1,027
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

Infrared Spectroscopy in Aqueous Solutions: Capabilities and Challenges

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1748-1765 | Published online: 25 Feb 2022

References

  • Kajiwara, K.; Uemura, T.; Kishikawa, H.; Nishida, K.; Hashiguchi, Y.; Uehara, M.; Sakakida, M.; Ichinose, K.; Shichiri, M. Noninvasive Measurement of Blood Glucose Concentrations by Analysing Fourier Transform Infra-Red Absorbance Spectra through Oral Mucosa. Med. Biol. Eng. Comput. 1993, 31 Suppl, S17–S22. DOI: 10.1007/BF02446645.
  • Low, M.; Yang, R. The Measurement of Infrared Spectra of Aqueous Solutions Using: Fourier Transform Spectroscopy. Spectrochim. Acta 1973, 29A, 1761–1772. DOI: 10.1016/0584-8539(73)80163-1
  • Kojic, D.; Tsenkova, R.; Yasui, M. Improving Accuracy and Reproducibility of Vibrational Spectra for Diluted Solutions. Anal. Chim. Acta 2017, 955, 86–97. DOI: 10.1016/j.aca.2016.12.019.
  • Volkova, N. A.; Evsropiev, S. K.; Nikonorov, N. V.; Evstropyev, K. S. Specific Features of Interactions of Polyvinylpyrrolidone Molecules with Zinc and Silver Ions in Aqueous Solutions according to IR Spectroscopy Data. Opt. Spectrosc. 2019, 127, 738–741. DOI: 10.1134/S0030400X19100308.
  • Kong, J.; Yu, S. Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures. Acta Biochim. Biophys. Sin. (Shanghai) 2007, 39, 549–559. DOI: 10.1111/j.1745-7270.2007.00320.x.
  • Sachdeva, A.; Cai, S. Structural Differences of Proteins between Solution State and Solid State Probed by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy. Appl. Spectrosc. 2009, 63, 458–464. DOI: 10.1366/000370209787944316.
  • Barth, A. Infrared Spectroscopy of Proteins. Biochim. Biophys. Acta. 2007, 1767, 1073–1101. DOI: 10.1016/j.bbabio.2007.06.004.
  • Lopez-Lorente, A.; Mizaikoff, B. Mid-Infrared Spectroscopy for Protein Analysis: potential and Challenges. Anal. Bioanal. Chem. 2016, 408, 2875–2889. DOI: 10.1007/s00216-016-9375-5.
  • Goldberg, M. E.; Chaffotte, A. F. Undistorted Structural Analysis of Soluble Proteins by Attenuated Total Reflectance Infrared Spectroscopy. Protein Sci. 2005, 14, 2781–2792. DOI: 10.1110/ps.051678205.
  • Tranter, G. E. FTIR Spectroscopy of Aqueous Solutions. In Encyclopedia of Spectroscopy and Spectrometry; Lindon, J. C. Tranter, G. E. & Koppenaal D. W. Eds.; Elsevier Ltd.: The Netherlands, 2017; p. 762.
  • Blout, E. R.; Lenormant, H. Infrared Spectroscopy of Biologic Materials in Aqueous Solutions. J. Opt. Soc. Am. 1953, 43, 1093–1095. DOI: 10.1364/josa.43.001093.
  • Hornig, D. On the Spectrum and Structure of Water and Ionic Solutions. J. Chem. Phys. 1964, 40, 3119–3120. DOI: 10.1063/1.1724959.
  • Falk, M.; Ford, T. A. Infrared Spectrum and Structure of Liquid Water. Can. J. Chem. 1966, 44, 1699–1707. DOI: 10.1139/v66-255.
  • Gonzalvez, A.; Garrigues, S.; Guardia, M.; Sergio, A. The Ways to the Trace Level Analysis in Infrared Spectroscopy. Anal. Methods 2011, 3, 43–52. DOI: 10.1039/c0ay00437e.
  • Mizaikoff, B. Waveguide-Enhanced Mid-Infrared Chem/Bio Sensors. Chem. Soc. Rev. 2013, 42, 8683–8699. DOI: 10.1039/c3cs60173k.
  • Mittal, V.; Mashanovich, G. Z.; Wilkinson, J. S. Perspective on Thin Film Waveguides for on-Chip Mid-Infrared Spectroscopy of Liquid Biochemical Analytes. Anal. Chem. 2020, 92, 10891–10901. DOI: 10.1021/acs.analchem.0c01296.
  • Tsenkova, R.; Muncan, J.; Pollner, B.; Kovacs, Z. Essentials of Aquaphotomics and Its Chemometrics Approaches. Front. Chem. 2018, 6, 363. DOI: 10.3389/fchem.2018.00363
  • Shao, X.; Cui, X.; Wang, M.; Cai, W. High Order Derivative to Investigate the Complexity of the near Infrared Spectra of Aqueous Solutions. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2019, 213, 83–89. DOI: 10.1016/j.saa.2019.01.059.
  • Bai, S. J.; Rani, M.; Suryanarayanan, R.; Carpenter, J. F.; Nayar, R.; Manning, M. C. Quantification of Glycine Crystallinity by near-Infrared (NIR) Spectroscopy. J. Pharm. Sci. 2004, 93, 2439–2447. DOI: 10.1002/jps.20153.
  • Karpukhina, E.; Mikheev, I.; Perminova, I.; Volkov, D.; Proskurnin, M. Rapid Quantification of Humic Components in Concentrated Humate Fertilizer Solutions by FTIR Spectroscopy. J. Soils Sediments 2019, 19, 2729–2739. DOI: 10.1007/s11368-018-2133-x.
  • Numata, Y.; Tanaka, H. Quantitative Analysis of Quercetin Using Raman Spectroscopy. Food Chem. 2011, 126, 751–755. DOI: 10.1016/j.foodchem.2010.11.059.
  • Kauffmann, T. H.; Fontana, M. D. Inorganic Salts Diluted in Water Probed by Raman Spectrometry: Data Processing and Performance Evaluation. Sens. Actuat. B 2015, 209, 154–161. DOI: 10.1016/j.snb.2014.11.108.
  • Kapil, R.; Dhawan, S.; Singh, B. Development and Validation of a Spectrofluorimetric Method for the Estimation of Rivastigmine in Formulations. Indian J. Pharm. Sci. 2009, 71, 585–589. DOI: 10.4103/0250-474X.58179.
  • Regan, F.; Meaney, M.; Vos, J. G.; MacCraith, B. D.; Walsh, J. E. Determination of Pesticides in Water Using ATR-FTIR Spectroscopy on PVUchloroparaffin Coatings. Anal. Chim. Acta 1996, 334, 85–92. DOI: 10.1016/S0003-2670(96)00259-0.
  • Lu, R.; Sheng, G.; Li, W.; Yu, H.; Raichlin, Y.; Katzir, A.; Mizaikoff, B. IR-ATR Chemical Sensors Based on Planar Silver Halide Waveguides Coated with an Ethylene/Propylene Copolymer for Detection of Multiple Organic Contaminants in Water. Angew. Chem. Int. Ed. Engl. 2013, 52, 2265–2268. DOI: 10.1002/anie.201209256.
  • Thomas, I.; Bose, A.; Kavitha, G.; Abraham, E. Fluorescence Spectroscopy and Its Applications: A Review. Int. J. Adv. Pharm. Anal. 2018, 8, 01. DOI: 10.7439/ijapa.v8i1.4578
  • Dunuwila, D. D.; Berglund, K. A. ATR FTIR Spectroscopy for in Situ Measurement of Supersaturation. J. Cryst. Growth 1997, 179, 185–193. DOI: 10.1016/S0022-0248(97)00119-X.
  • Grosse, P.; Offermann, V. Quantitative Infrared Spectroscopy of Thin Solid and Liquid Films under Attenuated Total Reflection Conditions. Vib. Spectrosc. 1995, 8, 121–133. DOI: 10.1016/0924-2031(94)00068-R.
  • Kloepfer, A.; Quintana, J. B.; Reemtsma, T. Operational Options to Reduce Matrix Effects in Liquid Chromatography-Electrospray Ionization-Mass Spectrometry Analysis of Aqueous Environmental Samples. J. Chromatogr. A 2005, 1067, 153–160. DOI: 10.1016/j.chroma.2004.11.101.
  • Rahman, M.; Wu, D.; Chingin, K. Direct Analysis of Aqueous Solutions and Untreated Biological Samples Using Nanoelectrospray Ionization Mass Spectrometry with Pipette Tip in Series with High-Ohmic Resistor as Ion Source. J. Am. Soc. Mass Spectrom. 2019, 30, 814–823. DOI: 10.1007/s13361-019-02142-5.
  • Sargent, M. (Ed.). Guide to Achieving Reliable Quantitative LC-MS Measurements RSC Analytical Methods Committee: 2013.
  • Stach, R.; Pejcic, B.; Heath, C.; Myers, M.; Mizaikoff, B. Mid-Infrared Sensor for Hydrocarbon Monitoring: The Influence of Salinity, Matrix and Aging on Hydrocarbon–Polymer Partitioning. Anal. Methods 2018, 10, 1516–1522. DOI: 10.1039/C7AY02874A.
  • Bonnier, F.; Petitjean, F.; Baker, M. J.; Byrne, H. J. Improved Protocols for Vibrational Spectroscopic Analysis of Body Fluids. J. Biophotonics. 2014, 7, 167–179. DOI: 10.1002/jbio.201300130.
  • Polavarapu, P. L.; Chatterjee, S. R.; Michalska, D. F. Infrared Investigations of Sucrose in Aqueous Solutions*. Carbohydr. Res. 1985, 137, 253–258. DOI: 10.1016/0008-6215(85)85166-1.
  • Back, D. M.; Michalska, D. F.; Polavarapu, P. L. Fourier Transform Infrared Spectroscopy as a Powerful Tool for the Study of Carbohydrates in Aqueous Solutions. Appl. Spectrosc. 1984, 38, 173–180. DOI: 10.1366/0003702844554161.
  • Cadet, F.; Garrigues, S.; Guardia, M. Quantitative Analysis, Infrared Update Based on the Original Article by Frederic Cadet, Encyclopedia of Analytical Chemistry, © 2000. In Encyclopedia of Analytical Chemistry. John Wiley & Sons, Ltd, 2012.
  • Vogt, F.; Kraft, M.; Mizaikoff, B. First Results on Infrared Attenuated Total Reflection Spectroscopy for Quantitative Analysis of Salt Ions in Seawater. Appl. Spectrosc. 2002, 56, 1376–1380. DOI: 10.1366/000370202760354867.
  • Han, L.; Lucas, D.; Littlejohn, D.; Kyauk, S. NIR Fiber-Optic Method with Multivariate Calibration Analysis for Determination of Inorganic Compounds in Aqueous Solutions. Appl. Spectrosc. 2000, 54, 1447–1452. DOI: 10.1366/0003702001948583.
  • Gowen, A. A.; Tsenkova, R.; Bruen, M.; O’donnell, C. Vibrational Spectroscopy for Analysis of Water for Human Use and in Aquatic Ecosystems. Crit. Rev. Environ. Sci. Technol. 2012, 42, 2546–2573. DOI: 10.1080/10643389.2011.592758.
  • Rauh, F.; Mizaikoff, B. Simultaneous Quantification of Ion Pairs in Water via Infrared Attenuated Total Reflection Spectroscopy. Anal. Methods 2016, 8, 2164–2169. DOI: 10.1039/C5AY02874D.
  • Du, X.; Ye, S.; Dong, D. Rapid Determination of Nitrate in Drinking Water Using Ion‐Exchange‐Enhanced Infrared Spectroscopy. J. Food Process Eng. 2019, 42, 1–7. DOI: 10.1111/jfpe.13164.
  • Chen, Y.; Zhang, Y.-H.; Zhao, L.-J. ATR-FTIR Spectroscopic Studies on Aqueous LiClO4, NaClO4, and Mg(ClO4)2 Solutions. Phys. Chem. Chem. Phys. 2004, 6, 537. DOI: 10.1039/b311768e.
  • Masuda, K.; Haramaki, T.; Nakashima, S.; Habert, B.; Martinez, I.; Kashiwabara, S. Structural Change of Water with Solutes and Temperature up to 100 Degrees C in Aqueous Solutions as Revealed by Attenuated Total Reflectance Infrared Spectroscopy. Appl. Spectrosc. 2003, 57, 274–281. DOI: 10.1366/000370203321558173.
  • Viell, J.; Marquardt, W. Concentration Measurements in Ionic Liquid-Water Mixtures by Mid-Infrared Spectroscopy and Indirect Hard Modeling. Appl. Spectrosc. 2012, 66, 208–217. DOI: 10.1366/11-06427.
  • Gonzalvez, A.; Garrigues, S.; Armenta, S.; Guardia, M. Determination at Low Ppm Levels of Dithiocarbamate Residues in Foodstuff by Vapour Phase-Liquid Phase Microextraction-Infrared Spectroscopy. Anal. Chim. Acta 2011, 688, 191–196. DOI: 10.1016/j.aca.2010.12.037.
  • Yang, J.; Chen, P. Y. Infrared Reflection-Absorption Method for the Detection of Aromatic Compounds in Aqueous Solutions with Limited Sample Volumes. Anal. Sci. 2002, 18, 1247–1252. DOI: 10.2116/analsci.18.1247.
  • Pejcic, B.; Myers, M.; Ross, A. Mid-Infrared Sensing of Organic Pollutants in Aqueous Environments. Sensors (Basel) 2009, 9, 6232–6253. DOI: 10.3390/s90806232.
  • Karlowatz, M.; Kraft, M.; Mizaikoff, B. Simultaneous Quantitative Determination of Benzene, Toluene, and Xylenes in Water Using Mid-Infrared Evanescent Field Spectroscopy. Anal. Chem. 2004, 76, 2643–2648. DOI: 10.1021/ac0347009.
  • Heglund, D.; Tilotta, D. Determination of Volatile Organic Compounds in Water by Solid Phase Microextraction and Infrared Spectroscopy. Environ. Sci. Technol. 1996, 30, 1212–1219. DOI: 10.1021/es9504303.
  • Silva, A. M. S.; Pimentel, M. F.; Raimundo, I. M.; Almeida, Y. M. B. A PVC Sensing Phase for Determination of BTEX in Water Employing Mid-Infrared Spectroscopy. Vib. Spectrosc. 2008, 46, 39–44. DOI: 10.1016/j.vibspec.2007.08.006.
  • Pejcic, B.; Boyd, L.; Myers, M.; Andrew, R.; Raichlin, Y.; Katzir, A.; Lu, R.; Mizaikoff, B. Direct Quantification of Aromatic Hydrocarbons in Geochemical Fluids with a Mid-Infrared Attenuated Total Reflection Sensor. Org. Geochem. 2013, 55, 63–71. DOI: 10.1016/j.orggeochem.2012.11.011.
  • Dettenrieder, C.; Turkmen, D.; Mattsson, A.; Osterlund, L.; Karlsson, M.; Mizaikoff, B. Determination of Volatile Organic Compounds in Water by Attenuated Total Reflection Infrared Spectroscopy and Diamond-Like Carbon Coated Silicon Wafers. Chemosensors 2020, 8, 75. DOI: 10.3390/chemosensors8030075.
  • Dettenrieder, C.; Raichlin, Y.; Katzir, A.; Mizaikoff, B. Toward the Required Detection Limits for Volatile Organic Constituents in Marine Environments with Infrared Evanescent Field Chemical Sensors. Sensors (Basel) 2019, 19, 3644. DOI: 10.3390/s19173644.
  • Wong, J. S.; Rein, A. J.; Wilks, D.; Wilks, P. Infrared Spectroscopy of Aqueous Antibiotic Solutions. Appl. Spectrosc. 1984, 38, 32–35. DOI: 10.1366/0003702844554350.
  • Heinrich, P.; Wyzgol, R.; Schrader, B.; Hatzilazaru, A.; Lübbers, D. W. Determination of Organic Compounds by IR/ATR Spectroscopy with Polymer-Coated Internal Reflection Elements. Appl. Spectrosc. 1990, 44, 1641–1646. DOI: 10.1366/0003702904417463.
  • Lu, R.; Mizaikoff, B.; Li, W. W.; Qian, C.; Katzir, A.; Raichlin, Y.; Sheng, G. P.; Yu, H. Q. Determination of Chlorinated Hydrocarbons in Water Using Highly Sensitive Mid-Infrared Sensor Technology. Sci. Rep. 2013, 3, 2525. DOI: 10.1038/srep02525.
  • Hahn, P.; Tacke, M.; Jakusch, M.; Mizaikoff, B.; Spector, O.; Katzir, A. Detection of Hydrocarbons in Water by MIR Evanescent-Wave Spectroscopy with Flattened Silver Halide Fibers. Appl. Spectrosc. 2001, 55, 39–43. DOI: 10.1366/0003702011951407.
  • Jakusch, M.; Mizaikoff, B.; Kellner, R.; Katzir, A. Towards a Remote IR Fiber-Optic Sensor System for the Determination of Chlorinated Hydrocarbons in Water. Sens. Actuat. B 1997, 38, 83–87. DOI: 10.1016/S0925-4005(97)80175-X.
  • Ferrer, N.; Teresa, R. M. Fourier Transform Infrared Spectroscopy and Solid Phase Extraction Applied to the Determination of Oil and Grease in Water Matrices. Microchim. Acta 2002, 140, 35–39. DOI: 10.1007/s00604-001-0895-z.
  • Stach, R.; Pejcic, B.; Crooke, E.; Myers, M.; Mizaikoff, B. Mid-Infrared Spectroscopic Method for the Identification and Quantification of Dissolved Oil Components in Marine Environments. Anal. Chem. 2015, 87, 12306–12312. DOI: 10.1021/acs.analchem.5b03624.
  • Janotta, M.; Karlowatz, M.; Vogt, F.; Mizaikoff, B. Sol–Gel Based Mid-Infrared Evanescent Wave Sensors for Detection of Organophosphate Pesticides in Aqueous Solution. Anal. Chim. Acta 2003, 496, 339–348. DOI: 10.1016/S0003-2670(03)01011-0.
  • Zuber, G.; Prestrelski, S.; Benedek, T. Application of Fourier Transform Infrared Spectroscopy to Studies of Aqueous Protein Solutions. Anal. Biochem. 1992, 207, 150–156. DOI: 10.1016/0003-2697(92)90516-A.
  • Rahmelow, K.; Hübner, W. Infrared Spectroscopy in Aqueous Solution: Difficulties and Accuracy of Water Subtraction. Appl. Spectrosc. 1997, 51, 160–170. DOI: 10.1366/0003702971940080.
  • Max, J.-J.; Camille, C. Infrared Titration of Aqueous NaOH by Aqueous HCl. Can. J. Chem. 2000, 78, 64–72. DOI: 10.1139/v99-231.
  • McQuillan, A. J. Probing Solid–Solution Interfacial Chemistry with ATR-IR Spectroscopy of Particle Films. Adv. Mater. 2001, 13, 1034–1038. DOI: 10.1002/1521-4095(200107)13:12/13<1034::AID-ADMA1034>3.0.CO;2-7.
  • Forato, L. A.; Bernardes-Filho, R.; Colnago, L. A. Protein Structure in KBr Pellets by Infrared Spectroscopy. Anal. Biochem. 1998, 259, 136–141. DOI: 10.1006/abio.1998.2599.
  • Dousseau, F.; Therrien, D.; Pezolet, M. On the Spectral Subtraction of Water from the FT-IR Spectra of Aqueous Solutions of Proteins. Appl. Spectrosc. 1989, 43, 538–542. DOI: 10.1366/0003702894202814.
  • Manning, M. C. Use of Infrared Spectroscopy to Monitor Protein Structure and Stability. Expert. Rev. Proteomics 2005, 2, 731–743. DOI: 10.1586/14789450.2.5.731.
  • Verma, P. K.; Kundu, A.; Puretz, M. S.; Dhoonmoon, C.; Chegwidden, O. S.; Londergan, C. H.; Cho, M. The Bend + Libration Combination Band is an Intrinsic, Collective, and Strongly Solute-Dependent Reporter on the Hydrogen Bonding Network of Liquid Water. J. Phys. Chem. B 2018, 122, 2587–2599. DOI: 10.1021/acs.jpcb.7b09641.
  • Bakshi, K.; Liyanage, M. R.; Volkin, D. B.; Middaugh, C. R. Fourier Transform Infrared Spectroscopy of Peptides. Methods Mol. Biol. 2014, 1088, 255–269. DOI: 10.1007/978-1-62703-673-3_18.
  • Bruun, S. W.; Kohler, A.; Adt, I.; Sockalingum, G. D.; Manfait, M.; Martens, H. Correcting Attenuated Total Reflection-Fourier Transform Infrared Spectra for Water Vapor and Carbon dioxide. Appl. Spectrosc. 2006, 60, 1029–1039. DOI: 10.1366/000370206778397371.
  • Chen, J.; Wu, L.; Pan, T.; Xie, J.; Chen, H. 2010 A Quantification Method of Glucose in Aqueous Solution by FTIR/ATR Spectroscopy. 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery. DOI: 10.1109/FSKD.2010.5569754
  • Mamera, M.; van Tol, J. J.; Aghoghovwia, M. P.; Kotze, E. Sensitivity and Calibration of the FT-IR Spectroscopy on Concentration of Heavy Metal Ions in River and Borehole Water Sources. Appl. Sci. 2020, 10, 7785. DOI: 10.3390/app10217785.
  • Suarez, L.; Garcia, R.; Riera, F. A.; Diez, M. A. ATR-FTIR Spectroscopy for the Determination of Na4EDTA in Detergent Aqueous Solutions. Talanta 2013, 115, 652–656. DOI: 10.1016/j.talanta.2013.06.020.
  • Shi, H.; Sun, J.; Han, R.; Ding, C.; Hu, F.; Yu, S. The Strategy for Correcting Interference from Water in Fourier Transform Infrared Spectrum Based Bacterial Typing. Talanta 2020, 208, 120347. DOI: 10.1016/j.talanta.2019.120347.
  • Sathya, D. V.; Coleman, D. R.; Truntzer, J. Thermal Unfolding Curves of High Concentration Bovine IgG Measured by FTIR Spectroscopy. Protein J. 2011, 30, 395–403. DOI: 10.1007/s10930-011-9344-y.
  • Eneh, C. I.; Bolen, M. J.; Suarez-Martinez, P. C.; Bachmann, A. L.; Zimudzi, T. J.; Hickner, M. A.; Batys, P.; Sammalkorpi, M.; Lutkenhaus, J. L. Fourier Transform Infrared Spectroscopy Investigation of Water Microenvironments in Polyelectrolyte Multilayers at Varying Temperatures. Soft Matter 2020, 16, 2291–2300. DOI: 10.1039/c9sm02478f.
  • Jensen, P. S.; Bak, J.; Andersson-Engels, S. Influence of Temperature on Water and Aqueous Glucose Absorption Spectra in the Near- and Mid-Infrared Regions at Physiologically Relevant Temperatures. Appl. Spectrosc. 2003, 57, 28–36. DOI: 10.1366/000370203321165179.
  • Maeda, H.; Ozaki, Y.; Tanaka, M.; Hayashi, N.; Kojima, T. Near Infrared Spectroscopy and Chemometrics Studies of Temperature-Dependent Spectral Variations of Water: Relationship between Spectral Changes and Hydrogen Bonds. J. Near Infrared Spectrosc. 1995, 3, 191–201. DOI: 10.1255/jnirs.69.
  • Olsztyńska-Janus, S.; Pietruszka, A.; Kiełbowicz, Z.; Czarnecki, M. A. ATR-IR Study of Skin Components: Lipids, Proteins and Water. Part I: Temperature Effect. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 188, 37–49. DOI: 10.1016/j.saa.2017.07.001.
  • Riemenschneider, J. Spectroscopic Investigations on Pure Water and Aqueous Salt Solutions in the Mid Infrared Region. Thesis for the degree doctor rerum naturalium (Dr. rer. nat.) of the Faculty of Sciences University of Rostock, Ph.D. Dissertation, 2012. DOI: 10.18453/rosdok_id00000993
  • Fabian, H.; Lasch, P.; Naumann, D. Analysis of Biofluids in Aqueous Environment Based on Mid-Infrared Spectroscopy. J. Biomed. Opt. 2005, 10, 031103. DOI: 10.1117/1.1917844.
  • Mahadevan-Jansen, A.; Naumann, D.; Wolfgang, H.; Lasch, P.; Fabian, H. Cells and Biofluids Analyzed in Aqueous Environment by Infrared Spectroscopy. In Biomedical Vibrational Spectroscopy III: Advances in Research and Industry; SPIE: Bellingham, Washington, 2006.
  • Termes, S. C.; Richardson, P. E. Application of FT-IR Spectroscopy for in Situ Studies of Sphalerite with Aqueous Solutions of Potassium Ethylxanthate and with Diethyldixanthogen. Int. J. Miner. Process. 1986, 18, 167–178. DOI: 10.1016/0301-7516(86)90015-3.
  • Yang, H.; Yang, S.; Kong, J.; Dong, A.; Yu, S. Obtaining Information about Protein Secondary Structures in Aqueous Solution Using Fourier Transform IR Spectroscopy. Nat. Protoc. 2015, 10, 382–396. DOI: 10.1038/nprot.2015.024.
  • Corujo, M. P.; Sklepari, M.; Ang, D. L.; Millichip, M.; Reason, A.; Goodchild, S. C.; Wormell, P.; Amarasinghe, D. P.; Lindo, V.; Chmel, N. P.; Rodger, A. Infrared Absorbance Spectroscopy of Aqueous Proteins: Comparison of Transmission and ATR Data Collection and Analysis for Secondary Structure Fitting. Chirality 2018, 30, 957–965. DOI: 10.1002/chir.23002.
  • Venyaminov, S.; Prendergast, F. Water (H2O and D2O) Molar Absorptivity in the 1000–4000 cm01 Range and Quantitative Infrared Spectroscopy of Aqueous Solutions. Anal. Biochem. 1997, 248, 234. DOI: 10.1006/abio.1997.2136.
  • Waldron, R. D. Infrared Spectra of HDO in Water and Ionic Solutions. J. Chem. Phys. 1957, 26, 809–814. DOI: 10.1063/1.1743413.
  • Yang, J.; Tsai, F.-P. Comparison of SPME/Transmission IR and SPME/ATR-IR Spectroscopic Methods in Detection of Chloroanilines in Aqueous Solutions. Appl. Spectrosc. 2001, 55, 919–926. DOI: 10.1366/0003702011952730.
  • Blum, M. M.; John, H. Historical Perspective and Modern Applications of Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR). Drug Test. Anal. 2012, 4, 298–302. DOI: 10.1002/dta.374.
  • Koç, M.; Karabudak, E. History of Spectroscopy and Modern Micromachined Disposable Si ATR-IR Spectroscopy. Appl. Spectrosc. Rev. 2018, 53, 420–438. DOI: 10.1080/05704928.2017.1366341.
  • Herzig-Marx, R.; Queeney, K. T.; Jackman, R. J.; Schmidt, M. A.; Jensen, K. F. Infrared Spectroscopy for Chemically Specific Sensing in Silicon-Based Microreactors. Anal. Chem. 2004, 76, 6476–6483. DOI: 10.1021/ac049265c.
  • Karabudak, E.; Kas, R.; Ogieglo, W.; Rafieian, D.; Schlautmann, S.; Lammertink, R. G.; Gardeniers, H. J.; Mul, G. Disposable Attenuated Total Reflection-Infrared Crystals from Silicon Wafer: A Versatile Approach to Surface Infrared Spectroscopy. Anal. Chem. 2013, 85, 33–38. DOI: 10.1021/ac302299g.
  • Sperling, B. A.; Kalanyan, B. Evaluation of Silicon Wafer-Based Internal Reflection Elements for Use with in Situ Fourier Transform Infrared (FT-IR) Spectroscopy. Appl. Spectrosc. 2018, 72, 1396–1403. DOI: 10.1177/0003702818779799.
  • Goormaghtigh, E.; Raussens, V.; Ruysschaert, J.-M. Attenuated Total Reflection Infrared Spectroscopy of Proteins and Lipids in Biological Membranes. Biochim. Biophys. Acta (BBA) – Rev. Biomembr. 1999, 1422, 105–185. DOI: 10.1016/S0304-4157(99)00004-0.
  • Schadle, T.; Mizaikoff, B. Selecting the Right Tool: Comparison of the Analytical Performance of Infrared Attenuated Total Reflection Accessories. Appl. Spectrosc. 2016, 70, 1072–1079. DOI: 10.1177/0003702816641574.
  • Max, J. J.; Gessinger, V.; van Driessche, C.; Larouche, P.; Chapados, C. Infrared Spectroscopy of Aqueous Ionic Salt Solutions at Low Concentrations. J. Chem. Phys. 2007, 126, 184507. DOI: 10.1063/1.2717184.
  • Jeon, J. S.; Sperline, R. P.; Raghavan, S. Quantitative Analysis of Adsorbed Serum Albumin on Segmented Polyurethane Using FT-IR:ATR Spectroscopy. Appl. Spectrosc. 1992, 46, 1644–1648. DOI: 10.1366/0003702924926826.
  • Xiao, Q.; Tong, Q.; Lim, L. T. Drying Process of Pullulan Edible Films Forming Solutions Studied by ATR-FTIR with Two-Dimensional Correlation Spectroscopy. Food Chem. 2014, 150, 267–273. DOI: 10.1016/j.foodchem.2013.10.122.
  • Schadle, T.; Pejcic, B.; Myers, M.; Mizaikoff, B. Fingerprinting Oils in Water via Their Dissolved VOC Pattern Using Mid-Infrared Sensors. Anal. Chem. 2014, 86, 9512–9517. DOI: 10.1021/ac5015029.
  • Braue, E. H.; Pannella, M. G. Consistency in Circle Cell FT-IR Analysis of Aqueous Solutions. Appl. Spectrosc. 1987, 41, 1057–1067. DOI: 10.1366/0003702874447950.
  • Braue, E. H.; Pannella, M. G. Imprecision in Circle Cell FT-IR Analysis of Aqueous Solutions. Appl. Spectrosc. 1987, 41, 1213–1216. DOI: 10.1366/0003702874447590.
  • Śmiechowski, M.; Stangret, J. Vibrational Spectroscopy of Semiheavy Water (HDO) as a Probe of Solute Hydration. Pure Appl. Chem. 2010, 82, 1869–1887. DOI: 10.1351/PAC-CON-09-10-14.
  • Belali, R.; Vigoureux, J.-M.; Morvan, J. Dispersion Effects on Infrared Spectra in Attenuated Total Reflection. J. Opt. Soc. Am. B 1995, 12, 2377. DOI: 10.1364/JOSAB.12.002377.
  • Hancer, M.; Sperline, P. R.; Miller, J. D. Anomalous Dispersion Effects in the IR-ATR Spectroscopy of Water. Appl. Spectrosc. 2000, 54, 138-143. DOI: 10.1366/0003702001948222.
  • Grdadolnik, J. ATR-FTIR Spectroscopy: It’s Advantages and Limitations. Acta Chim. Slov. 2002, 49, 631.
  • Max, J.-J.; Chapados, C. Interpolation and Extrapolation of Infrared Spectra of Binary Ionic Aqueous Solutions. Appl. Spectrosc. 1999, 53, 1601–1609. DOI: 10.1366/0003702991946064.
  • Baudet, E.; Gutierrez-Arroyo, A.; Baillieul, M.; Charrier, J.; Němec, P.; Bodiou, L.; Lemaitre, J.; Rinnert, E.; Michel, K.; Bureau, B.; et al. Development of an Evanescent Optical Integrated Sensor in the Mid-Infrared for Detection of Pollution in Groundwater or Seawater. Adv. Device Mater. 2017, 3, 23–29., DOI: 10.1080/20550308.2017.1338211.
  • Baillieul, M.; Baudet, E.; Michel, K.; Moreau, J.; Němec, P.; Boukerma, K.; Colas, F.; Charrier, J.; Bureau, B.; Rinnert, E.; Nazabal, V. Toward Chalcogenide Platform Infrared Sensor Dedicated to the in Situ Detection of Aromatic Hydrocarbons in Natural Waters via an Attenuated Total Reflection Spectroscopy Study. Sensors (Basel) 2021, 21, 2449. DOI: 10.3390/s21072449.
  • Heath, C.; Pejcic, B.; Myers, M. B. Block Copolymer-Coated ATR-FTIR Spectroscopic Sensors for Monitoring Hydrocarbons in Aquatic Environments at High Temperature and Pressure. ACS Appl. Polym. Mater. 2019, 1, 2149–2156. DOI: 10.1021/acsapm.9b00420.
  • López-Lorente, Á. I.; Wang, P.; Mizaikoff, B. Towards Label-Free Mid-Infrared Protein Assays: In-Situ Formation of Bare Gold Nanoparticles for Surface Enhanced Infrared Absorption Spectroscopy of Bovine Serum Albumin. Microchim. Acta 2017, 184, 453–462. DOI: 10.1007/s00604-016-2031-0.
  • Hu, Y.; Chen, Q.; Ci, L.; Cao, K.; Mizaikoff, B. Surface-Enhanced Infrared Attenuated Total Reflection Spectroscopy via Carbon Nanodots for Small Molecules in Aqueous Solution. Anal. Bioanal. Chem. 2019, 411, 1863. DOI: 10.1007/s00216-018-1521-9.
  • Arangio, A.; Delval, C.; Ruggeri, G.; Dudani, N.; Yazdani, A.; Takahama, S. Electrospray Film Deposition for Solvent-Elimination Infrared Spectroscopy. Appl. Spectrosc. 2019, 73, 638. DOI: 10.1177/0003702818821330.
  • Kuenzelmann, U.; Neugebauer, H.; Neckel, A. A Novel Technique for Recording Infrared Spectra of Powders: Attenuated Total Reflection Immersion Medium Spectroscopy. Langmuir 1994, 10, 2444. DOI: 10.1021/la00019a070.
  • Hifumi, H.; Ewing, A. V.; Kazarian, S. G. ATR-FTIR Spectroscopic Imaging to Study the Drying and Dissolution of Pharmaceutical Polymer-Based Films. Int. J. Pharm. 2016, 515, 57. DOI: 10.1016/j.ijpharm.2016.09.085.
  • Watanabe, A.; Morita, S.; Kokot, S.; Matsubara, M.; Fukai, K.; Ozaki, Y. Drying Process of Microcrystalline Cellulose Studied by Attenuated Total Reflection IR Spectroscopy with Two-Dimensional Correlation Spectroscopy and Principal Component Analysis. J. Mol. Struct. 2006, 799, 102. DOI: 10.1016/j.molstruc.2006.03.018.
  • Izutsu, K.; Fujimaki, Y.; Kuwabara, A.; Hiyama, Y.; Yomota, C.; Aoyagi, N. Near-Infrared Analysis of Protein Secondary Structure in Aqueous Solutions and Freeze-Dried Solids. J. Pharm. Sci. 2006, 95, 781. DOI: 10.1002/jps.20580.
  • Schadle, T.; Mizaikoff, B. Mid-Infrared Waveguides: A Perspective. Appl. Spectrosc. 2016, 70, 1625. DOI: 10.1177/0003702816659668.
  • Lu, R.; Li, W. W.; Mizaikoff, B.; Katzir, A.; Raichlin, Y.; Sheng, G. P.; Yu, H. Q. High-Sensitivity Infrared Attenuated Total Reflectance Sensors for in Situ Multicomponent Detection of Volatile Organic Compounds in Water. Nat. Protoc. 2016, 11, 377–386. DOI: 10.1038/nprot.2016.013.
  • Alimagham, F.; Platkov, M.; Prestage, J.; Basov, S.; Izakson, G.; Katzir, A.; Elliott, S. R.; Hutter, T. Mid-IR Evanescent-Field Fiber Sensor with Enhanced Sensitivity for Volatile Organic Compounds. RSC Adv. 2019, 9, 21186. DOI: 10.1039/C9RA04104D.
  • Kraft, M.; Jakusch, M.; Mizaikoff, B. A Miniaturised Fourier-Transform Infrared Spectrometer for Seawater Monitoring. in IEEE Oceanic Engineering Society. OCEANS'98. Conference Proceedings (Cat. No.98CH36259): 1998, 1701. DOI: 10.1109/OCEANS.1998.726378
  • Luzinova, Y.; Zdyrko, B.; Luzinov, I.; Mizaikoff, B. Detecting Trace Amounts of Water in Hydrocarbon Matrices with Infrared Fiberoptic Evanescent Field Sensors. Analyst 2012, 137, 333. DOI: 10.1039/c1an15521k.
  • Tinti, A.; Tugnoli, V.; Bonora, S.; Francioso, O. Recent Applications of Vibrational mid-Infrared (IR) Spectroscopy for Studying Soil Components: A Review. J. Cent. Eur. Agric. 2015, 16, 1. DOI: 10.5513/JCEA01/16.1.1535.
  • Deiner, L. J.; Farjami, E. Diffuse Reflectance Infrared Spectroscopic Identification of Dispersant/Particle Bonding Mechanisms in Functional Inks. J. Vis. Exp. 2015, e52744. DOI: 10.3791/52744
  • Schadle, T.; Eifert, A.; Kranz, C.; Raichlin, Y.; Katzir, A.; Mizaikoff, B. Mid-Infrared Planar Silver Halide Waveguides with Integrated Grating Couplers. Appl. Spectrosc. 2013, 67, 1057. DOI: 10.1366/12-06898.
  • Haas, J.; Stach, R.; Sieger, M.; Gashi, Z.; Godejohann, M.; Mizaikoff, B. Sensing Chlorinated Hydrocarbons via Miniaturized GaAs/AlGaAs Thin-Film Waveguide Flow Cells Coupled to Quantum Cascade Lasers. Anal. Methods 2016, 8, 6602. DOI: 10.1039/C6AY01450J.
  • Gutierrez-Arroyo, A.; Baudet, E.; Bodiou, L.; Nazabal, V.; Rinnert, E.; Michel, K.; Bureau, B.; Colas, F.; Charrier, J. Theoretical Study of an Evanescent Optical Integrated Sensor for Multipurpose Detection of Gases and Liquids in the Mid-Infrared. Sens. Actuators, B. 2017, 242, 842. DOI: 10.1016/j.snb.2016.09.174.
  • López-Lorente, Á. I.; Wang, P.; Sieger, M.; Vargas Catalan, E.; Karlsson, M.; Nikolajeff, F.; Österlund, L.; Mizaikoff, B. Mid-Infrared Thin-Film Diamond Waveguides Combined with Tunable Quantum Cascade Lasers for Analyzing the Secondary Structure of Proteins. Phys. Status Solidi A 2016, 213, 2117–2123. DOI: 10.1002/pssa.201600134.
  • Chang, Y. C.; Wagli, P.; Paeder, V.; Homsy, A.; Hvozdara, L.; van der Wal, P.; Francesco, J. D.; de Rooij, N. F.; Herzig, H. P. Cocaine Detection by a Mid-Infrared Waveguide Integrated with a Microfluidic Chip. Lab Chip 2012, 12, 3020–3023. DOI: 10.1039/c2lc40601b.
  • Singh, N.; Casas-Bedoya, A.; Hudson, D. D.; Read, A.; Magi, E.; Eggleton, B. J. Mid-IR Absorption Sensing of Heavy Water Using a Silicon-on-Sapphire Waveguide. Opt. Lett. 2016, 41, 5776–5779. DOI: 10.1364/OL.41.005776.
  • Jung, Y.; Hwang, J. Near-Infrared Studies of Glucose and Sucrose in Aqueous Solutions: water Displacement Effect and Red Shift in Water Absorption from Water-Solute Interaction. Appl. Spectrosc. 2013, 67, 171–180. DOI: 10.1366/12-06635.
  • Perez-Palacios, D.; Armenta, S.; Lendl, B. Flow-through Fourier Transform Infrared Sensor for Total Hydrocarbons Determination in Water. Appl. Spectrosc. 2009, 63, 1015–1021. DOI: 10.1366/000370209789379385.
  • Gonzalvez, A.; Garrigues, S.; Armenta, S.; de la Guardia, M. Headspace-Liquid Phase Microextraction for Attenuated Total Reflection Infrared Determination of Volatile Organic Compounds at Trace Levels. Anal. Chem. 2010, 82, 3045–3051. DOI: 10.1021/ac1001838.
  • Yang, J.; Tsai, F. P. Development of a Solid-Phase Microextraction/Reflection-Absorption Infrared Spectroscopic Method for the Detection of Chlorinated Aromatic Amines in Aqueous Solutions. Anal. Sci. 2001, 17, 751–756. DOI: 10.2116/analsci.17.751.
  • Janotta, M.; Vogt, F.; Voraberger, H. S.; Waldhauser, W.; Lackner, J. M.; Stotter, C.; Beutl, M.; Mizaikoff, B. Direct Analysis of Oxidizing Agents in Aqueous Solution with Attenuated Total Reflectance Mid-Infrared Spectroscopy and Diamond-like Carbon Protected Waveguides. Anal. Chem. 2004, 76, 384–391. DOI: 10.1021/ac034699d.
  • Braue, E. H.; Pannella, M. G. CIRCLE CELL® FT-IR Analysis of Chemical Warfare Agents in Aqueous Solutions. Appl. Spectrosc. 1990, 44, 1513–1520. DOI: 10.1366/0003702904417760.
  • Bandekarc, J.; Sethna, R.; Kirschner, M. Quantitative Determination of Sulfur Oxide Species in White Liquor by FT-IR. Appl. Spectrosc. 1995, 49, 1577–1582. DOI: 10.1366/0003702953965795.
  • de Melas, F.; Pustogov, V. V.; Wolcott, D. K.; Olson, D. C.; Inberg, A.; Croitoru, N.; Mizaikoff, B. Combination of a Mid-Infrared Hollow Waveguide Gas Sensor with a Supported Capillary Membrane Sampler for the Detection of Organic Compounds in Water. Int. J. Environ. Anal. Chem. 2003, 83, 573–583. DOI: 10.1080/0306731021000003473.
  • Luzinova, Y.; Zdyrko, B.; Luzinov, I.; Mizaikoff, B. In Situ Trace Analysis of Oil in Water with Mid-Infrared Fiberoptic Chemical Sensors. Anal. Chem. 2012, 84, 1274–1280. DOI: 10.1021/ac201664p.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.