897
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Overview and Future Perspectives of Microfluidic Digital Recombinase Polymerase Amplification (dRPA)

, , , &
Pages 1969-1989 | Published online: 24 Feb 2022

References

  • Chen, J.-W.; Shao, N.; Zhang, Y.; Zhu, Y.; Yang, L.; Tao, S.-C. A Visual Multiplex PCR Microchip with Easy Sample Loading. Yi Chuan 2017, 39, 525–534. DOI: 10.16288/j.yczz.17-031.
  • Hindson, C. M.; Chevillet, J. R.; Briggs, H. A.; Gallichotte, E. N.; Ruf, I. K.; Hindson, B. J.; Vessella, R. L.; Tewari, M. Absolute Quantification by Droplet Digital PCR versus Analog Real-Time PCR. Nat. Methods. 2013, 10, 1003–1005. DOI: 10.1038/nmeth.2633.
  • Stoddard, R. A. Detection of Pathogenic Leptospira Spp. through Real-Time PCR (qPCR) Targeting the LipL32 Gene. Methods Mol Biol 2013, 943, 257–266. DOI:978-1-60327-353-4_17. DOI: 10.1007/978-1-60327-353-4_17.
  • Tripathi, A.; Rai, A.; Dubey, S. C.; Akhtar, J.; Kumar, P. DNA Barcode, Multiplex PCR and qPCR Assay for Diagnosis of Pathogens Infecting Pulse Crops to Facilitate Safe Exchange and Healthy Conservation of Germplasm. Arch. Microbiol 2021, 203, 1–15. DOI: 10.1007/s00203-021-02259-w.
  • Jafek, A. R.; Harbertson, S.; Brady, H.; Samuel, R.; Gale, B. K. Instrumentation for xPCR Incorporating qPCR and HRMA. Anal. Chem. 2018, 90, 7190–7196. DOI: 10.1021/acs.analchem.7b05176.
  • Huang, Y.; Yin, X.; Zhu, C.; Wang, W.; Grierson, D.; Xu, C.; Chen, K. Standard Addition Quantitative Real-Time PCR (SAQPCR): A Novel Approach for Determination of Transgene Copy Number Avoiding PCR Efficiency Estimation. PLoS One. 2013, 8, e53489. DOI: 10.1371/journal.pone.0053489.
  • Khaliliazar, S.; Toldrà, A.; Chondrogiannis, G.; Hamedi, M. M. Electroanalytical Paper-Based Nucleic Acid Amplification Biosensors with Integrated Thread Electrodes. Anal. Chem. 2021, 93, 14187–14195. DOI: 10.1021/acs.analchem.1c02900.
  • Wang, W.; Zhao, N.; Li, X.; Wan, J.; Luo, X. Isothermal Amplified Detection of ATP Using Au Nanocages Capped with a DNA Molecular Gate and Its Application in Cell lysates. Analyst 2015, 140, 1672–1677. DOI: 10.1039/C4AN02202E.
  • Juma, K. M.; Takita, T.; Ito, K.; Yamagata, M.; Akagi, S.; Arikawa, E.; Kojima, K.; Biyani, M.; Fujiwara, S.; Nakura, Y.; et al. Optimization of Reaction Condition of Recombinase Polymerase Amplification to Detect SARS-CoV-2 DNA and RNA Using a Statistical Method. Biochem. Biophys. Res. Commun. 2021, 567, 195–200. DOI: 10.1016/j.bbrc.2021.06.023.
  • Li, J.; Macdonald, J.; von Stetten, F. Review: A Comprehensive Summary of a Decade Development of the Recombinase Polymerase Amplification. Analyst 2018, 144, 31–67. DOI: 10.1039/C8AN01621F.
  • Mayboroda, O.; Gonzalez Benito, A.; Sabaté del Rio, J.; Svobodova, M.; Julich, S.; Tomaso, H.; O'Sullivan, C. K.; Katakis, I. Isothermal Solid-Phase Amplification System for Detection of Yersinia pestis. Anal. Bioanal. Chem. 2016, 408, 671–676. DOI: 10.1007/s00216-015-9177-1.
  • Tomita, N.; Mori, Y.; Kanda, H.; Notomi, T. Loop-Mediated Isothermal Amplification (LAMP) of Gene Sequences and Simple Visual Detection of Products. Nat. Protoc. 2008, 3, 877–882. DOI: 10.1038/nprot.2008.57.
  • Hu, Y.; Xu, P.; Luo, J.; He, H.; Du, W. Absolute Quantification of H5-Subtype Avian Influenza Viruses Using Droplet Digital Loop-Mediated Isothermal Amplification. Anal. Chem. 2017, 89, 745–750. DOI: 10.1021/acs.analchem.6b03328.
  • Yuan, H.; Chao, Y.; Shum, H. C. Droplet and Microchamber‐Based Digital Loop‐Mediated Isothermal Amplification (dLAMP). Small 2020, 16, 1904469. DOI: 10.1002/smll.201904469.
  • Kalsi, S.; Valiadi, M.; Tsaloglou, M.-N.; Parry-Jones, L.; Jacobs, A.; Watson, R.; Turner, C.; Amos, R.; Hadwen, B.; Buse, J.; et al. Rapid and Sensitive Detection of Antibiotic Resistance on a Programmable Digital Microfluidic Platform. Lab Chip. 2015, 15, 3065–3075. DOI: 10.1039/C5LC00462D.
  • Piepenburg, O.; Williams, C. H.; Stemple, D. L.; Armes, N. A. DNA Detection Using Recombination Proteins. PLoS Biol. 2006, 4, e204. DOI: 10.1371/journal.pbio.0040204.
  • Xia, X.; Yu, Y.; Hu, L.; Weidmann, M.; Pan, Y.; Yan, S.; Wang, Y. Rapid Detection of Infectious Hypodermal and Hematopoietic Necrosis Virus (IHHNV) by Real-time, Isothermal Recombinase Polymerase Amplification Assay. Arch. Virol. 2015, 160, 987–994. DOI: 10.1007/s00705-015-2357-7.
  • Baker, M. Digital PCR Hits its Stride. Nat. Methods 2012, 9, 541–544. DOI: 10.1038/nmeth.2027.
  • Quan, P.-L.; Sauzade, M.; Brouzes, E. dPCR: A Technology Review. Sensors 2018, 18, 1271. DOI: 10.3390/s18041271.
  • Lobato, I. M.; O'Sullivan, C. K. Recombinase Polymerase Amplification: Basics, Applications and Recent Advances. Trends Analyt Chem 2018, 98, 19–35. DOI: 10.1016/j.trac.2017.10.015.
  • Yin, J.; Zou, Z.; Hu, Z.; Zhang, S.; Zhang, F.; Wang, B.; Lv, S.; Mu, Y. A “Sample-in-Multiplex-Digital-Answer-Out” Chip for Fast Detection of Pathogens. Lab Chip. 2020, 20, 979–986. DOI: 10.1039/C9LC01143A.
  • Kalsi, S.; Sellars, S. L.; Turner, C.; Sutton, J. M.; Morgan, H. A Programmable Digital Microfluidic Assay for the Simultaneous Detection of Multiple anti-Microbial Resistance Genes. Micromachines 2017, 8, 111. DOI: 10.3390/mi8040111.
  • Yang, H.; Chen, Z.; Cao, X.; Li, Z.; Stavrakis, S.; Choo, J.; deMello, A. J.; Howes, P. D.; He, N. He N. A Sample-in-Digital-Answer-out System for Rapid Detection and Quantitation of Infectious Pathogens in Bodily Fluids. Anal. Bioanal. Chem. 2018, 410, 7019–7030. DOI: 10.1007/s00216-018-1335-9.
  • Schuler, F.; Schwemmer, F.; Trotter, M.; Wadle, S.; Zengerle, R.; von Stetten, F.; Paust, N. Centrifugal Step Emulsification Applied for Absolute Quantification of Nucleic Acids by Digital Droplet RPA. Lab Chip. 2015, 15, 2759–2766. DOI: 10.1039/C5LC00291E.
  • Shen, F.; Davydova, E. K.; Du, W.; Kreutz, J. E.; Piepenburg, O.; Ismagilov, R. F. Digital Isothermal Quantification of Nucleic Acids via Simultaneous Chemical Initiation of Recombinase Polymerase Amplification Reactions on SlipChip. Anal. Chem. 2011, 83, 3533–3540. DOI: 10.1021/ac200247e.
  • Li, Z.; Liu, Y.; Wei, Q.; Liu, Y.; Liu, W.; Zhang, X.; Yu, Y. Picoliter Well Array Chip-Based Digital Recombinase Polymerase Amplification for Absolute Quantification of Nucleic Acids. PLoS One 2016, 11, e0153359. DOI: 10.1371/journal.pone.0153359.
  • Li, X.; Manz, A. Precise Definition of Starting Time by Capillary-Based Chemical Initiation of Digital Isothermal DNA Amplification. Sens. Actuators B Chem 2019, 288, 678–682. DOI: 10.1016/j.snb.2019.02.112.
  • Hadwen, B.; Broder, G.; Morganti, D.; Jacobs, A.; Brown, C.; Hector, J.; Kubota, Y.; Morgan, H. Programmable Large Area Digital Microfluidic Array with Integrated Droplet Sensing for Bioassays. Lab Chip. 2012, 12, 3305–3313. DOI: 10.1039/c2lc40273d.
  • Tsaloglou, M.-N.; Watson, R.; Rushworth, C.; Zhao, Y.; Niu, X.; Sutton, J.; Morgan, H. Real-Time Microfluidic Recombinase Polymerase Amplification for the Toxin B Gene of Clostridium difficile on a SlipChip Platform. Analyst 2015, 140, 258–264. DOI: 10.1039/C4AN01683A.
  • Kalsi, S.; Valiadi, M.; Turner, C.; Sutton, M.; Morgan, H. Sample Pre-Concentration on a Digital Microfluidic Platform for Rapid AMR Detection in Urine. Lab Chip. 2018, 19, 168–177. DOI: 10.1039/C8LC01249K.
  • Yeh, E.-C.; Fu, C.-C.; Hu, L.; Thakur, R.; Feng, J.; Lee, L. P. Self-Powered Integrated Microfluidic Point-of-Care Low-Cost Enabling (SIMPLE) Chip. Sci. Adv. 2017, 3, e1501645. DOI: 10.1126/sciadv.1501645.
  • Vogelstein, B.; Kinzler, K. W. Digital PCR. Proc. Natl. Acad. Sci. U S A. 1999, 96, 9236–9241. DOI: 10.1073/pnas.96.16.9236.
  • Rodriguez-Manzano, J.; Karymov, M. A.; Begolo, S.; Selck, D. A.; Zhukov, D. V.; Jue, E.; Ismagilov, R. F. Reading out Single-Molecule Digital RNA and DNA Isothermal Amplification in Nanoliter Volumes with Unmodified Camera Phones. ACS Nano. 2016, 10, 3102–3113. DOI: 10.1021/acsnano.5b07338.
  • Rolando, J. C.; Jue, E.; Schoepp, N. G.; Ismagilov, R. F. Real-Time, Digital LAMP with Commercial Microfluidic Chips Reveals the Interplay of Efficiency, Speed, and Background Amplification as a Function of Reaction Temperature and Time. Anal. Chem. 2019, 91, 1034–1042. DOI: 10.1021/acs.analchem.8b04324.
  • Kreutz, J. E.; Wang, J.; Sheen, A. M.; Thompson, A. M.; Staheli, J. P.; Dyen, M. R.; Feng, Q.; Chiu, D. T. Self-Digitization Chip for Quantitative Detection of Human Papillomavirus Gene Using Digital LAMP. Lab Chip. 2019, 19, 1035–1040. DOI: 10.1039/C8LC01223G.
  • Hu, F.; Li, J.; Zhang, Z.; Li, M.; Zhao, S.; Li, Z.; Peng, N. Smartphone-Based Droplet Digital LAMP Device with Rapid Nucleic Acid Isolation for Highly Sensitive Point-of-Care Detection. Anal. Chem. 2020, 92, 2258–2265. DOI: 10.1021/acs.analchem.9b04967.
  • Zhang, Y.; Hu, J.; Yang, X.-Y.; Zhang, C-y. Combination of Bidirectional Strand Displacement Amplification with Single-Molecule Detection for Multiplexed DNA Glycosylases Assay. Talanta 2021, 235, 122805. DOI: 10.1016/j.talanta.2021.122805.
  • Luo, F.; Lu, Y.; Geng, X.; Li, Z.; Dai, G.; Chu, Z.; Zhang, J.; Zhang, F.; He, P.; Wang, Q. Study on Defective T Junction-Mediated Strand Displacement Amplification and Its Application in Microchip Electrophoretic Detection of Longer Bacterial 16S rDNA. Anal. Chem. 2021, 93, 3551–3558. DOI: 10.1021/acs.analchem.0c04991.
  • Cordray, M. S.; Richards-Kortum, R. R. A Paper and Plastic Device for the Combined Isothermal Amplification and Lateral Flow Detection of Plasmodium DNA. Malaria J 2015, 14, 472. DOI: 10.1186/s12936-015-0995-6.
  • Wee, E. J.; Trau, M. Simple Isothermal Strategy for Multiplexed, Rapid, Sensitive, and Accurate miRNA Detection. ACS Sens. 2016, 1, 670–675. DOI: 10.1021/acssensors.6b00105.
  • Yang, M.; Ke, Y.; Wang, X.; Ren, H.; Liu, W.; Lu, H.; Zhang, W.; Liu, S.; Chang, G.; Tian, S. Development and Evaluation of a Rapid and Sensitive EBOV-RPA Test for Rapid Diagnosis of Ebola Virus Disease. Sci. Rep 2016, 6, 26943. DOI: 10.1038/srep26943.
  • Kersting, S.; Rausch, V.; Bier, F. F.; von Nickisch-Rosenegk, M. Rapid Detection of Plasmodium falciparum with Isothermal Recombinase Polymerase Amplification and Lateral Flow analysis. Malar. J. 2014, 13, 99. DOI: 10.1186/1475-2875-13-99.
  • TABAS03KIT, TwistAmp. https://www.ebiomall.cn/c428-RPA/product-101253.html. (access November 5, 2021).
  • Linsenmeier, M.; Kopp, M. R.; Stavrakis, S.; de Mello, A.; Arosio, P. Analysis of Biomolecular Condensates and Protein Phase Separation with Microfluidic technology. Biochim. Biophys. Acta. Mol. Cell Res. 2021, 1868, 118823. DOI: 10.1016/j.bbamcr.2020.118823.
  • Lee, H.; Oh, M. T.; Lee, Y. J.; Son, K. H.; Choi, N.; Lee, B. C.; Lee, S. H. Highly-Efficient Microfluidic Ultrasonic Transducers Assisted gDNA Extraction System in Whole Blood for POCT Applications. Sens. Actuators B Chem 2020, 319, 128317. DOI: 10.1016/j.snb.2020.128317.
  • Xu, L.; Shoaie, N.; Jahanpeyma, F.; Zhao, J.; Azimzadeh, M.; Al, K. T. Optical, Electrochemical and Electrical (nano)Biosensors for Detection of Exosomes: A Comprehensive Overview. Biosens. Bioelectron. 2020, 161, 112222. DOI: 10.1016/j.bios.2020.112222.
  • Zaghloul, H.; El-Shahat, M. Recombinase Polymerase Amplification as a Promising Tool in Hepatitis C Virus diagnosis. World J Hepatol 2014, 6, 916–922. DOI: 10.4254/wjh.v6.i12.916.
  • James, A.; Macdonald, J. Recombinase Polymerase Amplification: emergence as a Critical Molecular Technology for Rapid, Low-Resource Diagnostics. Expert Rev Mol Diagn 2015, 15, 1475–1489. DOI: 10.1586/14737159.2015.1090877.
  • Daher, R. K.; Stewart, G.; Boissinot, M.; Bergeron, M. G. Recombinase Polymerase Amplification for Diagnostic Applications. Clin. Chem. 2016, 62, 947–958. DOI: 10.1373/clinchem.2015.245829.
  • Shen, H.; Shahrajabian, M. H. Progress in Recombinant Polymerase Nucleic Acid Amplification Technology. J.Biol. Environ. Sci 2019, 13, 173–183.
  • Shen, F.; Sun, B.; Kreutz, J. E.; Davydova, E. K.; Du, W.; Reddy, P. L.; Joseph, L. J.; Ismagilov, R. F. Multiplexed Quantification of Nucleic Acids with Large Dynamic Range Using Multivolume Digital RT-PCR on a Rotational SlipChip Tested with HIV and Hepatitis C Viral Load. J. Am. Chem. Soc. 2011, 133, 17705–17712. DOI: 10.1021/ja2060116.
  • Digital PCR | Bio-Rad Laboratories. https://www.bio-rad.com/en-cn/life-science/digital-pcr?ID=M9HE2R15&hplink=%5BPopular%20Focus%20Areas%5D%20%5BDroplet%20Digital%20PCR%5D. (access November 5, 2021).
  • QuantStudio 3D Digital PCR System | Thermo Fisher Scientific. https://www.thermofisher.cn/search/browse/category/cn/zh/90217008?filter=&query=QuantStudio%E2%84%A2%203D%20%E6%95%B0%E5%AD%97%20PCR%20&persona=Catalog&refinementAction=true. (access November 5, 2021).
  • Weibel, D. B.; DiLuzio, W. R.; Whitesides, G. M. Microfabrication Meets Microbiology. Nat. Rev. Microbiol. 2007, 5, 209–218. DOI: 10.1038/nrmicro1616.
  • Khater, A.; Abdelrehim, O.; Mohammadi, M.; Azarmanesh, M.; Janmaleki, M.; Salahandish, R.; Mohamad, A.; Sanati-Nezhad, A. Sanati-Nezhad A. Picoliter Agar Droplet Breakup in Microfluidics Meets Microbiology Application: numerical and Experimental Approaches. Lab Chip. 2020, 20, 2175–2187. DOI: 10.1039/D0LC00300J.
  • Merkel, T.; Bondar, V.; Nagai, K.; Freeman, B.; Pinnau, I. Gas Sorption, Diffusion, and Permeation in Poly (Dimethylsiloxane). J. Polym. Sci. B Polym. Phys. 2000, 38, 415–434. DOI: 10.1002/(SICI)1099-0488(20000201)38:3 < 415::AID-POLB8 > 3.0.CO;2-Z.
  • Song, Q.; Sun, J.; Mu, Y.; Xu, Y.; Zhu, Q.; Jin, Q. A New Method for Polydimethylsiloxane (PDMS) Microfluidic Chips to Maintain Vacuum-Driven Power Using Parylene C. Sens. Actuators B Chem 2018, 256, 1122–1130. DOI: 10.1016/j.snb.2017.10.006.
  • Lin, C.-H.; Lee, G.-B.; Lin, Y.-H.; Chang, G.-L. A Fast Prototyping Process for Fabrication of Microfluidic Systems on Soda-Lime Glass. J. Micromech. Microeng. 2001, 11, 726–732. DOI: 10.1088/0960-1317/11/6/316.
  • Shen, F.; Du, W.; Kreutz, J. E.; Fok, A.; Ismagilov, R. F. Digital PCR on a SlipChip. Lab Chip. 2010, 10, 2666–2672. DOI: 10.1039/c004521g.
  • Xu, L.; Qu, H.; Alonso, D. G.; Yu, Z.; Yu, Y.; Shi, Y.; Hu, C.; Zhu, T.; Wu, N.; Shen, F. Portable Integrated Digital PCR System for the Point-of-Care Quantification of BK Virus from Urine Samples. Biosens. Bioelectron. 2021, 175, 112908. DOI: 10.1016/j.bios.2020.112908.
  • Yu, Z.; Lyu, W.; Yu, M.; Wang, Q.; Qu, H.; Ismagilov, R. F.; Han, X.; Lai, D.; Shen, F. Self-partitioning SlipChip for Slip-Induced Droplet Formation and Human Papillomavirus Viral Load Quantification with Digital LAMP . Biosens. Bioelectron. 2020, 155, 112107. DOI: 10.1016/j.bios.2020.112107.
  • Lyu, W.; Zhang, J.; Yu, Y.; Xu, L.; Shen, F. Slip Formation of a High-Density Droplet Array for Nucleic Acid Quantification by Digital LAMP with a Random-access System. Lab Chip. 2021, 21, 3086–3093. DOI: 10.1039/D1LC00361E.
  • Li, P. C. Micromaching methods. Microfluidic Lab-on-a-Chip for Chemical and Biological Analysis and Discovery. CRC Press: Boca Raton, 2005, pp 3–52.
  • Piruska, A.; Nikcevic, I.; Lee, S. H.; Ahn, C.; Heineman, W. R.; Limbach, P. A.; Seliskar, C. J. The Autofluorescence of Plastic Materials and Chips Measured under Laser Irradiation. Lab Chip. 2005, 5, 1348–1354. DOI: 10.1039/b508288a.
  • Kreutz, J. E.; Munson, T.; Huynh, T.; Shen, F.; Du, W.; Ismagilov, R. F. Theoretical Design and Analysis of Multivolume Digital Assays with Wide Dynamic Range Validated Experimentally with Microfluidic Digital PCR. Anal. Chem. 2011, 83, 8158–8168. DOI: 10.1021/ac201658s.
  • Comina, G.; Suska, A.; Filippini, D. PDMS Lab-on-a-Chip Fabrication Using 3D Printed Templates. Lab Chip. 2014, 14, 424–430. DOI: 10.1039/C3LC50956G.
  • Heyries, K. A.; Tropini, C.; VanInsberghe, M.; Doolin, C.; Petriv, I.; Singhal, A.; Leung, K.; Hughesman, C. B.; Hansen, C. L. Megapixel Digital PCR. Nat. Methods. 2011, 8, 649–651. DOI: 10.1038/nmeth.1640.
  • Sia, S. K.; Whitesides, G. M. Microfluidic Devices Fabricated in Poly(dimethylsiloxane) for Biological Studies. Electrophoresis 2003, 24, 3563–3576. DOI: 10.1002/elps.200305584.
  • Sun, Y.; Zhou, X.; Yu, Y. A Novel Picoliter Droplet Array for Parallel Real-Time Polymerase Chain Reaction Based on Double-Inkjet Printing. Lab Chip. 2014, 14, 3603–3610. DOI: 10.1039/C4LC00598H.
  • Gelfand, D. H.; Stoffel, S.; Saiki, R. K. Stabilized thermostable nucleic acid polymerase compositions containing non-ionic polymeric detergents. Google Patents. 2000.
  • Yamanaka, E. S.; Tortajada-Genaro, L. A.; Maquieira, Á. Low-Cost Genotyping Method Based on Allele-Specific Recombinase Polymerase Amplification and Colorimetric Microarray Detection. Microchim. Acta 2017, 184, 1453–1462. DOI: 10.1007/s00604-017-2144-0.
  • Shalaby, M. A.; El-Deeb, A.; El-Tholoth, M.; Hoffmann, D.; Czerny, C.-P.; Hufert, F. T.; Weidmann, M.; Abd El Wahed, A. Abd El Wahed A. Recombinase Polymerase Amplification Assay for Rapid Detection of Lumpy Skin Disease Virus. BMC Vet Res 2016, 12, 244. DOI: 10.1186/s12917-016-0875-5.
  • Sasaki, Y.; Miyoshi, D.; Sugimoto, N. Effect of Molecular Crowding on DNA Polymerase Activity. Biotechnol. J. 2006, 1, 440–446. DOI: 10.1002/biot.200500032.
  • Ellis, R. J. Macromolecular Crowding: Obvious but Underappreciated. Trends Biochemi. Sci 2001, 26, 597–604. DOI: 10.1016/S0968-0004(01)01938-7.
  • Teh, S.-Y.; Lin, R.; Hung, L.-H.; Lee, A. P. Droplet Microfluidics. Lab Chip. 2008, 8, 198–220. DOI: 10.1039/b715524g.
  • i.; Solvas, X. C.; DeMello, A. Droplet Microfluidics: Recent Developments and Future Applications. Chem Commun (Camb) 2011, 47, 1936–1942. DOI: 10.1039/C0CC02474K.
  • Sengupta, A.; Bahr, C.; Herminghaus, S. Topological Microfluidics for Flexible Micro-Cargo Concepts. Soft Matter 2013, 9, 7251–7260. DOI: 10.1039/c3sm50677k.
  • Suo, T.; Liu, X.; Feng, J.; Guo, M.; Hu, W.; Guo, D.; Ullah, H.; Yang, Y.; Zhang, Q.; Wang, X.; et al. ddPCR: A More Accurate Tool for SARS-CoV-2 Detection in Low Viral Load Specimens. Emerg Microbes Infect. 2020, 9, 1259–1268. DOI: 10.1080/22221751.2020.1772678.
  • Larsson, G. L.; Helenius, G. Digital Droplet PCR (ddPCR) for the Detection and Quantification of HPV 16, 18, 33 and 45 - a short report . Cell Oncol (Dordr) 2017, 40, 521–527. DOI: 10.1007/s13402-017-0331-y.
  • Chen, Z.; Liao, P.; Zhang, F.; Jiang, M.; Zhu, Y.; Huang, Y. Centrifugal Micro-Channel Array Droplet Generation for Highly Parallel Digital PCR. Lab Chip. 2017, 17, 235–240. DOI: 10.1039/C6LC01305H.
  • Oliveira, B.; Veigas, B.; Fernandes, A. R.; Águas, H.; Martins, R.; Fortunato, E.; Baptista, P. V. Fast Prototyping Microfluidics: Integrating Droplet Digital Lamp for Absolute Quantification of Cancer Biomarkers. Sensors 2020, 20, 1624. DOI: 10.3390/s20061624.
  • Seemann, R.; Brinkmann, M.; Pfohl, T.; Herminghaus, S. Droplet Based Microfluidics. Rep. Prog. Phys. 2012, 75, 016601. DOI:10.1088/0034-4885/75/1/016601.
  • Malsch, D.; Gleichmann, N.; Kielpinski, M.; Mayer, G.; Henkel, T.; Mueller, D.; van Steijn, V.; Kleijn, C. R.; Kreutzer, M. T. Dynamics of Droplet Formation at T-Shaped Nozzles with Elastic Feed Lines. Microfluid. Nanofluid. 2010, 8, 497–507. DOI: 10.1007/s10404-009-0479-5.
  • Guillot, P.; Colin, A. Stability of Parallel Flows in a Microchannel after a T Junction. Phys. Rev. E. 2005, 72, 66301. DOI: 10.1103/PhysRevE.72.066301.
  • Gañán-Calvo A. M.; Marandat V., editors. Continuous Generation of Homogeneous Micron-Size Bubbles. A New Gas Diffuser. APS Division of Fluid Dynamics Meeting Abstracts. 1998.
  • Fu, T.; Hui X.-R.; Zhu, C.; Ma, Y.; Li, H.-Z. Formation of Dispersed Small Bubbles in Flow-Focusing Microchannels. J. Chem. Eng. Chin. Univ. 2011, 25, 337–340.
  • Xu, P.; Zheng, X.; Tao, Y.; Du, W. Cross-Interface Emulsification for Generating Size-Tunable Droplets. Anal. Chem. 2016, 88, 3171–3177. DOI: 10.1021/acs.analchem.5b04510.
  • Arnold, W. M.; Gessner, A. G.; Zimmermann, U. Dielectric Measurements on Electro-Manipulation Media. Biochim. Biophys. Acta Gen. Subj. 1993, 1157, 32–44. DOI: 10.1016/0304-4165(93)90075-J.
  • Miller, E. M.; Wheeler, A. R. Digital Bioanalysis. Anal. Bioanal. Chem. 2009, 393, 419–426. DOI: 10.1007/s00216-008-2397-x.
  • Shen, H.-H.; Su, T.-Y.; Liu, Y.-J.; Chang, H.-Y.; Yao, D.-J. Single-Nucleotide Polymorphism Detection Based on a Temperature-Controllable Electrowetting on Dielectrics Digital Microfluidic System. Sens. Mater. 2013, 25, 643–651. DOI: 10.18494/SAM.2013.908.
  • Tsaloglou, M.-N.; Jacobs, A.; Morgan, H. A Fluorogenic Heterogeneous Immunoassay for Cardiac Muscle Troponin cTnI on a Digital Microfluidic Device. Anal. Bioanal. Chem. 2014, 406, 5967–5976. DOI: 10.1007/s00216-014-7997-z.
  • Rival, A.; Jary, D.; Delattre, C.; Fouillet, Y.; Castellan, G.; Bellemin-Comte, A.; Gidrol, X. An EWOD-Based Microfluidic Chip for Single-Cell Isolation, mRNA Purification and Subsequent Multiplex qPCR. Lab Chip. 2014, 14, 3739–3749. DOI: 10.1039/C4LC00592A.
  • Rui, X.; Song, S.; Wang, W.; Zhou, J. Applications of Electrowetting-on-Dielectric (EWOD) Technology for Droplet Digital PCR. Biomicrofluidics 2020, 14, 061503. DOI: 10.1063/5.0021177.
  • Gascoyne, P. R.; Vykoukal, J. V.; Schwartz, J. A.; Anderson, T. J.; Vykoukal, D. M.; Current, K. W.; McConaghy, C.; Becker, F. F.; Andrews, C. Dielectrophoresis-Based Programmable Fluidic Processors. Lab Chip. 2004, 4, 299–309. DOI: 10.1039/b404130e.
  • Hunt, T. P.; Issadore, D.; Westervelt, R. M. Integrated Circuit/Microfluidic Chip to Programmably Trap and Move Cells and Droplets with Dielectrophoresis. Lab Chip. 2008, 8, 81–87. DOI: 10.1039/B710928H.
  • Griffith, J.; Formosa, T. The uvsX Protein of Bacteriophage T4 Arranges Single-Stranded and Double-Stranded DNA into Similar Helical Nucleoprotein Filaments. J. Biol. Chem. 1985, 260, 4484–4491. DOI:10.1016/S0021-9258(18)89290-0.
  • Shamoo, Y.; Friedman, A. M.; Parsons, M. R.; Konigsberg, W. H.; Steitz, T. A. Crystal Structure of a Replication Fork Single-Stranded DNA Binding Protein (T4 gp32) Complexed to DNA. Nature 1995, 376, 362–366. DOI: 10.1038/376362a0.
  • Okazaki, T.; Kornberg, A. Enzymatic Synthesis of Deoxyribonucleic Acid: XV. Purification and Properties of a Polymerase from Bacillus subtilis. J. Biol. Chem. 1964, 239, 259–268. DOI:10.1016/S0021-9258(18)51776-2.
  • Euler, M.; Wang, Y.; Otto, P.; Tomaso, H.; Escudero, R.; Anda, P.; Hufert, F. T.; Weidmann, M. Recombinase Polymerase Amplification Assay for Rapid Detection of Francisella tularensis. J. Clin. Microbiol. 2012, 50, 2234–2238. DOI: 10.1128/JCM.06504-11.
  • Poulton, K.; Webster, B. Development of a Lateral Flow Recombinase Polymerase Assay for the Diagnosis of Schistosoma mansoni Infections. Anal. Biochem. 2018, 546, 65–71. DOI: 10.1016/j.ab.2018.01.031.
  • Fuller, S. L.; Savory, E. A.; Weisberg, A. J.; Buser, J. Z.; Gordon, M. I.; Putnam, M. L.; Chang, J. H. Isothermal Amplification and Lateral-Flow Assay for Detecting Crown-Gall-Causing Agrobacterium Spp. Phytopathology 2017, 107, 1062–1068. DOI: 10.1094/PHYTO-04-17-0144-R.
  • Soliman, H.; El, ‐.; Matbouli, M. Rapid Detection and Differentiation of Carp Oedema Virus and Cyprinid Herpes virus-3 in koi and common carp. J Fish Dis . 2018, 41, 761–772. DOI: 10.1111/jfd.12774.
  • Jauset-Rubio, M.; Del Río, J. S.; Mairal, T.; Svobodová, M.; El-Shahawi, M. S.; Bashammakh, A. S.; Alyoubi, A. O.; O’Sullivan, C. K. Ultrasensitive and Rapid Detection of β-Conglutin Combining Aptamers and Isothermal Recombinase Polymerase Amplification. Anal. Bioanal. Chem. 2017, 409, 143–149. DOI: 10.1007/s00216-016-9973-2.
  • Boyle, J. M.; Symonds, N. Radiation-Sensitive Mutants of T4D. I. T4y: A New Radiation-Sensitive Mutant; Effect of the Mutation on Radiation Survival, Growth and Recombination . Mutat. Res. 1969, 8, 431–439. DOI: 10.1016/0027-5107(69)90060-8.
  • Crannell, Z. A.; Rohrman, B.; Richards-Kortum, R. Equipment-Free Incubation of Recombinase Polymerase Amplification Reactions Using Body Heat. PloS One. 2014, 9, e112146. DOI: 10.1371/journal.pone.0112146.
  • Yi, H.; Yan, Z.; Wang, L.; Zhou, X.; Yan, R.; Zhang, D.; Shen, G.; Zhou, S. Fluorometric Determination for Ofloxacin by Using an Aptamer and SYBR Green I. Microchim. Acta 2019, 186, 688. DOI: 10.1007/s00604-019-3788-8.
  • Kitchen, P.; Salman, M. M.; Abir-Awan, M.; Al-Jubair, T.; Törnroth-Horsefield, S.; Conner, A. C.; Bill, R. M. Calcein Fluorescence Quenching to Measure Plasma Membrane Water Flux in Live Mammalian Cells. STAR Protoc. 2020, 1, 100157. DOI: 10.1016/j.xpro.2020.100157.
  • Shoute, L. C.; Loppnow, G. R. Characterization of the Binding Interactions between EvaGreen Dye and dsDNA. Phys. Chem. Chem. Phys. 2018, 20, 4772–4780. DOI: 10.1039/C7CP06058K.
  • Lillis, L.; Siverson, J.; Lee, A.; Cantera, J.; Parker, M.; Piepenburg, O.; Lehman, D. A.; Boyle, D. S. Factors Influencing Recombinase Polymerase Amplification (RPA) Assay Outcomes at Point of Care. Mol. Cell. Probes. 2016, 30, 74–78. DOI: 10.1016/j.mcp.2016.01.009.
  • Daher, R. K.; Stewart, G.; Boissinot, M.; Boudreau, D. K.; Bergeron, M. G. Influence of Sequence Mismatches on the Specificity of Recombinase Polymerase Amplification Technology. Mol. Cell. Probes. 2015, 29, 116–121. DOI: 10.1016/j.mcp.2014.11.005.
  • Wee, E. J.; Ngo, T. H.; Trau, M. Colorimetric Detection of Both Total Genomic and Loci-Specific DNA Methylation from Limited DNA Inputs. Clin. Epigenetics. 2015, 7, 65. DOI: 10.1186/s13148-015-0100-6.
  • Aman, R.; Mahas, A.; Marsic, T.; Hassan, N.; Mahfouz, M. M. Efficient, Rapid, and Sensitive Detection of Plant RNA Viruses with One-Pot RT-RPA-CRISPR/Cas12a Assay. Front. Microbiol. 2020, 11, 610872. DOI: 10.3389/fmicb.2020.610872.
  • Kim, Y.; Yaseen, A. B.; Kishi, J. Y.; Hong, F.; Saka, S. K.; Sheng, K.; Gopalkrishnan, N.; Schaus, T. E.; Yin, P. Single-Strand RPA for Rapid and Sensitive Detection of SARS-CoV-2 RNA. medRxiv 2020, DOI: 10.1101/2020.08.17.20177006.
  • Eid, C.; Santiago, J. G. Assay for Listeria monocytogenes Cells in Whole Blood Using Isotachophoresis and Recombinase Polymerase amplification. Analyst 2016, 142, 48–54. DOI: 10.1039/C6AN02119K.
  • Rosser, A.; Rollinson, D.; Forrest, M.; Webster, B. Isothermal Recombinase Polymerase Amplification (RPA) of Schistosoma Haematobium DNA and Oligochromatographic Lateral Flow Detection. Parasit. Vectors. 2015, 8, 446. DOI: 10.1186/s13071-015-1055-3.
  • Krõlov, K.; Frolova, J.; Tudoran, O.; Suhorutsenko, J.; Lehto, T.; Sibul, H.; Mäger, I.; Laanpere, M.; Tulp, I.; Langel, Ü. Sensitive and Rapid Detection of Chlamydia trachomatis by Recombinase Polymerase Amplification Directly from Urine samples. J. Mol. Diagn. 2014, 16, 127–135. DOI: 10.1016/j.jmoldx.2013.08.003.
  • Liu, H-b.; Du, X-j.; Zang, Y.-X.; Li, P.; Wang, S. SERS-Based Lateral Flow Strip Biosensor for Simultaneous Detection of Listeria monocytogenes and Salmonella enterica Serotype Enteritidis. J Agric Food Chem .. 2017, 65, 10290–10299. DOI: 10.1021/acs.jafc.7b03957.
  • Liljander, A.; Yu, M.; O'Brien, E.; Heller, M.; Nepper, J. F.; Weibel, D. B.; Gluecks, I.; Younan, M.; Frey, J.; Falquet, L.; Jores, J. Field-Applicable Recombinase Polymerase Amplification Assay for Rapid Detection of Mycoplasma Capricolum Subsp. capripneumoniae. J. Clin. Microbiol. 2015, 53, 2810–2815. DOI: 10.1128/JCM.00623-15.
  • Chandu, D.; Paul, S.; Parker, M.; Dudin, Y.; King-Sitzes, J.; Perez, T.; Mittanck, D. W.; Shah, M.; Glenn, K. C.; Piepenburg, O. Development of a Rapid Point-of-Use DNA Test for the Screening of Genuity® Roundup Ready 2 Yield® Soybean in Seed Samples. Biomed Res Int 2016, 2016, 3145921. DOI: 10.1155/2016/3145921.
  • Oh, S. J.; Park, B. H.; Choi, G.; Seo, J. H.; Jung, J. H.; Choi, J. S.; Kim, D. H.; Seo, T. S. Fully Automated and Colorimetric Foodborne Pathogen Detection on an Integrated Centrifugal Microfluidic device. Lab Chip. 2016, 16, 1917–1926. DOI: 10.1039/C6LC00326E.
  • Wu, Y.-D.; Zhou, D.-H.; Zhang, L.-X.; Zheng, W.-B.; Ma, J.-G.; Wang, M.; Zhu, X.-Q.; Xu, M.-J. Recombinase Polymerase Amplification (RPA) Combined with Lateral Flow (LF) Strip for Equipment-Free Detection of Cryptosporidium Spp. oocysts in Dairy Cattle Feces. Parasitol. Res. 2016, 115, 3551–3555. DOI: 10.1007/s00436-016-5120-4.
  • TwistAmp® Liquid. https://www.ebiomall.cn/b107-twistdx/s10424-1-TwistAmp_Liquid.html. (access November 10, 2021).
  • TwistAmp® Lyophilised. https://www.ebiomall.cn/b107-twistdx/s10423-1-TwistAmp_Lyophilised.html. (access November 10, 2021).
  • TwistDx/TwistAmp® exo. https://www.ebiomall.cn/c428-RPA/product-101252.html. (access November 10, 2021).
  • TwistDx/TwistAmp® fpg. https://www.ebiomall.cn/c428-RPA/product-101250.html. (access November 10, 2021).
  • Wang, J.; Liu, L.; Wang, J.; Pang, X.; Yuan, W. Real-Time RPA Assay for Rapid Detection and Differentiation of Wild-Type Pseudorabies and gE-Deleted Vaccine Viruses. Anal. Biochem. 2018, 543, 122–127. DOI: 10.1016/j.ab.2017.12.012.
  • Choi, G.; Jung, J. H.; Park, B. H.; Oh, S. J.; Seo, J. H.; Choi, J. S.; Kim, D. H.; Seo, T. S. A Centrifugal Direct Recombinase Polymerase Amplification (direct-RPA) Microdevice for Multiplex and Real-Time Identification of Food Poisoning Bacteria. Lab Chip. 2016, 16, 2309–2316. DOI: 10.1039/C6LC00329J.
  • Kersting, S.; Rausch, V.; Bier, F. F.; von Nickisch-Rosenegk, M. Multiplex Isothermal Solid-Phase Recombinase Polymerase Amplification for the Specific and Fast DNA-Based Detection of Three Bacterial Pathogens. Microchim. Acta 2014, 181, 1715–1723. DOI: 10.1007/s00604-014-1198-5.
  • Crannell, Z.; Castellanos-Gonzalez, A.; Nair, G.; Mejia, R.; White, A. C.; Richards-Kortum, R. Multiplexed Recombinase Polymerase Amplification Assay to Detect Intestinal Protozoa. Anal. Chem. 2016, 88, 1610–1616. DOI: 10.1021/acs.analchem.5b03267.
  • >TwistDx/Twirla™ Portable Mixing Incubator/TW02Device/. https://www.ebiomall.cn/c428-RPA/product-101287.html. (access November 11, 2021).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.