1,207
Views
13
CrossRef citations to date
0
Altmetric
Review Articles

Application of Nanomaterials for Coping with Mycotoxin Contamination in Food Safety: From Detection to Control

, , , , , & show all
Pages 355-388 | Published online: 18 May 2022

References

  • Greeff-Laubscher, M. R.; Beukes, I.; Marais, G. J.; Jacobs, K. Mycotoxin Production by Three Different Toxigenic Fungi Genera on Formulated Abalone Feed and the Effect of an Aquatic Environment on Fumonisins. Mycology 2019, 11, 105–117. DOI: 10.1080/21501203.2019.1604575.
  • Yang, Y.; Li, G.; Wu, D.; Liu, J.; Li, X.; Luo, P.; Hu, N.; Wang, H.; Wu, Y. Recent Advances on Toxicity and Determination Methods of Mycotoxins in Foodstuffs. Trends Food Sci. Technol. 2020, 96, 233–252. DOI: 10.1016/j.tifs.2019.12.021.
  • Lee, H. J.; Ryu, D. Advances in Mycotoxin Research: Public Health Perspectives. J. Food Sci. 2015, 80, T2970–T2983. DOI: 10.1111/1750-3841.13156.
  • Omotayo, O. P.; Omotayo, A. O.; Mwanza, M.; Babalola, O. O. Prevalence of Mycotoxins and Their Consequences on Human Health. Toxicol. Res. 2019, 35, 1–7. DOI: 10.5487/TR.2019.35.1.001.
  • Martinez, L.; He, L. Detection of Mycotoxins in Food Using Surface-Enhanced Raman Spectroscopy: A Review. ACS Appl. Bio. Mater. 2021, 4, 295–310. DOI: 10.1021/acsabm.0c01349.
  • Císarová, M.; Hleba, L.; Medo, J.; Tančinová, D.; Mašková, Z.; Čuboň, J.; Kováčik, A.; Foltinová, D.; Božik, M.; Klouček, P. The in Vitro and in Situ Effect of Selected Essential Oils in Vapour Phase against Bread Spoilage Toxicogenic Aspergilli. Food Control 2020, 110, 107007. DOI: 10.1016/j.foodcont.2019.107007.
  • Juan, C.; Berrada, H.; Manes, J.; Oueslati, S. Multi-Mycotoxin Determination in Barley and Derived Products from Tunisia and Estimation of Their Dietary Intake. Food Chem. Toxicol. 2017, 103, 148–156. DOI: 10.1016/j.fct.2017.02.037.
  • Benites, A. J.; Fernandes, M.; Boleto, A. R.; Azevedo, S.; Silva, S.; Leitão, A. L. Occurrence of Ochratoxin a in Roasted Coffee Samples Commercialized in Portugal. Food Control 2017, 73, 1223–1228. DOI: 10.1016/j.foodcont.2016.10.037.
  • Campone, L.; Piccinelli, A. L.; Celano, R.; Pagano, I.; Russo, M.; Rastrelli, L. Rapid and Automated on-Line Solid Phase Extraction HPLC-MS/MS with Peak Focusing for the Determination of Ochratoxin a in Wine Samples. Food Chem. 2018, 244, 128–135. DOI: 10.1016/j.foodchem.2017.10.023.
  • Wang, Y.; Quan, H.; Li, X.; Li, Q.; Haque, M. A.; Shi, Q.; Fu, Q.; He, C. Contamination with Fumonisin B and Deoxynivalenol is a Threat to Egg Safety and Contributes to Gizzard Ulcerations of Newborn Chickens. Front Microbiol. 2021, 12, 676671. DOI: 10.3389/fmicb.2021.676671.
  • Tajehmiri, A.; Rahmani, M. R.; Moosavi, S. S.; Davari, K.; Ebrahimi, S. S. Antifungal Effects of Six Herbal Extracts against Aspergillus Sp. and Compared to Amphotericin B and Nystatin. Int. J. Adv. Appl. Sci. 2018, 5, 53–57. DOI: 10.21833/ijaas.2018.07.007.
  • Luo, Y.; Liu, X.; Li, J. Updating Techniques on Controlling Mycotoxins - A Review. Food Control 2018, 89, 123–132. DOI: 10.1016/j.foodcont.2018.01.016.
  • Borràs-Vallverdú, B.; Ramos, A. J.; Marín, S.; Sanchis, V.; Rodríguez-Bencomo, J. J. Deoxynivalenol Degradation in Wheat Kernels by Exposition to Ammonia Vapours: A Tentative Strategy for Detoxification. Food Control 2020, 118, 107444. DOI: 10.1016/j.foodcont.2020.107444.
  • Devreese, M.; Antonissen, G.; De Backer, P.; Croubels, S. Efficacy of Active Carbon towards the Absorption of Deoxynivalenol in Pigs. Toxins (Basel) 2014, 6, 2998–3004. DOI: 10.3390/toxins6102998.
  • Calado, T.; Abrunhosa, L.; Cabo Verde, S.; Alte, L.; Venancio, A.; Fernandez-Cruz, M. L. Effect of Gamma-Radiation on Zearalenone-Degradation. Cytotoxicity and Estrogenicity. Foods 2020, 9, 1687. DOI: 10.3390/foods9111687.
  • Capriotti, A. L.; Caruso, G.; Cavaliere, C.; Foglia, P.; Samperi, R.; Lagana, A. Multiclass Mycotoxin Analysis in Food, Environmental and Biological Matrices with Chromatography/Mass Spectrometry. Mass Spectrom. Rev. 2012, 31, 466–503. DOI: 10.1002/mas.20351.
  • Chemical and Physical Characteristics of the Principal Mycotoxins. IARC Sci. Publ. 2012, 158, 31–38.
  • Cai, X.; Xie, Z.; Li, D.; Kassymova, M.; Zang, S.-Q.; Jiang, H.-L. Nano-Sized Metal-Organic Frameworks: Synthesis and Applications. Coord. Chem. Rev. 2020, 417, 213366. DOI: 10.1016/j.ccr.2020.213366.
  • Thiruvengadam, M.; Rajakumar, G.; Chung, I. M. Nanotechnology: Current Uses and Future Applications in the Food Industry. 3 Biotech. 2018, 8, 74. DOI: 10.1007/s13205-018-1104-7.
  • He, Y.; Tian, F. Y.; Zhou, J.; Zhao, Q. Y.; Fu, R. J.; Jiao, B. N. Colorimetric Aptasensor for Ochratoxin a Detection Based on Enzyme-Induced Gold Nanoparticle Aggregation. J. Hazard Mater. 2020, 388, 121758. DOI: 10.1016/j.jhazmat.2019.121758.
  • Li, J. J.; Yan, H.; Tan, X. C.; Lu, Z. C.; Han, H. Y. Cauliflower-Inspired 3D SERS Substrate for Multiple Mycotoxins Detection. Anal. Chem. 2019, 91, 3885–3892. DOI: 10.1021/acs.analchem.8b04622.
  • An, K. Q.; Lu, X. T.; Wang, C. Q.; Qian, J.; Chen, Q. S.; Hao, N.; Wang, K. Porous Gold Nanocages: High Atom Utilization for Thiolated Aptamer Immobilization to Well Balance the Simplicity, Sensitivity, and Cost of Disposable Aptasensors. Anal. Chem. 2019, 91, 8660–8666. DOI: 10.1021/acs.analchem.9b02145.
  • Song, Y. P.; Xu, M. R.; Li, Z. Z.; He, L. N.; Hu, M. Y.; He, L. H.; Zhang, Z. H.; Du, M. A Bimetallic Coni-Based Metal-Organic Framework as Efficient Platform for Label-Free Impedimetric Sensing toward Hazardous Substances. Sens. Actuators B Chem. 2020, 311, 127927. DOI: 10.1016/j.snb.2020.127927.
  • Guo, X.; Yuan, Y.; Liu, J.; Fu, S.; Zhang, J.; Mei, Q.; Zhang, Y. Single-Line Flow Assay Platform Based on Orthogonal Emissive Upconversion Nanoparticles. Anal. Chem. 2021, 93, 3010–3017. DOI: 10.1021/acs.analchem.0c05061.
  • Li, H.; Huang, J.; Song, Y.; Zhang, M.; Wang, H.; Lu, F.; Huang, H.; Liu, Y.; Dai, X.; Gu, Z.; et al. Degradable Carbon Dots with Broad-Spectrum Antibacterial Activity. ACS Appl. Mater. Interfaces 2018, 10, 26936–26946. DOI: 10.1021/acsami.8b08832.
  • Liu, M.; Wang, J.; Yang, Q.; Hu, N.; Zhang, W.; Zhu, W.; Wang, R.; Suo, Y.; Wang, J. Patulin Removal from Apple Juice Using a Novel Cysteine-Functionalized Metal-Organic Framework Adsorbent. Food Chem. 2019, 270, 1–9. DOI: 10.1016/j.foodchem.2018.07.072.
  • He, P.; Zhao, Z.; Tan, Y.; E, H.; Zuo, M.; Wang, J.; Yang, J.; Cui, S.; Yang, X. Photocatalytic Degradation of Deoxynivalenol Using Cerium Doped Titanium Dioxide under Ultraviolet Light Irradiation. Toxins (Basel) 2021, 13, 481. DOI: 10.3390/toxins13070481.
  • Qian, J.; Cui, H.; Lu, X.; Wang, C.; An, K.; Hao, N.; Wang, K. Bi-Color FRET from Two Nano-Donors to a Single Nano-Acceptor: A Universal Aptasensing Platform for Simultaneous Determination of Dual Targets. Chem. Eng. J. 2020, 401, 126017. DOI: 10.1016/j.cej.2020.126017.
  • Jauffred, L.; Samadi, A.; Klingberg, H.; Bendix, P. M.; Oddershede, L. B. Plasmonic Heating of Nanostructures. Chem. Rev. 2019, 119, 8087–8130. DOI: 10.1021/acs.chemrev.8b00738.
  • Zeng, W.-J.; Wang, K.; Liang, W.-B.; Chai, Y.-Q.; Yuan, R.; Zhuo, Y. Covalent Organic Frameworks as Micro-Reactors: Confinement-Enhanced Electrochemiluminescence. Chem. Sci. 2020, 11, 5410–5414. DOI: 10.1039/d0sc01817a.
  • Lan, L.; Yao, Y.; Ping, J.; Ying, Y. Recent Progress in Nanomaterial-Based Optical Aptamer Assay for the Detection of Food Chemical Contaminants. ACS Appl. Mater. Interfaces 2017, 9, 23287–23301. DOI: 10.1021/acsami.7b03937.
  • Dong, H.; Sun, L. D.; Yan, C. H. Energy Transfer in Lanthanide Upconversion Studies for Extended Optical Applications. Chem. Soc. Rev. 2015, 44, 1608–1634. DOI: 10.1039/c4cs00188e.
  • Castro, R. C.; Saraiva, M. L. M. F. S.; Santos, J. L. M.; Ribeiro, D. S. M. Multiplexed Detection Using Quantum Dots as Photoluminescent Sensing Elements or Optical Labels. Coord. Chem. Rev. 2021, 448, 214181. DOI: 10.1016/j.ccr.2021.214181.
  • Tang, Z. W.; Liu, X.; Su, B. C.; Chen, Q.; Cao, H. M.; Yun, Y. H.; Xu, Y.; Hammock, B. D. Ultrasensitive and Rapid Detection of Ochratoxin a in Agro-Products by a Nanobody-Mediated FRET-Based Immunosensor. J. Hazard Mater. 2020, 387, 121678. DOI: 10.1016/j.jhazmat.2019.121678.
  • Tan, X. L.; Wang, X. Q.; Hao, A. Y.; Liu, Y. F.; Wang, X. P.; Chu, T.; Jiang, L.; Yang, Y. Q.; Ming, D. M. Aptamer-Based Ratiometric Fluorescent Nanoprobe for Specific and Visual Detection of Zearalenone. Microchem. J. 2020, 157, 104943. DOI: 10.1016/j.microc.2020.104943.
  • Guo, P. Q.; Yang, W.; Hu, H.; Wang, Y. T.; Li, P. Rapid Detection of Aflatoxin B1 by Dummy Template Molecularly Imprinted Polymer Capped CdTe Quantum Dots. Anal. Bioanal. Chem. 2019, 411, 2607–2617. DOI: 10.1007/s00216-019-01708-2.
  • Wang, B.; Chen, Y.; Wu, Y.; Weng, B.; Liu, Y.; Lu, Z.; Li, C. M.; Yu, C. Aptamer Induced Assembly of Fluorescent Nitrogen-Doped Carbon Dots on Gold Nanoparticles for Sensitive Detection of AFB1. Biosens. Bioelectron. 2016, 78, 23–30. DOI: 10.1016/j.bios.2015.11.015.
  • Wang, S.; Zhang, Y.; Pang, G.; Zhang, Y.; Guo, S. Tuning the Aggregation/Disaggregation Behavior of Graphene Quantum Dots by Structure-Switching Aptamer for High-Sensitivity Fluorescent Ochratoxin a Sensor. Anal. Chem. 2017, 89, 1704–1709. DOI: 10.1021/acs.analchem.6b03913.
  • Zhao, X.; Chen, L.-J.; Zhao, K.-C.; Liu, Y.-S.; Liu, J-l.; Yan, X.-P. Autofluorescence-Free Chemo/Biosensing in Complex Matrixes Based on Persistent Luminescence Nanoparticles. Trends Analyt. Chem. 2019, 118, 65–72. DOI: 10.1016/j.trac.2019.05.025.
  • Jiang, Y. Y.; Zhao, X.; Chen, L. J.; Yang, C.; Yin, X. B.; Yan, X. P. Persistent Luminescence Nanorod Based Luminescence Resonance Energy Transfer Aptasensor for Autofluorescence-Free Detection of Mycotoxin. Talanta 2020, 218, 121101. DOI: 10.1016/j.talanta.2020.121101.
  • Liu, J. M.; Yuan, X. Y.; Liu, H. L.; Cheng, D.; Wang, S. Fabrication of an Activatable Hybrid Persistent Luminescence Nanoprobe for Background-Free Bioimaging-Guided Investigation of Food-Borne Aflatoxin in Vivo. RSC Adv. 2018, 8, 28414–28420. DOI: 10.1039/C8RA05555F.
  • Li, J.; Zhu, J.-J.; Xu, K. Fluorescent Metal Nanoclusters: From Synthesis to Applications. Trends Analyt. Chem. 2014, 58, 90–98. DOI: 10.1016/j.trac.2014.02.011.
  • Deng, H.-H.; Shi, X.-Q.; Wang, F.-F.; Peng, H.-P.; Liu, A.-L.; Xia, X.-H.; Chen, W. Fabrication of Water-Soluble, Green-Emitting Gold Nanoclusters with a 65% Photoluminescence Quantum Yield via Host–Guest Recognition. Chem. Mater. 2017, 29, 1362–1369. DOI: 10.1021/acs.chemmater.6b05141.
  • Wang, Y. M.; Lu, M. H.; Tang, D. P. Novel Photoluminescence Enzyme Immunoassay Based on Supramolecular Host-Guest Recognition Using L-Arginine/6-Aza-2-Thiothymine-Stabilized Gold Nanocluster. Biosens. Bioelectron. 2018, 109, 70–74. DOI: 10.1016/j.bios.2018.03.007.
  • Yeh, H. C.; Sharma, J.; Han, J. J.; Martinez, J. S.; Werner, J. H. A DNA-Silver Nanocluster Probe That Fluoresces upon Hybridization. Nano Lett. 2010, 10, 3106–3110. DOI: 10.1021/nl101773c.
  • Sun, Y.; Zhang, Y.; Wang, Z. A. Turn-on" FRET Aptasensor Based on the Metal-Organic Framework-Derived Porous Carbon and Silver Nanoclusters for Zearalenone Determination. Sens. Actuators B. Chem. 2021, 347, 130661. DOI: 10.1016/j.snb.2021.130661.
  • Wu, S.; Duan, N.; Ma, X.; Xia, Y.; Wang, H.; Wang, Z.; Zhang, Q. Multiplexed Fluorescence Resonance Energy Transfer Aptasensor between Upconversion Nanoparticles and Graphene Oxide for the Simultaneous Determination of Mycotoxins. Anal. Chem. 2012, 84, 6263–6270. DOI: 10.1021/ac301534w.
  • Wang, F. Y.; Han, Y. M.; Wang, S. M.; Ye, Z. J.; Wei, L.; Xiao, L. H. Single-Particle LRET Aptasensor for the Sensitive Detection of Aflatoxin B1 with Upconversion Nanoparticles. Anal. Chem. 2019, 91, 11856–11863. DOI: 10.1021/acs.analchem.9b02599.
  • Tian, D.; Liu, X. J.; Feng, R.; Xu, J. L.; Xu, J.; Chen, R. Y.; Huang, L.; Bu, X. H. Microporous Luminescent Metal-Organic Framework for a Sensitive and Selective Fluorescence Sensing of Toxic Mycotoxin in Moldy Sugarcane. ACS Appl. Mater. Interfaces 2018, 10, 5618–5625. DOI: 10.1021/acsami.7b15764.
  • Lin, X.; Li, C.; He, C.; Zhou, Y.; Wang, Z.; Duan, N.; Wu, S. Upconversion Nanoparticles Assembled with Gold Nanourchins as Luminescence and Surface-Enhanced Raman Scattering Dual-Mode Aptasensors for Detection of Ochratoxin A. ACS Appl. Nano Mater. 2021, 4, 8231–8240. DOI: 10.1021/acsanm.1c01421.
  • Lin, X.; Yu, Q.; Yang, W.; He, C.; Zhou, Y.; Duan, N.; Wu, S. Double-Enzymes-Mediated Fluorescent Assay for Sensitive Determination of Organophosphorus Pesticides Based on the Quenching of Upconversion Nanoparticles by Fe3+. Food Chem. 2021, 345, 128809. DOI: 10.1016/j.foodchem.2020.128809.
  • Rong, Y.; Hassan, M. M.; Ouyang, Q.; Chen, Q. Lanthanide Ion (Ln3+)-Based Upconversion Sensor for Quantification of Food Contaminants: A Review. Comp. Rev. Food Sci. Food Safe 2021, 20, 3531–3578. DOI: 10.1111/1541-4337.12765.
  • Dai, S. L.; Wu, S. J.; Duan, N.; Chen, J.; Zheng, Z. G.; Wang, Z. P. An Ultrasensitive Aptasensor for Ochratoxin a Using Hexagonal Core/Shell Upconversion Nanoparticles as Luminophores. Biosens. Bioelectron. 2017, 91, 538–544. DOI: 10.1016/j.bios.2017.01.009.
  • Streit, E.; Schatzmayr, G.; Tassis, P.; Tzika, E.; Marin, D.; Taranu, I.; Tabuc, C.; Nicolau, A.; Aprodu, I.; Puel, O.; et al. Current Situation of Mycotoxin Contamination and Co-Occurrence in Animal Feed-Focus on Europe. Toxins (Basel) 2012, 4, 788–809. DOI: 10.3390/toxins4100788.
  • Yang, M. Y.; Cui, M. H.; Wang, W. X.; Yang, Y. D.; Chang, J.; Hao, J. Y.; Wang, H. J. Background-Free Upconversion-Encoded Microspheres for Mycotoxin Detection Based on a Rapid Visualization Method. Anal. Bioanal. Chem. 2020, 412, 81–91. DOI: 10.1007/s00216-019-02206-1.
  • Du, T.; Huang, L.; Wang, J.; Sun, J.; Zhang, W.; Wang, J. Luminescent Metal-Organic Frameworks (LMOFs): an Emerging Sensing Platform for Food Quality and Safety Control. Trends Food Sci. Technol. 2021, 111, 716–730. DOI: 10.1016/j.tifs.2021.03.013.
  • Wang, P. L.; Xie, L. H.; Joseph, E. A.; Li, J. R.; Su, X. O.; Zhou, H. C. Metal-Organic Frameworks for Food Safety. Chem. Rev. 2019, 119, 10638–10690. DOI: 10.1021/acs.chemrev.9b00257.
  • Hu, Z.; Lustig, W. P.; Zhang, J.; Zheng, C.; Wang, H.; Teat, S. J.; Gong, Q.; Rudd, N. D.; Li, J. Effective Detection of Mycotoxins by a Highly Luminescent Metal-Organic Framework. J. Am. Chem. Soc. 2015, 137, 16209–16215. DOI: 10.1021/jacs.5b10308.
  • Wei, J. Y.; Zhang, D.; Zhang, L. X.; Ouyang, H.; Fu, Z. F. Alkaline Hydrolysis Behavior of Metal-Organic Frameworks NH2-MIL-53(Al) Employed for Sensitive Immunoassay via Releasing Fluorescent Molecules. ACS Appl. Mater. Interfaces 2019, 11, 35597–35603. DOI: 10.1021/acsami.9b13907.
  • Umapathi, R.; Sonwal, S.; Lee, M. J.; Mohana Rani, G.; Lee, E.-S.; Jeon, T.-J.; Kang, S.-M.; Oh, M.-H.; Huh, Y. S. Colorimetric Based on-Site Sensing Strategies for the Rapid Detection of Pesticides in Agricultural Foods: New Horizons, Perspectives, and Challenges. Coord. Chem. Rev. 2021, 446, 214061. DOI: 10.1016/j.ccr.2021.214061.
  • Chotchuang, T.; Cheewasedtham, W.; Jayeoye, T. J.; Rujiralai, T. Colorimetric Determination of Fumonisin B1 Based on the Aggregation of Cysteamine-Functionalized Gold Nanoparticles Induced by a Product of Its Hydrolysis. Microchim. Acta 2019, 186, 655. DOI: 10.1007/s00604-019-3778-x.
  • Du, B.; Wang, P.; Xiao, C.; Zhou, Y.; Wu, L.; Zhao, H.; Su, X.; Yang, J.; He, Y. Antibody-Free Colorimetric Determination of Total Aflatoxins by Mercury(II)-Mediated Aggregation of Lysine-Functionalized Gold Nanoparticles. Microchim. Acta 2016, 183, 1493–1500. DOI: 10.1007/s00604-016-1786-7.
  • Lerdsri, J.; Thunkhamrak, C.; Jakmunee, J. Development of a Colorimetric Aptasensor for Aflatoxin B1 Detection Based on Silver Nanoparticle Aggregation Induced by Positively Charged Perylene Diimide. Food Control 2021, 130, 108323. DOI: 10.1016/j.foodcont.2021.108323.
  • Xiong, Y.; Pei, K.; Wu, Y. Q.; Duan, H.; Lai, W. H.; Xiong, Y. H. Plasmonic ELISA Based on Enzyme-Assisted Etching of Au Nanorods for the Highly Sensitive Detection of Aflatoxin B1 in Corn Samples. Sens. Actuators B. Chem. 2018, 267, 320–327. DOI: 10.1016/j.snb.2018.04.027.
  • Fang, B.; Xu, S.; Huang, Y.; Su, F.; Huang, Z.; Fang, H.; Peng, J.; Xiong, Y.; Lai, W. Gold Nanorods Etching-Based Plasmonic Immunoassay for Qualitative and Quantitative Detection of Aflatoxin M1 in Milk. Food Chem. 2020, 329, 127160. DOI: 10.1016/j.foodchem.2020.127160.
  • Pei, K.; Xiong, Y.; Xu, B. L.; Wu, K. S.; Li, X. M.; Jiang, H.; Xiong, Y. H. Colorimetric ELISA for Ochratoxin a Detection Based on the Urease-Induced Metallization of Gold Nanoflowers. Sens. Actuators B. Chem. 2018, 262, 102–109. DOI: 10.1016/j.snb.2018.01.193.
  • Huang, L.; Sun, D. W.; Pu, H.; Wei, Q. Development of Nanozymes for Food Quality and Safety Detection: Principles and Recent Applications. Comp. Rev. Food Sci. Food Saf. 2019, 18, 1496–1513. DOI: 10.1111/1541-4337.12485.
  • Taghdisi, S. M.; Danesh, N. M.; Ramezani, M.; Emrani, A. S.; Abnous, K. Novel Colorimetric Aptasensor for Zearalenone Detection Based on Nontarget-Induced Aptamer Walker, Gold Nanoparticles, and Exonuclease-Assisted Recycling Amplification. ACS Appl. Mater. Interfaces 2018, 10, 12504–12509. DOI: 10.1021/acsami.8b02349.
  • Wu, L.; Zhou, M.; Wang, Y.; Liu, J. Nanozyme and Aptamer- Based Immunosorbent Assay for Aflatoxin B1. J. Hazard Mater. 2020, 399, 123154. DOI: 10.1016/j.jhazmat.2020.123154.
  • Zhu, H.; Cai, Y.; Qileng, A.; Quan, Z.; Zeng, W.; He, K.; Liu, Y. Template-Assisted Cu2O@Fe(OH)3 Yolk-Shell Nanocages as Biomimetic Peroxidase: A Multi-Colorimetry and Ratiometric Fluorescence Separated-Type Immunosensor for the Detection of Ochratoxin A. J. Hazard Mater. 2021, 411, 125090. DOI: 10.1016/j.jhazmat.2021.125090.
  • Xu, Z.; Long, L. L.; Chen, Y. Q.; Chen, M. L.; Cheng, Y. H. A Nanozyme-Linked Immunosorbent Assay Based on Metal-Organic Frameworks (MOFs) for Sensitive Detection of Aflatoxin B1. Food Chem. 2021, 338, 128039. DOI: 10.1016/j.foodchem.2020.128039.
  • Liu, Z.; Wang, X.; Dong, F.; Li, Y.; Guo, Y.; Liu, X.; Xu, J.; Wu, X.; Zheng, Y. Ultrasensitive Immunoassay for Detection of Zearalenone in Agro-Products Using Enzyme and Antibody Co-Embedded Zeolitic Imidazolate Framework as Labels. J. Hazard Mater. 2021, 412, 125276. DOI: 10.1016/j.jhazmat.2021.125276.
  • Lai, W. Q.; Wei, Q. H.; Xu, M. D.; Zhuang, J. Y.; Tang, D. P. Enzyme-Controlled Dissolution of MnO2 Nanoflakes with Enzyme Cascade Amplification for Colorimetric Immunoassay. Biosens. Bioelectron. 2017, 89, 645–651. DOI: 10.1016/j.bios.2015.12.035.
  • Wang, C. Q.; Qian, J.; Wang, K.; Yang, X. W.; Liu, Q.; Hao, N.; Wang, C. K.; Dong, X. Y.; Huang, X. Y. Colorimetric Aptasensing of Ochratoxin a Using Au@Fe3O4 Nanoparticles as Signal Indicator and Magnetic Separator. Biosens. Bioelectron. 2016, 77, 1183–1191. DOI: 10.1016/j.bios.2015.11.004.
  • Cong, S.; Liu, X.; Jiang, Y.; Zhang, W.; Zhao, Z. Surface Enhanced Raman Scattering Revealed by Interfacial Charge-Transfer Transitions. Innovation (N Y) 2020, 1, 100051. DOI: 10.1016/j.xinn.2020.100051.
  • Huang, Z.; Zhang, A.; Zhang, Q.; Cui, D. Nanomaterial-Based SERS Sensing Technology for Biomedical Application. J. Mater. Chem. B. 2019, 7, 3755–3774. DOI: 10.1039/C9TB00666D.
  • Kutsanedzie, F. Y. H.; Agyekum, A. A.; Annavaram, V.; Chen, Q. Signal-Enhanced SERS-Sensors of CAR-PLS and GA-PLS Coupled AgNPs for Ochratoxin a and Aflatoxin B1 Detection. Food Chem. 2020, 315, 126231. DOI: 10.1016/j.foodchem.2020.126231.
  • Liu, J.; Hu, Y.; Zhu, G.; Zhou, X.; Jia, L.; Zhang, T. Highly Sensitive Detection of Zearalenone in Feed Samples Using Competitive Surface-Enhanced Raman Scattering Immunoassay. J. Agric. Food Chem. 2014, 62, 8325–8332. DOI: 10.1021/jf503191e.
  • Tegegne, W. A.; Mekonnen, M. L.; Beyene, A. B.; Su, W. N.; Hwang, B. J. Sensitive and Reliable Detection of Deoxynivalenol Mycotoxin in Pig Feed by Surface Enhanced Raman Spectroscopy on Silver Nanocubes@Polydopamine Substrate. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2020, 229, 117940. DOI: 10.1016/j.saa.2019.117940.
  • Huang, X. B.; Wu, S. H.; Hu, H. C.; Sun, J. J. AuNanostar@4-MBA@Au Core-Shell Nanostructure Coupled with Exonuclease III-Assisted Cycling Amplification for Ultrasensitive Sers Detection of Ochratoxin A. ACS Sens. 2020, 5, 2636–2643. DOI: 10.1021/acssensors.0c01162.
  • Yang, M. X.; Liu, G. K.; Mehedi, H. M.; Ouyang, Q.; Chen, Q. S. A Universal SERS Aptasensor Based on DTNB Labeled GNTs/Ag Core-Shell Nanotriangle and CS-Fe3O4 Magnetic-Bead Trace Detection of Aflatoxin B1. Anal. Chim. Acta 2017, 986, 122–130. DOI: 10.1016/j.aca.2017.07.016.
  • Hernandez, Y.; Lagos, L. K.; Galarreta, B. C. Development of a Label-Free-SERS Gold Nanoaptasensor for the Accessible Determination of Ochratoxin A. Sens. Bio-Sens. Res. 2020, 28, 100331. DOI: 10.1016/j.sbsr.2020.100331.
  • Kang, Y.; Gu, H.-X.; Zhang, X. A Self-Referenced Method for Determination of Patulin by Surface-Enhanced Raman Scattering Using Gold Nanobipyramids as the Substrate. Anal. Methods 2019, 11, 5142–5149. DOI: 10.1039/C9AY01366K.
  • Zhao, Y.; Yang, Y.; Luo, Y.; Yang, X.; Li, M.; Song, Q. Double Detection of Mycotoxins Based on Sers Labels Embedded Ag@Au Core-Shell Nanoparticles. ACS Appl. Mater. Interfaces 2015, 7, 21780–21786. DOI: 10.1021/acsami.5b07804.
  • Zheng, F. J.; Ke, W.; Shi, L. X.; Liu, H.; Zhao, Y. Plasmonic Au-Ag Janus Nanoparticle Engineered Ratiometric Surface-Enhanced Raman Scattering Aptasensor for Ochratoxin a Detection. Anal. Chem. 2019, 91, 11812–11820. DOI: 10.1021/acs.analchem.9b02469.
  • Ko, J.; Lee, C.; Choo, J. Highly Sensitive SERS-Based Immunoassay of Aflatoxin B1 Using Silica-Encapsulated Hollow Gold Nanoparticles. J. Hazard Mater. 2015, 285, 11–17. DOI: 10.1016/j.jhazmat.2014.11.018.
  • Hahm, E.; Kim, Y. H.; Pham, X. H.; Jun, B. H. Highly Reproducible Surface-Enhanced Raman Scattering Detection of Alternariol Using Silver-Embedded Silica Nanoparticles. Sensors 2020, 20, 3523. DOI: 10.3390/s20123523.
  • Wu, Z.; Sun, D.-W.; Pu, H.; Wei, Q.; Lin, X. Ti3C2Tx Mxenes Loaded with Au Nanoparticle Dimers as a Surface-Enhanced Raman Scattering Aptasensor for AFB1 Detection. Food Chem. 2022, 372, 131293. DOI: 10.1016/j.foodchem.2021.131293.
  • Tan, X.; Yu, W.; Wang, Y.; Song, P.; Xu, Q.; Ming, D.; Yang, Y. A Switchable and Signal-Amplified Aptasensor Based on Metal Organic Frameworks as the Quencher for Turn-on Detection of T-2 Mycotoxin. Anal. Bioanal. Chem. 2021, 413, 6595–6603. DOI: 10.1007/s00216-021-03625-9.
  • Jia, Y. M.; Zhou, G. H.; Wang, X. D.; Zhang, Y. Z.; Li, Z. G.; Liu, P. L.; Yu, B.; Zhang, J. A Metal-Organic Framework/Aptamer System as a Fluorescent Biosensor for Determination of Aflatoxin B1 in Food Samples. Talanta 2020, 219, 121342. DOI: 10.1016/j.talanta.2020.121342.
  • Zhao, Y. F.; Zeng, H.; Wu, K.; Luo, D.; Zhu, X. W.; Lu, W. G.; Li, D. A pH-Regulated Ratiometric Luminescence Eu-MOF for Rapid Detection of Toxic Mycotoxin in Moldy Sugarcane. J. Mater. Chem. C. 2020, 8, 4385–4391. DOI: 10.1039/D0TC00104J.
  • Xia, X.; Zhang, T.; Deng, S.; Chen, J.; Wu, S.; He, C.; Zhang, K.; Deng, R.; He, Q. Visualization of Mycotoxins in Living Cells Using Conformation-Resolved Aptamer Nanoprobes. ACS Sustainable Chem. Eng. 2020, 8, 9920–9925. DOI: 10.1021/acssuschemeng.0c03399.
  • Wu, H.; Wu, J.; Liu, Y.; Wang, H.; Zou, P. Target-Triggered and T7 Exonuclease-Assisted Cascade Recycling Amplification Strategy for Label-Free and Ultrasensitive Fluorescence Detection of Aflatoxin B1. Sens. Actuators B. Chem. 2020, 321, 128599. DOI: 10.1016/j.snb.2020.128599.
  • Niazi, S.; Khan, I. M.; Yu, Y.; Pasha, I.; Lv, Y.; Mohsin, A.; Mushtaq, B. S.; Wang, Z. P. A Novel Fluorescent Aptasensor for Aflatoxin M1 Detection Using Rolling Circle Amplification and g-C3N4 as Fluorescence Quencher. Sens. Actuators B. Chem. 2020, 315, 128049. DOI: 10.1016/j.snb.2020.128049.
  • Kim, K.; Jo, E. J.; Lee, K. J.; Park, J.; Jung, G. Y.; Shin, Y. B.; Lee, L. P.; Kim, M. G. Gold Nanocap-Supported Upconversion Nanoparticles for Fabrication of a Solid-Phase Aptasensor to Detect Ochratoxin A. Biosens. Bioelectron. 2020, 150, 111885. DOI: 10.1016/j.bios.2019.111885.
  • Khan, R.; Sherazi, T. A.; Catanante, G.; Rasheed, S.; Marty, J. L.; Hayat, A. Switchable Fluorescence Sensor toward PAT via CA-MWCNTs Quenched Aptamer-Tagged Carboxyfluorescein. Food Chem. 2020, 312, 126048. DOI: 10.1016/j.foodchem.2019.126048.
  • Khan, I. M.; Niazi, S.; Yu, Y.; Pasha, I.; Yue, L.; Mohsin, A.; Shoaib, M.; Iqbal, M. W.; Khaliq, A.; Wang, Z. P. Fabrication of PAA Coated Green-Emitting AuNCs for Construction of Label-Free FRET Assembly for Specific Recognition of T-2 Toxin. Sens. Actuators B Chem. 2020, 321, 128470. DOI: 10.1016/j.snb.2020.128470.
  • Altunbas, O.; Ozdas, A.; Yilmaz, M. D. Luminescent Detection of Ochratoxin a Using Terbium Chelated Mesoporous Silica Nanoparticles. J. Hazard Mater. 2020, 382, 121049. DOI: 10.1016/j.jhazmat.2019.121049.
  • Xie, H. Z.; Dong, J.; Duan, J. L.; Hou, J. Y.; Ai, S. Y.; Li, X. Y. Magnetic Nanoparticles-Based Immunoassay for Aflatoxin B1 Using Porous g-C3N4 Nanosheets as Fluorescence Probes. Sens. Actuators B. Chem. 2019, 278, 147–152. DOI: 10.1016/j.snb.2018.09.089.
  • Shi, J. R.; Li, G. Y.; Cui, Y. R.; Zhang, Y.; Liu, D. H.; Shi, Y.; He, H. Surface-Imprinted Beta-Cyclodextrin-Functionalized Carbon Nitride Nanosheets for Fluorometric Determination of Sterigmatomycin. Microchim. Acta 2019, 186, 808. DOI: 10.1007/s00604-019-3867-x.
  • Khan, I. M.; Niazi, S.; Yu, Y.; Mohsin, A.; Mushtaq, B. S.; Iqbal, M. W.; Rehman, A.; Akhtar, W.; Wang, Z. Aptamer Induced Multicolored AuNCs-WS2 "Turn on" FRET Nano Platform for Dual-Color Simultaneous Detection of AflatoxinB1 and Zearalenone. Anal. Chem. 2019, 91, 14085–14092. DOI: 10.1021/acs.analchem.9b03880.
  • Tian, J.; Wei, W.; Wang, J.; Ji, S.; Chen, G.; Lu, J. Fluorescence Resonance Energy Transfer Aptasensor between Nanoceria and Graphene Quantum Dots for the Determination of Ochratoxin A. Anal. Chim. Acta. 2018, 1000, 265–272. DOI: 10.1016/j.aca.2017.08.018.
  • Tang, D. P.; Lin, Y. X.; Zhou, Q. Carbon Dots Prepared from Litchi Chinensis and Modified with Manganese Dioxide Nanosheets for Use in a Competitive Fluorometric Immunoassay for Aflatoxin B1. Microchim. Acta 2018, 185, 476. DOI: 10.1007/s00604-018-3012-2.
  • Khan, I. M.; Zhao, S.; Niazi, S.; Mohsin, A.; Shoaib, M.; Duan, N.; Wu, S. J.; Wang, Z. P. Silver Nanoclusters Based FRET Aptasensor for Sensitive and Selective Fluorescent Detection of T-2 Toxin. Sens. Actuators B. Chem. 2018, 277, 328–335. DOI: 10.1016/j.snb.2018.09.021.
  • Bagheri, N.; Khataee, A.; Habibi, B.; Hassanzadeh, J. Mimetic Ag Nanoparticle/Zn-Based MOF Nanocomposite (AgNPs@ZnMOF) Capped with Molecularly Imprinted Polymer for the Selective Detection of Patulin. Talanta 2018, 179, 710–718. DOI: 10.1016/j.talanta.2017.12.009.
  • Molinero-Fernandez, A.; Moreno-Guzman, M.; Lopez, M. A.; Escarpa, A. Biosensing Strategy for Simultaneous and Accurate Quantitative Analysis of Mycotoxins in Food Samples Using Unmodified Graphene Micromotors. Anal. Chem. 2017, 89, 10850–10857. DOI: 10.1021/acs.analchem.7b02440.
  • Zhao, X.; Wang, Y.; Li, J.; Huo, B.; Huang, H.; Bai, J.; Peng, Y.; Li, S.; Han, D.; Ren, S.; et al. A Fluorescence Aptasensor for the Sensitive Detection of T-2 Toxin Based on FRET by Adjusting the Surface Electric Potentials of UCNPs and MIL-101. Anal. Chim. Acta 2021, 1160, 338450. DOI: 10.1016/j.aca.2021.338450.
  • Li, R.; Wen, Y.; Yang, L.; Liu, A.; Wang, F.; He, P. Dual Quantum Dot Nanobeads-Based Fluorescence-Linked Immunosorbent Assay for Simultaneous Detection of Aflatoxin B1 and Zearalenone in Feedstuffs. Food Chem. 2022, 366, 130527. DOI: 10.1016/j.foodchem.2021.130527.
  • Zhu, H.; Liu, C.; Liu, X.; Quan, Z.; Liu, W.; Liu, Y. A Multi-Colorimetric Immunosensor for Visual Detection of Ochratoxin a by Mimetic Enzyme Etching of Gold Nanobipyramids. Mikrochim. Acta 2021, 188, 62. DOI: 10.1007/s00604-020-04699-5.
  • Sun, Y.; Lv, Y.; Qi, S.; Zhang, Y.; Wang, Z. Sensitive Colorimetric Aptasensor Based on Stimuli-Responsive Metal-Organic Framework Nano-Container and Trivalent Dnazyme for Zearalenone Determination in Food Samples. Food Chem. 2022, 371, 131145. DOI: 10.1016/j.foodchem.2021.131145.
  • Zhu, H.; Quan, Z.; Hou, H.; Cai, Y.; Liu, W.; Liu, Y. A Colorimetric Immunoassay Based on Cobalt Hydroxide Nanocages as Oxidase Mimics for Detection of Ochratoxin A. Anal. Chim. Acta. 2020, 1132, 101–109. DOI: 10.1016/j.aca.2020.07.068.
  • He, S.; Huang, Q.; Zhang, Y.; Zhang, H.; Xu, H.; Li, X.; Ma, X. Magnetic Beads-Based Multicolor Colorimetric Immunoassay for Ultrasensitive Detection of Aflatoxin B1. Chin. Chem. Lett. 2021, 32, 1462–1465. DOI: 10.1016/j.cclet.2020.09.047.
  • Zhou, Y. F.; Huang, X. L.; Zhang, W. J.; Ji, Y. W.; Chen, R.; Xiong, Y. H. Multi-Branched Gold Nanoflower-Embedded Iron Porphyrin for Colorimetric Immunosensor. Biosens. Bioelectron. 2018, 102, 9–16. DOI: 10.1016/j.bios.2017.10.046.
  • Sun, S. M.; Zhao, R.; Feng, S. M.; Xie, Y. L. Colorimetric Zearalenone Assay Based on the Use of an Aptamer and of Gold Nanoparticles with Peroxidase-Like Activity. Microchim. Acta 2018, 185, 535. DOI: 10.1007/s00604-018-3078-x.
  • Lai, W.; Zeng, Q.; Tang, J.; Zhang, M.; Tang, D. A Conventional Chemical Reaction for Use in an Unconventional Assay: A Colorimetric Immunoassay for Aflatoxin B1 by Using Enzyme-Responsive Just-in-Time Generation of a MnO2 Based Nanocatalyst. Mikrochim. Acta 2018, 185, 92. DOI: 10.1007/s00604-017-2651-z.
  • Li, Z.; Li, Z.; Jiang, J.; Xu, D. Simultaneous Detection of Various Contaminants in Milk Based on Visualized Microarray. Food Control 2017, 73, 994–1001. DOI: 10.1016/j.foodcont.2016.10.009.
  • Guo, Z.; Chen, P.; Wang, M.; Zuo, M.; El-Seedi, H. R.; Chen, Q.; Shi, J.; Zou, X. Rapid Enrichment Detection of Patulin and Alternariol in Apple Using Surface Enhanced Raman Spectroscopy with Coffee-Ring Effect. LWT 2021, 152, 112333. DOI: 10.1016/j.lwt.2021.112333.
  • Chen, R.; Sun, Y.; Huo, B.; Mao, Z.; Wang, X.; Li, S.; Lu, R.; Li, S.; Liang, J.; Gao, Z. Development of Fe3O4@Au Nanoparticles Coupled to Au@Ag Core-Shell Nanoparticles for the Sensitive Detection of Zearalenone. Anal. Chim. Acta 2021, 1180, 338888. DOI: 10.1016/j.aca.2021.338888.
  • Rostami, S.; Zór, K.; Zhai, D. S.; Viehrig, M.; Morelli, L.; Mehdinia, A.; Smedsgaard, J.; Rindzevicius, T.; Boisen, A. High-Throughput Label-Free Detection of Ochratoxin a in Wine Using Supported Liquid Membrane Extraction and Ag-Capped Silicon Nanopillar Sers Substrates. Food Control 2020, 113, 107183. DOI: 10.1016/j.foodcont.2020.107183.
  • Li, J.; Wang, W.; Zhang, H.; Lu, Z.; Wu, W.; Shu, M.; Han, H. Programmable DNA Tweezer-Actuated Sers Probe for the Sensitive Detection of AFB1. Anal. Chem. 2020, 92, 4900–4907. DOI: 10.1021/acs.analchem.9b04822.
  • Chen, Q.; Jiao, T.; Yang, M.; Li, H.; Ahmad, W.; Hassan, M. M.; Guo, Z.; Ali, S. Pre etched Ag Nanocluster as SERS Substrate for the Rapid Quantification of AFB1 in Peanut Oil via DFT Coupled Multivariate Calibration. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2020, 239, 118411. DOI: 10.1016/j.saa.2020.118411.
  • Wu, L.; Yan, H.; Li, G. H.; Xu, X.; Zhu, L.; Chen, X. Q.; Wang, J. Surface-Imprinted Gold Nanoparticle-Based Surface-Enhanced Raman Scattering for Sensitive and Specific Detection of Patulin in Food Samples. Food Anal. Methods 2019, 12, 1648–1657. DOI: 10.1007/s12161-019-01498-4.
  • Li, A.; Tang, L.; Song, D.; Song, S.; Ma, W.; Xu, L.; Kuang, H.; Wu, X.; Liu, L.; Chen, X.; et al. A SERS-Active Sensor Based on Heterogeneous Gold Nanostar Core-Silver Nanoparticle Satellite Assemblies for Ultrasensitive Detection of Aflatoxin B1. Nanoscale 2016, 8, 1873–1878. DOI: 10.1039/c5nr08372a.
  • Huang, D. D.; Chen, J. M.; Ding, L.; Guo, L. H.; Kannan, P.; Luo, F.; Qiu, B.; Lin, Z. Y. Core-Satellite Assemblies and Exonuclease Assisted Double Amplification Strategy for Ultrasensitive SERS Detection of Biotoxin. Anal. Chim. Acta 2020, 1110, 56–63. DOI: 10.1016/j.aca.2020.02.058.
  • Song, D.; Yang, R.; Fang, S. Y.; Liu, Y. P.; Long, F.; Zhu, A. N. SERS Based Aptasensor for Ochratoxin a by Combining Fe3O4@Au Magnetic Nanoparticles and Au-DTNB@Ag Nanoprobes with Multiple Signal Enhancement. Microchim. Acta 2018, 185, 491. DOI: 10.1007/s00604-018-3020-2.
  • Shao, B. Y.; Ma, X. Y.; Zhao, S.; Lv, Y.; Hun, X.; Wang, H. T.; Wang, Z. P. Nanogapped Au(core) @ Au-Ag(shell) Structures Coupled with Fe3O4 Magnetic Nanoparticles for the Detection of Ochratoxin A. Anal. Chim. Acta 2018, 1033, 165–172. DOI: 10.1016/j.aca.2018.05.058.
  • Pan, T. T.; Sun, D. W.; Pu, H.; Wei, Q. Simple Approach for the Rapid Detection of Alternariol in Pear Fruit by Surface-Enhanced Raman Scattering with Pyridine-Modified Silver Nanoparticles. J. Agric. Food Chem. 2018, 66, 2180–2187. DOI: 10.1021/acs.jafc.7b05664.
  • He, H. R.; Sun, D. W.; Pu, H. B.; Huang, L. J. Bridging Fe3O4@Au Nanoflowers and Au@Ag Nanospheres with Aptamer for Ultrasensitive SERS Detection of Aflatoxin B1. Food Chem. 2020, 324, 126832. DOI: 10.1016/j.foodchem.2020.126832.
  • Fang, C.; Wei, C.; Xu, M.; Yuan, Y.; Gu, R.; Yao, J. Ni@Au Nanoparticles for Surface Enhanced Raman Spectroscopy Based Ultrasensitive Magnetic Immunoassay on Aflatoxin B1. RSC. Adv. 2016, 6, 61325–61333. DOI: 10.1039/C6RA09397C.
  • Jing, X.; Chang, L.; Shi, L.; Liu, X.; Zhao, Y.; Zhang, W. Au Film-Au@Ag Core-Shell Nanoparticle Structured Surface-Enhanced Raman Spectroscopy Aptasensor for Accurate Ochratoxin A Detection. ACS Appl. Bio. Mater. 2020, 3, 2385–2391. DOI: 10.1021/acsabm.0c00120.
  • Wu, S. S.; Wei, M.; Wei, W.; Liu, Y.; Liu, S. Q. Electrochemical Aptasensor for Aflatoxin B1 Based on Smart Host-Guest Recognition of β-Cyclodextrin Polymer. Biosens. Bioelectron. 2019, 129, 58–63. DOI: 10.1016/j.bios.2019.01.022.
  • Goud, K. Y.; Kailasa, S. K.; Kumar, V.; Tsang, Y. F.; Lee, S. E.; Gobi, K. V.; Kim, K.-H. Progress on Nanostructured Electrochemical Sensors and Their Recognition Elements for Detection of Mycotoxins: A Review. Biosens. Bioelectron. 2018, 121, 205–222. DOI: 10.1016/j.bios.2018.08.029.
  • Xie, F.; Yang, M.; Jiang, M.; Huang, X.-J.; Liu, W.-Q.; Xie, P.-H. Carbon-Based Nanomaterials – a Promising Electrochemical Sensor toward Persistent Toxic Substance. Trends Analyt. Chem. 2019, 119, 115624. DOI: 10.1016/j.trac.2019.115624.
  • Yang, X.; Zhou, X.; Zhang, X.; Qing, Y.; Luo, M.; Liu, X.; Li, C.; Li, Y.; Xia, H.; Qiu, J. A Highly Sensitive Electrochemical Immunosensor for Fumonisin B1 Detection in Corn Using Single-Walled Carbon Nanotubes/Chitosan. Electroanalysis 2015, 27, 2679–2687. DOI: 10.1002/elan.201500169.
  • Liu, X.; Wen, Y.; Wang, W.; Zhao, Z.; Han, Y.; Tang, K.; Wang, D. Nanobody-Based Electrochemical Competitive Immunosensor for the Detection of AFB1 through AFB1-HCR as Signal Amplifier. Mikrochim Acta 2020, 187, 352. DOI: 10.1007/s00604-020-04343-2.
  • Bulbul, G.; Hayat, A.; Andreescu, S. A Generic Amplification Strategy for Electrochemical Aptasensors Using a Non-Enzymatic Nanoceria Tag. Nanoscale 2015, 7, 13230. DOI: 10.1039/c5nr026213238. h.
  • Li, Y. Y.; Liu, D.; Zhu, C. X.; Shen, X. L.; Liu, Y.; You, T. Y. Sensitivity Programmable Ratiometric Electrochemical Aptasensor Based on Signal Engineering for the Detection of Aflatoxin B1 in Peanut. J. Hazard Mater. 2020, 387, 122001. DOI: 10.1016/j.jhazmat.2019.122001.
  • Ong, C. C.; Sangu, S. S.; Illias, N. M.; Gopinath, S. C. B.; Saheed, M. S. M. Iron Nanoflorets on 3D-Graphene-Nickel: A 'Dandelion' Nanostructure for Selective Deoxynivalenol Detection. Biosens. Bioelectron. 2020, 154, 112088. DOI: 10.1016/j.bios.2020.112088.
  • An, X. S.; Shi, X. J.; Zhang, H.; Yao, Y.; Wang, G. X.; Yang, Q. Q.; Xia, L. M.; Sun, X. An Electrochemical Immunosensor Based on a Combined Amplification Strategy with the GO-CS/CeO2-CS Nanocomposite for the Detection of Aflatoxin M1. New J. Chem. 2020, 44, 1362–1370. DOI: 10.1039/C9NJ04804A.
  • Rahimi, F.; Roshanfekr, H.; Peyman, H. Ultra-Sensitive Electrochemical Aptasensor for Label-Free Detection of Aflatoxin B1 in Wheat Flour Sample Using Factorial Design Experiments. Food Chem. 2021, 343, 128436. DOI: 10.1016/j.foodchem.2020.128436.
  • He, B. S.; Dong, X. Z. Hierarchically Porous Zr-MOFs Labelled Methylene Blue as Signal Tags for Electrochemical Patulin Aptasensor Based on ZnO Nano Flower. Sens. Actuators B. Chem. 2019, 294, 192–198. DOI: 10.1016/j.snb.2019.05.045.
  • Wang, L.; Jin, H. L.; Wei, M.; Ren, W. J.; Zhang, Y. R.; Jiang, L. Y.; Wei, T.; He, B. S. A Dnazyme-Assisted Triple-Amplified Electrochemical Aptasensor for Ultra-Sensitive Detection of T-2 Toxin. Sens. Actuators B Chem. 2021, 328, 129063. DOI: 10.1016/j.snb.2020.129063.
  • Wang, C. Q.; Qian, J.; An, K. Q.; Lu, X. T.; Huang, X. Y. A Semiconductor Quantum Dot-Based Ratiometric Electrochemical Aptasensor for the Selective and Reliable Determination of Aflatoxin B1. Analyst 2019, 144, 4772–4780. DOI: 10.1039/c9an00825j.
  • Hao, N.; Zhang, Y.; Zhong, H.; Zhou, Z.; Hua, R.; Qian, J.; Liu, Q.; Li, H. N.; Wang, K. Design of a Dual Channel Self-Reference Photoelectrochemical Biosensor. Anal. Chem. 2017, 89, 10133–10136. DOI: 10.1021/acs.analchem.7b03132.
  • Sun, C.; Liao, X.; Jia, B.; Shi, L.; Zhang, D.; Wang, R.; Zhou, L.; Kong, W. Development of a ZnCdS@ZnS Quantum Dots-Based Label-Free Electrochemiluminescence Immunosensor for Sensitive Determination of Aflatoxin B1 in Lotus Seed. Mikrochim. Acta 2020, 187, 236. DOI: 10.1007/s00604-020-4179-x.
  • Song, Y.; He, L.; Zhang, S.; Liu, X.; Chen, K.; Jia, Q.; Zhang, Z.; Du, M. Novel Impedimetric Sensing Strategy for Detecting Ochratoxin a Based on NH2-MIL-101(Fe) Metal-Organic Framework Doped with Cobalt Phthalocyanine Nanoparticles. Food Chem. 2021, 351, 129248. DOI: 10.1016/j.foodchem.2021.129248.
  • He, B.; Dong, X. Nb.BbvCI Powered DNA Walking Machine-Based Zr-MOFs-Labeled Electrochemical Aptasensor Using Pt@AuNRs/Fe-MOFs/PEI-RGO as Electrode Modification Material for Patulin Detection. Chem. Eng. J. 2021, 405, 126642. DOI: 10.1016/j.cej.2020.126642.
  • Jahangiri-Dehaghani, F.; Zare, H. R.; Shekari, Z. Measurement of Aflatoxin M1 in Powder and Pasteurized Milk Samples by Using a Label-Free Electrochemical Aptasensor Based on Platinum Nanoparticles Loaded on Fe-Based Metal-Organic Frameworks. Food Chem. 2020, 310, 125820. DOI: 10.1016/j.foodchem.2019.125820.
  • Feng, X.; Ding, X.; Jiang, D. Covalent Organic Frameworks. Chem. Soc. Rev. 2012, 41, 6010–6022. DOI: 10.1039/c2cs35157a.
  • Wen, X.; Huang, Q.; Nie, D.; Zhao, X.; Cao, H.; Wu, W.; Han, Z. A Multifunctional N-Doped Cu-MOFs (N-Cu-MOF) Nanomaterial-Driven Electrochemical Aptasensor for Sensitive Detection of Deoxynivalenol. Molecules 2021, 26, 2243. DOI: 10.3390/molecules26082243.
  • Wang, K.; He, B.; Xie, L.; Li, L.; Yang, J.; Liu, R.; Wei, M.; Jin, H.; Ren, W. Exonuclease III-Assisted Triple-Amplified Electrochemical Aptasensor Based on PtPd NPs/PEI-RGO for Deoxynivalenol Detection. Sens. Actuators B. Chem. 2021, 349, 130767. DOI: 10.1016/j.snb.2021.130767.
  • Mao, L.; Xue, X.; Xu, X.; Wen, W.; Chen, M.-M.; Zhang, X.; Wang, S. Heterostructured CuO-g-C3N4 Nanocomposites as a Highly Efficient Photocathode for Photoelectrochemical Aflatoxin B1 Sensing. Sens. Actuators B. Chem. 2021, 329, 129146. DOI: 10.1016/j.snb.2020.129146.
  • Wang, Y.; Zhang, X. D.; Zhan, Y. X.; Li, J.; Nie, H. G.; Yang, Z. Au@Fe3O4 Nanocomposites as Conductive Bridges Coupled with a Bi-Enzyme-Aided System to Mediate Gap-Electrical Signal Transduction for Homogeneous Aptasensor Mycotoxins Detection. Sens. Actuators B Chem. 2020, 321, 128553. DOI: 10.1016/j.snb.2020.128553.
  • Pang, Y.-H.; Guo, L.-L.; Shen, X.-F.; Yang, N.-C.; Yang, C. Rolling Circle Amplified Dnazyme Followed with Covalent Organic Frameworks: Cascade Signal Amplification of Electrochemical ELISA for Alfatoxin M1 Sensing. Electrochim. Acta 2020, 341, 136055. DOI: 10.1016/j.electacta.2020.136055.
  • Luo, L. J.; Liu, X. H.; Ma, S.; Li, L. B.; You, T. Y. Quantification of Zearalenone in Mildewing Cereal Crops Using an Innovative Photoelectrochemical Aptamer Sensing Strategy Based on ZnO-NGQDs Composites. Food Chem. 2020, 322, 126778. DOI: 10.1016/j.foodchem.2020.126778.
  • Kudr, J.; Zhao, L.; Nguyen, E. P.; Arola, H.; Nevanen, T. K.; Adam, V.; Zitka, O.; Merkoci, A. Inkjet-Printed Electrochemically Reduced Graphene Oxide Microelectrode as a Platform for HT-2 Mycotoxin Immunoenzymatic Biosensing. Biosens. Bioelectron. 2020, 156, 112109. DOI: 10.1016/j.bios.2020.112109.
  • Bhardwaj, H.; Marquette, C. A.; Dutta, P.; Rajesh; Sumana, G. Integrated Graphene Quantum Dot Decorated Functionalized Nanosheet Biosensor for Mycotoxin Detection. Anal. Bioanal. Chem. 2020, 412, 7029. DOI: 10.1007/s00216-020-02840-0.
  • Xu, J. Q.; Qiao, X. J.; Wang, Y.; Sheng, Q. L.; Yue, T. L.; Zheng, J. B.; Zhou, M. Electrostatic Assembly of Gold Nanoparticles on Black Phosphorus Nanosheets for Electrochemical Aptasensing of Patulin. Microchim. Acta 2019, 186, 238. DOI: 10.1007/s00604-019-3339-3.
  • Tang, Y. F.; Liu, X. Q.; Zheng, H. J.; Yang, L. W.; Li, L. L.; Zhang, S.; Zhou, Y. M.; Alwarappan, S. A Photoelectrochemical Aptasensor for Aflatoxin B1 Detection Based on an Energy Transfer Strategy between Ce-TiO2@MoSe2 and Au Nanoparticles. Nanoscale 2019, 11, 9115–9124. DOI: 10.1039/c9nr01960j.
  • Su, L. S.; Song, Y. L.; Fu, C. L.; Tang, D. P. Etching Reaction-Based Photoelectrochemical Immunoassay of Aflatoxin B1 in Foodstuff Using Cobalt Oxyhydroxide Nanosheets-Coating Cadmium Sulfide Nanoparticles as the Signal Tags. Anal. Chim. Acta 2019, 1052, 49–56. DOI: 10.1016/j.aca.2018.11.059.
  • Wang, M.; Duan, M.; Yu, F.; Fu, X.; Gu, M.; Chi, K.; Li, M.; Xia, X.; Hu, R.; Yang, Y.; et al. Development of Aflatoxin B1 Aptamer Sensor Based on Iron Porphyrin Organic Porous Material. Food Anal. Methods 2021, 14, 537–544. DOI: 10.1007/s12161-020-01877-2.
  • Chen, Y. J.; Zhang, S. P.; Hong, Z. S.; Lin, Y. Y.; Dai, H. A Mimotope Peptide-Based Dual-Signal Readout Competitive Enzyme-Linked Immunoassay for Non-Toxic Detection of Zearalenone. J. Mater. Chem. B. 2019, 7, 6972–6980. DOI: 10.1039/c9tb01167f.
  • Wang, C. Q.; Qian, J.; An, K. Q.; Ren, C. C.; Lu, X. T.; Hao, N.; Liu, Q.; Li, H. N.; Huang, X. Y.; Wang, K. Fabrication of Magnetically Assembled Aptasensing Device for Label-Free Determination of Aflatoxin B1 Based on EIS. Biosens. Bioelectron. 2018, 108, 69–75. DOI: 10.1016/j.bios.2018.02.043.
  • Wang, H.; Li, H.; Huang, Y.; Xiong, M. H.; Wang, F.; Li, C. A Label-Free Electrochemical Biosensor for Highly Sensitive Detection of Gliotoxin Based on DNA Nanostructure/Mxene Nanocomplexes. Biosens. Bioelectron. 2019, 142, 111531. DOI: 10.1016/j.bios.2019.111531.
  • Liu, C. S.; Sun, C. X.; Tian, J. Y.; Wang, Z. W.; Ji, H. F.; Song, Y. P.; Zhang, S.; Zhang, Z. H.; He, L. H.; Du, M. Highly Stable Aluminum-Based Metal-Organic Frameworks as Biosensing Platforms for Assessment of Food Safety. Biosens. Bioelectron. 2017, 91, 804–810. DOI: 10.1016/j.bios.2017.01.059.
  • Riberi, W. I.; Tarditto, L. V.; Zon, M. A.; Arevalo, F. J.; Fernandez, H. Development of an Electrochemical Immunosensor to Determine Zearalenone in Maize Using Carbon Screen Printed Electrodes Modified with Multi-Walled Carbon Nanotubes/Polyethyleneimine Dispersions. Sens. Actuators B. Chem. 2018, 254, 1271–1277. DOI: 10.1016/j.snb.2017.07.113.
  • Khoshfetrat, S. M.; Bagheri, H.; Mehrgardi, M. A. Visual Electrochemiluminescence Biosensing of Aflatoxin M1 Based on Luminol-Functionalized, Silver Nanoparticle-Decorated Graphene Oxide. Biosens. Bioelectron. 2018, 100, 382–388. DOI: 10.1016/j.bios.2017.09.035.
  • Geleta, G. S.; Zhao, Z.; Wang, Z. X. A Novel Reduced Graphene Oxide/Molybdenum Disulfide/Polyaniline Nanocomposite-Based Electrochemical Aptasensor for Detection of Aflatoxin B1. Analyst 2018, 143, 1644–1649. DOI: 10.1039/c7an02050c.
  • Lin, Y. X.; Zhou, Q.; Tang, D. P.; Niessner, R.; Knopp, D. Signal-on Photoelectrochemical Immunoassay for Aflatoxin B1 Based on Enzymatic Product-Etching MnO2 Nanosheets for Dissociation of Carbon Dots. Anal. Chem. 2017, 89, 5637–5645. DOI: 10.1021/acs.analchem.7b00942.
  • Gupta, P. K.; Tiwari, S.; Khan, Z. H.; Solanki, P. R. Amino Acid Functionalized ZrO2 Nanoparticles Decorated Reduced Graphene Oxide Based Immunosensor. J. Mater. Chem. B. 2017, 5, 2019–2033. DOI: 10.1039/c6tb02594c.
  • Li, Q.; Lv, S.; Lu, M.; Lin, Z.; Tang, D. Potentiometric Competitive Immunoassay for Determination of Aflatoxin B1 in Food by Using Antibody-Labeled Gold Nanoparticles. Microchim. Acta 2016, 183, 2815–2822. DOI: 10.1007/s00604-016-1929-x.
  • Lv, X.; Xu, X.; Miao, T.; Zang, X.; Geng, C.; Li, Y.; Cui, B.; Fang, Y. Aggregation-Induced Electrochemiluminescence Immunosensor Based on 9,10-Diphenylanthracene Cubic Nanoparticles for Ultrasensitive Detection of Aflatoxin B1. ACS Appl. Bio. Mater. 2020, 3, 8933–8942. DOI: 10.1021/acsabm.0c01201.
  • Luo, L. J.; Ma, S.; Li, L. B.; Liu, X. H.; Zhang, J. Y.; Li, X.; Liu, D.; You, T. Y. Monitoring Zearalenone in Corn Flour Utilizing Novel Self-Enhanced Electrochemiluminescence Aptasensor Based on NGQDs-NH2-Ru@SiO2 Luminophore. Food Chem. 2019, 292, 98–105. DOI: 10.1016/j.foodchem.2019.04.050.
  • Luppa, P. B.; Muller, C.; Schlichtiger, A.; Schlebusch, H. Point-of-Care Testing (POCT): Current Techniques and Future Perspectives. Trends Analyt Chem. 2011, 30, 887–898. DOI: 10.1016/j.trac.2011.01.019.
  • Guo, Y.; Zhao, W. In Situ Formed Nanomaterials for Colorimetric and Fluorescent Sensing. Coord. Chem. Rev. 2019, 387, 249–261. DOI: 10.1016/j.ccr.2019.02.019.
  • Wu, S. J.; Liu, L. H.; Duan, N.; Li, Q.; Zhou, Y.; Wang, Z. P. Aptamer-Based Lateral Flow Test Strip for Rapid Detection of Zearalenone in Corn Samples. J. Agric. Food Chem. 2018, 66, 1949–1954. DOI: 10.1021/acs.jafc.7b05326.
  • Wu, Y. H.; Zhou, Y. F.; Huang, H.; Chen, X. R.; Leng, Y. K.; Lai, W. H.; Huang, X. L.; Xiong, Y. H. Engineered Gold Nanoparticles as Multicolor Labels for Simultaneous Multi-Mycotoxin Detection on the Immunochromatographic Test Strip Nanosensor. Sens. Actuators B. Chem. 2020, 316, 128107. DOI: 10.1016/j.snb.2020.128107.
  • Kasoju, A.; Shahdeo, D.; Khan, A. A.; Shrikrishna, N. S.; Mahari, S.; Alanazi, A. M.; Bhat, M. A.; Giri, J.; Gandhi, S. Fabrication of Microfluidic Device for Aflatoxin M1 Detection in Milk Samples with Specific Aptamers. Sci. Rep. 2020, 10, 4627. DOI: 10.1038/s41598-020-60926-2.
  • Kasoju, A.; Shrikrishna, N. S.; Shahdeo, D.; Khan, A. A.; Alanazi, A. M.; Gandhi, S. Microfluidic Paper Device for Rapid Detection of Aflatoxin B1 Using an Aptamer Based Colorimetric Assay. RSC Adv. 2020, 10, 11843–11850. DOI: 10.1039/d0ra00062k.
  • Jiang, Q.; Wu, J. D.; Yao, K.; Yin, Y. L.; Gong, M. M.; Yang, C. B.; Lin, F. Paper-Based Microfluidic Device (DON-Chip) for Rapid and Low-Cost Deoxynivalenol Quantification in Food, Feed, and Feed Ingredients. ACS Sens. 2019, 4, 3072–3079. DOI: 10.1021/acssensors.9b01895.
  • Yu, L.; Li, P. W.; Ding, X. X.; Zhang, Q. Graphene Oxide and Carboxylated Graphene Oxide: Viable Two-Dimensional Nanolabels for Lateral Flow Immunoassays. Talanta 2017, 165, 167–175. DOI: 10.1016/j.talanta.2016.12.042.
  • Zhang, X.; Yu, X.; Wen, K.; Li, C.; Mujtaba Mari, G.; Jiang, H.; Shi, W.; Shen, J.; Wang, Z. Multiplex Lateral Flow Immunoassays Based on Amorphous Carbon Nanoparticles for Detecting Three Fusarium Mycotoxins in Maize. J. Agric. Food Chem. 2017, 65, 8063–8071. DOI: 10.1021/acs.jafc.7b02827.
  • Li, R.; Bu, T.; Zhao, Y.; Sun, X.; Wang, Q.; Tian, Y.; Bai, F.; Wang, L. Polydopamine Coated Zirconium Metal-Organic Frameworks-Based Immunochromatographic Assay for Highly Sensitive Detection of Deoxynivalenol. Anal. Chim. Acta 2020, 1131, 109–117. DOI: 10.1016/j.aca.2020.07.052.
  • Bu, T.; Bai, F.; Sun, X.; Tian, Y.; Zhang, M.; Zhao, S.; He, K.; Wang, X.; Jia, P.; Wang, L. An Innovative Prussian Blue Nanocubes Decomposition-Assisted Signal Amplification Strategy Suitable for Competitive Lateral Flow Immunoassay to Sensitively Detect Aflatoxin B1. Food Chem 2021, 344, 128711. DOI: 10.1016/j.foodchem.2020.128711.
  • Goryacheva, O. A.; Guhrenz, C.; Schneider, K.; Beloglazova, N. V.; Goryacheva, I. Y.; De Saeger, S.; Gaponik, N. Silanized Luminescent Quantum Dots for the Simultaneous Multicolor Lateral Flow Immunoassay of Two Mycotoxins. ACS Appl. Mater. Interfaces 2020, 12, 24575–24584. DOI: 10.1021/acsami.0c05099.
  • Duan, H.; Li, Y.; Shao, Y. N.; Huang, X. L.; Xiong, Y. H. Multicolor Quantum Dot Nanobeads for Simultaneous Multiplex Immunochromatographic Detection of Mycotoxins in Maize. Sens. Actuators B. Chem. 2019, 291, 411–417. DOI: 10.1016/j.snb.2019.04.101.
  • Tang, X. Q.; Li, P. W.; Zhang, Q.; Zhang, Z. W.; Zhang, W.; Jiang, J. Time-Resolved Fluorescence Immunochromatographic Assay Developed Using Two Idiotypic Nanobodies for Rapid, Quantitative, and Simultaneous Detection of Aflatoxin and Zearalenone in Maize and Its Products. Anal. Chem. 2017, 89, 11520–11528. DOI: 10.1021/acs.analchem.7b02794.
  • Wu, S. J.; Liu, L. H.; Duan, N.; Wang, W. Y.; Yu, Q. R.; Wang, Z. P. A Test Strip for Ochratoxin a Based on the Use of Aptamer-Modified Fluorescence Upconversion Nanoparticles. Microchim. Acta 2018, 185, 497. DOI: 10.1007/s00604-018-3022-0.
  • Jin, B. R.; Yang, Y. X.; He, R. Y.; Park, Y. I.; Lee, A.; Bai, D.; Li, F.; Lu, T. J.; Xu, F.; Lin, M. Lateral Flow Aptamer Assay Integrated Smartphone-Based Portable Device for Simultaneous Detection of Multiple Targets Using Upconversion Nanoparticles. Sens. Actuators B Chem. 2018, 276, 48–56. DOI: 10.1016/j.snb.2018.08.074.
  • Jin, B.; Li, Z.; Zhao, G.; Ji, J.; Chen, J.; Yang, Y.; Xu, R. Upconversion Fluorescence-Based Paper Disc for Multiplex Point-of-Care Testing in Water Quality Monitoring. Anal. Chim. Acta 2022, 1192, 339388. DOI: 10.1016/j.aca.2021.339388.
  • Chen, Y. J.; Zhang, S. P.; Huang, Y. T.; Lv, L.; Dai, H.; Lin, Y. Y. A Bio-Bar-Code Photothermal Probe Triggered Multi-Signal Readout Sensing System for Nontoxic Detection of Mycotoxins. Biosens. Bioelectron. 2020, 167, 112501. DOI: 10.1016/j.bios.2020.112501.
  • Zhang, W. J.; Tang, S. S.; Jin, Y. P.; Yang, C. J.; He, L. D.; Wang, J. Y.; Chen, Y. Q. Multiplex SERS-Based Lateral Flow Immunosensor for the Detection of Major Mycotoxins in Maize Utilizing Dual Raman Labels and Triple Test Lines. J. Hazard Mater. 2020, 393, 122348. DOI: 10.1016/j.jhazmat.2020.122348.
  • Zhang, M.; Bu, T.; Bai, F.; Zhao, S.; Tian, Y. M.; He, K. Y.; Zhao, Y. J.; Zheng, X. H.; Wang, L. Gold Nanoparticles-Functionalized Three-Dimensional Flower-Like Manganese Dioxide: A High-Sensitivity Thermal Analysis Immunochromatographic Sensor. Food Chem. 2021, 341, 128231. DOI: 10.1016/j.foodchem.2020.128231.
  • Dhiman, T. K.; Lakshmi, G.; Roychoudhury, A.; Jha, S. K.; Solanki, P. R. Ceria‐Nanoparticles‐Based Microfluidic Nanobiochip Electrochemical Sensor for the Detection of Ochratoxin A. ChemistrySelect 2019, 4, 4867–4873. DOI: 10.1002/slct.201803752.
  • Lu, L.; Gunasekaran, S. Dual-Channel ITO-Microfluidic Electrochemical Immunosensor for Simultaneous Detection of Two Mycotoxins. Talanta 2019, 194, 709–716. DOI: 10.1016/j.talanta.2018.10.091.
  • Yan, J. X.; Hu, W. J.; You, K. H.; Ma, Z. E.; Xu, Y.; Li, Y. P.; He, Q. H. Biosynthetic Mycotoxin Conjugate Mimetics-Mediated Green Strategy for Multiplex Mycotoxin Immunochromatographic Assay. J. Agric. Food Chem. 2020, 68, 2193–2200. DOI: 10.1021/acs.jafc.9b06383.
  • Guo, L.; Shao, Y. N.; Duan, H.; Ma, W.; Leng, Y. K.; Huang, X. L.; Xiong, Y. H. Magnetic Quantum Dot Nanobead-Based Fluorescent Immunochromatographic Assay for the Highly Sensitive Detection of Aflatoxin B1 in Dark Soy Sauce. Anal. Chem. 2019, 91, 4727–4734. DOI: 10.1021/acs.analchem.9b00223.
  • Yang, M.; Zhang, Y.; Cui, M.; Tian, Y.; Zhang, S.; Peng, K.; Xu, H.; Liao, Z.; Wang, H.; Chang, J. A Smartphone-Based Quantitative Detection Platform of Mycotoxins Based on Multiple-Color Upconversion Nanoparticles. Nanoscale 2018, 10, 15865–15874. DOI: 10.1039/c8nr04138e.
  • Hao, L.; Chen, J.; Chen, X.; Ma, T.; Cai, X.; Duan, H.; Leng, Y.; Huang, X.; Xiong, Y. A Novel Magneto-Gold Nanohybrid-Enhanced Lateral Flow Immunoassay for Ultrasensitive and Rapid Detection of Ochratoxin a in Grape Juice. Food Chem. 2021, 336, 127710. DOI: 10.1016/j.foodchem.2020.127710.
  • Wang, J. Y.; Chen, Q.; Jin, Y. P.; Zhang, X. P.; He, L. D.; Zhang, W. J.; Chen, Y. Q. Surface Enhanced Raman Scattering-Based Lateral Flow Immunosensor for Sensitive Detection of Aflatoxin M1 in Urine. Anal. Chim. Acta 2020, 1128, 184–192. DOI: 10.1016/j.aca.2020.06.076.
  • Chen, C. C.; Yu, X. Z.; Han, D. G.; Ai, J.; Ke, Y. B.; Wang, Z. H.; Meng, G. Non-CTAB Synthesized Gold Nanorods-Based Immunochromatographic Assay for Dual Color and on-Site Detection of Aflatoxins and Zearalenones in Maize. Food Control 2020, 118, 107418. DOI: 10.1016/j.foodcont.2020.107418.
  • Xu, S. L.; Zhang, G. G.; Fang, B. L.; Xiong, Q. R.; Duan, H. W.; Lai, W. H. Lateral Flow Immunoassay Based on Polydopamine-Coated Gold Nanoparticles for the Sensitive Detection of Zearalenone in Maize. ACS Appl. Mater. Interfaces 2019, 11, 31283–31290. DOI: 10.1021/acsami.9b08789.
  • Zhang, X.; Zhi, H.; Zhu, M.; Wang, F.; Meng, H.; Feng, L. Electrochemical/Visual Dual-Readout Aptasensor for Ochratoxin a Detection Integrated into a Miniaturized Paper-Based Analytical Device. Biosens. Bioelectron. 2021, 180, 113146. DOI: 10.1016/j.bios.2021.113146.
  • Jiang, S.; Zhang, L.; Li, J.; Ouyang, H.; Fu, Z. Pressure/Colorimetric Dual-Readout Immunochromatographic Test Strip for Point-of-Care Testing of Aflatoxin B1. Talanta 2021, 227, 122203. DOI: 10.1016/j.talanta.2021.122203.
  • Gu, Y.; Wang, Y. N.; Wu, X. M.; Pan, M. F.; Hu, N.; Wang, J. P.; Wang, S. Quartz Crystal Microbalance Sensor Based on Covalent Organic Framework Composite and Molecularly Imprinted Polymer of Poly(o-Aminothiophenol) with Gold Nanoparticles for the Determination of Aflatoxin B1. Sens. Actuators B. Chem. 2019, 291, 293–297. DOI: 10.1016/j.snb.2019.04.092.
  • Li, S. J.; Wang, J. P.; Sheng, W.; Wen, W. J.; Gu, Y.; Wang, S. Fluorometric Lateral Flow Immunochromatographic Zearalenone Assay by Exploiting a Quencher System Composed of Carbon Dots and Silver Nanoparticles. Microchim. Acta 2018, 185, 388. DOI: 10.1007/s00604-018-2916-1.
  • Xu, Y.; Ma, B.; Chen, E. J.; Yu, X. P.; Ye, Z. H.; Sun, C. X.; Zhang, M. Z. Dual Fluorescent Immunochromatographic Assay for Simultaneous Quantitative Detection of Citrinin and Zearalenone in Corn Samples. Food Chem. 2021, 336, 127713. DOI: 10.1016/j.foodchem.2020.127713.
  • Chen, Y.; Fu, Q. Q.; Xie, J.; Wang, H.; Tang, Y. Development of a High Sensitivity Quantum Dot-Based Fluorescent Quenching Lateral Flow Assay for the Detection of Zearalenone. Anal. Bioanal. Chem. 2019, 411, 2169–2175. DOI: 10.1007/s00216-019-01652-1.
  • Sun, D.; Mao, J.; Cheng, L.; Yang, X.; Li, H.; Zhang, L.; Zhang, W.; Zhang, Q.; Li, P. Magnetic g-C3N4/NiFe2O4 Composite with Enhanced Activity on Photocatalytic Disinfection of Aspergillus Flavus. Chem. Eng. J. 2021, 418, 129417. DOI: 10.1016/j.cej.2021.129417.
  • Rani, L.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S.; Grewal, A. S.; Srivastav, A. L.; Kaushal, J. An Extensive Review on the Consequences of Chemical Pesticides on Human Health and Environment. J. Clean. Prod. 2021, 283, 124657. DOI: 10.1016/j.jclepro.2020.124657.
  • Tarazona, A.; Gomez, J. V.; Mateo, E. M.; Jimenez, M.; Mateo, F. Antifungal Effect of Engineered Silver Nanoparticles on Phytopathogenic and Toxigenic Fusarium Spp. and Their Impact on Mycotoxin Accumulation. Int. J. Food Microbiol. 2019, 306, 108259. DOI: 10.1016/j.ijfoodmicro.2019.108259.
  • Xue, B.; He, D.; Gao, S.; Wang, D.; Yokoyama, K.; Wang, L. Biosynthesis of Silver Nanoparticles by the Fungus Arthroderma Fulvum and Its Antifungal Activity against Genera of Candida, Aspergillus and Fusarium. Int. J. Nanomedicine 2016, 11, 1899–1906. DOI: 10.2147/IJN.S98339.
  • Dananjaya, S. H. S.; Erandani, W.; Kim, C. H.; Nikapitiya, C.; Lee, J.; De Zoysa, M. Comparative Study on Antifungal Activities of Chitosan Nanoparticles and Chitosan Silver Nano Composites against Fusarium Oxysporum Species Complex. Int. J. Biol. Macromol. 2017, 105, 478–488. DOI: 10.1016/j.ijbiomac.2017.07.056.
  • Gómez, J. V.; Tarazona, A.; Mateo, F.; Jiménez, M.; Mateo, E. M. Potential Impact of Engineered Silver Nanoparticles in the Control of Aflatoxins, Ochratoxin a and the Main Aflatoxigenic and Ochratoxigenic Species Affecting Foods. Food Control 2019, 101, 58–68. DOI: 10.1016/j.foodcont.2019.02.019.
  • Sardella, D.; Gatt, R.; Valdramidis, V. P. Physiological Effects and Mode of Action of ZnO Nanoparticles against Postharvest Fungal Contaminants. Food Res. Int. 2017, 101, 274–279. DOI: 10.1016/j.foodres.2017.08.019.
  • Hernandez-Melendez, D.; Salas-Tellez, E.; Zavala-Franco, A.; Tellez, G.; Mendez-Albores, A.; Vazquez-Duran, A. Inhibitory Effect of Flower-Shaped Zinc Oxide Nanostructures on the Growth and Aflatoxin Production of a Highly Toxigenic Strain of Aspergillus Flavus Link. Materials (Basel) 2018, 11, 1265. DOI: 10.3390/ma11081265.
  • Liu, B.; Xue, Y.; Zhang, J.; Han, B.; Zhang, J.; Suo, X.; Mu, L.; Shi, H. Visible-Light-Driven TiO2/Ag3PO4 Heterostructures with Enhanced Antifungal Activity against Agricultural Pathogenic Fungi Fusarium Graminearum and Mechanism Insight. Environ. Sci.: Nano 2017, 4, 255–264. DOI: 10.1039/C6EN00415F.
  • Irshad, M. A.; Nawaz, R.; Zia Ur Rehman, M.; Imran, M.; Ahmad, J.; Ahmad, S.; Inam, A.; Razzaq, A.; Rizwan, M.; Ali, S. Synthesis and Characterization of Titanium Dioxide Nanoparticles by Chemical and Green Methods and Their Antifungal Activities against Wheat Rust. Chemosphere 2020, 258, 127352. DOI: 10.1016/j.chemosphere.2020.127352.
  • Zhang, J.; Liu, Y.; Li, Q.; Zhang, X.; Shang, J. K. Antifungal Activity and Mechanism of Palladium-Modified Nitrogen-Doped Titanium Oxide Photocatalyst on Agricultural Pathogenic Fungi Fusarium Graminearum. ACS Appl. Mater. Interfaces 2013, 5, 10953–10959. DOI: 10.1021/am4031196.
  • Wang, X.; Zhou, Z.; Chen, F. Surface Modification of Carbon Nanotubes with an Enhanced Antifungal Activity for the Control of Plant Fungal Pathogen. Materials (Basel) 2017, 10, 1375. DOI: 10.3390/ma10121375.
  • Nguyen, H. N.; Chaves-Lopez, C.; Oliveira, R. C.; Paparella, A.; Rodrigues, D. F. Cellular and Metabolic Approaches to Investigate the Effects of Graphene and Graphene Oxide in the Fungi Aspergillus flavus and Aspergillus niger. Carbon 2019, 143, 419–429. DOI: 10.1016/j.carbon.2018.10.099.
  • Chen, J.; Sun, L.; Cheng, Y.; Lu, Z.; Shao, K.; Li, T.; Hu, C.; Han, H. Graphene Oxide-Silver Nanocomposite: Novel Agricultural Antifungal Agent against Fusarium Graminearum for Crop Disease Prevention. ACS Appl. Mater. Interfaces 2016, 8, 24057–24070. DOI: 10.1021/acsami.6b05730.
  • Li, H.; Kang, Z.; Liu, Y.; Lee, S.-T. Carbon Nanodots: Synthesis, Properties and Applications. J. Mater. Chem. 2012, 22, 24230. DOI: 10.1039/c2jm34690g.
  • Tang, J.; Tang, G.; Niu, J.; Yang, J.; Zhou, Z.; Gao, Y.; Chen, X.; Tian, Y.; Li, Y.; Li, J.; Cao, Y. Preparation of a Porphyrin Metal-Organic Framework with Desirable Photodynamic Antimicrobial Activity for Sustainable Plant Disease Management. J. Agric. Food Chem. 2021, 69, 2382–2391. DOI: 10.1021/acs.jafc.0c06487.
  • Nong, W.; Wu, J.; Ghiladi, R. A.; Guan, Y. The Structural Appeal of Metal–Organic Frameworks in Antimicrobial Applications. Coord. Chem. Rev. 2021, 442, 214007. DOI: 10.1016/j.ccr.2021.214007.
  • Abdelhamid, H. N.; Mahmoud, G. A.; Sharmouk, W. A Cerium-Based MOFzyme with Multi-Enzyme-like Activity for the Disruption and Inhibition of Fungal Recolonization. J. Mater. Chem. B. 2020, 8, 7548–7556. DOI: 10.1039/D0TB00894J.
  • Abdelhameed, R. M.; Darwesh, O. M.; Rocha, J.; Silva, A. M. S. IRMOF-3 Biological Activity Enhancement by Post-Synthetic Modification. Eur. J. Inorg. Chem. 2019, 2019, 1243–1249. DOI: 10.1002/ejic.201801442.
  • Bouson, S.; Krittayavathananon, A.; Phattharasupakun, N.; Siwayaprahm, P.; Sawangphruk, M. Antifungal Activity of Water-Stable Copper-Containing Metal-Organic Frameworks. R. Soc. Open Sci. 2017, 4, 170654. DOI: 10.1098/rsos.170654.
  • Celis-Arias, V.; Loera-Serna, S.; Beltrán, H. I.; Álvarez-Zeferino, J. C.; Garrido, E.; Ruiz-Ramos, R. The Fungicide Effect of HKUST-1 on Aspergillus niger, Fusarium solani and Penicillium chrysogenum. New J. Chem. 2018, 42, 5570–5579. DOI: 10.1039/C8NJ00120K.
  • Pettinari, C.; Pettinari, R.; Di Nicola, C.; Tombesi, A.; Scuri, S.; Marchetti, F. Antimicrobial MOFs. Coord. Chem. Rev. 2021, 446, 214121. DOI: 10.1016/j.ccr.2021.214121.
  • Yiannikouris, A.; Apajalahti, J.; Kettunen, H.; Ojanpera, S.; Bell, A. N. W.; Keegan, J. D.; Moran, C. A. Efficient Aflatoxin B1 Sequestration by Yeast Cell Wall Extract and Hydrated Sodium Calcium Aluminosilicate Evaluated Using a Multimodal in-Vitro and Ex-Vivo Methodology. Toxins (Basel) 2021, 13, 24. DOI: 10.3390/toxins13010024.
  • Pellicer-Castell, E.; Belenguer-Sapina, C.; Borras, V. J.; Amoros, P.; El Haskouri, J.; Herrero-Martinez, J. M.; Mauri-Aucejo, A. R. Extraction of Aflatoxins by Using Mesoporous Silica (Type UVM-7), and Their Quantitation by HPLC-MS. Microchim. Acta 2019, 186, 792. DOI: 10.1007/s00604-019-3958-8.
  • Sun, Z.; Huang, D.; Duan, X.; Hong, W.; Liang, J. Functionalized Nanoflower-Like Hydroxyl Magnesium Silicate for Effective Adsorption of Aflatoxin B1. J. Hazard. Mater. 2020, 387, 121792. DOI: 10.1016/j.jhazmat.2019.121792.
  • Ran, C.; Chen, D.; Ma, H.; Jiang, Y. Graphene Oxide Adsorbent Based Dispersive Solid Phase Extraction Coupled with Multi-Pretreatment Clean-up for Analysis of Trace Aflatoxins in Traditional Proprietary Chinese Medicines. J. Chromatogr. B. Analyt Technol. Biomed. Life Sci. 2017, 1044–1045, 120–126. DOI: 10.1016/j.jchromb.2017.01.001.
  • Zhong, Z.; Li, G.; Luo, Z.; Liu, Z.; Shao, Y.; He, W.; Deng, J.; Luo, X. Carboxylated Graphene Oxide/Polyvinyl Chloride as Solid-Phase Extraction Sorbent Combined with Ion Chromatography for the Determination of Sulfonamides in Cosmetics. Anal. Chim. Acta 2015, 888, 75–84. DOI: 10.1016/j.aca.2015.06.054.
  • Bai, X.; Sun, C.; Xu, J.; Liu, D.; Han, Y.; Wu, S.; Luo, X. Detoxification of Zearalenone from Corn Oil by Adsorption of Functionalized GO Systems. Appl. Surf. Sci. 2018, 430, 198–207. DOI: 10.1016/j.apsusc.2017.06.055.
  • Tanveer, Z. I.; Huang, Q.; Liu, L.; Jiang, K.; Nie, D.; Pan, H.; Chen, Y.; Liu, X.; Luan, L.; Han, Z.; Wu, Y. Reduced Graphene Oxide-Zinc Oxide Nanocomposite as Dispersive Solid-Phase Extraction Sorbent for Simultaneous Enrichment and Purification of Multiple Mycotoxins in Coptidis Rhizoma (Huanglian) and Analysis by Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr. A. 2020, 1630, 461515. DOI: 10.1016/j.chroma.2020.461515.
  • Yu, L.; Ma, F.; Ding, X.; Wang, H.; Li, P. Silica/Graphene Oxide Nanocomposites: Potential Adsorbents for Solid Phase Extraction of Trace Aflatoxins in Cereal Crops Coupled with High Performance Liquid Chromatography. Food Chem. 2018, 245, 1018–1024. DOI: 10.1016/j.foodchem.2017.11.070.
  • Paszkiewicz, M.; Sikorska, C.; Leszczyńska, D.; Stepnowski, P. Helical Multi-Walled Carbon Nanotubes as an Efficient Material for the Dispersive Solid-Phase Extraction of Low and High Molecular Weight Polycyclic Aromatic Hydrocarbons from Water Samples: Theoretical Study. Water Air Soil Pollut. 2018, 229, 253. DOI: 10.1007/s11270-018-3884-0.
  • Zhang, Z.; Zeng, C.; Peng, B. Adsorption Properties of Magnetic Carbon Nanotubes for Patulin Removal from Aqueous Solution Systems. Food Control 2019, 102, 1–10. DOI: 10.1016/j.foodcont.2019.02.038.
  • Zhao, Y.; Yuan, Y. C.; Bai, X. L.; Liu, Y. M.; Wu, G. F.; Yang, F. S.; Liao, X. Multi-Mycotoxins Analysis in Liquid Milk by UHPLC-Q-Exactive HRMS after Magnetic Solid-Phase Extraction Based on Pegylated Multi-Walled Carbon Nanotubes. Food Chem. 2020, 305, 125429. DOI: 10.1016/j.foodchem.2019.125429.
  • Ma, S.; Pan, L. G.; You, T.; Wang, K. g-C3N4/Fe3O4 Nanocomposites as Adsorbents Analyzed by UPLC-MS/MS for Highly Sensitive Simultaneous Determination of 27 Mycotoxins in Maize: Aiming at Increasing Purification Efficiency and Reducing Time. J. Agric. Food Chem. 2021, 69, 4874–4882. DOI: 10.1021/acs.jafc.1c00141.
  • Cheng, J.; Wang, B.; Lv, J.; Wang, R.; Du, Q.; Liu, J.; Yu, L.; Dong, S.; Li, J. R.; Wang, P. Remarkable Uptake of Deoxynivalenol in Stable Metal-Organic Frameworks. ACS Appl. Mater. Interfaces 2021, 13, 58019–58026. DOI: 10.1021/acsami.1c19501.
  • Li, C. Y.; Liu, J. M.; Wang, Z. H.; Lv, S. W.; Zhao, N.; Wang, S. Integration of Fe3O4@UiO-66-NH2@Mon Core-Shell Structured Adsorbents for Specific Preconcentration and Sensitive Determination of Aflatoxins against Complex Sample Matrix. J. Hazard Mater. 2020, 384, 121348. DOI: 10.1016/j.jhazmat.2019.121348.
  • Wu, Q.; Fan, J.; Chen, X.; Zhu, Z.; Luo, J.; Wan, Y. Sandwich Structured Membrane Adsorber with Metal Organic Frameworks for Aflatoxin B1 Removal. Sep. Purif. Technol. 2020, 246, 116907. DOI: 10.1016/j.seppur.2020.116907.
  • Sun, J.; Guo, W.; Ji, J.; Li, Z.; Yuan, X.; Pi, F.; Zhang, Y.; Sun, X. Removal of Patulin in Apple Juice Based on Novel Magnetic Molecularly Imprinted Adsorbent Fe3O4@SiO2@CS-GO@MIP. LWT 2020, 118, 108854. DOI: 10.1016/j.lwt.2019.108854.
  • Turan, E.; Şahin, F. Molecularly Imprinted Biocompatible Magnetic Nanoparticles for Specific Recognition of Ochratoxin A. Sens. Actuators B. Chem. 2016, 227, 668–676. DOI: 10.1016/j.snb.2015.12.087.
  • Yu, X.; Li, Z.; Zhao, M.; Lau, S. C. S.; Ru Tan, H.; Teh, W. J.; Yang, H.; Zheng, C.; Zhang, Y. Quantification of Aflatoxin B1 in Vegetable Oils Using Low Temperature Clean-up Followed by Immuno-Magnetic Solid Phase Extraction. Food Chem. 2019, 275, 390–396. DOI: 10.1016/j.foodchem.2018.09.132.
  • Jouni, J.; Zafari, F.; Abdolmaleki, J.; Vazini, P.; Ghandi, H.; Satari, L. M. Aflatoxin M1 Detoxification from Infected Milk Using Fe3O4 Nanoparticles Attached to Specific Aptamer. J. Nanostruct. Chem. 2018, 8, 13–22. DOI: 10.1007/s40097-017-0250-5.
  • Wang, S.; Niu, R.; Yang, Y.; Zhou, X.; Luo, S.; Zhang, C.; Wang, Y. Aptamer-Functionalized Chitosan Magnetic Nanoparticles as a Novel Adsorbent for Selective Extraction of Ochratoxin A. Int. J. Biol. Macromol. 2020, 153, 583–590. DOI: 10.1016/j.ijbiomac.2020.03.035.
  • Urraca, J. L.; Huertas-Perez, J. F.; Cazorla, G. A.; Gracia-Mora, J.; Garcia-Campana, A. M.; Moreno-Bondi, M. C. Development of Magnetic Molecularly Imprinted Polymers for Selective Extraction: Determination of Citrinin in Rice Samples by Liquid Chromatography with UV Diode Array Detection. Anal. Bioanal. Chem. 2016, 408, 3033–3042. DOI: 10.1007/s00216-016-9348-8.
  • Bai, X.; Sun, C.; Liu, D.; Luo, X.; Li, D.; Wang, J.; Wang, N.; Chang, X.; Zong, R.; Zhu, Y. Photocatalytic Degradation of Deoxynivalenol Using Graphene/ZnO Hybrids in Aqueous Suspension. Appl. Catal. B 2017, 204, 11–20. DOI: 10.1016/j.apcatb.2016.11.010.
  • Murugesan, P.; Brunda, D. K.; Moses, J. A.; Anandharamakrishnan, C. Photolytic and Photocatalytic Detoxification of Mycotoxins in Foods. Food Control 2021, 123, 107748. DOI: 10.1016/j.foodcont.2020.107748.
  • Ge, M.; Cao, C.; Huang, J.; Li, S.; Chen, Z.; Zhang, K.-Q.; Al-Deyab, S. S.; Lai, Y. A Review of One-Dimensional TiO2 Nanostructured Materials for Environmental and Energy Applications. J. Mater. Chem. A 2016, 4, 6772–6801. DOI: 10.1039/C5TA09323F.
  • Yan, N.; Zhu, Z.; Zhang, J.; Zhao, Z.; Liu, Q. Preparation and Properties of Ce-Doped TiO2 Photocatalyst. Mater. Res. Bull 2012, 47, 1869–1873. DOI: 10.1016/j.materresbull.2012.04.077.
  • Sun, S.; Zhao, R.; Xie, Y.; Liu, Y. Photocatalytic Degradation of Aflatoxin B1 by Activated Carbon Supported TiO2 Catalyst. Food Control 2019, 100, 183–188. DOI: 10.1016/j.foodcont.2019.01.014.
  • Li, Q.; Deng, Y.; Dai, S.; Wu, Y.; Li, W.; Zhuo, S.; Jiao, S.; Wang, S.; Jin, Y.; Li, J. Microfluidic Assembly Synthesis of Magnetic TiO2@SiO2 Hybrid Photonic Crystal Microspheres for Photocatalytic Degradation of Deoxynivalenol. J. Inorg. Organomet Polym. 2021, 31, 2360–2367. DOI: 10.1007/s10904-020-01806-0.
  • Huang, C.; Peng, B. Photocatalytic Degradation of Patulin in Apple Juice Based on Nitrogen-Doped Chitosan-TiO2 Nanocomposite Prepared by a New Approach. LWT 2021, 140, 110726. DOI: 10.1016/j.lwt.2020.110726.
  • Xu, D.-X.; Lian, Z.-W.; Fu, M.-L.; Yuan, B.; Shi, J.-W.; Cui, H.-J. Advanced near-Infrared-Driven Photocatalyst: Fabrication, Characterization, and Photocatalytic Performance of β-NaYF4:Yb3+,Tm3+@TiO2 Core@Shell Microcrystals. Appl. Catal. B 2013, 142–143, 377–386. DOI: 10.1016/j.apcatb.2013.05.062.
  • Wu, S.; Wang, F.; Li, Q.; Wang, J.; Zhou, Y.; Duan, N.; Niazi, S.; Wang, Z. Photocatalysis and Degradation Products Identification of Deoxynivalenol in Wheat Using Upconversion Nanoparticles@TiO2 Composite. Food Chem. 2020, 323, 126823. DOI: 10.1016/j.foodchem.2020.126823.
  • Masih, D.; Ma, Y.; Rohani, S. Graphitic C3N4 Based Noble-Metal-Free Photocatalyst Systems: A Review. Appl. Catal. B. 2017, 206, 556–588. DOI: 10.1016/j.apcatb.2017.01.061.
  • Mao, J.; Zhang, L.; Wang, H.; Zhang, Q.; Zhang, W.; Li, P. Facile Fabrication of Nanosized Graphitic Carbon Nitride Sheets with Efficient Charge Separation for Mitigation of Toxic Pollutant. Chem. Eng. J. 2018, 342, 30–40. DOI: 10.1016/j.cej.2018.02.076.
  • Mao, J.; Zhang, Q.; Li, P. W.; Zhang, L. X.; Zhang, W. Geometric Architecture Design of Ternary Composites Based on Dispersive WO3 Nanowires for Enhanced Visible-Light-Driven Activity of Refractory Pollutant Degradation. Chem. Eng. J. 2018, 334, 2568–2578. DOI: 10.1016/j.cej.2017.10.165.
  • Silwana, N.; Calderon, B.; Ntwampe, S. K. O.; Fullana, A. Heterogeneous Fenton Degradation of Patulin in Apple Juice Using Carbon-Encapsulated Nano Zero-Valent Iron (Ce-nZVI). Foods 2020, 9, 674. DOI: 10.3390/foods9050674.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.