785
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Surface-Enhanced Raman Spectroscopy and Electrochemistry: The Ultimate Chemical Sensing and Manipulation Combination

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 110-134 | Published online: 18 Apr 2022

References

  • Ma, C.; Cao, Y.; Gou, X.; Zhu, J.-J. Recent Progress in Electrochemiluminescence Sensing and Imaging. Anal. Chem. 2020, 92, 431–454. DOI: 10.1021/acs.analchem.9b04947.
  • Ronspees, A. T.; Thorgaard, S. N. Blocking Electrochemical Collisions of Single E. Coli and B. Subtilis Bacteria at Ultramicroelectrodes Elucidated Using Simultaneous Fluorescence Microscopy. Electrochim. Acta 2018, 278, 412–420. DOI: 10.1016/j.electacta.2018.05.006.
  • Yuan, T.; Wang, W. Studying the Electrochemistry of Single Nanoparticles with Surface Plasmon Resonance Microscopy. Curr. Opin. Electrochem. 2017, 6, 17–22. DOI: 10.1016/j.coelec.2017.06.009.
  • Lynk, T. P.; Sit, C. S.; Brosseau, C. L. Electrochemical Surface-Enhanced Raman Spectroscopy as a Platform for Bacterial Detection and Identification. Anal. Chem. 2018, 90, 12639–12646. DOI: 10.1021/acs.analchem.8b02806.
  • Chen, Z.; Jiang, S.; Kang, G.; Nguyen, D.; Schatz, G. C.; Van Duyne, R. P. Operando Characterization of Iron Phthalocyanine Deactivation during Oxygen Reduction Reaction Using Electrochemical Tip-Enhanced Raman Spectroscopy. J. Am. Chem. Soc. 2019, 141, 15684–15692. DOI: 10.1021/jacs.9b07979.
  • Ji-Yang, J.-Y.; Dong, J.-C.; Vinod Kumar, V.; Li, J.-F.; Tian, Z.-Q. Probing Electrochemical Interfaces Using Shell-Isolated Nanoparticles-Enhanced Raman Spectroscopy. Curr. Opin. Electrochem. 2017, 1, 16–21. DOI: 10.1016/j.coelec.2016.12.009.
  • Strange, L. E.; Yadav, J.; Garg, S.; Shinde, P. S.; Hill, J. W.; Hill, C. M.; Kung, P.; Pan, S. Investigating the Redox Properties of Two-Dimensional MoS2 Using Photoluminescence Spectroelectrochemistry and Scanning Electrochemical Cell Microscopy. J. Phys. Chem. Lett. 2020, 11, 3488–3494. DOI: 10.1021/acs.jpclett.0c00769.
  • Jing, C.; Long, Y. Observing Electrochemistry on Single Plasmonic Nanoparticles. Electrochem. Sci. Adv. 2021, 2021, e2100115. DOI: 10.1002/elsa.202100115.
  • Wang, Y.; Cao, Z.; Yang, Q.; Guo, W.; Su, B. Optical Methods for Studying Local Electrochemical Reactions with Spatial Resolution: A Critical Review. Anal. Chim. Acta. 2019, 1074, 1–15. DOI: 10.1016/j.aca.2019.02.053.
  • Shi, Y.; Wang, J.; Wang, C.; Zhai, T.-T.; Bao, W.-J.; Xu, J.-J.; Xia, X.-H.; Chen, H.-Y. Hot Electron of Au Nanorods Activates the Electrocatalysis of Hydrogen Evolution on MoS2 Nanosheets. J. Am. Chem. Soc. 2015, 137, 7365–7370. DOI: 10.1021/jacs.5b01732.
  • Zanut, A.; Fiorani, A.; Canola, S.; Saito, T.; Ziebart, N.; Rapino, S.; Rebeccani, S.; Barbon, A.; Irie, T.; Josel, H.-P.; et al. Insights into the Mechanism of Coreactant Electrochemiluminescence Facilitating Enhanced Bioanalytical Performance. Nat. Commun. 2020, 11, 2668. DOI: 10.1038/s41467-020-16476-2.
  • Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman Spectra of Pyridine Adsorbed at a Silver Electrode. Chem. Phys. Lett 1974, 26, 163–166. DOI: 10.1016/0009-2614(74)85388-1.
  • Lajevardi Esfahani, S.; Rouhani, S.; Ranjbar, Z. Layer-by-Layer Assembly of Electroactive Dye/LDHs Nanoplatelet Matrix Film for Advanced Dual Electro-Optical Sensing Applications. Nanoscale Res. Lett. 2020, 15, 210. DOI: 10.1186/s11671-020-03442-6.
  • Martínez-Periñán, E.; Gutiérrez-Sánchez, C.; García-Mendiola, T.; Lorenzo, E. Electrochemiluminescence Biosensors Using Screen-Printed Electrodes. Biosensors 2020, 10, 118. DOI: 10.3390/bios10090118.
  • Zhai, Y.; Zhu, Z.; Zhou, S.; Zhu, C.; Dong, S. Recent Advances in Spectroelectrochemistry. Nanoscale 2018, 10, 3089–3111. DOI: 10.1039/c7nr07803j.
  • Wang, C.; Shi, Y.; Yang, D.-R.; Xia, X.-H. Combining Plasmonics and Electrochemistry at the Nanoscale. Curr. Opin. Electrochem. 2018, 7, 95–102. DOI: 10.1016/j.coelec.2017.11.001.
  • Eltzov, E.; Cosnier, S.; Marks, R. S. Biosensors Based on Combined Optical and Electrochemical Transduction for Molecular Diagnostics. Expert Rev. Mol. Diagn. 2011, 11, 533–546. DOI: 10.1586/erm.11.38.
  • Juan-Colás, J.; Johnson, S.; Krauss, T. F. Dual-Mode Electro-Optical Techniques for Biosensing Applications: A Review. Sensors 2017, 17, 2047. DOI: 10.3390/s17092047.
  • Moldovan, R.; Vereshchagina, E.; Milenko, K.; Iacob, B.-C.; Bodoki, A. E.; Falamas, A.; Tosa, N.; Muntean, C. M.; Farcău, C.; Bodoki, E. Review on Combining Surface-Enhanced Raman Spectroscopy and Electrochemistry for Analytical Applications. Anal. Chim. Acta 2021, 2021, 339250. noDOI: 10.1016/j.aca.2021.339250.
  • Bandodkar, A. J.; Wang, J. Non-Invasive Wearable Electrochemical Sensors: A Review. Trends Biotechnol. 2014, 32, 363–371. DOI: 10.1016/j.tibtech.2014.04.005.
  • Ahmad, Z. Corrosion Kinetics. In Principles of Corrosion Engineering and Corrosion Control; Elsevier: New York, NY, 2006; pp 57–119.
  • Job, R. Electrochemical Energy Storage: Physics and Chemistry of Batteries; De Gruyter: Berlin, Germany, 2020. DOI: 10.1515/9783110484427.
  • Mitra, C. K.; Prasad, M. N. V. Basic Electrochemistry Tools in Environmental Applications. In Electrokinetic Remediation for Environmental Security and Sustainability; Wiley: Hoboken, NJ, 2021, pp 35–60. DOI: 10.1002/9781119670186.ch2.
  • Wang, J. Analytical Electrochemistry, 3rd Ed.; Wiley: Hoboken, NJ, 2006.
  • Bard, A. J.; Faulkner, L. R.; White, H. S. Electrochemical Methods: Fundamentals and Applications; Wiley: Hoboken, NJ, 2022.
  • Zanello, P. Inorganic Electrochemistry: Theory, Practice and Application; Royal Society of Chemistry: London, UK, 2007.
  • Bansod, B.; Kumar, T.; Thakur, R.; Rana, S.; Singh, I. A Review on Various Electrochemical Techniques for Heavy Metal Ions Detection with Different Sensing Platforms. Biosens. Bioelectron. 2017, 94, 443–455. DOI: 10.1016/j.bios.2017.03.031.
  • Kimmel, D. W.; LeBlanc, G.; Meschievitz, M. E.; Cliffel, D. E. Electrochemical Sensors and Biosensors. Anal. Chem. 2012, 84, 685–707. DOI: 10.1021/ac202878q.
  • Ding, R.; Krikstolaityte, V.; Lisak, G. Inorganic Salt Modified Paper Substrates Utilized in Paper Based Microfluidic Sampling for Potentiometric Determination of Heavy Metals. Sens. Actuators B Chem 2019, 290, 347–356. DOI: 10.1016/j.snb.2019.03.079.
  • Wang, H.; Yuan, B.; Yin, T.; Qin, W. Alternative Coulometric Signal Readout Based on a Solid-Contact Ion-Selective Electrode for Detection of Nitrate. Anal. Chim. Acta. 2020, 1129, 136–142. DOI: 10.1016/j.aca.2020.07.019.
  • Nehru, R.; Hsu, Y.-F.; Wang, S.-F.; Dong, C.-D.; Govindasamy, M.; Habila, M. A.; AlMasoud, N. Graphene Oxide@Ce-Doped TiO Nanoparticles as Electrocatalyst Materials for Voltammetric Detection of Hazardous Methyl Parathion. Mikrochim. Acta 2021, 188, 216.
  • Dabhade, A.; Jayaraman, S.; Paramasivan, B. Development of Glucose Oxidase-Chitosan Immobilized Paper Biosensor Using Screen-Printed Electrode for Amperometric Detection of Cr(VI) in Water. 3 Biotech 2021, 11, 183. DOI: 10.1007/s13205-021-02736-5.
  • Waheed, A.; Mansha, M.; Ullah, N. Nanomaterials-Based Electrochemical Detection of Heavy Metals in Water: Current Status, Challenges and Future Direction. Trends Analyt. Chem 2018, 105, 37–51. DOI: 10.1016/j.trac.2018.04.012.
  • Kanoun, O.; Lazarević-Pašti, T.; Pašti, I.; Nasraoui, S.; Talbi, M.; Brahem, A.; Adiraju, A.; Sheremet, E.; Rodriguez, R. D.; Ben Ali, M.; et al. A Review of Nanocomposite-Modified Electrochemical Sensors for Water Quality Monitoring. Sensors 2021, 21, 4131. DOI: 10.3390/s21124131.
  • Noori, J. S.; Mortensen, J.; Geto, A. Recent Development on the Electrochemical Detection of Selected Pesticides: A Focused Review. Sensors 2020, 20, 2221. DOI: 10.3390/s20082221.
  • Ryu, H.; Thompson, D.; Huang, Y.; Li, B.; Lei, Y. Electrochemical Sensors for Nitrogen Species: A Review. Sensors and Actuators Reports 2020, 2, 100022. DOI: 10.1016/j.snr.2020.100022.
  • Wang, B.; Akiba, U.; Anzai, J.-I. Recent Progress in Nanomaterial-Based Electrochemical Biosensors for Cancer Biomarkers: A Review. Molecules 2017, 22, 1048. DOI: 10.3390/molecules22071048.
  • Khanmohammadi, A.; Aghaie, A.; Vahedi, E.; Qazvini, A.; Ghanei, M.; Afkhami, A.; Hajian, A.; Bagheri, H. Electrochemical Biosensors for the Detection of Lung Cancer Biomarkers: A Review. Talanta 2020, 206, 120251. DOI: 10.1016/j.talanta.2019.120251.
  • de Eguilaz, M. R.; Cumba, L. R.; Forster, R. J. Electrochemical Detection of Viruses and Antibodies: A Mini Review. Electrochem. Commun. 2020, 116, 106762. DOI: 10.1016/j.elecom.2020.106762.
  • Zribi, R.; Neri, G. Mo-Based Layered Nanostructures for the Electrochemical Sensing of Biomolecules. Sensors 2020, 20, 5404. DOI: 10.3390/s20185404.
  • Hackethal, C.; Kopp, J. F.; Sarvan, I.; Schwerdtle, T.; Lindtner, O. Total Arsenic and Water-Soluble Arsenic Species in Foods of the First German Total Diet Study (BfR MEAL Study). Food Chem. 2021, 346, 128913. DOI: 10.1016/j.foodchem.2020.128913.
  • Draz, M. E.; Darwish, H. W.; Darwish, I. A.; Saad, A. S. Solid-State Potentiometric Sensor for the Rapid Assay of the Biologically Active Biogenic Amine (Tyramine) as a Marker of Food Spoilage. Food Chem. 2021, 346, 128911. DOI: 10.1016/j.foodchem.2020.128911.
  • Bala, K.; Sharma, D.; Gupta, N. Carbon-Nanotube-Based Materials for Electrochemical Sensing of the Neurotransmitter Dopamine. ChemElectroChem 2019, 6, 274–288. DOI: 10.1002/celc.201801319.
  • Manikandan, V. S.; Adhikari, B.; Chen, A. Nanomaterial Based Electrochemical Sensors for the Safety and Quality Control of Food and Beverages. Analyst 2018, 143, 4537–4554. DOI: 10.1039/c8an00497h.
  • Zribi, R.; Maalej, R.; Messina, E.; Gillibert, R.; Donato, M. G.; Maragò, O. M.; Gucciardi, P. G.; Leonardi, S. G.; Neri, G. Exfoliated 2D-MoS2 Nanosheets on Carbon and Gold Screen Printed Electrodes for Enzyme-Free Electrochemical Sensing of Tyrosine. Sens. Actuators B Chem 2020, 303, (127229. DOI: 10.1016/j.snb.2019.127229.
  • Liu, X.; Chen, W.; Lian, M.; Chen, X.; Lu, Y.; Yang, W. Enzyme Immobilization on ZIF-67/MWCNT Composite Engenders High Sensitivity Electrochemical Sensing. J. Electroanal. Chem 2019, 833, 505–511. DOI: 10.1016/j.jelechem.2018.12.027.
  • George, J. M.; Antony, A.; Mathew, B. Metal Oxide Nanoparticles in Electrochemical Sensing and Biosensing: A Review. Mikrochim. Acta. 2018, 185, 358.
  • Vanova, V.; Mitrevska, K.; Milosavljevic, V.; Hynek, D.; Richtera, L.; Adam, V. Peptide-Based Electrochemical Biosensors Utilized for Protein Detection. Biosens. Bioelectron. 2021, 180, 113087. DOI: 10.1016/j.bios.2021.113087.
  • Wang, A.; You, X.; Liu, H.; Zhou, J.; Chen, Y.; Zhang, C.; Ma, K.; Liu, Y.; Ding, P.; Qi, Y.; et al. Development of a Label Free Electrochemical Sensor Based on a Sensitive Monoclonal Antibody for the Detection of Tiamulin. Food Chem. 2022, 366, 130573. DOI: 10.1016/j.foodchem.2021.130573.
  • Rebelo, P.; Costa-Rama, E.; Seguro, I.; Pacheco, J. G.; Nouws, H. P. A.; Cordeiro, M. N. D.; Delerue-Matos, C. Molecularly Imprinted Polymer-Based Electrochemical Sensors for Environmental Analysis. Biosens. Bioelectron. 2021, 172, 112719. DOI: 10.1016/j.bios.2020.112719.
  • Maduraiveeran, G.; Jin, W. Nanomaterials Based Electrochemical Sensor and Biosensor Platforms for Environmental Applications. Trends Environ. Anal. Chem. 2017, 13, 10–23. DOI: 10.1016/j.teac.2017.02.001.
  • Zhang, Y.; Chen, X. Nanotechnology and Nanomaterial-Based No-Wash Electrochemical Biosensors: From Design to Application. Nanoscale 2019, 11, 19105–19118. DOI: 10.1039/c9nr05696c.
  • Panjan, P.; Virtanen, V.; Sesay, A. M. Determination of Stability Characteristics for Electrochemical Biosensors via Thermally Accelerated Ageing. Talanta 2017, 170, 331–336. DOI: 10.1016/j.talanta.2017.04.011.
  • Campuzano, S.; Pedrero, M.; Yáñez-Sedeño, P.; Pingarrón, J. Antifouling (Bio)Materials for Electrochemical (Bio)Sensing. IJMS. 2019, 20, 423. DOI: 10.3390/ijms20020423.
  • Lin, P.-H.; Li, B.-R. Antifouling Strategies in Advanced Electrochemical Sensors and Biosensors. Analyst 2020, 145, 1110–1120. DOI: 10.1039/C9AN02017A.
  • Tu, Q.; Chang, C. Diagnostic Applications of Raman Spectroscopy. Nanomedicine 2012, 8, 545–558. DOI: 10.1016/j.nano.2011.09.013.
  • Das, R. S.; Agrawal, Y. K. Raman Spectroscopy: Recent Advancements, Techniques and Applications. Vib. Spectrosc 2011, 57, 163–176. DOI: 10.1016/j.vibspec.2011.08.003.
  • Konorov, S. O.; Glover, C. H.; Piret, J. M.; Bryan, J.; Schulze, H. G.; Blades, M. W.; Turner, R. F. B. In Situ Analysis of Living Embryonic Stem Cells by Coherent anti-Stokes Raman Microscopy. Anal. Chem. 2007, 79, 7221–7225. DOI: 10.1021/ac070544k.
  • Kudelski, A. Analytical Applications of Raman Spectroscopy. Talanta 2008, 76, 1–8. DOI: 10.1016/j.talanta.2008.02.042.
  • McQuillan, A. J. The Discovery of Surface-Enhanced Raman Scattering. Notes Rec. R Soc. 2009, 63, 105–109. DOI: 10.1098/rsnr.2008.0032.
  • Rodriguez, R. D.; Villagómez, C. J.; Khodadadi, A.; Kupfer, S.; Averkiev, A.; Dedelaite, L.; Tang, F.; Khaywah, M. Y.; Kolchuzhin, V.; Ramanavicius, A.; et al. Chemical Enhancement vs Molecule–Substrate Geometry in Plasmon-Enhanced Spectroscopy. ACS Photonics 2021, 8, 2243–2255. DOI: 10.1021/acsphotonics.1c00001.
  • Le Ru, E. C.; Meyer, M.; Etchegoin, P. G. Proof of Single-Molecule Sensitivity in surface enhanced Raman Scattering (SERS) by Means of a Two-Analyte Technique. J Phys Chem B 2006, 110, 1944–1948. DOI: 10.1021/jp054732v.
  • Zhou, H.; Yang, D.; Ivleva, N. P.; Mircescu, N. E.; Niessner, R.; Haisch, C. SERS Detection of Bacteria in Water by in Situ Coating with Ag Nanoparticles. Anal. Chem. 2014, 86, 1525–1533. DOI: 10.1021/ac402935p.
  • Hou, R.; Pang, S.; He, L. In Situ SERS Detection of Multi-Class Insecticides on Plant Surfaces. Anal. Methods 2015, 7, 6325–6330. DOI: 10.1039/C5AY01058F.
  • Xiong, Z.; Lin, M.; Lin, H.; Huang, M. Facile Synthesis of Cellulose Nanofiber Nanocomposite as a SERS Substrate for Detection of Thiram in Juice. Carbohydr. Polym. 2018, 189, 79–86. DOI: 10.1016/j.carbpol.2018.02.014.
  • Chamuah, N.; Bhuyan, N.; Das, P. P.; Ojah, N.; Choudhary, A. J.; Medhi, T.; Nath, P. Gold-Coated Electrospun PVA Nanofibers as SERS Substrate for Detection of Pesticides. Sens. Actuators B Chem 2018, 273, 710–717. DOI: 10.1016/j.snb.2018.06.079.
  • Hao, J.; Han, M.-J.; Han, S.; Meng, X.; Su, T.-L.; Wang, Q. K. SERS Detection of Arsenic in Water: A Review. J Environ Sci (China) 2015, 36, 152–162. DOI: 10.1016/j.jes.2015.05.013.
  • Shi, Y.; Wang, H.; Jiang, X.; Sun, B.; Song, B.; Su, Y.; He, Y. Ultrasensitive, Specific, Recyclable, and Reproducible Detection of Lead Ions in Real Systems through a Polyadenine-Assisted, Surface-Enhanced Raman Scattering Silicon Chip. Anal. Chem. 2016, 88, 3723–3729. DOI: 10.1021/acs.analchem.5b04551.
  • David, C.; Guillot, N.; Shen, H.; Toury, T.; de la Chapelle, M. L. SERS Detection of Biomolecules Using Lithographed Nanoparticles towards a Reproducible SERS Biosensor. Nanotechnology 2010, 21, 475501. DOI: 10.1088/0957-4484/21/47/475501.
  • Neng, J.; Harpster, M. H.; Wilson, W. C.; Johnson, P. A. Surface-Enhanced Raman Scattering (SERS) Detection of Multiple Viral Antigens Using Magnetic Capture of SERS-Active Nanoparticles. Biosens. Bioelectron. 2013, 41, 316–321. DOI: 10.1016/j.bios.2012.08.048.
  • Guselnikova, O.; Lim, H.; Na, J.; Eguchi, M.; Kim, H.-J.; Elashnikov, R.; Postnikov, P.; Svorcik, V.; Semyonov, O.; Miliutina, E.; et al. Enantioselective SERS Sensing of Pseudoephedrine in Blood Plasma Biomatrix by Hierarchical Mesoporous Au Films Coated with a Homochiral MOF. Biosens. Bioelectron. 2021, 180, 113109. DOI: 10.1016/j.bios.2021.113109.
  • Alvarez-Puebla, R. A.; Liz-Marzán, L. M. SERS Detection of Small Inorganic Molecules and Ions. Angew. Chem. Int. Ed. Engl. 2012, 51, 11214–11223. DOI: 10.1002/anie.201204438.
  • Pang, S.; Yang, T.; He, L. Review of Surface Enhanced Raman Spectroscopic (SERS) Detection of Synthetic Chemical Pesticides. Trends Analyt. Chem 2016, 85, 73–82. DOI: 10.1016/j.trac.2016.06.017.
  • Fazio, B.; D'Andrea, C.; Foti, A.; Messina, E.; Irrera, A.; Donato, M. G.; Villari, V.; Micali, N.; Maragò, O. M.; Gucciardi, P. G. SERS Detection of Biomolecules at Physiological pH via Aggregation of Gold Nanorods Mediated by Optical Forces and Plasmonic Heating. Sci. Rep. 2016, 6, 26952. DOI: 10.1038/srep26952.
  • Spadaro, D.; Iatí, M. A.; Pérez-Piñeiro, J.; Vázquez-Vázquez, C.; Correa-Duarte, M. A.; Donato, M. G.; Gucciardi, P. G.; Saija, R.; Strangi, G.; Maragò, O. M. Optical Trapping of Plasmonic Mesocapsules: Enhanced Optical Forces and SERS. J. Phys. Chem. C 2017, 121, 691–700. DOI: 10.1021/acs.jpcc.6b10213.
  • Lin, L.; Peng, X.; Wang, M.; Scarabelli, L.; Mao, Z.; Liz-Marzán, L. M.; Becker, M. F.; Zheng, Y. Light-Directed Reversible Assembly of Plasmonic Nanoparticles Using Plasmon-Enhanced Thermophoresis. ACS Nano. 2016, 10, 9659–9668. DOI: 10.1021/acsnano.6b05486.
  • Fusco, Z.; Bo, R.; Wang, Y.; Motta, N.; Chen, H.; Tricoli, A. Self-Assembly of Au Nano-Islands with Tuneable Organized Disorder for Highly Sensitive SERS. J. Mater. Chem. C 2019, 7, 6308–6316. DOI: 10.1039/C9TC01231A.
  • Li, J.; Zheng, Y. Optothermally Assembled Nanostructures. Acc. Mater. Res. 2021, 2, 352–363. DOI: 10.1021/accountsmr.1c00033.
  • Xu, M.-L.; Gao, Y.; Han, X. X.; Zhao, B. Detection of Pesticide Residues in Food Using Surface-Enhanced Raman Spectroscopy: A Review. J. Agric. Food Chem. 2017, 65, 6719–6726. DOI: 10.1021/acs.jafc.7b02504.
  • Lai, Y.-C.; Ho, H.-C.; Shih, B.-W.; Tsai, F.-Y.; Hsueh, C.-H. High Performance and Reusable SERS Substrates Using Ag/ZnO Heterostructure on Periodic Silicon Nanotube Substrate. Appl. Surf. Sci 2018, 439, 852–858. DOI: 10.1016/j.apsusc.2018.01.092.
  • Gill, H. S.; Thota, S.; Li, L.; Ren, H.; Mosurkal, R.; Kumar, J. Reusable SERS Active Substrates for Ultrasensitive Molecular Detection. Sens. Actuators B Chem 2015, 220, 794–798. DOI: 10.1016/j.snb.2015.05.114.
  • Ma, L.; Huang, Y.; Hou, M.; Xie, Z.; Zhang, Z. Ag Nanorods Coated with Ultrathin TiO2 Shells as Stable and Recyclable SERS Substrates. Sci. Rep. 2015, 5, 15442. DOI: 10.1038/srep15442.
  • Braun, G. B.; Lee, S. J.; Laurence, T.; Fera, N.; Fabris, L.; Bazan, G. C.; Moskovits, M.; Reich, N. O. Generalized Approach to SERS-Active Nanomaterials via Controlled Nanoparticle Linking, Polymer Encapsulation, and Small-Molecule Infusion. J. Phys. Chem. C 2009, 113, 13622–13629. DOI: 10.1021/jp903399p.
  • Kalachyova, Y.; Mares, D.; Jerabek, V.; Ulbrich, P.; Lapcak, L.; Svorcik, V.; Lyutakov, O. Ultrasensitive and Reproducible SERS Platform of Coupled Ag Grating with Multibranched Au Nanoparticles. Phys. Chem. Chem. Phys. 2017, 19, 14761–14769. DOI: 10.1039/c7cp01828b.
  • Wang, Y.; Tang, L.-J.; Jiang, J.-H. Surface-Enhanced Raman Spectroscopy-Based, Homogeneous, Multiplexed Immunoassay with Antibody-Fragments-Decorated Gold Nanoparticles. Anal. Chem. 2013, 85, 9213–9220. DOI: 10.1021/ac4019439.
  • Cao, X.; Hong, S.; Jiang, Z.; She, Y.; Wang, S.; Zhang, C.; Li, H.; Jin, F.; Jin, M.; Wang, J. SERS-Active Metal-Organic Frameworks with Embedded Gold Nanoparticles. Analyst 2017, 142, 2640–2647. DOI: 10.1039/c7an00534b.
  • Alvarez-Puebla, R. A.; Liz-Marzán, L. M. Traps and Cages for Universal SERS Detection. Chem. Soc. Rev. 2012, 41, 43–51. DOI: 10.1039/c1cs15155j.
  • Lin, X.-M.; Cui, Y.; Xu, Y.-H.; Ren, B.; Tian, Z.-Q. Surface-Enhanced Raman Spectroscopy: Substrate-Related Issues. Anal. Bioanal. Chem. 2009, 394, 1729–1745. DOI: 10.1007/s00216-009-2761-5.
  • Tao, A.; Sinsermsuksakul, P.; Yang, P. Tunable Plasmonic Lattices of Silver Nanocrystals. Nat. Nanotechnol. 2007, 2, 435–440. DOI: 10.1038/nnano.2007.189.
  • Wu, D.-Y.; Li, J.-F.; Ren, B.; Tian, Z.-Q. Electrochemical Surface-Enhanced Raman Spectroscopy of Nanostructures. Chem. Soc. Rev. 2008, 37, 1025–1041. DOI: 10.1039/b707872m.
  • Grys, D.-B.; Chikkaraddy, R.; Kamp, M.; Scherman, O. A.; Baumberg, J. J.; Nijs, B. Eliminating Irreproducibility in SERS Substrates. J. Raman Spectrosc. 2021, 52, 412–419. DOI: 10.1002/jrs.6008.
  • Fales, A. M.; Vo-Dinh, T. Silver Embedded Nanostars for SERS with Internal Reference (SENSIR). J. Mater. Chem. C 2015, 3, 7319–7324. DOI: 10.1039/C5TC01296A.
  • Prakash, V.; Rodriguez, R. D.; Al-Hamry, A.; Lipovka, A.; Dorozhko, E.; Selyshchev, O.; Ma, B.; Sharma, S.; Mehta, S. K.; Dzhagan, V.; et al. Flexible Plasmonic Graphene Oxide/Heterostructures for Dual-Channel Detection. Analyst 2019, 144, 3297–3306. DOI: 10.1039/c8an02495b.
  • Castaño-Guerrero, Y.; Moreira, F. T. C.; Sousa-Castillo, A.; Correa-Duarte, M. A.; Sales, M. G. F. SERS and Electrochemical Impedance Spectroscopy Immunoassay for Carcinoembryonic Antigen. Electrochim. Acta 2021, 366, 137377. DOI: 10.1016/j.electacta.2020.137377.
  • Ibáñez, D.; Pérez-Junquera, A.; González-García, M. B.; Hernández-Santos, D.; Fanjul-Bolado, P. Spectroelectrochemical Elucidation of B Vitamins Present in Multivitamin Complexes by EC-SERS. Talanta 2020, 206, 120190. DOI: 10.1016/j.talanta.2019.120190.
  • Sanger, K.; Durucan, O.; Wu, K.; Thilsted, A. H.; Heiskanen, A.; Rindzevicius, T.; Schmidt, M. S.; Zór, K.; Boisen, A. Large-Scale, Lithography-Free Production of Transparent Nanostructured Surface for Dual-Functional Electrochemical and SERS Sensing. ACS Sens. 2017, 2, 1869–1875. DOI: 10.1021/acssensors.7b00783.
  • Wei, W.; Lin, H.; Hao, T.; Su, X.; Jiang, X.; Wang, S.; Hu, Y.; Guo, Z. Dual-Mode ECL/SERS Immunoassay for Ultrasensitive Determination of Vibrio Vulnificus Based on Multifunctional MXene. Sens. Actuators, B 2021, 332, 129525. DOI: 10.1016/j.snb.2021.129525.
  • Ameku, W. A.; de Araujo, W. R.; Rangel, C. J.; Ando, R. A.; Paixão, T. R. L. C. Gold Nanoparticle Paper-Based Dual-Detection Device for Forensics Applications. ACS Appl. Nano Mater. 2019, 2, 5460–5468. DOI: 10.1021/acsanm.9b01057.
  • Devasenathipathy, R.; Rani, K. K.; Liu, J.; Wu, D.-Y.; Tian, Z.-Q. Plasmon Mediated Photoelectrochemical Transformations: The Example of Para-Aminothiophenol. Electrochim. Acta 2021, 367, 137485. DOI: 10.1016/j.electacta.2020.137485.
  • Le Ru, E.; Etchegoin, P. Principles of Surface-Enhanced Raman Spectroscopy: And Related Plasmonic Effects; Elsevier: New York, NY, 2008. [Database][Mismatch
  • Zheng, X.; Zhang, L.; Huang, L.; Li, W.; Ma, C.; Song, R.; Chen, L.; Zeng, H. Optical Sensor Assistant with Voltage Enrichment for Ultrasensitive Detection of Mercury Ions. ACS Omega. 2019, 4, 6175–6179. DOI: 10.1021/acsomega.8b03505.
  • Wang, L.; Gan, Z.-F.; Guo, D.; Xia, H.-L.; Patrice, F. T.; Hafez, M. E.; Li, D.-W. Electrochemistry-Regulated Recyclable SERS Sensor for Sensitive and Selective Detection of Tyrosinase Activity. Anal. Chem. 2019, 91, 6507–6513. DOI: 10.1021/acs.analchem.8b05341.
  • Lacharmoise, P. D.; Le Ru, E. C.; Etchegoin, P. G. Guiding Molecules with Electrostatic Forces in Surface Enhanced Raman Spectroscopy. ACS Nano. 2009, 3, 66–72. DOI: 10.1021/nn800710m.
  • Bindesri, S. D.; Alhatab, D. S.; Brosseau, C. L. Development of an Electrochemical Surface-Enhanced Raman Spectroscopy (EC-SERS) Fabric-Based Plasmonic Sensor for Point-of-Care Diagnostics. Analyst 2018, 143, 4128–4135. DOI: 10.1039/c8an01117f.
  • Zaleski, S.; Cardinal, M. F.; Chulhai, D. V.; Wilson, A. J.; Willets, K. A.; Jensen, L.; Van Duyne, R. P. Toward Monitoring Electrochemical Reactions with Dual-Wavelength SERS: Characterization of Rhodamine 6G (R6G) Neutral Radical Species and Covalent Tethering of R6G to Silver Nanoparticles. J. Phys. Chem. C 2016, 120, 24982–24991. DOI: 10.1021/acs.jpcc.6b09022.
  • Li, D.; Li, D.-W.; Fossey, J. S.; Long, Y.-T. Portable Surface-Enhanced Raman Scattering Sensor for Rapid Detection of Aniline and Phenol Derivatives by on-Site Electrostatic Preconcentration. Anal. Chem. 2010, 82, 9299–9305. DOI: 10.1021/ac101812x.
  • Lian, W.; Wang, L.; Song, Y.; Yuan, H.; Zhao, S.; Li, P.; Chen, L. A Hydrogen Peroxide Sensor Based on Electrochemically Roughened Silver Electrodes. Electrochim. Acta 2009, 54, 4334–4339. DOI: 10.1016/j.electacta.2009.02.106.
  • Yang, H.; Liu, C.; Tang, J.; Jin, W.; Hao, X.; Ji, X.; Hu, J. Twinned Copper Nanoparticles Modulated with Electrochemical Deposition for in Situ SERS Monitoring. CrystEngComm 2018, 20, 5609–5618. DOI: 10.1039/C8CE01009A.
  • An, H.; Wu, L.; Mandemaker, L. D. B.; Yang, S.; Ruiter, J.; Wijten, J. H. J.; Janssens, J. C. L.; Hartman, T.; Stam, W.; Weckhuysen, B. M. Sub-Second Time-Resolved Surface-Enhanced Raman Spectroscopy Reveals Dynamic CO Intermediates during Electrochemical CO Reduction on Copper. Angew. Chem. Int. Ed. 2021, 60, 16576–16584. DOI: 10.1002/anie.202104114.
  • Gieseking, R. L. M.; Lee, J.; Tallarida, N.; Apkarian, V. A.; Schatz, G. C. Bias-Dependent Chemical Enhancement and Nonclassical Stark Effect in Tip-Enhanced Raman Spectromicroscopy of CO-Terminated Ag Tips. J. Phys. Chem. Lett. 2018, 9, 3074–3080. DOI: 10.1021/acs.jpclett.8b01343.
  • Hill, W.; Wehling, B. Potential- and pH-Dependent Surface-Enhanced Raman Scattering of P-Mercapto Aniline on Silver and Gold Substrates. J. Phys. Chem. 1993, 97, 9451–9455. DOI: 10.1021/j100139a032.
  • Optical-Electrical Synergy on Electricity Manipulating Plasmon-Driven Photoelectrical Catalysis. Appl. Mater. Today 2019, 15, 305–314.
  • Zhao, J.; Zhang, C.; Lu, Y.; Wu, Q.; Yuan, Y.; Xu, M.; Yao, J. Surface‐Enhanced Raman Spectroscopic Investigation on Surface Plasmon Resonance and Electrochemical Catalysis on Surface Coupling Reaction of Pyridine at Au/TiO 2 Junction Electrodes. J. Raman Spectrosc. 2020, 51, 2199–2207. DOI: 10.1002/jrs.5982.
  • Ding, S.-Y.; Yi, J.; Li, J.-F.; Tian, Z.-Q. A Theoretical and Experimental Approach to Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy of Single-Crystal Electrodes. Surf. Sci. 2015, 631, 73–80. DOI: 10.1016/j.susc.2014.07.019.
  • Xie, L.-Q.; Ding, D.; Zhang, M.; Chen, S.; Qiu, Z.; Yan, J.-W.; Yang, Z.-L.; Chen, M.-S.; Mao, B.-W.; Tian, Z.-Q. Adsorption of Dye Molecules on Single Crystalline Semiconductor Surfaces: An Electrochemical Shell-Isolated Nanoparticle Enhanced Raman Spectroscopy Study. J. Phys. Chem. C 2016, 120, 22500–22507. DOI: 10.1021/acs.jpcc.6b07763.
  • Dong, J.-C.; Panneerselvam, R.; Lin, Y.; Tian, X.-D.; Li, J.-F. Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy at Single-Crystal Electrode Surfaces. Adv. Opt. Mater. 2016, 4, 1144–1158. DOI: 10.1002/adom.201600223.
  • Li, C.-Y.; Yang, Z.-W.; Dong, J.-C.; Ganguly, T.; Li, J.-F. Plasmon-Enhanced Spectroscopy: Plasmon-Enhanced Spectroscopies with Shell-Isolated Nanoparticles (Small 8/2017). Small 2017, 13, 1601598. DOI: 10.1002/smll.201770043.
  • León, L.; Mozo, J. D. Designing Spectroelectrochemical Cells: A Review. TrAC - Trends Anal. Chem. 2018, 102, 147–169. DOI: 10.1016/j.trac.2018.02.002.
  • Karoń, K.; Łapkowski, M.; Dobrowolski, J. C. ECD Spectroelectrochemistry: A Review. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2021, 250, 119349. DOI: 10.1016/j.saa.2020.119349.
  • Robinson, A. M.; Harroun, S. G.; Bergman, J.; Brosseau, C. L. Portable Electrochemical Surface-Enhanced Raman Spectroscopy System for Routine Spectroelectrochemical Analysis. Anal. Chem. 2012, 84, 1760–1764. DOI: 10.1021/ac2030078.
  • Rodriguez, R. D.; Shchadenko, S.; Murastov, G.; Lipovka, A.; Fatkullin, M.; Petrov, I.; Tran, T. ‐H.; Khalelov, A.; Saqib, M.; Villa, N. E.; et al. Ultra‐Robust Flexible Electronics by Laser‐Driven Polymer‐Nanomaterials Integration. Adv. Funct. Mater. 2021, 31, 2008818. DOI: 10.1002/adfm.202008818.
  • Touzalin, T.; Joiret, S.; Maisonhaute, E.; Lucas, I. T. Complex Electron Transfer Pathway at a Microelectrode Captured by in Situ Nanospectroscopy. Anal. Chem. 2017, 89, 8974–8980. DOI: 10.1021/acs.analchem.7b01542.
  • Selimovic, A.; Johnson, A. S.; Kiss, I. Z.; Martin, R. S. Use of Epoxy-Embedded Electrodes to Integrate Electrochemical Detection with Microchip-Based Analysis Systems. Electrophoresis 2011, 32, 822–831. DOI: 10.1002/elps.201000665.
  • Kang, G.; Yang, M.; Mattei, M. S.; Schatz, G. C.; Van Duyne, R. P. In Situ Nanoscale Redox Mapping Using Tip-Enhanced Raman Spectroscopy. Nano Lett. 2019, 19, 2106–2113. DOI: 10.1021/acs.nanolett.9b00313.
  • Tsai, M.-H.; Lin, Y.-K.; Luo, S.-C. Electrochemical SERS for in Situ Monitoring the Redox States of PEDOT and Its Potential Application in Oxidant Detection. ACS Appl. Mater. Interfaces. 2019, 11, 1402–1410. DOI: 10.1021/acsami.8b16989.
  • Niciński, K.; Witkowska, E.; Korsak, D.; Noworyta, K.; Trzcińska-Danielewicz, J.; Girstun, A.; Kamińska, A. Photovoltaic Cells as a Highly Efficient System for Biomedical and Electrochemical Surface-Enhanced Raman Spectroscopy Analysis. RSC Adv. 2019, 9, 576–591. DOI: 10.1039/C8RA08319C.
  • Wang, Z.; Wang, W.; Liu, S.; Yang, N.; Zhao, G. Coupling Rotating Disk Electrodes and Surface-Enhanced Raman Spectroscopy for in Situ Electrochemistry Studies. Electrochem. commun 2021, 124, (106928. DOI: 10.1016/j.elecom.2021.106928.
  • Becirovic, V.; Doonan, S. R.; Martin, R. S. Encapsulation of Fluidic Tubing and Microelectrodes in Microfluidic Devices: Integrating off-Chip Process and Coupling Conventional Capillary Electrophoresis with Electrochemical Detection. Anal. Methods 2013, 5, 4220–4229. DOI: 10.1039/C3AY40809D.
  • Bailey, M. R.; Martin, R. S.; Schultz, Z. D. Role of Surface Adsorption in the Surface-Enhanced Raman Scattering and Electrochemical Detection of Neurotransmitters. J. Phys. Chem. C Nanomater. Interfaces. 2016, 120, 20624–20633. DOI: 10.1021/acs.jpcc.6b01196.
  • Amemiya, S.; Bard, A. J.; Fan, F.-R. F.; Mirkin, M. V.; Unwin, P. R. Scanning Electrochemical Microscopy. Annu Rev Anal Chem (Palo Alto Calif) 2008, 1, 95–131. DOI: 10.1146/annurev.anchem.1.031207.112938.
  • Sun, P.; Laforge, F. O.; Mirkin, M. V. Scanning Electrochemical Microscopy in the 21st Century. Phys. Chem. Chem. Phys. 2007, 9, 802–823. DOI: 10.1039/b612259k.
  • Bao, Y.-F.; Cao, M.-F.; Wu, S.-S.; Huang, T.-X.; Zeng, Z.-C.; Li, M.-H.; Wang, X.; Ren, B. Atomic Force Microscopy Based Top-Illumination Electrochemical Tip-Enhanced Raman Spectroscopy. Anal. Chem. 2020, 92, 12548–12555. DOI: 10.1021/acs.analchem.0c02466.
  • Touzalin, T.; Joiret, S.; Lucas, I. T.; Maisonhaute, E. Electrochemical Tip-Enhanced Raman Spectroscopy Imaging with 8 Nm Lateral Resolution. Electrochem. Commun 2019, 108, 106557. DOI: 10.1016/j.elecom.2019.106557.
  • Huang, S.-C.; Wang, X.; Zhao, Q.-Q.; Zhu, J.-F.; Li, C.-W.; He, Y.-H.; Hu, S.; Sartin, M. M.; Yan, S.; Ren, B. Probing Nanoscale Spatial Distribution of Plasmonically Excited Hot Carriers. Nat. Commun. 2020, 11, 4211.
  • Martín Sabanés, N.; Ohto, T.; Andrienko, D.; Nagata, Y.; Domke, K. F. Electrochemical TERS Elucidates Potential‐Induced Molecular Reorientation of Adenine/Au(111). Angew. Chem. 2017, 129, 9928–9933. DOI: 10.1002/ange.201704460.
  • Zeng, Z.-C.; Huang, S.-C.; Wu, D.-Y.; Meng, L.-Y.; Li, M.-H.; Huang, T.-X.; Zhong, J.-H.; Wang, X.; Yang, Z.-L.; Ren, B. Electrochemical Tip-Enhanced Raman Spectroscopy. J. Am. Chem. Soc. 2015, 137, 11928–11931. DOI: 10.1021/jacs.5b08143.
  • Gu, X.; Wang, K.; Qiu, J.; Wang, Y.; Tian, S.; He, Z.; Zong, R.; Kraatz, H.-B. Enhanced Electrochemical and SERS Signals by Self-Assembled Gold Microelectrode Arrays: A Dual Readout Platform for Multiplex Immumoassay of Tumor Biomarkers. Sens. Actuators B Chem 2021, 334, 129674. DOI: 10.1016/j.snb.2021.129674.
  • Zhou, H.; Zhang, J.; Li, B.; Liu, J.; Xu, J.-J.; Chen, H.-Y. Dual-Mode SERS and Electrochemical Detection of miRNA Based on Popcorn-like Gold Nanofilms and Toehold-Mediated Strand Displacement Amplification Reaction. Anal. Chem. 2021, 93, 6120–6127. DOI: 10.1021/acs.analchem.0c05221.
  • Ilkhani, H.; Hughes, T.; Li, J.; Zhong, C. J.; Hepel, M. Nanostructured SERS-Electrochemical Biosensors for Testing of Anticancer Drug Interactions with DNA. Biosens. Bioelectron. 2016, 80, 257–264. DOI: 10.1016/j.bios.2016.01.068.
  • Do, H.; Kwon, S.-R.; Fu, K.; Morales-Soto, N.; Shrout, J. D.; Bohn, P. W. Electrochemical Surface-Enhanced Raman Spectroscopy of Pyocyanin Secreted by Pseudomonas Aeruginosa Communities. Langmuir 2019, 35, 7043–7049. DOI: 10.1021/acs.langmuir.9b00184.
  • McLeod, K. E. R.; Lynk, T. P.; Sit, C. S.; Brosseau, C. L. On the Origin of Electrochemical Surface-Enhanced Raman Spectroscopy (EC-SERS) Signals for Bacterial Samples: The Importance of Filtered Control Studies in the Development of New Bacterial Screening Platforms. Anal. Methods 2019, 11, 924–929. DOI: 10.1039/C8AY02613K.
  • Zhao, L.; Blackburn, J.; Brosseau, C. L. Quantitative Detection of Uric Acid by Electrochemical-Surface Enhanced Raman Spectroscopy Using a Multilayered Au/Ag Substrate. Anal. Chem. 2015, 87, 441–447. DOI: 10.1021/ac503967s.
  • Hassanain, W. A.; Izake, E. L.; Ayoko, G. A. Spectroelectrochemical Nanosensor for the Determination of Cystatin C in Human Blood. Anal. Chem. 2018, 90, 10843–10850. DOI: 10.1021/acs.analchem.8b02121.
  • Karaballi, R. A.; Nel, A.; Krishnan, S.; Blackburn, J.; Brosseau, C. L. Development of an Electrochemical Surface-Enhanced Raman Spectroscopy (EC-SERS) Aptasensor for Direct Detection of DNA Hybridization. Phys. Chem. Chem. Phys. 2015, 17, 21356–21363. DOI: 10.1039/c4cp05077k.
  • Zhao, J.; Liang, D.; Gao, S.; Hu, X.; Koh, K.; Chen, H. Analyte-Resolved Magnetoplasmonic Nanocomposite to Enhance SPR Signals and Dual Recognition Strategy for Detection of BNP in Serum Samples. Biosens. Bioelectron. 2019, 141, 111440. DOI: 10.1016/j.bios.2019.111440.
  • Greene, B. H. C.; Alhatab, D. S.; Pye, C. C.; Brosseau, C. L. Electrochemical-Surface Enhanced Raman Spectroscopic (EC-SERS) Study of 6-Thiouric Acid: A Metabolite of the Chemotherapy Drug Azathioprine. J. Phys. Chem. C 2017, 121, 8084–8090. DOI: 10.1021/acs.jpcc.7b01179.
  • Velička, M.; Zacharovas, E.; Adomavičiūtė, S.; Šablinskas, V. Detection of caffeine intake by Means of EC-SERS Spectroscopy of Human Saliva. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2021, 246, 118956. DOI: 10.1016/j.saa.2020.118956.
  • Balaji, R.; Maheshwaran, S.; Chen, S.-M.; Chandrasekar, N.; Ethiraj, S.; Samuel, M. S.; Renganathan, V. High-Performance Catalytic Strips Assembled with BiOBr Nano-Rose Architectures for Electrochemical and SERS Detection of Theophylline. Chemical Engineering Journal 2021, 425, 130616. DOI: 10.1016/j.cej.2021.130616.
  • Zaleski, S.; Clark, K. A.; Smith, M. M.; Eilert, J. Y.; Doty, M.; Van Duyne, R. P. Identification and Quantification of Intravenous Therapy Drugs Using Normal Raman Spectroscopy and Electrochemical Surface-Enhanced Raman Spectroscopy. Anal. Chem. 2017, 89, 2497–2504. DOI: 10.1021/acs.analchem.6b04636.
  • Kayran, Y. U.; Jambrec, D.; Schuhmann, W. Nanostructured DNA Microarrays for Dual SERS and Electrochemical Read-Out. Electroanalysis 2019, 31, 267–272. DOI: 10.1002/elan.201800579.
  • Zhou, J.; Yang, D.; Liu, G.; Li, S.; Feng, W.; Yang, G.; He, J.; Shan, Y. Highly Sensitive Detection of DNA Damage in Living Cells by SERS and Electrochemical Measurements Using a Flexible Gold Nanoelectrode. Analyst 2021, 146, 2321–2329. DOI: 10.1039/d1an00220a.
  • Pomerantseva, E.; Bonaccorso, F.; Feng, X.; Cui, Y.; Gogotsi, Y. Energy Storage: The Future Enabled by Nanomaterials. Science 2019, 366, eaan8285. DOI: 10.1126/science.aan8285.
  • Singh, J.; Juneja, S.; Ghosal, A.; Ghosal, A. Energy Harvesting: Role of Plasmonic Nanocomposites for Energy Efficient Devices. In Integrating Green Chemistry and Sustainable Engineering; Wiley: Hoboken, NJ, 2019; pp 81–112.
  • Zhang, P.; Zeng, G.; Song, T.; Huang, S.; Wang, T.; Zeng, H. Design of Plasmonic CuCo Bimetal as a Nonsemiconductor Photocatalyst for Synchronized Hydrogen Evolution and Storage. Appl. Catal. B 2019, 242, 389–396. DOI: 10.1016/j.apcatb.2018.10.020.
  • Yasmeen, H.; Zada, A.; Ali, S.; Khan, I.; Ali, W.; Khan, W.; Khan, M.; Anwar, N.; Ali, A.; Huerta‐Flores, A. M.; Subhan, F. Visible Light‐Excited Surface Plasmon Resonance Charge Transfer Significantly Improves the Photocatalytic Activities of ZnO Semiconductor for Pollutants Degradation. J. Chin. Chem. Soc. 2020, 67, 1611–1617. DOI: 10.1002/jccs.202000205.
  • Yue, X.; Hou, J.; Zhang, Y.; Wu, P.; Guo, Y.; Peng, S.; Liu, Z.; Jiang, H. Improved CdS Photocatalytic H Evolution Using Au-Ag Nanoparticles with Tunable Plasmon-Enhanced Resonance Energy Transfer. Dalton Trans. 2020, 49, 7467–7473. DOI: 10.1039/d0dt01110j.
  • Zhang, P.; Liu, H.; Li, X. Photo-Reduction Synthesis of Cu Nanoparticles as Plasmon-Driven Non-Semiconductor Photocatalyst for Overall Water Splitting. Appl. Surf. Sci 2021, 535, (147720. DOI: 10.1016/j.apsusc.2020.147720.
  • Vahidzadeh, E.; Zeng, S.; Manuel, A. P.; Riddell, S.; Kumar, P.; Alam, K. M.; Shankar, K. Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivity of CO Photoreduction toward C Products. ACS Appl. Mater. Interfaces. 2021, 13, 7248–7258. DOI: 10.1021/acsami.0c21067.
  • Li, S.; Miao, P.; Zhang, Y.; Wu, J.; Zhang, B.; Du, Y.; Han, X.; Sun, J.; Xu, P. Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis. Adv. Mater. 2021, 33, e2000086. DOI: 10.1002/adma.202000086.
  • Marchuk, K.; Willets, K. A. Localized Surface Plasmons and Hot Electrons. Chem. Phys 2014, 445, 95–104. DOI: 10.1016/j.chemphys.2014.10.016.
  • Boerigter, C.; Aslam, U.; Linic, S. Mechanism of Charge Transfer from Plasmonic Nanostructures to Chemically Attached Materials. ACS Nano. 2016, 10, 6108–6115. DOI: 10.1021/acsnano.6b01846.
  • Zhang, L.; Mohamed, H. H.; Dillert, R.; Bahnemann, D. Kinetics and Mechanisms of Charge Transfer Processes in Photocatalytic Systems: A Review. J. Photochem. Photobiol. C: Photochem. Rev 2012, 13, 263–276. DOI: 10.1016/j.jphotochemrev.2012.07.002.
  • Golubev, A. A.; Khlebtsov, B. N.; Rodriguez, R. D.; Chen, Y.; Zahn, D. R. T. Plasmonic Heating Plays a Dominant Role in the Plasmon-Induced Photocatalytic Reduction of 4-Nitrobenzenethiol. J. Phys. Chem. C 2018, 122, 5657–5663. DOI: 10.1021/acs.jpcc.7b12101.
  • Mascaretti, L.; Naldoni, A. Hot Electron and Thermal Effects in Plasmonic Photocatalysis. J. Appl. Phys 2020, 128, 041101. DOI: 10.1063/5.0013945.
  • Dubi, Y.; Un, I. W.; Sivan, Y. Thermal Effects—An Alternative Mechanism for Plasmon-Assisted Photocatalysis. Chem. Sci. 2020, 11, 5017–5027. DOI: 10.1039/c9sc06480j.
  • Wang, X.; Xu, Z.; Gao, X. An Electrochemical and Raman Spectroscopic Study on Involvement of La3+ Ions in Lactate Dehydrogenase Catalysis. Chin. Sci. Bull. 1998, 43, 1625–1630. DOI: 10.1007/BF02883407.
  • Li, X.; Zhang, C.; Wu, Q.; Zhang, J.; Xu, M.; Yuan, Y.; Yao, J. In Situ Surface‐Enhanced Raman Spectroscopic Monitoring Electrochemical and Surface Plasmon Resonance Synergetic Catalysis on Dehydroxylation of PHTP at Ag Electrodes. J. Raman Spectrosc. 2018, 49, 1928–1937. DOI: 10.1002/jrs.5478.
  • Huang, Y.-F.; Zhu, H.-P.; Liu, G.-K.; Wu, D.-Y.; Ren, B.; Tian, Z.-Q. When the Signal is Not from the Original Molecule to Be Detected: Chemical Transformation of Para-Aminothiophenol on Ag during the SERS Measurement. J. Am. Chem. Soc. 2010, 132, 9244–9246. DOI: 10.1021/ja101107z.
  • Cui, L.; Wang, P.; Fang, Y.; Li, Y.; Sun, M. A Plasmon-Driven Selective Surface Catalytic Reaction Revealed by Surface-Enhanced Raman Scattering in an Electrochemical Environment. Sci. Rep 2015, 5, 11920.
  • Wang, Y.-H.; Wei, J.; Radjenovic, P.; Tian, Z.-Q.; Li, J.-F. In Situ Analysis of Surface Catalytic Reactions Using Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy. Anal. Chem. 2019, 91, 1675–1685. DOI: 10.1021/acs.analchem.8b05499.
  • Chen, J.; Liu, G.; Zhu, Y.-Z.; Su, M.; Yin, P.; Wu, X.-J.; Lu, Q.; Tan, C.; Zhao, M.; Liu, Z.; et al. Ag@MoS Core-Shell Heterostructure as SERS Platform to Reveal the Hydrogen Evolution Active Sites of Single-Layer MoS. J. Am. Chem. Soc. 2020, 142, 7161–7167. DOI: 10.1021/jacs.0c01649.
  • Gao, M.-R.; Chan, M. K. Y.; Sun, Y. Edge-Terminated Molybdenum Disulfide with a 9.4-Å Interlayer Spacing for Electrochemical Hydrogen Production. Nat. Commun. 2015, 6, 7493.
  • Tang, Q.; Jiang, D.-E. Mechanism of Hydrogen Evolution Reaction on 1T-MoS2 from First Principles. ACS Catal. 2016, 6, 4953–4961. DOI: 10.1021/acscatal.6b01211.
  • Deng, Y.; Ting, L. R. L.; Neo, P. H. L.; Zhang, Y.-J.; Peterson, A. A.; Yeo, B. S. Operando Raman Spectroscopy of Amorphous Molybdenum Sulfide (MoSx) during the Electrochemical Hydrogen Evolution Reaction: Identification of Sulfur Atoms as Catalytically Active Sites for H + Reduction. ACS Catal. 2016, 6, 7790–7798. DOI: 10.1021/acscatal.6b01848.
  • Sengupta, K.; Chatterjee, S.; Dey, A. In Situ Mechanistic Investigation of O2 Reduction by Iron Porphyrin Electrocatalysts Using Surface-Enhanced Resonance Raman Spectroscopy Coupled to Rotating Disk Electrode (SERRS-RDE) Setup. ACS Catal. 2016, 6, 6838–6852. DOI: 10.1021/acscatal.6b01122.
  • Yeo, B. S.; Klaus, S. L.; Ross, P. N.; Mathies, R. A.; Bell, A. T. Identification of Hydroperoxy Species as Reaction Intermediates in the Electrochemical Evolution of Oxygen on Gold. Chemphyschem 2010, 11, 1854–1857. DOI: 10.1002/cphc.201000294.
  • Wang, J.; Ma, L.; Xu, J.; Xu, Y.; Sun, K.; Peng, Z. Oxygen Electrochemistry in Li‐O 2 Batteries Probed by in Situ Surface‐Enhanced Raman Spectroscopy. SusMat 2021, 1, 345–358. DOI: 10.1002/sus2.24.
  • In Situ Surface Enhanced Raman Spectroscopic Studies of Solid Electrolyte Interphase Formation in Lithium Ion Battery Electrodes. J. Power Sources 2014, 256, 324–328.
  • Wang, J.; Zhang, Y.; Guo, L.; Wang, E.; Peng, Z. Identifying Reactive Sites and Transport Limitations of Oxygen Reactions in Aprotic Lithium-O2 Batteries at the Stage of Sudden Death. Angew. Chem. 2016, 128, 5287–5291. DOI: 10.1002/ange.201600793.
  • In Situ Surface-Enhanced Raman Spectroscopy in Li–O2 Battery Research. Curr. Opin. Electrochem. 2019, 17, 174–183. DOI: 10.1016/j.coelec.2019.07.004.
  • Liu, Q.; Tang, Y.; Sun, H.; Yang, T.; Sun, Y.; Du, C.; Jia, P.; Ye, H.; Chen, J.; Peng, Q.; et al. In Situ Electrochemical Study of Na–O2/CO2 Batteries in an Environmental Transmission Electron Microscope. ACS Nano 2020, 14, 13232–13245. DOI: 10.1021/acsnano.0c04938.
  • Piernas-Muñoz, M. J.; Tornheim, A.; Trask, S.; Zhang, Z.; Bloom, I. Surface-Enhanced Raman Spectroscopy (SERS): A Powerful Technique to Study the SEI Layer in Batteries. Chem Commun (Camb) 2021, 57, 2253–2256. DOI: 10.1039/d0cc08001b.
  • Localized Surface Plasmon Resonance Enhanced Electrochemical Kinetics and Product Selectivity in Aprotic Li–O2 Batteries. Energy Storage Mater. 2021, 42, 618–627. DOI: 10.1016/j.ensm.2021.08.004.
  • Wang, Y.-H.; Le, J.-B.; Li, W.-Q.; Wei, J.; Radjenovic, P. M.; Zhang, H.; Zhou, X.-S.; Cheng, J.; Tian, Z.-Q.; Li, J.-F. In Situ Spectroscopic Insight into the Origin of the Enhanced Performance of Bimetallic Nanocatalysts towards the Oxygen Reduction Reaction (ORR). Angew. Chem. 2019, 131, 16208–16212. DOI: 10.1002/ange.201908907.
  • Dong, J.-C.; Zhang, X.-G.; Briega-Martos, V.; Jin, X.; Yang, J.; Chen, S.; Yang, Z.-L.; Wu, D.-Y.; Feliu, J. M.; Williams, C. T.; et al. In Situ Raman Spectroscopic Evidence for Oxygen Reduction Reaction Intermediates at Platinum Single-Crystal Surfaces. Nat. Energy 2019, 4, 60–67. DOI: 10.1038/s41560-018-0292-z.
  • Wright, D.; Lin, Q.; Berta, D.; Földes, T.; Wagner, A.; Griffiths, J.; Readman, C.; Rosta, E.; Reisner, E.; Baumberg, J. J. Mechanistic Study of an Immobilized Molecular Electrocatalyst by in Situ Gap-Plasmon-Assisted Spectro-Electrochemistry. Nat. Catal. 2021, 4, 157–163. DOI: 10.1038/s41929-020-00566-x.
  • Li, J.-F.; Zhang, Y.-J.; Rudnev, A. V.; Anema, J. R.; Li, S.-B.; Hong, W.-J.; Rajapandiyan, P.; Lipkowski, J.; Wandlowski, T.; Tian, Z.-Q. Electrochemical Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy: Correlating Structural Information and Adsorption Processes of Pyridine at the Au(Hkl) Single Crystal/Solution Interface. J. Am. Chem. Soc. 2015, 137, 2400–2408. DOI: 10.1021/ja513263j.
  • Zhang, Y.-N.; Niu, Q.; Gu, X.; Yang, N.; Zhao, G. Recent Progress on Carbon Nanomaterials for the Electrochemical Detection and Removal of Environmental Pollutants. Nanoscale 2019, 11, 11992–12014. DOI: 10.1039/c9nr02935d.
  • Surface Enhanced Raman Spectroscopy in Environmental Analysis, Monitoring and Assessment. Sci. Total Environ 2020, 720, 137601.
  • A Novel Graphene-like Titanium Carbide MXene/Au–Ag Nanoshuttles Bifunctional Nanosensor for Electrochemical and SERS Intelligent Analysis of Ultra-Trace Carbendazim Coupled with Machine Learning. Ceram. Int 2021, 47, 173–184. DOI: 10.1016/j.ceramint.2020.08.121.
  • Zhang, Y.; Seitz, W. R.; Grant, C. L.; Sundberg, D. C. A Clear, Amine-Containing Poly(Vinyl Chloride) Membrane for in Situ Optical Detection of 2,4,6-Trinitrotoluene. Anal. Chim. Acta 1989, 217, 217–227. DOI: 10.1016/S0003-2670(00)80404-3.
  • Alizadeh, N.; Ghoorchian, A. Hybrid Optoelectrochemical Sensor for Superselective Detection of 2,4,6-Trinitrotoluene Based on Electrochemical Reduced Meisenheimer Complex. Anal. Chem. 2018, 90, 10360–10368. DOI: 10.1021/acs.analchem.8b02183.
  • Liu, J.; Siavash Moakhar, R.; Mahshid, S.; Vasefi, F.; Wachsmann-Hogiu, S. Multimodal Electrochemical and SERS Platform for Chlorfenapyr Detection. Appl. Surf. Sci 2021, 566, 150617. DOI: 10.1016/j.apsusc.2021.150617.
  • Sarfo, D. K.; Izake, E. L.; O’Mullane, A. P.; Ayoko, G. A. Molecular Recognition and Detection of Pb(II) Ions in Water by Aminobenzo-18-Crown-6 Immobilised onto a Nanostructured SERS Substrate. Sens. Actuators B Chem 2018, 255, 1945–1952. DOI: 10.1016/j.snb.2017.08.223.
  • Esmaielzadeh Kandjani, A.; Sabri, Y. M.; Mohammad-Taheri, M.; Bansal, V.; Bhargava, S. K. Detect, Remove and Reuse: A New Paradigm in Sensing and Removal of Hg (II) from Wastewater via SERS-Active ZnO/Ag Nanoarrays. Environ. Sci. Technol. 2015, 49, 1578–1584. DOI: 10.1021/es503527e.
  • Bonancêa, C. E.; do Nascimento, G. M.; de Souza, M. L.; Temperini, M. L. A.; Corio, P. Surface-Enhanced Raman Study of Electrochemical and Photocatalytic Degradation of the Azo Dye Janus Green B. Appl. Catal. B 2008, 77, 339–345. DOI: 10.1016/j.apcatb.2007.07.026.
  • Eisnor, M. M.; McLeod, K. E. R.; Bindesri, S.; Svoboda, S. A.; Wustholz, K. L.; Brosseau, C. L. Electrochemical Surface-Enhanced Raman Spectroscopy (EC-SERS): A Tool for the Identification of Polyphenolic Components in Natural Lake Pigments. Phys. Chem. Chem. Phys. 2021, 24, 347–356. DOI: 10.1039/d1cp03301h.
  • Silver Nanowires on Coffee Filter as Dual-Sensing Functionality for Efficient and Low-Cost SERS Substrate and Electrochemical Detection. Sens. Actuators B Chem 2017, 245, 189–195.
  • Sarfo, D. K.; Izake, E. L.; O’Mullane, A. P.; Wang, T.; Wang, H.; Tesfamichael, T.; Ayoko, G. A. Fabrication of Dual Function Disposable Substrates for Spectroelectrochemical Nanosensing. Sens. Actuators, B 2019, 287, 9–17. DOI: 10.1016/j.snb.2019.02.012.
  • Weng, C.; Luo, Y.; Wang, B.; Shi, J.; Gao, L.; Cao, Z.; Duan, G. Layer-Dependent SERS Enhancement of TiS2 Prepared by Simple Electrochemical Intercalation. J. Mater. Chem. C 2020, 8, 14138–14145. DOI: 10.1039/D0TC03683H.
  • Petruš, O.; Oriňak, A.; Oriňaková, R.; Králová, Z. O.; Múdra, E.; Kupková, M.; Kovaľ, K. Colloidal Lithography with Electrochemical Nickel Deposition as a Unique Method for Improved Silver Decorated Nanocavities in SERS Applications. Appl. Surf. Sci. 2017, 423, 322–330. DOI: 10.1016/j.apsusc.2017.06.149.
  • Koh, C. S. L.; Lee, H. K.; Phan-Quang, G. C.; Han, X.; Lee, M. R.; Yang, Z.; Ling, X. Y. SERS- and Electrochemically Active 3D Plasmonic Liquid Marbles for Molecular-Level Spectroelectrochemical Investigation of Microliter Reactions. Angew. Chem. Int. Ed. Engl. 2017, 56, 8813–8817. DOI: 10.1002/anie.201704433.
  • Wang, Y.-H.; Le, J.-B.; Li, W.-Q.; Wei, J.; Radjenovic, P. M.; Zhang, H.; Zhou, X.-S.; Cheng, J.; Tian, Z.-Q.; Li, J.-F. In Situ Spectroscopic Insight into the Origin of the Enhanced Performance of Bimetallic Nanocatalysts towards the Oxygen Reduction Reaction (ORR). Angew. Chem. Int. Ed. Engl. 2019, 58, 16062–16066. DOI: 10.1002/anie.201908907.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.