1,227
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

A Comprehensive Review on Water Quality Monitoring Devices: Materials Advances, Current Status, and Future Perspective

&
Pages 193-218 | Published online: 06 May 2022

References

  • Bogardi, J. J.; Leentvaar, J.; Sebesvári, Z. Biologia Futura: integrating Freshwater Ecosystem Health in Water Resources Management. Biol. Fut. 2020, 71, 337–358. DOI: 10.1007/s42977-020-00031-7.
  • Karim, S. A. A.; Kamsani, N. F. Water Quality Index Prediction Using Multiple Linear Fuzzy Regression Model: Case Study in Perak River; Malaysia: Springer Nature, 2020.
  • Das, B.; Pal, S. C. Irrigation Practices Causing Vulnerability of Groundwater Resources in Water Scarce Goghat-I and II Blocks of Hugli District Using MCDA, AHP, Fuzzy Logic and Novel Ensemble Models. Adv. Space Res. 2020, 65, 2733–2748. DOI: 10.1016/j.asr.2020.03.027.
  • Khan, A.; Govil, H.; Taloor, A. K.; Kumar, G. Identification of Artificial Groundwater Recharge Sites in Parts of Yamuna River Basin India Based on Remote Sensing and Geographical Information System. Groundwater Sustainable Dev. 2020, 11, 100415. DOI: 10.1016/j.gsd.2020.100415.
  • Hong, Y-j.; Liao, W.; Yan, Z-f.; Bai, Y-c.; Feng, C-l.; Xu, Z-x.; Xu, D-y. Progress in the Research of the Toxicity Effect Mechanisms of Heavy Metals on Freshwater Organisms and Their Water Quality Criteria in China. J. Chem. 2020, 2020, 1–12. DOI: 10.1155/2020/9010348.
  • Rupani, P.; Nilashi, M.; Abumalloh, R.; Asadi, S.; Samad, S.; Wang, S. Coronavirus Pandemic (COVID-19) and Its Natural Environmental Impacts. Int. J. Environ. Sci. Technol. 2020, 17, 4655–4666. DOI: 10.1007/s13762-020-02910-x.
  • Abbasnia, A.; Yousefi, N.; Mahvi, A. H.; Nabizadeh, R.; Radfard, M.; Yousefi, M.; Alimohammadi, M. Evaluation of Groundwater Quality Using Water Quality Index and Its Suitability for Assessing Water for Drinking and Irrigation Purposes: Case Study of Sistan and Baluchistan Province (Iran). Human Ecol. Risk Assess. Int. J. 2019, 25, 988–1005. DOI: 10.1080/10807039.2018.1458596.
  • Bhardwaj, D.; Verma, N. Research Paper on Analysing Impact of Various Parameters on Water Quality Index. Int. J. Adv. Res. Comput. Sci. 2017, 8, 2496–2498.
  • Azman, A. A.; Rahiman, M. H. F.; Taib, M. N.; Sidek, N. H.; Bakar, I. A. A.; Ali, M. F. A Low Cost Nephelometric Turbidity Sensor for Continual Domestic Water Quality Monitoring System. In 2016 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS): IEEE, 2016, p. 202. DOI: 10.1109/I2CACIS.2016.7885315.
  • Tomperi, J.; Isokangas, A.; Tuuttila, T.; Paavola, M. Functionality of Turbidity Measurement under Changing Water Quality and Environmental Conditions. Environ. Technol. 2022, 43, 1093–1101. DOI: 10.1080/09593330.2020.1815860.
  • Hu, B.; Cheng, W.; Zhang, H.; Sheng, G. Sorption of Radionickel to Goethite: effect of Water Quality Parameters and Temperature. J. Radioanal. Nucl. Chem. 2010, 285, 389–398. DOI: 10.1007/s10967-010-0543-3.
  • Jiang, N.; Chang, X.; Hu, D.; Chen, L.; Wang, Y.; Chen, J.; Zhu, Y. Flexible, Transparent, and Antibacterial Ionogels toward Highly Sensitive Strain and Temperature Sensors. Chemical Engineering Journal 2021, 424, 130418. DOI: 10.1016/j.cej.2021.130418.
  • Banna, M. H.; Najjaran, H.; Sadiq, R.; Imran, S. A.; Rodriguez, M. J.; Hoorfar, M. Miniaturized Water Quality Monitoring pH and Conductivity Sensors. Sens. Actuators, B 2014, 193, 434–441. DOI: 10.1016/j.snb.2013.12.002.
  • Qin, Y.; Alam, A. U.; Pan, S.; Howlader, M. M.; Ghosh, R.; Hu, N.-X.; Jin, H.; Dong, S.; Chen, C.-H.; Deen, M. J. Integrated Water Quality Monitoring System with pH, Free Chlorine, and Temperature Sensors. Sens. Actuators, B 2018, 255, 781–790. DOI: 10.1016/j.snb.2017.07.188.
  • Choi, I.; Lee, J. Y.; Lacroix, M.; Han, J. Intelligent pH Indicator Film Composed of Agar/Potato Starch and Anthocyanin Extracts from Purple Sweet Potato. Food Chem. 2017, 218, 122–128. DOI: 10.1016/j.foodchem.2016.09.050.
  • De, S.; White, J.; Brusuelas, T.; Patton, C.; Koh, A.; Huang, Q. Electrochemical Behavior of Protons and Cupric Ions in Water in Salt Electrolytes with Alkaline Metal Chloride. Electrochim. Acta 2020, 338, 135852. DOI: 10.1016/j.electacta.2020.135852.
  • Özkök, E.; Davis, A. P.; Aydilek, A. H. Ettringite and Monosulfate Formation to Reduce Alkalinity in Reactions of Alum-Based Water Treatment Residual with Steel Slag. Waste Manage. (Oxford) 2019, 84, 1–12. DOI: 10.1016/j.wasman.2018.11.018.
  • Atekwana, E. A.; Atekwana, E. A.; Rowe, R. S.; Werkema, D. D.; Jr.; Legall, F. D. The Relationship of Total Dissolved Solids Measurements to Bulk Electrical Conductivity in an Aquifer Contaminated with Hydrocarbon. J. Appl. Geophys. 2004, 56, 281–294. DOI: 10.1016/S0926-9851(04)00057-6.
  • Rebello, L. R. B.; Siepman, T.; Drexler, S. Correlations between TDS and Electrical Conductivity for High-Salinity Formation Brines Characteristic of South Atlantic Pre-Salt Basins. Water SA 2020, 46, 602.
  • Kozisek, F. Regulations for Calcium, Magnesium or Hardness in Drinking Water in the European Union Member States. Regul. Toxicol. Pharmacol. 2020, 112, 104589. DOI: 10.1016/j.yrtph.2020.104589.
  • Dickson, A. G. Determination of Dissolved Oxygen in Sea Water by Winkler Titration. WHP Operations and Methods, 1994:1.
  • Owens, M. Some Factors Involved in the Use of Dissolved-Oxygen Distributions in Streams to Determine Productivity. In Primary Productivity in Aquatic Environments, University of California Press: Berkeley, California, 2020, p. 209.
  • Bhadja, P.; Vaghela, A. Assessment of Physico-Chemical Parameters and Water Quality Index of Reservoir Water. Ijpaes 2013, 3, 89.
  • Jeyaraj, M.; Mahalingam, V.; Indhuleka, A.; Sennu, P.; Ho, M.-S.; Heidari, A. Chemical Analysis of Surface Water Quality of River Noyyal Connected Tank in Tirupur District, Tamil Nadu, India. J. Techn. J. Indian Geograph. Committee IWRA 2019, 8, 23.
  • Fayaji, I.; Sayadi, M.; Mousazadeh, H. Potable Groundwater Analysis Using Multivariate Groundwater Quality Index Technique. Global J. Environ. Sci. Manage. 2019, 5, 357.
  • Bourgeois, J.; Walsh, M.; Gagnon, G. Treatment of Drinking Water Residuals: Comparing Sedimentation and Dissolved Air Flotation Performance with Optimal Cation Ratios. Water Res. 2004, 38, 1173–1182. DOI: 10.1016/j.watres.2003.11.018.
  • Kelly, D. Chlorine Disinfectants and ORP Control. In Proceedings of the Washington Tree Fruit Harvest Conference; 2004.
  • Tiruneh, A. T.; Debessai, T. Y.; Bwembya, G. C.; Nkambule, S. J. Comparison between Constant and Variable Chlorine Decay Models Applied to Urban Water Supply Network. In Drinking Water Engineering and Science Discussions; 2020, p. 1.
  • Wilhm, J. L.; Dorris, T. C. Biological Parameters for Water Quality Criteria. Bioscience 1968, 18, 477–481. DOI: 10.2307/1294272.
  • Estim, A.; Saufie, S.; Mustafa, S. Water Quality Remediation Using Aquaponics Sub-Systems as Biological and Mechanical Filters in Aquaculture. J. Water Process Eng. 2019, 30, 100566. DOI: 10.1016/j.jwpe.2018.02.001.
  • Lahrich, S.; Laghrib, F.; Farahi, A.; Bakasse, M.; Saqrane, S.; Mhammedi, M. E. Review on the Contamination of Wastewater by COVID-19 Virus: Impact and Treatment. Sci. Total Environ. 2021, 751, 142325. DOI: 10.1016/j.scitotenv.2020.142325.
  • Baharudin, F.; Kassim, J.; Imran, S. N. M.; Wahab, M. A. Water Quality Index (WQI) Classification of Rivers in Agriculture and Aquaculture Catchments. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: UK, 2021, p. 012023. DOI: 10.1088/1755-1315/646/1/012023.
  • Uddin, M. G.; Nash, S.; Olbert, A. I. A Review of Water Quality Index Models and Their Use for Assessing Surface Water Quality. Ecol. Indic. 2021, 122, 107218. DOI: 10.1016/j.ecolind.2020.107218.
  • Li, J.; Tian, L.; Wang, Y.; Jin, S.; Li, T.; Hou, X. Optimal Sampling Strategy of Water Quality Monitoring at High Dynamic Lakes: A Remote Sensing and Spatial Simulated Annealing Integrated Approach. Sci. Total Environ. 2021, 777, 146113. DOI: 10.1016/j.scitotenv.2021.146113.
  • Qin, Y.; Kwon, H.-J.; Howlader, M. M.; Deen, M. J. Microfabricated Electrochemical pH and Free Chlorine Sensors for Water Quality Monitoring: recent Advances and Research Challenges. RSC Adv. 2015, 5, 69086–69109. DOI: 10.1039/C5RA11291E.
  • Metrohm. 2021. https://www.metrohm.com/en/products-overview/voltammetry/946-portable-va-analyzer/29460010.
  • Metrohm. 2021.https://www.metrohm.com/en/products-overview/voltammetry/946-portable-va-analyzer/29460020.
  • Intruments, H. EZ6000 Series; 2021. https://www.hach.com/quick.search-download.search.jsa?keywords=Lead,%20Total,%20Voltammetry.
  • DO, H. I. LDO dissolved oxygen analyzer fluorescence method. 2021. http://www.jiahuazhongxin.com/HACH-LDO-dissolved-oxygen-analyzer-fluorescence-method-p1146.html.
  • Lv, Z.-L.; Qi, G.-M.; Jiang, T.-J.; Guo, Z.; Yu, D.-Y.; Liu, J.-H.; Huang, X.-J. A Simplified Electrochemical Instrument Equipped with Automated Flow-Injection System and Network Communication Technology for Remote Online Monitoring of Heavy Metal Ions. Electroanal. Chem. 2017, 791, 49–55. DOI: 10.1016/j.jelechem.2017.03.012.
  • Zhang, W.; Xu, Y.; Zou, X.; Tahir, H. E. Hybrid-Power Wireless Electrochemical Platform Coupled to Screen-Printed Electrode Module for Natural Water Monitoring. Sens. Actuators, B 2017, 242, 63–70. DOI: 10.1016/j.snb.2016.11.035.
  • Campos, I.; Alcaniz, M.; Aguado, D.; Barat, R.; Ferrer, J.; Gil, L.; Marrakchi, M.; Martínez-Mañez, R.; Soto, J.; Vivancos, J.-L. A Voltammetric Electronic Tongue as Tool for Water Quality Monitoring in Wastewater Treatment Plants. Water Res. 2012, 46, 2605–2614. DOI: 10.1016/j.watres.2012.02.029.
  • Ferrari, A. G.-M.; Carrington, P.; Rowley-Neale, S. J.; Banks, C. E. Recent Advances in Portable Heavy Metal Electrochemical Sensing Platforms. Environ. Sci: Water Res. Technol. 2020, 6, 2676–2690. DOI: 10.1039/D0EW00407C.
  • Instruments, A. S. VersaSTAT 4. 2021. https://www.ameteksi.com/products/potentiostats/single-channel/versastat-series/versastat4.
  • Ainla, A.; Mousavi, M. P. S.; Tsaloglou, M.-N.; Redston, J.; Bell, J. G.; Fernández-Abedul, M. T.; Whitesides, G. M. Open-Source Potentiostat for Wireless Electrochemical Detection with Smartphones. Anal. Chem. 2018, 90, 6240–6246. DOI: 10.1021/acs.analchem.8b00850.
  • Beach, R. D.; Conlan, R. W.; Godwin, M. C.; Moussy, F. Towards a Miniature Implantable in Vivo Telemetry Monitoring System Dynamically Configurable as a Potentiostat or Galvanostat for Two-and Three-Electrode Biosensors. IEEE Trans. Instrum. Meas. 2005, 54, 61–72. DOI: 10.1109/TIM.2004.839757.
  • Alam, A. U.; Clyne, D.; Jin, H.; Hu, N.-X.; Deen, M. J. Fully Integrated, Simple, and Low-Cost Electrochemical Sensor Array for in Situ Water Quality Monitoring. ACS Sens. 2020, 5, 412–422. DOI: 10.1021/acssensors.9b02095.
  • Leonardi, S. G.; Bonyani, M.; Ghosh, K.; Dhara, A. K.; Lombardo, L.; Donato, N.; Neri, G. Development of a Novel Cu (ii) Complex Modified Electrode and a Portable Electrochemical Analyzer for the Determination of Dissolved Oxygen (DO) in Water. Chemosensors 2016, 4, 7. DOI: 10.3390/chemosensors4020007.
  • Patra, S.; Roy, E.; Tiwari, A.; Madhuri, R.; Sharma, P. K. 2-Dimensional Graphene as a Route for Emergence of Additional Dimension Nanomaterials. Biosens. Bioelectron. 2017, 89, 8–27. DOI: 10.1016/j.bios.2016.02.067.
  • Ding, R.; Cheong, Y. H.; Ahamed, A.; Lisak, G. Heavy Metals Detection with Paper-Based Electrochemical Sensors; Anal. Chem. 2021, 93, 1880–1888.
  • Kotru, S.; Klimuntowski, M.; Ridha, H.; Uddin, Z.; Askhar, A. A.; Singh, G.; Howlader, M. M. Electrochemical Sensing: A Prognostic Tool in the Fight against COVID-19. TrAC Trends Anal. Chem. 2021, 136, 116198. DOI: 10.1016/j.trac.2021.116198.
  • Zubiarrain-Laserna, A.; Kruse, P. Graphene-Based Water Quality Sensors. J. Electrochem. Soc. 2020, 167, 037539. DOI: 10.1149/1945-7111/ab67a5.
  • Aykaç, A.; Gergeroglu, H.; Beşli, B.; Akkaş, E. Ö.; Yavaş, A.; Güler, S.; Güneş, F.; Erol, M. An Overview on Recent Progress of Metal Oxide/Graphene/CNTs-Based Nanobiosensors. Nanoscale Res. Lett. 2021, 16, 1. DOI: 10.1186/s11671-021-03519-w.
  • NanoAffix. https://nanoaffix.com/nanoaffix-products/.
  • Bürkert. Type MS01 - pH Sensor Cube. 2021. https://www.burkert.com/en/type/MS01.
  • Microsens. 2021. http://microsens.ch/products/ISFET.htm.
  • Endress + Hauser, Endress pH-ISFET sensor. 2021. https://www.endress.com/en/field-instruments-overview/liquid-analysis-product-overview/pH-sensors-transmitters.
  • Maity, A.; Sui, X.; Tarman, C. R.; Pu, H.; Chang, J.; Zhou, G.; Ren, R.; Mao, S.; Chen, J. Pulse-Driven Capacitive Lead Ion Detection with Reduced Graphene Oxide Field-Effect Transistor Integrated with an Analyzing Device for Rapid Water Quality Monitoring. ACS Sens. 2017, 2, 1653–1661. DOI: 10.1021/acssensors.7b00496.
  • Zhou, G.; Chang, J.; Cui, S.; Pu, H.; Wen, Z.; Chen, J. Real-time, Selective Detection of Pb(2+) in Water using a Reduced Graphene Oxide/Gold Nanoparticle Field-effect Transistor Device. ACS Appl. Mater. Interfaces. 2014, 6, 19235–19241. DOI: 10.1021/am505275a.
  • Shahim, S.; Sukesan, R.; Sarangadharan, I.; Wang, Y.-L. Multiplexed Ultra-Sensitive Detection of Cr (III) and Cr (VI) Ion by FET Sensor Array in a Liquid Medium. Sensors 2019, 19, 1969. DOI: 10.3390/s19091969.
  • Kim, J.; Liu, Q.; Cui, T. Graphene-Based Ion Sensitive-FET Sensor with Porous Anodic Aluminum Oxide Substrate for Nitrate Detection. J. Microelectromech. Syst. 2020, 29, 966–971. DOI: 10.1109/JMEMS.2020.3008048.
  • Zhou, G.; Chang, J.; Pu, H.; Shi, K.; Mao, S.; Sui, X.; Ren, R.; Cui, S.; Chen, J. Ultrasensitive Mercury Ion Detection Using DNA-Functionalized Molybdenum Disulfide Nanosheet/Gold Nanoparticle Hybrid Field-Effect Transistor Device. ACS Sens. 2016, 1, 295–302. DOI: 10.1021/acssensors.5b00241.
  • Zhou, G.; Pu, H.; Chang, J.; Sui, X.; Mao, S.; Chen, J. Real-Time Electronic Sensor Based on Black Phosphorus/Au NPs/DTT Hybrid Structure: Application in Arsenic Detection. Sens. Actuators, B 2018, 257, 214–219. DOI: 10.1016/j.snb.2017.10.132.
  • Ahmad, R.; Ahn, M.-S.; Hahn, Y.-B. ZnO Nanorods Array Based Field-Effect Transistor Biosensor for Phosphate Detection. J. Colloid Interface Sci. 2017, 498, 292–297. DOI: 10.1016/j.jcis.2017.03.069.
  • Park, H.-Y.; Dugasani, S. R.; Kang, D.-H.; Yoo, G.; Kim, J.; Gnapareddy, B.; Jeon, J.; Kim, M.; Song, Y. J.; Lee, S.; et al. M-DNA/Transition Metal Dichalcogenide Hybrid Structure-Based bio-FET Sensor with Ultra-High Sensitivity. Sci. Rep. 2016, 6, 35733. DOI: 10.1038/srep35733.
  • Nabovati, G.; Ghafar-Zadeh, E.; Sawan, M. A 64 Pixel ISFET-Based Biosensor for Extracellular pH Gradient Monitoring. In 2015 IEEE International Symposium on Circuits and Systems (ISCAS): IEEE, 2015, p. 1762. DOI: 10.1109/ISCAS.2015.7168995.
  • Sharma, B.; Sharma, A.; Kim, J.-S. Recent Advances on H2 Sensor Technologies Based on MOX and FET Devices: A Review. Sens. Actuators, B 2018, 262, 758–770. DOI: 10.1016/j.snb.2018.01.212.
  • Keshmiri, N.; Wang, D.; Agrawal, B.; Hou, R.; Emadi, A. Current Status and Future Trends of GaN HEMTs in Electrified Transportation. IEEE Access 2020, 8, 70553–70571. DOI: 10.1109/ACCESS.2020.2986972.
  • Chen, Y.; Xu, Y.; Luo, Y.; Wang, C.; Wen, Z.; Yan, B.; Xu, R. A Reliable and Efficient Small-Signal Parameter Extraction Method for GaN HEMTs. Int. J. Numer. Model. 2020, 33, e2540. DOI: 10.1002/jnm.2540.
  • Jia, X.; Chen, D.; Bin, L.; Lu, H.; Zhang, R.; Zheng, Y. Highly Selective and Sensitive Phosphate Anion Sensors Based on AlGaN/GaN High Electron Mobility Transistors Functionalized by Ion Imprinted Polymer. Sci. Rep. 2016, 6, 27728. DOI: 10.1038/srep27728.
  • Nigam, A.; Bhat, T. N.; Bhati, V. S.; Dolmanan, S. B.; Tripathy, S.; Kumar, M. MPA-GSH Functionalized AlGaN/GaN High-Electron Mobility Transistor-Based Sensor for Cadmium Ion Detection. IEEE Sensors J. 2019, 19, 2863–2870. DOI: 10.1109/JSEN.2019.2891511.
  • Iskierko, Z.; Noworyta, K.; Sharma, P. S. Molecular Recognition by Synthetic Receptors: application in Field-Effect Transistor Based Chemosensing. Biosens. Bioelectron. 2018, 109, 50–62. DOI: 10.1016/j.bios.2018.02.058.
  • Cheng, J.; Li, J.; Miao, B.; Wang, J.; Wu, Z.; Wu, D.; Pei, R. Ultrasensitive Detection of Hg2+ Using Oligonucleotide-Functionalized AlGaN/GaN High Electron Mobility Transistor. Appl. Phys. Lett. 2014, 105, 083121. DOI: 10.1063/1.4894277.
  • Sharma, N.; Nigam, A.; Lobanov, D.; Gupta, A.; Novikov, A.; Kumar, M. Mercury (II) Ion Detection Using AgNWs-MoS2 Nanocomposite on GaN HEMT for IoT Enabled Smart Water Quality Analysis. IEEE Internet Things J. 2021. DOI: 10.1109/JIOT.2021.3071382.
  • Hsieh, C.-Y.; Chen, Y.-T.; Sukesan, R.; Wang, Y.-L. Ultra-High Sensitivity for Lead Ion Detection beyond the Ideal Nernst Response with AlGaN/GaN High Electron Mobility Transistors (HEMTs). ECS Trans. 2018, 85, 3–8. DOI: 10.1149/08509.0003ecst.
  • Nigam, A, and Kumar M. “Detection of cadmium ions Byg-C3N4 functionalization on AlGaN/GaN high electron mobility transistor.” AIP Conference Proceedings. Vol. 2265. No. 1. AIP Publishing LLC, NY, 2020.
  • Nigam, A.; Goel, N.; Bhat, T. N.; Rahman, M. T.; Dolmanan, S. B.; Qiao, Q.; Tripathy, S.; Kumar, M. Real Time Detection of Hg2+ Ions Using MoS2 Functionalized AlGaN/GaN High Electron Mobility Transistor for Water Quality Monitoring. Sens. Actuators, B 2020, 309, 127832. DOI: 10.1016/j.snb.2020.127832.
  • Nigam, A.; Bhati, V. S.; Bhat, T. N.; Dolmanan, S. B.; Tripathy, S.; Kumar, M. Sensitive and Selective Detection of Pb 2+ Ions Using 2, 5-Dimercapto-1, 3, 4-Thiadiazole Functionalized AlGaN/GaN High Electron Mobility Transistor. IEEE Electron Device Lett. 2019, 40, 1976–1979. DOI: 10.1109/LED.2019.2947141.
  • Zhao, L.; Liu, X.; Miao, B.; Gu, Z.; Wang, J.; Peng, H.; Zhang, J.; Zeng, B.; Li, J. A Differential Extended gate-AlGaN/GaN HEMT Sensor for Real-Time Detection of Ionic Pollutants. Anal. Methods 2019, 11, 3981–3986. DOI: 10.1039/C9AY01019J.
  • Choudhary, R.; Patra, S.; Madhuri, R.; Sharma, P. K. Equipment-Free, Single-Step, Rapid, “on-Site” Kit for Visual Detection of Lead Ions in Soil, Water, Bacteria, Live Cells, and Solid Fruits Using Fluorescent Cube-Shaped Nitrogen-Doped Carbon Dots. ACS Sustainable Chem. Eng. 2016, 4, 5606–5617. DOI: 10.1021/acssuschemeng.6b01463.
  • Merck. http://www.merckmillipore.com/IN/en/products/analytics-sample-prep/test-kits-and-photometric-methods/visual-tests-for-semi-quantitative-analyses/test-strips-mquant/q42b.qB.2.IAAAE_CBZ3.Lxj,nav?ReferrerURL=https%3A%2F%2Fwww.google.co.in%2F.
  • VitalityPlus. Heavy metal test kit. https://vitalityplusaustralia.com/ph-testing/other-testing/heavy-metal-test-kits/heavy-metal-test-kit.
  • Filterwater. Water metals test kit. http://www.filterwater.com/p-152-water-metals-test-kit.aspx.
  • Osumex. Heavy metals test kits. http://www.heavymetalstest.com/.
  • TestAssured. Heavy metals test strips. https://watertestingkits.com/product/heavy-metals-test-strips/.
  • Westminster. WG 34 heavy metal detection kit. https://www.wi-ltd.com/product/heavy-metal-detection-kit-34/#product-tab-controls.
  • SenSafe®. SenSafe® water metals check. https://sensafe.com/sensafe-water-metals-check/.
  • T. F. Scientific. Orion™ AQUAfast AQ4000 Colorimeter. https://www.thermofisher.com/order/catalog/product/AC2V16.
  • Merck. https://www.merckmillipore.com/IN/en/products/analytics-sample-prep/test-kits-and-photometric-methods/visual-tests-for-semi-quantitative-analyses/colorimetric-test-kits/LIib.qB.OTYAAAE_cvZ3.Lxi,nav?ReferrerURL=https%3A%2F%2Fwww.google.co.in%2F.
  • O. Instruments, Colorimetric analyzer. 2021. http://www.orlabindia.com/alkalinity-test-kit/.
  • Xylem. Portable colorimeter pHotoFlex® pH – WTW. 2021. https://www.xylemanalytics.com/en/general-product/id-244/portable-colorimeter-photoflex%C2%AE-ph–-wtw.
  • Prabhu, A.; Nandagopal, G.; Yegneswaran, P. P.; Prabhu, V.; Verma, U.; Mani, N. K. Thread Integrated Smart-Phone Imaging Facilitates Early Turning Point Colorimetric Assay for Microbes. RSC Adv. 2020, 10, 26853–26861. DOI: 10.1039/D0RA05190J.
  • Yan, Z.; Yuan, H.; Zhao, Q.; Xing, L.; Zheng, X.; Wang, W.; Zhao, Y.; Yu, Y.; Hu, L.; Yao, W. Recent Developments of Nanoenzyme-Based Colorimetric Sensors for Heavy Metal Detection and the Interaction Mechanism. Analyst 2020, 145, 3173–3187. DOI: 10.1039/d0an00339e.
  • Unnikrishnan, B.; Lien, C.-W.; Chu, H.-W.; Huang, C.-C. A Review on Metal Nanozyme-Based Sensing of Heavy Metal Ions: Challenges and Future Perspectives. J. Hazard. Mater. 2021, 401, 123397. DOI: 10.1016/j.jhazmat.2020.123397.
  • Idros, N.; Chu, D. Triple-Indicator-Based Multidimensional Colorimetric Sensing Platform for Heavy Metal Ion Detections. ACS Sens. 2018, 3, 1756–1764. DOI: 10.1021/acssensors.8b00490.
  • Jarujamrus, P.; Meelapsom, R.; Pencharee, S.; Obma, A.; Amatatongchai, M.; Ditcharoen, N.; Chairam, S.; Tamuang, S. Use of a Smartphone as a Colorimetric Analyzer in Paper-Based Devices for Sensitive and Selective Determination of Mercury in Water Samples. Anal. Sci. 2018, 34, 75–81. DOI: 10.2116/analsci.34.75.
  • Alahmad, W.; Tungkijanansin, N.; Kaneta, T.; Varanusupakul, P. A Colorimetric Paper-Based Analytical Device Coupled with Hollow Fiber Membrane Liquid Phase Microextraction (HF-LPME) for Highly Sensitive Detection of Hexavalent Chromium in Water Samples. Talanta 2018, 190, 78–84. DOI: 10.1016/j.talanta.2018.07.056.
  • Hofstetter, J. C.; Wydallis, J. B.; Neymark, G.; Reilly, T. H.; III, Harrington, J.; Henry, C. S. Quantitative Colorimetric Paper Analytical Devices Based on Radial Distance Measurements for Aqueous Metal Determination. Analyst 2018, 143, 3085–3090. DOI: 10.1039/c8an00632f.
  • Wu, Q.; He, J.; Meng, H.; Wang, Y.; Zhang, Y.; Li, H.; Feng, L. A Paper-based Microfluidic Analytical Device Combined with Home-made SPE Column for the Colorimetric Determination of Copper(II) Ion. Talanta 2019, 204, 518–524. DOI: 10.1016/j.talanta.2019.06.006.
  • McCracken, K. E.; Angus, S. V.; Reynolds, K. A.; Yoon, J.-Y. Multimodal Imaging and Lighting Bias Correction for Improved μPAD-Based Water Quality Monitoring via Smartphones. Sci. Rep. 2016, 6, 27529. DOI: 10.1038/srep27529.
  • Shibata, H.; Hiruta, Y.; Citterio, D. Fully Inkjet-Printed Distance-Based Paper Microfluidic Devices for Colorimetric Calcium Determination Using Ion-Selective Optodes. Analyst 2019, 144, 1178–1186. DOI: 10.1039/c8an02146e.
  • da Silva, V. A. O. P.; de Freitas, R. C.; de Oliveira, P. R.; Moreira, R. C.; Marcolino-Júnior, L. H.; Bergamini, M. F.; Coltro, W. K.; Janegitz, B. C. Microfluidic Paper-Based Device Integrated with Smartphone for Point-of-Use Colorimetric Monitoring of Water Quality Index. Measurement 2020, 164, 108085. DOI: 10.1016/j.measurement.2020.108085.
  • López Marzo, A. M.; Pons, J.; Blake, D. A.; Merkoçi, A. High Sensitive Gold-Nanoparticle Based Lateral Flow Immunodevice for Cd2+ Detection in Drinking Waters. Biosens. Bioelectron. 2013, 47, 190–198. DOI: 10.1016/j.bios.2013.02.031.
  • Lafleur, J. P.; Senkbeil, S.; Jensen, T. G.; Kutter, J. P. Gold Nanoparticle-Based Optical Microfluidic Sensors for Analysis of Environmental Pollutants. Lab Chip. 2012, 12, 4651–4656. DOI: 10.1039/c2lc40543a.
  • Chen, G.-H.; Chen, W.-Y.; Yen, Y.-C.; Wang, C.-W.; Chang, H.-T.; Chen, C.-F. Detection of Mercury(II) Ions Using Colorimetric Gold Nanoparticles on Paper-based Analytical Devices. Anal. Chem. 2014, 86, 6843–6849. DOI: 10.1021/ac5008688.
  • Quesada-González, D.; Jairo, G. A.; Blake, R. C.; Blake, D. A.; Merkoçi, A. Uranium (VI) Detection in Groundwater Using a Gold Nanoparticle/Paper-Based Lateral Flow Device. Sci. Rep. 2018, 8, 1. DOI: 10.1038/s41598-018-34610-5.
  • Han, K. N.; Choi, J.-S.; Kwon, J. Gold Nanozyme-Based Paper Chip for Colorimetric Detection of Mercury Ions. Sci. Rep. 2017, 7, 1. DOI: 10.1038/s41598-017-02948-x.
  • Chang, Y.; Gao, S.; Liu, M.; Liu, J. Designing Signal-on Sensors by Regulating Nanozyme Activity. Anal. Methods 2020, 12, 4708–4723. ). DOI: 10.1039/D0AY01625J.
  • Dou, J.; Shang, J.; Kang, Q.; Shen, D. Field Analysis Free Chlorine in Water Samples by a Smartphone-Based Colorimetric Device with Improved Sensitivity and Accuracy. Microchem. J. 2019, 150, 104200. DOI: 10.1016/j.microc.2019.104200.
  • Bayram, A.; Horzum, N.; Metin, A. U.; Kılıç, V.; Solmaz, M. E. Colorimetric bisphenol-A Detection with a Portable Smartphone-Based Spectrometer. IEEE Sensors J. 2018, 18, 5948–5955. DOI: 10.1109/JSEN.2018.2843794.
  • Firdaus, M. L.; Aprian, A.; Meileza, N.; Hitsmi, M.; Elvia, R.; Rahmidar, L.; Khaydarov, R. Smartphone Coupled with a Paper-Based Colorimetric Device for Sensitive and Portable Mercury Ion Sensing. Chemosensors 2019, 7, 25. DOI: 10.3390/chemosensors7020025.
  • Kılıç, V.; Alankus, G.; Horzum, N.; Mutlu, A. Y.; Bayram, A.; Solmaz, M. E. Single-Image-Referenced Colorimetric Water Quality Detection Using a Smartphone. ACS Omega. 2018, 3, 5531–5536. DOI: 10.1021/acsomega.8b00625.
  • Alkasir, R. S.; Rossner, A.; Andreescu, S. Portable Colorimetric Paper-Based Biosensing Device for the Assessment of Bisphenol a in Indoor Dust. Environ. Sci. Technol. 2015, 49, 9889–9897. DOI: 10.1021/acs.est.5b01588.
  • Lin, B.; Xu, J.; Lin, K.; Li, M.; Lu, M. Low-Cost Automatic Sensor for in Situ Colorimetric Detection of Phosphate and Nitrite in Agricultural Water. ACS Sens. 2018, 3, 2541–2549. DOI: 10.1021/acssensors.8b00781.
  • Lin, B.; Xu, Z.; Wang, J.; Lu, M. A Low-Cost Water Quality Monitoring Prototype Device with Embedded Chromogenic Reagent Capsules and Dynamic Colorimetric Detection. Sens. Actuators, B 2017, 252, 24–29. DOI: 10.1016/j.snb.2017.05.056.
  • Obrovski, B.; Bajić, J.; Mihajlović, I.; Miloradov, M. V.; Batinić, B.; Živanov, M. Colorimetric Fiber Optic Probe for Measurement of Chemical Parameters in Surface Water. Sens. Actuators, B 2016, 228, 168–173. DOI: 10.1016/j.snb.2016.01.016.
  • AQUAfast. AQ3070 Chlorine Colorimeter. 2021. https://www.rshydro.co.uk/water-quality-monitoring-equipment/water-quality-testing-equipment/water-colorimeter-spectrophotometer/aquafast-aq3070-chlorine-meter/.
  • Orion. AQ3700 Portable Colorimeter. 2021. https://www.rshydro.co.uk/water-quality-monitoring-equipment/water-quality-testing-equipment/water-colorimeter-spectrophotometer/aq3700-portable-colorimeter/.
  • Water, G. CODPlus portable colorimeter. 2021. http://www.globalw.com/products/codplus.html.
  • S::can. spectro::lyser™. 2021. https://www.s-can.at/spectrolyserv3.
  • CSL. carbo::lyser™ II/III. 2021. https://www.csltd.ie/product/carbolyser-ii-iii/.
  • C. multi::lyser™. multi::lyser™ II/III. 2021. https://www.csltd.ie/product/multi-lyser-ii-iii/.
  • sulfi::lyser. sulfi::lyser spectrometer for waste water. 2021. https://www.yodify.com/Products/X2Jgv/Sulfi-lyser-Spectrometer-Probe-for-Waste-Water.
  • C. u. l. II. 2021. https://www.csltd.ie/product/uvlyser-ii/.
  • Salih, N.; Sahdan, M.; Morsin, M.; Asmah, M. Fabrication and Integration of PDMS-Glass Based Microfluidic with Optical Absorbance Measurement Device for Coliform Bacteria Detection. In International Conference on the Development of Biomedical Engineering in Vietnam: Springer, 2017, p. 75.
  • Jain, R.; Thakur, A.; Kaur, P.; Kim, K.-H.; Devi, P. Advances in Imaging-Assisted Sensing Techniques for Heavy Metals in Water: Trends, Challenges, and Opportunities. TrAC, Trends Anal. Chem. 2020, 123, 115758. DOI: 10.1016/j.trac.2019.115758.
  • Mazumdar, D.; Lan, T.; Lu, Y. Dipstick” Colorimetric Detection of Metal Ions Based on Immobilization of DNAzyme and Gold Nanoparticles onto a Lateral Flow Device. In Biosensors and Biodetection, Methods in Molecular Biology, vol 1571; Rasooly, A., Prickril, B., Eds.; Springer: New York, NY, 2017.
  • Li, J-j.; Wang, X-f.; Huo, D-q.; Hou, C-j.; Fa, H-b.; Yang, M.; Zhang, L. Colorimetric Measurement of Fe3+ Using a Functional Paper-Based Sensor Based on Catalytic Oxidation of Gold Nanoparticles. Sens. Actuators, B 2017, 242, 1265–1271. DOI: 10.1016/j.snb.2016.09.039.
  • Yao, L.; Teng, J.; Qu, H.; Zhu, M.; Zheng, L.; Xue, F.; Chen, W. Paper Matrix Based Array for Rapid and Sensitive Optical Detection of Mercury Ions Using Silver Enhancement. Microchim. Acta 2017, 184, 569–576. DOI: 10.1007/s00604-016-2052-8.
  • López Marzo, A. M.; Pons, J.; Blake, D. A.; Merkoçi, A. All-Integrated and Highly Sensitive Paper Based Device with Sample Treatment Platform for Cd2+ Immunodetection in Drinking/Tap Waters. Anal. Chem. 2013, 85, 3532–3538. DOI: 10.1021/ac3034536.
  • Duan, J.; Guo, Z. Y. Development of a Test Strip Based on DNA-Functionalized Gold Nanoparticles for Rapid Detection of Mercury (II) Ions. Chin. Chem. Lett. 2012, 23, 225–228. DOI: 10.1016/j.cclet.2011.09.025.
  • Kuang, H.; Xing, C.; Hao, C.; Liu, L.; Wang, L.; Xu, C. Rapid and Highly Sensitive Detection of Lead Ions in Drinking Water Based on a Strip Immunosensor. Sensors (Basel) 2013, 13, 4214–4224. DOI: 10.3390/s130404214.
  • Fan, C.; He, S.; Liu, G.; Wang, L.; Song, S. A Portable and Power-Free Microfluidic Device for Rapid and Sensitive Lead (Pb2+) Detection. Sensors (Basel) 2012, 12, 9467–9475. DOI: 10.3390/s120709467.
  • Guo, Z.; Duan, J.; Yang, F.; Li, M.; Hao, T.; Wang, S.; Wei, D. A Test Strip Platform Based on DNA-Functionalized Gold Nanoparticles for on-Site Detection of Mercury (II) Ions. Talanta 2012, 93, 49–54. DOI: 10.1016/j.talanta.2012.01.012.
  • Liu, C.; Ning, D.; Zhang, C.; Liu, Z.; Zhang, R.; Zhao, J.; Zhao, T.; Liu, B.; Zhang, Z. Dual-Colored Carbon Dot Ratiometric Fluorescent Test Paper Based on a Specific Spectral Energy Transfer for Semiquantitative Assay of Copper Ions. ACS Appl Mater Interfaces. 2017, 9, 18897–18903. DOI: 10.1021/acsami.7b05827.
  • H. Instruments. ANDalyze-AND1100 fluorimeter. 2021. http://andalyze.com/.
  • W. Online. HF-38 fluorimeter for heavy metals testing. 2021. https://www.wateronline.com/doc/hf-fluorimeter-for-heavy-metals-testing-0001.
  • Simões, J.; Dong, T. Continuous and Real-Time Detection of Drinking-Water Pathogens with a Low-Cost Fluorescent Optofluidic Sensor. Sensors 2018, 18, 2210. DOI: 10.3390/s18072210.
  • Tok, S.; de Haan, K.; Tseng, D.; Usanmaz, C. F.; Koydemir, H. C.; Ozcan, A. Early Detection of E. coli and Total Coliform Using an Automated, Colorimetric and Fluorometric Fiber Optics-Based Device. Lab Chip. 2019, 19, 2925–2935. DOI: 10.1039/c9lc00652d.
  • Blockstein, L.; Yadid-Pecht, O. Lensless Miniature Portable Fluorometer for Measurement of Chlorophyll and CDOM in Water Using Fluorescence Contact Imaging. IEEE Photonics J. 2014, 6, 1–16. DOI: 10.1109/JPHOT.2014.2326665.
  • Shan, Y.; Wang, B.; Huang, H.; Jian, D.; Wu, X.; Xue, L.; Wang, S.; Liu, F. On-Site Quantitative Hg2+ Measurements Based on Selective and Sensitive Fluorescence Biosensor and Miniaturized Smartphone Fluorescence Microscope. Biosens. Bioelectron. 2019, 132, 238–247. DOI: 10.1016/j.bios.2019.02.062.
  • Yuan, Y.; Lu, J.; Duan, Z.; Zhao, G.; Svanberg, S. Hand-Held Water Quality Monitoring System Based on Laser-Induced Fluorescence. In Asia Communications and Photonics Conference: Optical Society of America, USA, 2019, p. M4A26.
  • Bridgeman, J.; Baker, A.; Brown, D.; Boxall, J. Portable LED Fluorescence Instrumentation for the Rapid Assessment of Potable Water Quality. Sci. Total Environ. 2015, 524-525, 338–346. DOI: 10.1016/j.scitotenv.2015.04.050.
  • Sgroi, M.; Gagliano, E.; Vagliasindi, F. G.; Roccaro, P. Inner Filter Effect, Suspended Solids and Nitrite/Nitrate Interferences in Fluorescence Measurements of Wastewater Organic Matter. Sci. Total Environ. 2020, 711, 134663. DOI: 10.1016/j.scitotenv.2019.134663.
  • Symes, E.; van Ogtrop, F. Determining the Efficacy of a Submersible in Situ Fluorometric Device for Cyanobacteria Monitoring Coalesced with Total Suspended Solids Characteristic of Lowland Reservoirs. River Res. Appl. 2016, 32, 1632–1641. DOI: 10.1002/rra.2993.
  • İncel, A.; Akın, O.; Çağır, A.; Yıldız, Ü. H.; Demir, M. M. Smart Phone Assisted Detection and Quantification of Cyanide in Drinking Water by Paper Based Sensing Platform. Sens. Actuators, B 2017, 252, 886–893. DOI: 10.1016/j.snb.2017.05.185.
  • Ma, Y.; Zhang, Y.; Li, X.; Yang, P.; Yue, J.-Y.; Jiang, Y.; Tang, B. Linker-Eliminated Nano Metal-Organic Framework Fluorescent Probe for Highly Selective and Sensitive Phosphate Ratiometric Detection in Water and Body Fluids . Anal. Chem. 2020, 92, 3722–3727. DOI: 10.1021/acs.analchem.9b04958.
  • Gan, Z.; Hu, X.; Huang, X.; Li, Z.; Zou, X.; Shi, J.; Zhang, W.; Li, Y.; Xu, Y. A Dual-Emission Fluorescence Sensor for Ultrasensitive Sensing Mercury in Milk Based on Carbon Quantum Dots Modified with Europium (III) Complexes. Sens. Actuators, B 2021, 328, 128997. DOI: 10.1016/j.snb.2020.128997.
  • Li, M.; Wang, Q.; Shi, X.; Hornak, L. A.; Wu, N. Detection of Mercury(II) by Quantum dot/DNA/Gold Nanoparticle Ensemble Based Nanosensor via Nanometal Surface Energy Transfer. Anal. Chem. 2011, 83, 7061–7065. DOI: 10.1021/ac2019014.
  • Yesudasu, V.; Pradhan, H. S.; Pandya, R. J. Recent Progress in Surface Plasmon Resonance Based Sensors: A Comprehensive Review. Heliyon 2021, 7, e06321. DOI: 10.1016/j.heliyon.2021.e06321.
  • Xantec. SPR Sensorchips. 2021. https://www.xantec.com/products/spr_sensorchips.php?gclid=CjwKCAjwqcKFBhAhEiwAfEr7zVwcAtOq7h-XJAXKzNNwGQSH9Qcmcd-qiCYuXTy_t4HzRKhrLUmXWRoCVdEQAvD_BwE.
  • FO-Biosystems. FO-SPR sensors. 2021. https://www.sprpages.nl/instruments.
  • K. Instruments. KEI SPR sensors. 2021. https://ke-instruments.com/.
  • A. Products. SpreetaTM SPR biosensor module. 2021. http://www.aigproducts.com/surface_plasmon_resonance/spr_considering.htm.
  • Ding, Q.; Wang, J.; Chen, X.; Liu, H.; Li, Q.; Wang, Y.; Yang, S. Quantitative and Sensitive SERS Platform with Analyte Enrichment and Filtration Function. Nano Lett. 2020, 20, 7304–7312. DOI: 10.1021/acs.nanolett.0c02683.
  • Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman Spectra of Pyridine Adsorbed at a Silver Electrode. Chem. Phys. Lett. 1974, 26, 163–166. DOI: 10.1016/0009-2614(74)85388-1.
  • C. Tech. Portable SERS Analyzer. 2021. https://www.cbrnetechindex.com/p/3971/Real-Time-Analyzers-Inc/Portable-SERS-Analyzer.
  • BOTAN. 2021. http://botan.es/blue-wildflowers-bwjs/pesticide-detection-device-dd3a6b.
  • Stellarnet. Raman-HR-TEC-405. 2021. https://www.stellarnet.us/systems/raman-spectrometers-lasers-and-probes/405nm-raman-spectrometers/raman-hr-tec-405/.
  • Metrohm. 2021. https://www.metrohm.com/en-in/products/spectroscopy/bw-tek-spectroscopy/bw-tek-handheld-raman/BWT-840001134.
  • Ruan, C.; Wang, W.; Gu, B. Surface-Enhanced Raman Scattering for Perchlorate Detection Using Cystamine-Modified Gold Nanoparticles. Anal. Chim. Acta 2006, 567, 114–120. DOI: 10.1016/j.aca.2006.01.097.
  • Mosier-Boss, P.; Putnam, M. Detection of Hexavalent Chromium Using Gold/4-(2-Mercaptoethyl) Pyridinium Surface Enhanced Raman Scattering-Active Capture Matrices. Anal. Chim. Acta. 2013, 801, 70–77. DOI: 10.1016/j.aca.2013.09.006.
  • Mosier-Boss, P.; Lieberman, S. Detection of Anions by Normal Raman Spectroscopy and Surface-Enhanced Raman Spectroscopy of Cationic-Coated Substrates. Appl. Spectrosc. 2003, 57, 1129–1137. DOI: 10.1366/00037020360695991.
  • Tian, F.; Bonnier, F.; Casey, A.; Shanahan, A. E.; Byrne, H. J. Surface Enhanced Raman Scattering with Gold Nanoparticles: effect of Particle Shape. Anal. Methods 2014, 6, 9116–9123. DOI: 10.1039/C4AY02112F.
  • Wei, W. Y.; White, I. M. Inkjet-Printed Paper-Based SERS Dipsticks and Swabs for Trace Chemical Detection. Analyst 2013, 138, 1020–1025. DOI: 10.1039/c2an36116g.
  • Eshkeiti, A.; Narakathu, B. B.; Reddy, A.; Moorthi, A.; Atashbar, M.; Rebrosova, E.; Rebros, M.; Joyce, M. Detection of Heavy Metal Compounds Using a Novel Inkjet Printed Surface Enhanced Raman Spectroscopy (SERS) Substrate. Sens. Actuators, B 2012, 171-172, 705–711. DOI: 10.1016/j.snb.2012.05.060.
  • Cheng, F.; Xu, H.; Wang, C.; Gong, Z.; Tang, C.; Fan, M. Surface Enhanced Raman Scattering Fiber Optic Sensor as an Ion Selective Optrode: The Example of Cd 2+ Detection. RSC Adv 2014, 4, 64683–64687. DOI: 10.1039/C4RA11260A.
  • Carron, K.; Mullen, K.; Lanouette, M.; Angersbach, H. Selective-Ultratrace Detection of Metal Ions with SERS. Appl. Spectrosc. 1991, 45, 420–423. DOI: 10.1366/0003702914337100.
  • Heyns, J. B.; Sears, L. M.; Corcoran, R. C.; Carron, K. T. SERS Study of the Interaction of Alkali Metal Ions with a Thiol-Derivatized Dibenzo-18-Crown-6. Anal. Chem. 1994, 66, 1572–1574. DOI: 10.1021/ac00081a034.
  • Zarei, M. Portable Biosensing Devices for Point-of-Care Diagnostics: Recent Developments and Applications. TrAC, Trends Anal. Chem. 2017, 91, 26–41. DOI: 10.1016/j.trac.2017.04.001.
  • Liu, B.; Lei, Y.; Li, B. A Batch-Mode Cube Microbial Fuel cell Based "Shock" Biosensor for Wastewater Quality Monitoring. Biosens. Bioelectron. 2014, 62, 308–314. DOI: 10.1016/j.bios.2014.06.051.
  • Xu, L.; Zhao, Y.; Fan, C.; Fan, Z.; Zhao, F. First Study to Explore the Feasibility of Applying Microbial Fuel Cells into Constructed Wetlands for COD Monitoring. Bioresour. Technol. 2017, 243, 846–854. DOI: 10.1016/j.biortech.2017.06.179.
  • Di Lorenzo, M.; Thomson, A. R.; Schneider, K.; Cameron, P. J.; Ieropoulos, I. A Small-Scale Air-Cathode Microbial Fuel Cell for on-Line Monitoring of Water Quality. Biosens. Bioelectron. 2014, 62, 182–188. DOI: 10.1016/j.bios.2014.06.050.
  • Jiang, Y.; Liang, P.; Liu, P.; Yan, X.; Bian, Y.; Huang, X. A Cathode-Shared Microbial Fuel Cell Sensor Array for Water Alert System. Int. J. Hydrogen Energy 2017, 42, 4342–4348. DOI: 10.1016/j.ijhydene.2016.12.050.
  • Pasternak, G.; Greenman, J.; Ieropoulos, I. Self-Powered, Autonomous Biological Oxygen Demand Biosensor for Online Water Quality Monitoring. Sens. Actuators B Chem. 2017, 244, 815–822. DOI: 10.1016/j.snb.2017.01.019.
  • Thavarajah, W.; Silverman, A. D.; Verosloff, M. S.; Kelley-Loughnane, N.; Jewett, M. C.; Lucks, J. B. Point-of-Use Detection of Environmental Fluoride via a Cell-Free Riboswitch-Based Biosensor. ACS Synth. Biol. 2020, 9, 10–18. DOI: 10.1021/acssynbio.9b00347.
  • Bertrand, R.; Roig, B. Evaluation of Enrichment-free PCR-based Detection on the rfbE Gene of Escherichia coli O157-Application to Municipal Wastewater. Water Res. 2007, 41, 1280–1286. DOI: 10.1016/j.watres.2006.11.027.
  • Sen, K.; Sinclair, J. L.; Boczek, L.; Rice, E. W. Development of a Sensitive Detection Method for Stressed E. coli O157:H7 in Source and Finished Drinking Water by Culture-qPCR. Environ. Sci. Technol. 2011, 45, 2250–2256. DOI: 10.1021/es103365b.
  • Yao, N.; Wang, J.; Zhou, Y. Rapid Determination of the Chemical Oxygen Demand of Water Using a Thermal Biosensor. Sensors (Basel) 2014, 14, 9949–9960. DOI: 10.3390/s140609949.
  • Pedrosa, V. A.; Caetano, J.; Machado, S. A.; Bertotti, M. Determination of Parathion and Carbaryl Pesticides in Water and Food Samples Using a Self Assembled Monolayer /Acetylcholinesterase Electrochemical Biosensor . Sensors (Basel) 2008, 8, 4600–4610. DOI: 10.3390/s8084600.
  • Thavarajah, W.; Silverman, A. D.; Verosloff, M.; Kelley-Loughnane, N.; Jewett, M. C.; Lucks, J. B. Point-of-Use Detection of Environmental Fluoride via a Cell-Free Riboswitch-Based Biosensor. ACS Synth. Biol. 2020, 9, 10–18.
  • Bataineh, M.; Schymanski, E. L.; Gallampois, C. M. Recent Analytical Methods for Risk Assessment of Emerging Contaminants in Ecosystems. In Pollution Assessment for Sustainable Practices in Applied Sciences and Engineering: Elsevier: Netherlands, 2021, p. 739.
  • Shivalkar, S.; Gautam, P. K.; Chaudhary, S.; Samanta, S. K.; Sahoo, A. K. Recent Development of Autonomously Driven Micro/Nanobots for Efficient Treatment of Polluted Water. J. Environ. Manage. 2021, 281, 111750. DOI: 10.1016/j.jenvman.2020.111750.
  • Cai, Y.; Genovese, A.; Piuri, V.; Scotti, F.; Siegel, M. IoT-Based Architectures for Sensing and Local Data Processing in Ambient Intelligence: Research and Industrial Trends. In 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC): IEEE, 2019, p. 1.
  • Krishna, S.; Sarath, T.; Kumaraswamy, M.; Nair, V. IoT Based Water Parameter Monitoring System. In 2020 5th International Conference on Communication and Electronics Systems (ICCES): IEEE, 2020, p. 1299. DOI: 10.1109/ICCES48766.2020.9138001.
  • Santos, J. M.; Caeiro, J. J.; Martins, J. C.; Santos, J. F.; Palma, P. Physical and Chemical Water Quality Parameters Sensing IoT Systems for Improving Water Productivity. Water Productivity J. 2020, 1, 33.
  • Biz4Intellia. 2021. https://www.biz4intellia.com/iot-in-water/.
  • P. Solutions. IoT based Water Quality Management System using Arduino. https://www.pantechsolutions.net/iot-based-water-quality-management-system-using-arduino#review-form.
  • Manimegalai, R. An IoT Based Smart Water Quality Monitoring System Using Cloud. In 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE): IEEE, 2020, p. 1.
  • Carminati, M.; Turolla, A.; Mezzera, L.; Mauro, M. D.; Tizzoni, M.; Pani, G.; Zanetto, F.; Foschi, J.; Antonelli, M. A Self-Powered Wireless Water Quality Sensing Network Enabling Smart Monitoring of Biological and Chemical Stability in Supply Systems. Sensors 2020, 20, 1125. DOI: 10.3390/s20041125.
  • Mohammadi, S.; Nadaraja, A. V.; Roberts, D. J.; Zarifi, M. H. Real-Time and Hazard-Free Water Quality Monitoring Based on Microwave Planar Resonator Sensor. Sens. Actuators, A 2020, 303, 111663. DOI: 10.1016/j.sna.2019.111663.
  • Johnson, S. P.; Yates, J. D.; Frederich, Z. B.; Hill, J. T. ZeMo: An Open Source Water Quality Monitoring System for Aquaria. Zebrafish 2018, 15, 652–655. DOI: 10.1089/zeb.2018.1630.
  • Saravanan, K.; Anusuya, E.; Kumar, R.; Son, L. H. Real-Time Water Quality Monitoring Using Internet of Things in SCADA. Environ. Monit. Assess. 2018, 190, 556. DOI: 10.1007/s10661-018-6914-x.
  • Simitha, K.; Raj, S. IoT and WSN Based Water Quality Monitoring System. In 2019 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA): IEEE, 2019, p. 205. DOI: 10.1109/ICECA.2019.8821859.
  • Nag, A.; Alahi, M. E. E.; Feng, S.; Mukhopadhyay, S. C. IoT-Based Sensing System for Phosphate Detection Using Graphite/PDMS Sensors. Sens. Actuators, A 2019, 286, 43–50. DOI: 10.1016/j.sna.2018.12.020.
  • Niswar, M.; Wainalang, S.; Ilham, A. A.; Zainuddin, Z.; Fujaya, Y.; Muslimin, Z.; Paundu, A. W.; Kashihara, S.; Fall, D. IoT-Based Water Quality Monitoring System for Soft-Shell Crab Farming. In 2018 IEEE International Conference on Internet of Things and Intelligence System (IOTAIS): IEEE, 2018, p. 6. DOI: 10.1109/IOTAIS.2018.8600828.
  • Ates, H. C.; Yetisen, A. K.; Güder, F.; Dincer, C. Wearable Devices for the Detection of COVID-19. Nat. Electron. 2021, 4, 13–14. DOI: 10.1038/s41928-020-00533-1.
  • Siangproh, W.; Chailapakul, O.; Songsrirote, K. Simple and Fast Colorimetric Detection of Inorganic Arsenic Selectively Adsorbed onto Ferrihydrite-Coated Silica Gel Using Silver Nanoplates. Talanta 2016, 153, 197–202. DOI: 10.1016/j.talanta.2016.03.028.
  • NanoAffix. 2021.NanoAffix Product – Water Sensor Chips. http://www.nanoaffix.com/product_sensor.html.
  • Kim, S. D.; Koo, Y.; Yun, Y. A Smartphone-Based Automatic Measurement Method for Colorimetric pH Detection Using a Color Adaptation Algorithm. Sensors 2017, 17, 1604. DOI: 10.3390/s17071604.
  • Czugala, M.; Gorkin, R.; III, Phelan, T.; Gaughran, J.; Curto, V. F.; Ducrée, J.; Diamond, D.; Benito-Lopez, F. Optical Sensing System Based on Wireless Paired Emitter Detector Diode Device and Ionogels for Lab-on-a-Disc Water Quality Analysis. Lab Chip. 2012, 12, 5069–5078. DOI: 10.1039/c2lc40781g.
  • Duffy, G.; Maguire, I.; Heery, B.; Nwankire, C.; Ducrée, J.; Regan, F. PhosphaSense: A Fully Integrated, Portable Lab-on-a-Disc Device for Phosphate Determination in Water. Sens. Actuators, B 2017, 246, 1085–1091. DOI: 10.1016/j.snb.2016.12.040.
  • Lu, Y.; Liu, J. Smart Nanomaterials Inspired by Biology: dynamic Assembly of Error-Free Nanomaterials in Response to Multiple Chemical and Biological Stimuli. Acc. Chem. Res. 2007, 40, 315–323. DOI: 10.1021/ar600053g.
  • Lee, J. S.; Han, M. S.; Mirkin, C. A. Colorimetric Detection of Mercuric Ion (Hg2+) in Aqueous Media Using DNA-functionalized gold nanoparticles . Angew. Chem. Int. Ed. Engl. 2007, 46, 4093–4096. DOI: 10.1002/anie.200700269.
  • Daniel, W. L.; Han, M. S.; Lee, J.-S.; Mirkin, C. A. Colorimetric Nitrite and Nitrate Detection with Gold Nanoparticle Probes and Kinetic End Points. J. Am. Chem. Soc. 2009, 131, 6362–6363. DOI: 10.1021/ja901609k.
  • Newman, J.; Roberts, J.; Blanchard, G. Optical Organophosphate Sensor Based upon Gold Nanoparticle Functionalized Fumed Silica Gel. Anal. Chem. 2007, 79, 3448–3454. DOI: 10.1021/ac062165h.
  • Ben-Amram, Y.; Tel-Vered, R.; Riskin, M.; Wang, Z.-G.; Willner, I. Ultrasensitive and Selective Detection of Alkaline-Earth Metal Ions Using Ion-Imprinted Au NPs Composites and Surface Plasmon Resonance Spectroscopy. Chem. Sci. 2012, 3, 162–167. DOI: 10.1039/C1SC00403D.
  • Zhan, S.; Yu, M.; Lv, J.; Wang, L.; Zhou, P. Colorimetric Detection of Trace Arsenic (III) in Aqueous Solution Using Arsenic Aptamer and Gold Nanoparticles. Aust. J. Chem. 2014, 67, 813. DOI: 10.1071/CH13512.
  • Divsar, F.; Habibzadeh, K.; Shariati, S.; Shahriarinour, M. Aptamer Conjugated Silver Nanoparticles for the Colorimetric Detection of Arsenic Ions Using Response Surface Methodology. Anal. Methods 2015, 7, 4568–4576. DOI: 10.1039/C4AY02914C.
  • Shrivas, K.; Shankar, R.; Dewangan, K. Gold Nanoparticles as a Localized Surface Plasmon Resonance Based Chemical Sensor for on-Site Colorimetric Detection of Arsenic in Water Samples. Sens. Actuators, B 2015, 220, 1376–1383. DOI: 10.1016/j.snb.2015.07.058.
  • Lou, T.; Chen, Z.; Wang, Y.; Chen, L. Blue-to-Red Colorimetric Sensing Strategy for Hg2+ and Ag + via Redox-Regulated Surface Chemistry of Gold Nanoparticles. ACS Appl. Mater. Interfaces. 2011, 3, 1568–1573. DOI: 10.1021/am200130e.
  • Chen, L.; Fu, X.; Lu, W.; Chen, L. Highly Sensitive and Selective Colorimetric Sensing of Hg2+ Based on the Morphology Transition of Silver Nanoprisms. ACS Appl. Mater. Interfaces. 2013, 5, 284–290. DOI: 10.1021/am3020857.
  • Gajaraj, S.; Fan, C.; Lin, M.; Hu, Z. Quantitative Detection of Nitrate in Water and Wastewater by Surface-Enhanced Raman Spectroscopy. Environ. Monit. Assess. 2013, 185, 5673–5681. DOI: 10.1007/s10661-012-2975-4.
  • Rasin, Z.; Abdullah, M. R. Water Quality Monitoring System Using Zigbee Based Wireless Sensor Network. Int. J. Eng. Technol. 2009, 9, 24.
  • Verma, P.; Kumar, A.; Rathod, N.; Jain, P.; Mallikarjun, S.; Subramanian, R.; Amrutur, B.; Kumar, M. M.; Sundaresan, R. Towards an IoT Based Water Management System for a Campus. In 2015 IEEE First International Smart Cities Conference (ISC2): IEEE, 2015, p. 1. DOI: 10.1109/ISC2.2015.7366152.
  • Shirode, M.; Adaling, M.; Biradar, J.; Mate, T. IOT Based Water Quality Monitoring System. Int. J. Scientific Res. Computer Sci. Eng. Inform. Technol. 2018, 3, 1423.
  • Parameswari, M.; Moses, M. B. Efficient Analysis of Water Quality Measurement Reporting System Using IOT Based System in WSN. Cluster Comput. 2019, 22, 12193–12201. DOI: 10.1007/s10586-017-1581-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.