844
Views
11
CrossRef citations to date
0
Altmetric
Review Articles

A Critical Review on Organic Small Fluorescent Probes for Monitoring Carbon Monoxide in Biology

ORCID Icon, , , &
Pages 1792-1806 | Published online: 03 Mar 2022

References

  • Omaye, S. T. Metabolic Modulation of Carbon Monoxide Toxicity. Toxicology 2002, 180, 139–150. DOI: 10.1016/S0300-483X(02)00387-6.
  • Prockop, L. D.; Chichkova, R. I. Carbon Monoxide Intoxication: An Updated Review. J. Neurol. Sci. 2007, 262, 122–130. DOI: 10.1016/j.jns.2007.06.037.
  • Lindell, K.; Weaver, M. D. Clinical Practice. Carbon Monoxide Poisoning. N. Engl. J. Med. 2009, 360, 1217–1225. DOI: 10.1056/NEJMcp0808891.
  • Wu, L. Y.; Wang, R. Carbon Monoxide: Endogenous Production, Physiological Functions, and Pharmacological Applications. Pharmacol. Rev. 2005, 57, 585–630. DOI: 10.1124/pr.57.4.3.
  • Verma, A.; Hirsch, D. J.; Glatt, C. E.; Ronnett, G. V.; Snyder, S. H. Carbon Monoxide: A Putative Neural Messenger. Science 1993, 259, 381–384. DOI: 10.1126/science.7678352.
  • Motterlini, R.; Otterbein, L. The Therapeutic Potential of Carbon Monoxide. Nat Rev Drug Discov. 2010, 9, 728–743. DOI: 10.1038/nrd3228.
  • García-Gallego, S.; Bernardes, G. J. L. Carbon-Monoxide-Releasing Molecules for the Delivery of Therapeutic CO in Vivo. Angew. Chem. Int. Ed. Engl. 2014, 53, 9712–9721. DOI: 10.1002/anie.201311225.
  • Romão, C. C.; Blättler, W. A.; Seixas, J. D.; Bernardes, G. J. L. Developing Drug Molecules for Therapy with Carbon Monoxide. Chem. Soc. Rev. 2012, 41, 3571–3583. DOI: 10.1039/c2cs15317c.
  • Feng, S. M.; Liu, D. D.; Feng, W. Y.; Feng, G. Q. Allyl Fluorescein Ethers as Promising Fluorescent Probes for Carbon Monoxide Imaging in Living Cells. Anal. Chem. 2017, 89, 3754–3760. DOI: 10.1021/acs.analchem.9b04752.
  • Lee, Y.; Kim, J. Simultaneous Electrochemical Detection of Nitric Oxide and Carbon Monoxide Generated from Mouse Kidney Organ Tissues. Anal. Chem. 2007, 79, 7669–7675. DOI: 10.1021/jo070650m.
  • Feng, W.; Feng, S.; Feng, G. CO Release with Ratiometric Fluorescence Changes: A Promising Visible-Light-Triggered Metal-Free CO-Releasing Molecule. Chem. Commun. (Camb.) 2019, 55, 8987–8990. DOI: 10.1039/c9cc04026a.
  • Morimoto, Y.; Durante, W.; Lancaster, D. G.; Klattenhoff, J.; Tittel, F. K. Real-Time Measurements of Endogenous CO Production from Vascular Cells Using an Ultrasensitive Laser Sensor. Am. J. Physiol. Heart Circ. Physiol. 2001, 280, H483–H488. DOI: 10.1152/ajpheart.2001.280.1.h483.
  • Park, S. S.; Kim, J.; Lee, Y. Improved Electrochemical Microsensor for the Real-Time Simultaneous Analysis of Endogenous Nitric Oxide and Carbon Monoxide Generation. Anal. Chem. 2012, 84, 1792–1796. DOI: 10.1021/ac2031628.
  • Marks, G. S.; Vreman, H. J.; McLaughlin, B. E.; Brien, J. F.; Nakatsu, K. Measurement of Endogenous Carbon Monoxide Formation in Biological Systems. Antioxid. Redox Signal. 2002, 4, 271–277. DOI: 10.1089/152308602753666325.
  • Duan, Q.; Jia, P.; Zhuang, Z.; Liu, C.; Zhang, X.; Wang, Z.; Sheng, W.; Li, Z.; Zhu, H.; Zhu, B.; Zhang, X. Rational Design of a Hepatoma-Specific Fluorescent Probe for HOCl and Its Bioimaging Applications in Living HepG2 Cells. Anal. Chem. 2019, 91, 2163–2168. DOI: 10.1021/acs.analchem.8b04726.
  • Zhu, B.; Wu, L.; Zhu, H.; Wang, Z.; Duan, Q.; Fang, Z.; Jia, P.; Li, Z.; Liu, C. A Highly Specific and Ultrasensitive Two-Photon Fluorescent Probe for Imaging Native Hypochlorous Acid in Living Cells. Sens. Actuat. B-Chem. 2018, 269, 1–7. DOI: 10.1016/j.snb.2018.04.115.
  • Chen, X. Q.; Wang, F.; Hyun, J. Y.; Wei, T. W.; Qiang, J.; Ren, X. T.; Shin, I.; Yoon, J. Y. Recent Progress in the Development of Fluorescent, Luminescent and Colorimetric Probes for Detection of Reactive Oxygen and Nitrogen Species. Chem. Soc. Rev. 2016, 45, 2976–3016. DOI: 10.1039/C6CS00192K.
  • Zhu, B.; Wang, Z.; Zhao, Z.; Shu, W.; Zhang, M.; Wu, L.; Liu, C.; Duan, Q.; Jia, P. A Simple Highly Selective and Sensitive Hydroquinone-Based Two-Photon Fluorescent Probe for Imaging Peroxynitrite in Live Cells. Sens. Actuat. B-Chem. 2018, 262, 380–385. DOI: 10.1016/j.snb.2018.01.203.
  • Feng, W.; Liu, D.; Zhai, Q.; Feng, G. Lighting up Carbon Monoxide in Living Cells by a Readily Available and Highly Sensitive Colorimetric and Fluorescent Probe. Sens. Actuat. B-Chem 2017, 240, 625–630. DOI: 10.1016/j.snb.2016.09.023.
  • Yang, M. W.; Fan, J. L.; Du, J. J.; Peng, X. J. Small-Molecule Fluorescent Probes for Imaging Gaseous Signaling Molecules: Current Progress and Future Implications. Chem. Sci. 2020, 11, 5127–5141. DOI: 10.1039/D0SC01482F.
  • Garner, A. L.; Song, F.; Koide, K. Enhancement of a Catalysis-Based Fluorometric Detection Method for Palladium through Rational Fine-Tuning of the Palladium Species. J. Am. Chem. Soc. 2009, 131, 5163–5171. DOI: 10.1021/ja808385a.
  • Feng, W. Y.; Li, M. X.; Sun, Y.; Feng, G. Q. Near-Infrared Fluorescent Turn-on Probe with a Remarkable Large Stokes Shift for Imaging Selenocysteine in Living Cells and Animals. Anal. Chem. 2017, 89, 6106–6112. DOI: 10.1021/acs.analchem.7b00824.
  • Li, M. X.; Feng, W. Y.; Zhai, Q. S.; Feng, G. Q. Selenocysteine Detection and Bioimaging in Living Cells by a Colorimetric and near-Infrared Fluorescent Turn-on Probe with a Large Stokes Shift. Biosens. Bioelectron. 2017, 87, 894–900. DOI: 10.1016/j.bios.2016.09.056.
  • Wang, L.; Chen, H.; Wang, H.; Wang, F.; Kambam, S.; Wang, Y.; Zhao, W.; Chen, X. A Fluorescent Probe with High Selectivity to Glutathione over Cysteine and Homocysteine Based on Positive Effect of Carboxyl on Nucleophilic Substitution in CTAB. Sens. Actuat. B-Chem. 2014, 192, 708–713. DOI: 10.1016/j.snb.2013.11.039.
  • Wang, P.; Wang, Y.; Li, N.; Huang, J. X.; Wang, Q. Q.; Gu, Y. Q. A Novel DCM-NBD Conjugate Fluorescent Probe for Discrimination of Cys/Hcy from GSH and Its Bioimaging Applications in Living Cells and Animals. Sens. Actuat. B-Chem. 2017, 245, 297–304. 10. DOI: 10.1016/j.snb.2017.01.127.
  • Tan, Y.; Zhang, L.; Man, K. H.; Peltier, R.; Chen, G. C.; Zhang, H. T.; Zhou, L. Y.; Wang, F.; Ho, D.; Yao, S. Q.; et al. Reaction-Based off-on near-Infrared Fluorescent Probe for Imaging Alkaline Phosphatase Activity in Living Cells and Mice. ACS Appl. Mater. Interfaces 2017, 9, 6796–6830. DOI: 10.1021/acsami.6b14176.
  • Biswas, S.; McCullough, B. S.; Ma, E. S.; LaJoie, D.; Russell, C. W.; Garrett Brown, D.; Round, J. L.; Ullman, K. S.; Mulvey, M. A.; Barrios, A. M. Dual Colorimetric and Fluorogenic Probes for Visualizing Tyrosine Phosphatase Activity. Chem. Commun. (Camb.) 2017, 53, 2233–2236. DOI: 10.1039/C6CC09204G.
  • Yan, L. Q.; Nan, D.; Lin, C.; Wan, Y.; Pan, Q.; Qi, Z. J. A near-Infrared Fluorescent Probe for Rapid Detection of Carbon Monoxide in Living Cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 202, 284–289. DOI: 10.1016/j.saa.2018.05.059.
  • Liu, Y.; Wang, W. X.; Tian, Y.; Tan, M.; Du, Y.; Jie, J.; Li, C. Y. A near-Infrared Fluorescence Probe with a Large Stokes Shift for Detecting Carbon Monoxide in Living Cells and Mice. Dyes. Pigm 2020, 180, 108517. DOI: 10.1016/j.dyepig.2020.108517.
  • Zhang, S. Q.; Chen, D. W.; Yan, L. Q.; Xie, Y.; Mu, X. Y.; Zhu, J. B. A near-Infrared Fluorescence Probe for Hydrazine Based on Dicyanoisophorone. Microchem. J. 2020, 157, 105066. DOI: 10.1016/j.microc.2020.105066.
  • Gong, S. Y.; Hong, J. X.; Zhou, E. B.; Feng, G. Q. A near-Infrared Fluorescent Probe for Imaging Endogenous Carbon Monoxide in Living Systems with a Large Stokes Shift. Talanta 2019, 201, 40–45. DOI: 10.1016/j.talanta.2019.03.111.
  • Deng, Y. Z.; Hong, J. X.; Zhou, E. B.; Feng, G. Q. Near-Infrared Fluorescent Probe with a Super Large Stokes Shift for Tracking CO in Living Systems Based on a Novel Coumarin-Dicyanoisophorone Hybrid. Dyes Pigm. 2019, 170, 107634. DOI: 10.1016/j.dyepig.2019.107634.
  • Tian, Y.; Jiang, W. L.; Wang, W. X.; Peng, J.; Li, X. M.; Li, Y. F.; Li, C. Y. The Construction of a near-Infrared Fluorescent Probe with Dual Advantages for Imaging Carbon Monoxide in Cells and in Vivo. Analyst 2021, 146, 118–123. DOI: 10.1039/d0an01719a.
  • Chen, J.; Gan, Y. B.; Hong, S.; Yin, G. X.; Zhou, L.; Wang, C. Z.; Fu, Y. C.; Li, H. T.; Yin, P. A Novel Red Emission Fluorescent Probe for Monitoring Carbon Monoxide in Living Cells and Zebrafish. Anal Methods 2021, 13, 2871–2877. DOI: 10.1039/D1AY00704A.
  • Zhang, S. Q.; Xie, Y.; Yan, L. Q. Ultra-Fast and Visual Detection of Hydrazine Hydrate Based on a Simple Coumarin Derivative. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 230, 118028 DOI: 10.1016/j.saa.2020.118028.
  • Wang, Z.; Zhao, Z.; Liu, C.; Geng, Z.; Duan, Q.; Jia, P.; Li, Z.; Zhu, H.; Zhu, B.; Sheng, W. A Long-Wavelength Ultrasensitive Colorimetric Fluorescent Probe for Carbon Monoxide Detection in Living Cells . Photochem. Photobiol. Sci. 2019, 18, 1851–1857. DOI: 10.1039/C9PP00222G.
  • Bidisha, B.; Mangili, V.; Sougata, S.; Khyati, G.; Sucheta, G.; Swarup, C.; Prosenjit, M.; Subrata, G. Long Range Emissive Water-Soluble Fluorogenic Molecular Platform for Imaging Carbon Monoxide in Live Cells. ACS. Appl. Bio. Mater. 2019, 2, 5427–5433. DOI: 10.1021/acsabm.9b00736.
  • Zhang, J.; Wang, J.; Liu, J.; Ning, L.; Zhu, X.; Yu, B.; Liu, X.; Yao, X.; Zhang, H. Near-Infrared and Naked-Eye Fluorescence Probe for Direct and Highly Selective Detection of Cysteine and Its Application in Living Cells. Anal. Chem. 2015, 87, 4856–4863. DOI: 10.1021/acs.analchem.5b00377.
  • Feng, W. Y.; Feng, G. Q. A Readily Available Colorimetric and near-Infrared Fluorescent Turn-on Probe for Detection of Carbon Monoxide in Living Cells and Animals. Sens. Actuat. B-Chem 2018, ‏255, 2314–2320. DOI: 10.1016/j.snb.2017.09.049.
  • Li, S. J.; Zhou, D. Y.; Li, Y. F.; Yang, B.; Ou-Yang, J.; Jie, J.; Liu, J.; Li, C. Y. Mitochondria-Targeted near-Infrared Fluorescent Probe for the Detection of Carbon Monoxide in Vivo. Talanta 2018, 188, 691–700. DOI: 10.1016/j.talanta.2018.06.046.
  • Li, W. X.; Li, R.; Chen, R.; Liang, X.; Song, W. H.; Lin, W. Y. Activatable Photoacoustic Probe for in Situ Imaging of Endogenous Carbon Monoxide in the Murine Inflammation Model. Anal. Chem. 2021, 93, 8978–8985. DOI: 10.1021/acs.analchem.1c01568.
  • Zhang, Y. Y.; Kong, X. Q.; Tang, Y. H.; Li, M.; Yin, Y. G.; Lin, W. Y. The Development of a Hemicyanine-Based Ratiometric CO Fluorescent Probe with a Long Emission Wavelength and Its Applications for Imaging CO in Vitro and in Vivo. New J. Chem. 2020, 44, 12107–12112. DOI: 10.1039/D0NJ00677G.
  • Xia, Y. S.; Yan, L.; Mao, G. J.; Jiang, W. L.; Wang, W. X.; Li, Y. F.; Jiang, Y. Q.; Li, C. Y. A Novel HPQ-Based Fluorescent Probe for the Visualization of Carbon Monoxide in Zebrafish. Sens. Actuat. B-Chem 2021, 340, 129920. DOI: 10.1016/j.snb.2021.129920.
  • Feng, W. Y.; Liu, D. D.; Feng, S. M.; Feng, G. Q. Readily Available Fluorescent Probe for Carbon Monoxide Imaging in Living Cells. Anal. Chem. 2016, 88, 10648–10653. DOI: 10.1021/acs.analchem.6b03073.
  • Hong, J. X.; Xia, Q. F.; Zhou, E. B.; Feng, G. Q. NIR Fluorescent Probe Based on a Modified Rhodol-Dye with Good Water Solubility and Large Stokes Shift for Monitoring CO in Living Systems. Talanta 2020, 215, 120914 DOI: 10.1016/j.talanta.2020.120914.
  • Liu, K. Y.; Kong, X. Q.; Ma, Y. Y.; Lin, W. Y. Rational Design of a Robust Fluorescent Probe for the Detection of Endogenous Carbon Monoxide in Living Zebrafish Embryos and Mouse Tissue. Anal. Chem. 2017, 56, 13674–13492. DOI: 10.1002/anie.201707518.
  • Wang, Z. K.; Zhao, Z. Y.; Wang, R. K.; Yuan, R. F.; Liu, C. Y.; Duan, Q. X.; Zhu, W. W.; Li, X. Y.; Zhu, B. C. A Mitochondria-Targetable Colorimetric and Far-Red Fluorescent Probe for the Sensitive Detection of Carbon Monoxide in Living Cells. Anal. Methods 2019, 11, 288–295. DOI: 10.1039/C8AY02152J.
  • Liu, M.; Xiao, R. S.; Feng, B.; Fan, D. Y.; Huang, S.; Bi, A. Y.; Zhong, S. B.; Feng, X. P.; Liu, S.; Zeng, W. B. Elegant Cooperation of AIE, ESIPT and ICT Effects into Tetraarylimidazole-Based Fluorophore and Its Tuning for Ratiometric Detection of Carbon Monoxide. Sens. Actuat. B-Chem 2021, 342, 130038. DOI: 10.1016/j.snb.2021.130038.
  • Genggongwo, S.; Taeseung, Y.; Seoncheol, C.; Seulgi, K.; Muhammad, Y.; Nisar, A.; Doseok, K.; Hyun-Wook, K.; Kwang, S. K. Turn-on and Turn-off Fluorescent Probes for Carbon Monoxide Detection and Blood Carboxyhemoglobin Determination. ACS. Sens. 2018, 3, 1102–1108. DOI: 10.1021/acssensors.8b00083.
  • Tian, X. D.; Liu, X. D.; Wang, A.; Lau, C. W.; Lu, J. Z. Bioluminescence Imaging of Carbon Monoxide in Living Cells and Nude Mice Based on Pd0-Mediated Tsuji-Trost Reaction. Anal. Chem. 2018, 90, 5951–5958. DOI: 10.1021/acs.analchem.8b01102.
  • Wang, J. G.; Li, C. B.; Chen, Q. Q.; Li, H. F.; Zhou, L. H.; Jiang, X.; Shi, M. X.; Zhang, P. F.; Jiang, G. Y.; Tang, B. Z. An Easily Available Ratiometric Reaction-Based AIE Probe for Carbon Monoxide Light-up Imaging. Anal. Chem. 2019, 91, 9388–9392. DOI: 10.1021/acs.analchem.9b02691.
  • Zhou, E. B.; Gong, S. Y.; Feng, G. Q. Rapid Detection of CO in Vitro and in Vivo with a Ratiometric Probe Showing near-Infrared Turn-on Fluorescence, Large Stokes Shift, and High Signal-to-Noise Ratio. Sens. Actuat. B-Chem 2019, 301, 127075. DOI: 10.1016/j.snb.2019.127075.
  • Zhang, W. D.; Wang, Y.; Dong, J. Q.; Zhang, Y. G.; Zhu, J. W.; Gao, J. B. Rational Design of Stable near-Infrared Cyanine-Based Probe with Remarkable Large Stokes Shift for Monitoring Carbon Monoxide in Living Cells and in Vivo. Dyes Pigm. 2019, 171, 107753. DOI: 10.1016/j.dyepig.2019.107753.
  • Liu, Y.; Li, K.; Xie, K. X.; Li, L. L.; Yu, K. K.; Wang, X.; Yu, X. Q. A Water-Soluble and Fast-Response Mitochondria-Targeted Fluorescent Probe for Colorimetric and Ratiometric Sensing of Endogenously Generated SO2 Derivatives in Living Cells . Chem. Commun. (Camb.) 2016, 52, 3430–3433. DOI: 10.1039/C5CC10505F.
  • Zhang, X.; Yan, Y. C.; Hang, Y. D.; Wang, J.; Hu, J. L.; Tian, H. A Phenazine-Barbituric Acid Based Colorimetric and Ratiometric near-Infrared Fluorescent Probe for Sensitively Differentiating Biothiols and Its Application in TiO2 Sensor Devices. Chem. Commun. (Camb.) 2017, 53, 5760–5763. DOI: 10.1039/C7CC01925D.
  • Chang, M. J.; Kim, K.; Park, K. S.; Kang, J. S.; Lim, C. S.; Kim, H. M.; Kang, C. H.; Lee, M. H. High-Depth Fluorescence Imaging Using a Two-Photon FRET System for Mitochondrial pH in Live Cells and Tissues. Chem. Commun. (Camb.) 2018, 54, 13531–13534. DOI: 10.1039/C8CC07934J.
  • Xu, Z.; Xu, L. Fluorescent Probes for the Selective Detection of Chemical Species inside Mitochondria. Chem. Commun. (Camb.) 2016, 52, 1094–1119. DOI: 10.1039/c5cc09248e.
  • Gong, S.; Zheng, Z.; Guan, X.; Feng, S.; Feng, G. Near-Infrared Mitochondria-Targetable Fluorescent Probe for High-Contrast Bioimaging of H2S. Anal. Chem. 2021, 93, 5700–5708. DOI: 10.1021/acs.analchem.0c04639.
  • Zang, S. P.; Shu, W.; Shen, T. J.; Gao, C. C.; Tian, Y.; Jing, J.; Zhang, X. L. Palladium-Triggered Ratiometric Probe Reveals CO's Cytoprotective Effects in Mitochondria. Dyes Pigm. 2020, 173, 107861. DOI: 10.1016/j.dyepig.2019.107861.
  • Du, F. K.; Qu, Y. T.; Li, M. R.; Tan, X. C. Mitochondria-Targetable Ratiometric Fluorescence Probe for Carbon Monoxide Based on Naphthalimide Derivatives. Anal. Bioanal. Chem. 2021, 413, 1395–1403. DOI: 10.1007/s00216-020-03103-8.
  • Gong, S.; Zhou, E.; Liu, Y.; Gui, Z.; Feng, G. A Pd2+-Free Near-Infrared Fluorescent Probe Based on Allyl Ether Isomerization for Tracking CORM-3 with High Contrast Imaging in Living Systems. Anal. Chem. 2022, 94, 2042–2047. DOI: 10.1021/acs.analchem.1c04082.
  • Zheng, Z.; Feng, S.; Gong, S.; Feng, G. Golgi-Targetable Fluorescent Probe for Ratiometric Imaging of CO in Cells and Zebrafish. Sens. Actuat. B-Chem 2021, 347, 130631. DOI: 10.1016/j.snb.2021.130631.
  • Zhou, E. B.; Gong, S. Y.; Hong, J. X.; Feng, G. Q. Development of a New Ratiometric Probe with near-Infrared Fluorescence and a Large Stokes Shift for Detection of Gasotransmitter CO in Living Cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 227, 117657 DOI: 10.1016/j.saa.2019.117657.
  • Jiang, W. L.; Wang, W. X.; Mao, G. J.; Yan, L.; Du, Y.; Li, Y. F.; Li, C. Y. Construction of NIR and Ratiometric Fluorescent Probe for Monitoring Carbon Monoxide under Oxidative Stress in Zebrafish. Anal. Chem. 2021, 93, 2510–2518. DOI: 10.1021/acs.analchem.0c04537.
  • Toscani, A.; Marín-Hernández, C.; Moragues, M. E.; Sancenón, F.; Dingwall, P.; Brown, N. J.; Martínez-Máñez, R.; White, A. J. P.; Wilton-Ely, J. D. E. T. Ruthenium(II) and Osmium(II) vinyl Complexes as Highly Sensitive and Selective Chromogenic and Fluorogenic Probes for the Sensing of Carbon Monoxide in Air. Chemistry 2015, 21, 14529–14538. DOI: 10.1002/chem.201501843.
  • Torre, C. D. L.; Toscani, A.; Marín-Hernández, C.; Robson, J. A.; Terencio, M. C.; White, A. J. P.; Alcaraz, M. J.; Wilton-Ely, J. D. E. T.; Martínez-Máñez, R.; Sancenón, F. Ex Vivo Tracking of Endogenous CO with a Ruthenium(II) Complex. J. Am. Chem. Soc. 2017, 139, 18484–18487. DOI: 10.1021/jacs.7b11158.
  • Robson, J. A.; Kubánková, M.; Bond, T.; Hendley, R. A.; White, A. J. P.; Kuimova, M. K.; Wilton-Ely, J. D. E. T. Simultaneous Detection of Carbon Monoxide and Viscosity Changes in Cells. Angew. Chem. Int. Ed. Engl. 2020, 59, 21431–21435. DOI: 10.1002/anie.202008224.
  • Liu, X.; Li, N.; Li, M.; Chen, H.; Zhang, N. N.; Wang, Y. L.; Zheng, K. b. Recent Progress in Fluorescent Probes for Detection of Carbonyl Species: Formaldehyde, Carbon Monoxide and Phosgene. Coordin. Chem. Rev 2020, 404, 213109. DOI: 10.1016/j.ccr.2019.213109.
  • Liu, K. Y.; Kong, X. Q.; Ma, Y. Y.; Lin, W. Y. Rational Design of a Robust Fluorescent Probe for the Detection of Endogenous Carbon Monoxide in Living Zebrafish Embryos and Mouse Tissue. Angew. Chem. Int. Ed. Engl. 2017, 56, 13489–13492. DOI: 10.1002/anie.201707518.
  • Xu, S.; Liu, H.-W.; Yin, X.; Yuan, L.; Huan, S.-Y.; Zhang, X.-B. A Cell Membrane-Anchored Fluorescent Probe for Monitoring Carbon Monoxide Release from Living Cells. Chem. Sci. 2019, 10, 320–325. DOI: 10.1039/C8SC03584A.
  • Sun, M. T.; Yu, H.; Zhang, K.; Wang, S. H.; Tasawar, H.; Ahmed, A.; Huang, D. J. Palladacycle Based Fluorescence Turn-On Probe for Sensitive Detection of Carbon Monoxide. ACS Sens. 2018, 3, 285–289. DOI: 10.1021/acssensors.7b00835.
  • Madea, D.; Martínek, M.; Muchová, L.; Váňa, J.; Vítek, L.; Klán, P. Structural Modifications of Nile Red Carbon Monoxide Fluorescent Probe: Sensing Mechanism and Applications. J. Org. Chem. 2020, 85, 3473–3489. DOI: DOI: 10.1021/acs.joc.9b03217.
  • Li, Y.; Wang, X.; Yang, J.; Xie, X. L.; Li, M. M.; Niu, J. Y.; Tong, L. L.; Tang, B. Fluorescent Probe Based on Azobenzene-Cyclopalladium for the Selective Imaging of Endogenous Carbon Monoxide under Hypoxia Conditions. Anal. Chem. 2016, 88, 11154–11159. DOI: 10.1021/acs.analchem.6b03376.
  • Johannes, M.; Denis, H.; Kohei, U.; Jonah, W. J.; Ryan, R. W.; Kevin, J. B.; Samir, P. R.; Thomas, F. B.; Minoru, S.; Brian, W. M.; Christopher, J. C. Ligand-Directed Approach to Activity-Based Sensing: Developing Palladacycle Fluorescent Probes That Enable Endogenous Carbon Monoxide Detection. J. Am. Chem. Soc. 2020, 142, 15917–15930. DOI: 10.1021/jacs.0c06405.
  • Liu, C.; Wu, H.; Wang, Z.; Shao, C.; Zhu, B.; Zhang, X. A Fast-Response, Highly Sensitive and Selective Fluorescent Probe for the Ratiometric Imaging of Nitroxyl in Living Cells. Chem. Commun. (Camb.) 2014, 50, 6013–6016. DOI: 10.1039/C4CC00980K.
  • Anjong, F. T.; Wanyoung, L.; Maxine, M. F.; Sohyun, L.; Sungsu, P.; Jinheung, K. Palladium Probe Consisting of Naphthalimide and Ethylenediamine for Selective Turn-On Sensing of CO and Cell Imaging. Inorg. Chem. 2021, 60, 7108–7114. DOI: 10.1021/acs.inorgchem.1c00091.
  • Subrata, K. S.; Nimai, C. S. A New Naphthalimide-Pd(II) Complex as a Light-up Fluorescent Chemosensor for Selective Detection of Carbon Monoxide in Aqueous Medium. Inorg. Chim. Acta 2020, 517, 120204. DOI: 10.1016/j.ica.2020.120204.
  • Sujay, M.; Arnab, S.; ; Pabitra, C.; Koushik, D. Recent Advances in Fluorescence Light-Up Endogenous and Exogenous Carbon Monoxide Detection in Biology. Chem-Asian. J 2020, 15, 3162–3179. DOI: 10.1002/asia.202000892.
  • Biswajit, D.; Somenath, L.; Ayan, P.; Ejaj, A.; Sushil, M.; Jatindra, N. B.; Koushik, D.; Pabitra, C. A Naphthalimide-Based Fluorescence “Turn-On” Chemosensor for Highly Selective Detection of Carbon Monoxide: Imaging Applications in Living Cells. New. J. Chem. 2018, 42, 13497–13502. DOI: 10.1039/C8NJ02552E.
  • Koushik, D.; Somenath, L.; Ayan, P.; Priya, R.; Swadhin, K. S.; Gobinda, C. S.; Pabitra, C. A New Lysosome-Targetable Turn-On Fluorogenic Probe for Carbon Monoxide Imaging in Living Cells. Anal. Chem. 2018, 90, 2933–2938. DOI: 10.1021/acs.analchem.7b05331.
  • Yue, L. Z.; Tang, Y. H.; Huang, H. W.; Song, W. H.; Lin, W. Y. A Fluorogenic Probe for Detecting CO with the Potential Integration of Diagnosis and Therapy (IDT) for Cancer. Sensor. Actuat. B-Chem 2021, 344, 130245. DOI: 10.1016/j.snb.2021.130177.
  • Arnab, S.; Chandrani, F.; Sujaya, C.; Ejaj, A.; Rakesh, K.; Somasri, D.; Pabitra, C.; Koushik, D. A Nuclear-Localized Naphthalimide-Based Fluorescent Light-up Probe for Selective Detection of Carbon Monoxide in Living Cells. Chem. Res. Toxicol. 2020, 33, 651. DOI: 10.1021/acs.chemrestox.9b00462.
  • Zhang, Y. Y.; Tang, Y. H.; Kong, X. Q.; Lin, W. Y. An Endoplasmic Reticulum Targetable Turn-on Fluorescence Probe for Imaging Application of Carbon Monoxide in Living Cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 247, 119150 DOI: 10.1016/j.saa.2020.119150.
  • Wang, Z. K.; Liu, C. Y.; Wang, X.; Duan, Qi, X.; Jia, P.; Zhu, H. C.; Li, Z. L.; Zhang, X.; Ren, X. H.; Zhu, B. C.; et al. A Metal-Free near-Infrared Fluorescent Probe for Tracking the Glucose-Induced Fluctuations of Carbon Monoxide in Living Cells and Zebrafish. Sens. Actuat. B-Chem. 2019, 291, 329–336. DOI: 10.1016/j.snb.2019.04.084.
  • Feng, W. Y.; Feng, S. M.; Feng, G. Q. A Fluorescent ESIPT Probe for Imaging CO-Releasing Molecule-3 in Living Systems. Anal. Chem. 2019, 91, 8602–8606. DOI: 10.1021/acs.analchem.9b01908.
  • Li, Z. M.; Jia, X.; Zhang, P. Z.; Guo, Z. B.; Zhao, H.; Li, X. L.; Wei, C. A Hepatocyte-Specific Fluorescent Probe for Imaging Endogenous Carbon Monoxide Release in Vitro and in Vivo. Sens. Actuat. B-Chem. 2021, 344, 130177. DOI: 10.1016/j.snb.2021.130177.
  • Zhang, S. Q.; Mu, X. Y.; Zhu, J. B.; Yan, L. Q. A Metal-Free Coumarin-Based Fluorescent Probe for the Turn-on Monitoring of Carbon Monoxide in an Aqueous Solution and Living Cells. Analyst 2021, 146, 1289–1294. DOI: 10.1039/D0AN02107E.
  • Li, Z. L.; Yu, C.; Chen, Y. N.; ; Zhuang, Z. H.; Tian, B.; Liu, C. Y.; Jia, P.; Zhu, H. C.; Yu, Y. M.; Zhang, X.; et al. A Novel Pd2+-Free Highly Selective and Uultrasensitive Fluorescent Probe for Detecting CO-Releasing Molecule-2 in Live Cells and Zebrafish. Dyes Pigm.. 2020, 174, 108040. DOI: 10.1016/j.dyepig.2019.108040.
  • Tang, Z. X.; Song, B.; Ma, H.; Luo, T. L.; Guo, L. Y.; Yuan, J. L. Mitochondria-Targetable Ratiometric Time-Gated Luminescence Probe for Carbon Monoxide Based on Lanthanide Complexes. Anal. Chem. 2019, 91, 2939–2946. DOI: 10.1021/acs.analchem.8b05127.
  • Sarkar, S.; Lee, H.; Ryu, H. G.; Singha, S.; Lee, Y. M.; Reo, Y. J.; Jun, Y. W.; Kim, K. H.; Kim, W. J.; Ahn, K. H. A Study on Hypoxia Susceptibility of Organ Tissues by Fluorescence Imaging with a Ratiometric Nitroreductase Probe. ACS Sens. 2021, 6, 148–155. DOI: 10.1021/acssensors.0c01989.
  • Zhou, E. B.; Gong, S. Y.; Xia, Q. F.; Feng, G. Q. In Vivo Imaging and Tracking Carbon Monoxide-Releasing Molecule-3 with an NIR Fluorescent Probe . ACS Sens. 2021, 6, 1312–1320. DOI: 10.1021/acssensors.0c02624.
  • Li, Y.; Sun, Y.; Li, J.; Su, Q.; Yuan, W.; Dai, Y.; Han, C.; Wang, Q.; Feng, W.; Li, F. Ultrasensitive Near-infrared Fluorescence-Enhanced Probe for in Vivo Nitroreductase Imaging . J. Am. Chem. Soc. 2015, 137, 6407–6416. DOI: 10.1021/jacs.5b04097.
  • Yuan, Z.; Yang, X.; Cruz, L. K. D. L.; Wang, B. Nitro Reduction-Based Fluorescent Probes for Carbon Monoxide Require Reactivity Involving a Ruthenium Carbonyl Moiety. Chem. Commun. (Camb.) 2020, 56, 2190–2193. DOI: 10.1039/c9cc08296d.
  • Zhang, C. X.; Xie, H.; Zhan, T. X.; Zhang, J.; Chen, B. C.; Qian, Z. S.; Zhang, G. L.; Zhang, W. F.; Zhou, J. A New Mitochondrion Targetable Fluorescent Probe for Carbon Monoxide-Specific Detection and Live Cell Imaging. Chem. Commun. (Camb.) 2019, 55, 9444–9447. DOI: 10.1039/c9cc03909k.
  • Qi, Q. K.; Chi, W. J.; Li, Y. Y.; Qiao, Q. L.; Chen, J.; Miao, L.; Zhang, Y.; Li, J.; Ji, W.; ; Xu, T.; et al. A H-Bond Strategy to Develop Acid-Resistant Photoswitchable Rhodamine Spirolactams for Super-Resolution Single-Molecule Localization Microscopy. Chem. Sci. 2019, 10, 4914–4922. DOI: 10.1039/C9SC01284B.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.