food Sci. Technol. 2014, 49, 484–492. DOI: 10.1111/ijfs.12326.
  • Domingos Alves, R.; Romero-González, R.; López-Ruiz, R.; Jiménez-Medina, M. L.; Garrido Frenich, A. Fast Determination of Four Polar Contaminants in Soy Nutraceutical Products by Liquid Chromatography Coupled to Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2016, 408, 8089–8098. DOI: 10.1007/s00216-016-9912-2.
  • Nortes-Méndez, R.; Robles-Molina, J.; López-Blanco, R.; Vass, A.; Molina-Díaz, A.; Garcia-Reyes, J. F. Determination of Polar Pesticides in Olive Oil and Olives by Hydrophilic Interaction Liquid Chromatography Coupled to Tandem Mass Spectrometry and High Resolution Mass Spectrometry. Talanta 2016, 158, 222–228. DOI: 10.1016/j.talanta.2016.05.058.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.