356
Views
6
CrossRef citations to date
0
Altmetric
Review Articles

A Status Update on the Development of Polymer and Metal-Based Graphene Electrochemical Sensors for Detection and Quantitation of Bisphenol A

ORCID Icon, ORCID Icon &
Pages 669-690 | Published online: 01 Jul 2022

References

  • Sonnenschein, C.; Soto, A. M. An Updated Review of Environmental Estrogen and Androgen Mimics and Antagonists. J. Steroid Biochem. Mol. Biol. 1998, 65, 143–150. DOI: 10.1016/S0960-0760(98)00027-2. [PMC][9699867]
  • Diamanti-Kandarakis, E.; Bourguignon, J. P.; Giudice, L. C.; Hauser, R.; Prins, G. S.; Soto, A. M.; Zoeller, R. T.; Gore, A. C. Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement. Endocr. Rev. 2009, 30, 293–342. DOI: 10.1210/er.2009-0002.
  • Petrovic, M.; Eljarrat, E.; Lopez de Alda, M. J.; Barcelo, D. Analysis and Environmental Levels of Endocrine-Disrupting Compounds in Freshwater Sediments. Trends Anal. Chem. 2001, 20, 637–648. DOI: 10.1016/S0165-9936(01)00118-2.
  • Mirzajani, H.; Cheng, C.; Vafaie, R. H.; Wu, J.; Chen, J.; Eda, S.; Aghdam, E. N.; Ghavifekr, H. B. Optimization of ACEK-Enhanced, PCB-Based Biosensor for Highly Sensitive and Rapid Detection of Bisphenol a in Low Resource Settings. Biosens. Bioelectron. 2022, 196, 113745. DOI: 10.1016/j.bios.2021.113745.
  • Li, Y.; Gao, Y.; Cao, Y.; Li, H. Electrochemical Sensor for Bisphenol a Determination Based on MWCNT/Melamine Complex Modified GCE. Sens. Actuators B. Chem. 2012, 171-172, 726–733. DOI: 10.1016/j.snb.2012.05.063.
  • Zhang, Y.; Lei, Y.; Lu, H.; Shi, L.; Wang, P.; Ali, Z.; Li, J. Electrochemical Detection of Bisphenols in Food: A Review. Food Chem. 2021, 346, 128895. DOI: 10.1016/j.foodchem.2020.128895. [PMC][33421902]
  • Goodson, A.; Robin, H.; Summerfield, W.; Cooper, I. Migration of Bisphenol a from Can Coatings-Effects of Damage, Storage Conditions and Heating. Food Addit. Contam. 2004, 21, 1015–1026. DOI: 10.1080/02652030400011387.
  • Lim, D. S.; Kwack, S. J.; Kim, K. B.; Kim, H. S.; Lee, B. M. Potential Risk of Bisphenol a Migration from Polycarbonate Containers after Heating, Boiling, and Microwaving. J. Toxicol. Environ. Health A. 2009, 72, 1285–1291. DOI: 10.1080/15287390903212329.
  • Chapin, R. E.; Adams, J.; Boekelheide, K.; Gray, L. E.; Hayward, S. W.; Lees, P. S. J.; McIntyre, B. S.; Portier, K. M.; Schnorr, T. M.; Selevan, S. G.; et al. NTP‐CERHR Expert Panel Report on the Reproductive and Developmental Toxicity of Bisphenol A. Birth Defects Res. B Dev. Reprod. Toxicol. 2008, 83, 157–395. DOI: 10.1002/bdrb.20147.
  • Vandenberg, L. N.; Maffini, M. V.; Sonnenschein, C.; Rubin, B. S.; Soto, A. M. Bisphenol-A and the Great Divide: A Review of Controversies in the Field of Endocrine Disruption. Endocr. Rev. 2009, 30, 75–95. DOI: 10.1210/er.2008-0021.
  • vom Saal, F. S.; Hughes, C. An Extensive New Literature concerning Low-Dose Effects of Bisphenol a Shows the Need for a New Risk Assessment. Environ. Health Perspect. 2005, 113, 926–933. DOI: 10.1289/ehp.7713.
  • Liao, C.; Kannan, K. Determination of Free and Conjugated Forms of Bisphenol a in Human Urine and Serum by Liquid Chromatography–Tandem Mass Spectrometry. Environ. Sci. Technol. 2012, 46, 5003–5009. [Database] DOI: 10.1021/es300115a.
  • Rubin, B. S. Bisphenol A: An Endocrine Disruptor with Widespread Exposure and Multiple Effects. J. Steroid Biochem. Mol. Biol. 2011, 127, 27–34. DOI: 10.1016/j.jsbmb.2011.05.002.
  • Varmira, K.; Saed-Mocheshi, M.; Jalalvand, A. R. Electrochemical Sensing and Bio-Sensing of Bisphenol a and Detection of Its Damage to DNA: A Comprehensive Review. Sens. Bio-Sens. Res. 2017, 15, 17–33. DOI: 10.1016/j.sbsr.2017.07.002.
  • Wolstenholme, J. T.; Rissman, E. F.; Connelly, J. J. The Role of Bisphenol a in Shaping the Brain, Epigenome and Behavior. Horm. Behav. 2011, 59, 296–305. DOI: 10.1016/j.yhbeh.2010.10.001. [21029734]
  • Tharp, A. P.; Maffini, M. V.; Hunt, P. A.; VandeVoort, C. A.; Sonnenschein, C.; Soto, A. M. Bisphenol a Alters the Development of the Rhesus Monkey Mammary Gland. Proc. Natl. Acad. Sci. U S A. 2012, 109, 8190–8195. DOI: 10.1073/pnas.1120488109.
  • Spanier, A. J.; Kahn, R. S.; Kunselman, A. R.; Hornung, R.; Xu, Y.; Calafat, A. M.; Lanphear, B. P. Prenatal Exposure to Bisphenol a and Child Wheeze from Birth to 3 Years of Age. Environ. Health Perspect. 2012, 120, 916–920. DOI: 10.1289/ehp.1104175.
  • Flint, S.; Markle, T.; Thompson, S.; Wallace, E. Bisphenol a Exposure, Effects, and Policy: A Wildlife Perspective. J. Environ. Manage. 2012, 104, 19–34. DOI: 10.1016/j.jenvman.2012.03.021. [PMC][22481365]
  • Geens, T.; Aerts, D.; Berthot, C.; Bourguignon, J.; Goeyens, L.; Lecomte, P.; Maghuin-Rogister, G.; Pironnet, A.; Pussemier, L.; Scippo, M.; et al. A Review of Dietary and Non-Dietary Exposure to Bisphenol-A. Food Chem. Toxicol. 2012, 50, 3725–3740. DOI: 10.1016/j.fct.2012.07.059.
  • Toxicological and Health Aspects of Bisphenol A. Report of Joint FAO/WHO Expert Meeting, Ottawa, Canada. 2010. https://apps.who.int/iris/bitstream/handle/10665/44624/97892141564274_eng.pdf?sequence=1&isAllowed=y (accessed Mar 16, 2022).
  • Bisphenol-A action plan. U.S. Environmental Protection Agency, 2010. http://www.epa.gov/Opptintr/existingchemicals/pubs/actionplans/bpa_action_plan.pdf (accessed Mar 16, 2022).
  • Ragavan, K. V.; Rastogi, N. K.; Thakur, M. S. Sensors and Biosensors for Analysis of bisphenol-A. Trends Anal. Chem. 2013, 52, 248–260. DOI: 10.1016/j.trac.2013.09.006.
  • Stetter, J. R.; Penrose, W. R.; Yao, S. Sensors, Chemical Sensors, Electrochemical Sensors, and ECS. J. Electrochem. Soc. 2003, 150, S11. DOI: 10.1149/1.1539051.
  • Hulanicki, A.; Glab, S.; Ingman, F. Chemical Sensors: definitions and Classification. Pure Appl. Chem. 1991, 63, 1247–1250. DOI: 10.1351/pac199163091247.
  • Cammann, K.; Ross, B.; Katerkamp, A.; Reinbold, J.; Grundig, B.; Renneberg, R. Chemical and Biochemical Sensors. In Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2012, pp 109–221.
  • Romanholo, P. V.; Razzino, C. A.; Raymundo-Pereira, P. A.; Prado, T. M.; Machado, S. A.; Sgobbi, L. F. Biomimetic Electrochemical Sensors: New Horizons and Challenges in Biosensing Applications. Biosens. Bioelectron. 2021, 185, 113242. DOI: 10.1016/j.bios.2021.113242.
  • McAuley, C. B.; Dickinson, E. J. F.; Rees, N. V.; Toghill, K. E.; Compton, R. G. New Electrochemical Methods. Anal. Chem. 2012, 84, 669–684. DOI: 10.1021/ac2026767.
  • Kimmel, D. W.; Blanc, G. L.; Meschievitz, M. E.; Cliffel, D. E. Electrochemical Sensors and Biosensors. Anal. Chem. 2012, 84, 685–707. DOI: 10.1021/ac202878q.
  • Sinha, A.; Wu, L.; Lu, X.; Chen, J.; Jain, R. Advances in Sensing and Biosensing of Bisphenols: A Review. Anal. Chim. Acta 2018, 998, 1–27. DOI: 10.1016/j.aca.2017.09.048.
  • Zheng, Z.; Liu, J.; Wang, M.; Cao, J.; Li, L.; Wang, C.; Feng, N. Selective Sensing of Bisphenol a and Bisphenol S on Platinum/Poly(Diallyl Dimethyl Ammonium Chloride)-Diamond Powder Hybrid Modified Glassy Carbon Electrode. J. Electrochem. Soc. 2016, 163, B192–B199. DOI: 10.1149/2.0281606jes.
  • Justino, C. I.; Gomes, A. R.; Freitas, A. C.; Duarte, A. C.; Rocha-Santos, T. A. Graphene Based Sensors and Biosensors. Trends Anal. Chem. 2017, 91, 53–66. DOI: 10.1016/j.trac.2017.04.003.
  • Huang, X.; Yin, Z.; Wu, S.; Qi, X.; He, Q.; Zhang, Q.; Yan, Q.; Boey, F.; Zhang, H. Graphene‐Based Materials: synthesis, Characterization, Properties, and Applications. Small 2011, 7, 1876–1902. DOI: 10.1002/smll.201002009.
  • Bollella, P.; Fusco, G.; Tortolini, C.; Sanzò, G.; Favero, G.; Gorton, L.; Antiochia, R. Beyond Graphene: electrochemical Sensors and Biosensors for Biomarkers Detection. Biosens. Bioelectron. 2017, 89, 152–166. DOI: 10.1016/j.bios.2016.03.068.
  • Bahadır, E. B.; Sezgintürk, M. K. Applications of Graphene in Electrochemical Sensing and Biosensing. Trends Anal. Chem. 2016, 76, 1–14. DOI: 10.1016/j.trac.2015.07.008.
  • Chen, X. M.; Wu, G. H.; Jiang, Y. Q.; Wang, Y. R.; Chen, X. Graphene and Graphene-Based Nanomaterials: The Promising Materials for Bright Future of Electroanalytical Chemistry. Analyst 2011, 136, 4631–4640. DOI: 10.1039/C1AN15661F.
  • He, Q.; Wu, S.; Yin, Z.; Zhang, H. Graphene-Based Electronic Sensors. Chem. Sci. 2012, 3, 1764–1772. DOI: 10.1039/c2sc20205k.
  • Pumera, M.; Ambrosi, A.; Bonanni, A.; Chng, E. L. K.; Poh, H. L. Graphene for Electrochemical Sensing and Biosensing. Trends Anal. Chem 2010, 29, 954–965. DOI: 10.1016/j.trac.2010.05.011.
  • Deng, X.; Tang, H.; Jiang, J. Recent Progress in Graphene-Material-Based Optical Sensors. Anal. Bioanal. Chem. 2014, 406, 6903–6916. DOI: 10.1007/s00216-014-7895-4.
  • Chang, J.; Zhou, G.; Christensen, E. R.; Heideman, R.; Chen, J. Graphene-Based Sensors for Detection of Heavy Metals in Water: A Review. Anal. Bioanal. Chem. 2014, 406, 3957–e3975. DOI: 10.1007/s00216-014-7804-x.
  • Bao, Q.; Loh, K. P. Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices. ACS Nano. 2012, 6, 3677–3694. DOI: 10.1021/nn300989g.
  • Sungur, Ş.; Köroğlu, M.; Özkan, A. Determination of Bisphenol a Migrating from Canned Food and Beverages in Markets. Food Chem. 2014, 142, 87–91. DOI: 10.1016/j.foodchem.2013.07.034. [PMC][24001816]
  • Jordakova, I.; Dobias, J.; Voldrich, M.; Poustka, J. Determination of Bisphenol A, Bisphenol F, Bisphenol a Diglycidyl Ether and Bisphenol F Diglycidyl Ether Migrated from Food Cans Using Gas Chromatography-Mass Spectrometry. Czech. J. Food Sci. 2003, 21, 85–90. DOI: 10.17221/3481-CJFS.
  • Kim, A.; Li, C. R.; Jin, C. F.; Lee, K. W.; Lee, S. H.; Shon, K. J.; Park, N. G.; Kim, D. K.; Kang, S. W.; Shim, Y. B.; Park, J. S. A Sensitive and Reliable Quantification Method for Bisphenol a Based on Modified Competitive ELISA Method. Chemosphere 2007, 68, 1204–1209. DOI: 10.1016/j.chemosphere.2007.01.079.
  • Zhong, S. X.; Tan, S. N.; Ge, L. Y.; Wang, W. P.; Chen, J. R. Determination of Bisphenol a and Naphthols in River Water Samples by Capillary Zone Electrophoresis after Cloud Point Extraction. Talanta 2011, 85, 488–492. DOI: 10.1016/j.talanta.2011.04.009.
  • Melamed, S.; Elad, T.; Belkin, S. Microbial Sensor Cell Arrays. Curr. Opin. Biotechnol. 2012, 23, 2–8. DOI: 10.1016/j.copbio.2011.11.024.
  • Chen, X. L.; Wang, C.; Tan, X. M.; Wang, J. X. Recent Advances in Electrochemical Sensing for Hydrogen Peroxide: A Review. Anal. Chim. Acta 2011, 689, 92–96. DOI: 10.1039/C1AN15738H.
  • Zou, J.; Yuan, M. M.; Huang, Z. N.; Chen, X. Q.; Jiang, X. Y.; Jiao, F. P.; Zhou, N.; Zhou, Z.; Yu, J. G. Highly-Sensitive and Selective Determination of Bisphenol a in Milk Samples Based on Self-Assembled Graphene Nanoplatelets-Multiwalled Carbon Nanotube-Chitosan Nanostructure. Mater. Sci. Eng. C. Mater. Biol. Appl. 2019, 103, 109848. DOI: 10.1016/j.msec.2019.109848.
  • Malitesta, C.; Mazzotta, E.; Picca, R. A.; Poma, A.; Chianella, I.; Piletsky, S. A. MIP Sensors–the Electrochemical Approach. Anal. Bioanal. Chem. 2012, 402, 1827–1846. DOI: 10.1007/s00216-011-5405-5.
  • Liu, B.; Yan, J.; Wang, M.; Wu, X. Molecularly Imprinted Electrochemical Sensor for the Detection of Bisphenol A. Int. J. Electrochem. Sci. 2019, 14, 3610–3617. DOI: 10.20964/2019.04.58.
  • Li, J.; Chen, J.; Zhang, X. L.; Lu, C. H.; Yang, H. H. A Novel Sensitive Detection Platform for Antitumor Herbal Drug Aloe-Emodin Based on the Graphene Modified Electrode. Talanta 2010, 83, 553–558. DOI: 10.1016/j.talanta.2010.09.058.
  • Liu, Q.; Zhu, X.; Huo, Z.; He, X.; Liang, Y.; Xu, M. Electrochemical Detection of Dopamine in the Presence of Ascorbic Acid Using PVP/Graphene Modified Electrodes. Talanta 2012, 97, 557–562. DOI: 10.1016/j.talanta.2012.05.013.
  • Su, B.; Tang, D.; Li, Q.; Tang, J.; Chen, G. Gold–Silver–Graphene Hybrid Nanosheets-Based Sensors for Sensitive Amperometric Immunoassay of Alpha-Fetoprotein Using Nanogold-Enclosed Titania Nanoparticles as Labels. Anal. Chim. Acta. 2011, 692, 116–124. DOI: 10.1016/j.aca.2011.02.061.
  • Deng, P.; Fei, J.; Feng, Y. Sensitive Voltammetric Determination of Tryptophan Using an Acetylene Black Paste Electrode Modified with a Schiff’s Base Derivative of Chitosan. Analyst 2011, 136, 5211–5217. DOI: 10.1039/C1AN15351J.
  • Deng, P.; Xu, Z.; Li, J.; Kuang, Y. Acetylene Black Paste Electrode Modified with a Molecularly Imprinted Chitosan Film for the Detection of Bisphenol A. Microchim. Acta. 2013, 180, 861–869. DOI: 10.1007/s00604-013-1001-z.
  • Sun, D.; Zhang, H. Voltammetric Determination of 6-Benzylaminopurine (6-BAP) Using an Acetylene Black-Dihexadecyl Hydrogen Phosphate Composite Film Coated Glassy Carbon Electrode. Anal. Chim. Acta 2006, 557, 64–69. DOI: 10.1016/j.aca.2005.10.002.
  • Deng, P.; Xu, Z.; Kuang, Y. Electrochemical Determination of Bisphenol a in Plastic Bottled Drinking Water and Canned Beverages Using a Molecularly Imprinted Chitosan–Graphene Composite Film Modified Electrode. Food Chem. 2014, 157, 90–497. DOI: 10.1016/j.foodchem.2014.02.074.
  • Cheng, J. P.; Wang, W. D.; Wang, X. C.; Liu, F. Recent Research of Core–Shell Structured Composites with NiCo2O4 as Scaffolds for Electrochemical Capacitors. Chem. Eng. Sci. 2020, 393, 124747. DOI: 10.1016/j.cej.2020.124747.
  • Cruz-Medina, R.; Vega-Rios, A.; Hernández-Escobar, C. A.; Estrada-Monje, A.; Rodríguez-Sánchez, I.; Zaragoza-Contreras, E. A. Polystyrene-Polyaniline Core-Shell Composite Particles Using a Bifunctional Selectively Polymerizable Monomer as the Interfacial Linkage. Synth. Met. 2020, 265, 116402. DOI: 10.1016/j.synthmet.2020.116402.
  • Ma, W.; Row, K. H. Solid-Phase Extraction of Chlorophenols in Seawater Using a Magnetic Ionic Liquid Molecularly Imprinted Polymer with Incorporated Silicon Dioxide as a Sorbent. J. Chromatogr. A. 2018, 1559, 78–85. DOI: 10.1016/j.chroma.2018.01.013.
  • Shuai, H. L.; Wu, X.; Huang, K. J.; Zhai, Z. B. Ultrasensitive Electrochemical Biosensing Platform Based on Spherical Silicon Dioxide/Molybdenum Selenide Nanohybrids and Triggered Hybridization Chain Reaction. Biosens. Bioelectron. 2017, 94, 616–625. DOI: 10.1016/j.bios.2017.03.058.
  • Leonard, K. C.; Genthe, J. R.; Sanfilippo, J. L.; Zeltner, W. A.; Anderson, M. A. Synthesis and Characterization of Asymmetric Electrochemical Capacitive Deionization Materials Using Nanoporous Silicon Dioxide and Magnesium Doped Aluminum Oxide. Electrochim. Acta 2009, 54, 5286–5291. DOI: 10.1016/j.electacta.2009.01.082.
  • Eslami, M.; Deflorian, F.; Zanella, C. Electrochemical Performance of Polypyrrole Coatings Electrodeposited on Rheocastaluminum-Silicon Components. Prog. Org. Coat 2019, 137, 105307. DOI: 10.1016/j.porgcoat.2019.105307.
  • Zhou, Q.; Zhou, Y.; Bao, M.; Ni, X. Modified Silicon Nanowires@Polypyrrole Core-Shell Nanostructures by Poly(3,4-Ethylenedioxythiophene) for High Performance on-Chip Microsupercapacitors. Appl. Surf. Sci. 2019, 487, 236–243. DOI: 10.1016/j.apsusc.2019.05.114.
  • Bai, X.; Zhang, B.; Liu, M.; Hu, X.; Fang, G.; Wang, S. Molecularly Imprinted Electrochemical Sensor Based on Polypyrrole/Dopamine@Graphene Incorporated with Surface Molecularly Imprinted Polymers Thin Film for Recognition of Olaquindox. Bioelectrochemistry 2020, 132, 107398. DOI: 10.1016/j.bioelechem.2019.107398.
  • Oliveira, S. M.; Luzardo, J. M.; Silva, L. A.; Aguiar, D. C.; Senna, C. A.; Verdan, R.; Kuznetsov, A.; Vasconcelos, T. L.; Archanjo, B. S.; Achete, C. A.; et al. High-Performance Electrochemical Sensor Based on Molecularly Imprinted Polypyrrole-Graphene Modified Glassy Carbon Electrode. Thin Solid Films 2020, 699, 137875. DOI: 10.1016/j.tsf.2020.137875.
  • Xu, W.; Zhang, Y.; Yin, X.; Zhang, L.; Cao, Y.; Ni, X.; Huang, W. Highly Sensitive Electrochemical BPA Sensor Based on Titanium Nitride-Reduced Graphene Oxide Composite and Core-Shell Molecular Imprinting Particles. Anal. Bioanal. Chem. 2021, 413, 1081–1090. DOI: 10.1007/s00216-020-03069-7.
  • Dadkhah, S.; Ziaei, E.; Mehdinia, A.; Kayyal, T. B.; Jabbari, A. A Glassy Carbon Electrode Modified with Amino-Functionalized Graphene Oxide and Molecularly Imprinted Polymer for Electrochemical Sensing of Bisphenol A. Microchim Acta 2016, 183, 1933–1941. DOI: 10.1007/s00604-016-1824-5.
  • Tan, F.; Cong, L.; Li, X.; Zhao, Q.; Zhao, H.; Quan, X.; Chen, J. An Electrochemical Sensor Based on Molecularly Imprinted Polypyrrole/Graphene Quantum Dots Composite for Detection of Bisphenol a in Water Samples. Sens. Actuators B: Chem. 2016, 233, 599–606. DOI: 10.1016/j.snb.2016.04.146.
  • El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors. Science 2012, 335, 1326–1330. DOI: 10.1126/science.1216744.
  • Lin, J.; Peng, Z.; Liu, Y.; Ruiz-Zepeda, F.; Ye, R.; Samuel, E. L.; Yacaman, M. J.; Yakobson, B. I.; Tour, J. M. Laser-Induced Porous Graphene Films from Commercial Polymers. Nat. Commun. 2014, 5, 1–8. DOI: 10.1038/ncomms6714.
  • Cardoso, A. R.; Marques, A. C.; Santos, L.; Carvalho, A. F.; Costa, F. M.; Martins, R.; Sales, M. G. F.; Fortunato, E. Molecularly-Imprinted Chloramphenicol Sensor with Laser-Induced Graphene Electrodes. Biosens. Bioelectron. 2019, 124, 167–175. DOI: 10.1016/j.bios.2018.10.015.
  • Nayak, P.; Jiang, Q.; Kurra, N.; Wang, X.; Buttner, U.; Alshareef, H. N. Monolithic Laser Scribed Graphene Scaffolds with Atomic Layer Deposited Platinum for the Hydrogen Evolution Reaction. J. Mater. Chem. A. 2017, 5, 20422–20427. DOI: 10.1039/C7TA06236B.
  • Xia, Y.; Zhao, F.; Zeng, B. A Molecularly Imprinted Copolymer Based Electrochemical Sensor for the Highly Sensitive Detection of L-Tryptophan. Talanta 2020, 206, 120245. DOI: 10.1016/j.talanta.2019.120245.
  • Beduk, T.; Lahcen, A. A.; Tashkandi, N.; Salama, K. N. One-Step Electrosynthesized Molecularly Imprinted Polymer on Laser Scribed Graphene Bisphenol a Sensor. Sens. Actuators B: Chem. 2020, 314, 128026. DOI: 10.1016/j.snb.2020.128026.
  • Zhang, X.; Wu, L.; Zhou, J.; Zhang, X.; Chen, J. A New Ratiometric Electrochemical Sensor for Sensitive Detection of Bisphenol a Based on Poly-β-Cyclodextrin/Electroreduced Graphene Modified Glassy Carbon Electrode. J. Electroanal. Chem. 2015, 742, 97–103. DOI: 10.1016/j.jelechem.2015.02.006.
  • Alam, A. U.; Deen, M. J. Bisphenol a Electrochemical Sensor Using Graphene Oxide and β-Cyclodextrin-Functionalized Multi-Walled Carbon Nanotubes. Anal. Chem. 2020, 92, 5532–5539. DOI: 10.1021/acs.analchem.0c00402.
  • Alsbaiee, A.; Smith, B. J.; Xiao, L.; Ling, Y.; Helbling, D. E.; Dichtel, W. R. Rapid Removal of Organic Micropollutants from Water by a Porous β-Cyclodextrin Polymer. Nature 2016, 529, 190–194. DOI: 10.1038/nature16185.
  • Liu, J.; Yang, Y.; Bai, J.; Wen, H.; Chen, F.; Wang, B. Hyper-Cross-Linked Porous MoS2–Cyclodextrin-Polymer Frameworks: Durable Removal of Aromatic Phenolic Micropollutant from Water. Anal. Chem. 2018, 90, 3621–3627. DOI: 10.1021/acs.analchem.8b00239.
  • Ma, J.; Yuan, J.; Xu, Y.; Jiang, Y.; Bai, W.; Zheng, J. Ultrasensitive Electrochemical Determination of Bisphenol a in Food Samples Based on a Strategy for Activity Enhancement of Enzyme: layer-by-Layer Self-Assembly of Tyrosinase between Two-Dimensional Porphyrin Metal-Organic Framework Nanofilms. Chem. Eng. J. 2022, 446, 137001. DOI: 10.1016/j.cej.2022.137001.
  • Vaghela, C.; Kulkarni, M.; Karve, M.; Zinjarde, S. Selective Electrochemical Sensing of Bisphenol Derivatives Using Novel Bioelectrode of Agarose-Guar Gum-Graphene Oxide Immobilized with Tyrosinase. J. Environ. Chem. Eng. 2022, 10, 107360. DOI: 10.1016/j.jece.2022.107360.
  • Zuo, X.; He, S.; Li, D.; Peng, C.; Huang, Q.; Song, S.; Fan, C. Graphene Oxide-Facilitated Electron Transfer of Metalloproteins at Electrode Surfaces. Langmuir 2010, 26, 1936–1939. DOI: 10.1021/la902496u.
  • Yang, Y.; Asiri, A. M.; Tang, Z.; Du, D.; Lin, Y. Graphene Based Materials for Biomedical Applications. Mater. Today 2013, 16, 365–373. DOI: 10.1016/j.mattod.2013.09.004.
  • Fernandes, P. M.; Campiña, J. M.; Silva, A. F. A Layered Nanocomposite of Laccase, Chitosan, and Fe3O4 Nanoparticles-Reduced Graphene Oxide for the Nanomolar Electrochemical Detection of Bisphenol A. Microchim. Acta 2020, 187, 1–10. DOI: 10.1007/s00604-020-4223-x.
  • Reza, K. K.; Ali, M. A.; Srivastava, S.; Agrawal, V. V.; Biradar, A. M. Tyrosinase Conjugated Reduced Graphene Oxide Based Biointerface for Bisphenol a Sensor. Biosens. Bioelectron. 2015, 74, 644–651. DOI: 10.1016/j.bios.2015.07.020.
  • Bolat, G.; Yaman, Y. T.; Abaci, S. Highly Sensitive Electrochemical Assay for Bisphenol a Detection Based on Poly (CTAB)/MWCNTs Modified Pencil Graphite Electrodes. Sens. Actuators B: Chem. 2018, 255, 140–148. DOI: 10.1016/j.snb.2017.08.001.
  • Sk, A. R.; Shahadat, M.; Basu, S.; Shaikh, Z. A.; Ali, S. W. Polyaniline/Carbon Nanotube-Graphite Modified Electrode Sensor for Detection of Bisphenol A. Ionics 2019, 25, 2857–2864. DOI: 10.1007/s11581018-2807-9.
  • Yang, T.; Zhan, L.; Huang, C. Z. Recent Insights into Functionalized Electrospun Nanofibrous Films for Chemo-/Bio-Sensors. Trends in Anal. Chem. 2020, 124, 115813. DOI: 10.1016/j.trac.2020.115813.
  • Cabral, T. S.; Sgobbi, L. F.; Delezuk, J.; Pessoa, R. S.; Lobo, A. O.; Rodrigues, B. V. Glucose Sensing via a Green and Low-Cost Platform from Electrospun Poly (Vinyl Alcohol)/Graphene Quantum Dots Fibers. Mater. Today: Proc. 2019, 14, 694–699. DOI: 10.1016/j.matpr.2019.02.008.
  • Furquim, F. C.; Santos, E. N.; Mercante, L. A.; Amaral, M. M.; Pavinatto, A.; Rodrigues, B. V. M. Green and Low-Cost Electrospun Membranes from Polycaprolactone/Graphene Oxide for Bisphenol a Sensing. Mater. Lett. 2020, 274, 128014. DOI: 10.1016/j.matlet.2020.128014.
  • Zhuang, X.; Chen, D.; Wang, S.; Liu, H.; Chen, L. Manganese Dioxide Nanosheet-Decorated Ionic Liquid-Functionalized Graphene for Electrochemical Theophylline Biosensing. Sens. Actuators B Chem. 2017, 251, 185–191. DOI: 10.1016/j.snb.2017.05.049.
  • Wang, Y.; Li, C.; Wu, T.; Ye, X. Polymerized Ionic Liquid Functionalized Graphene Oxide Nanosheets as a Sensitive Platform for Bisphenol a Sensing. Carbon 2018, 129, 21–28. DOI: 10.1016/j.carbon.2017.11.090.
  • Yuan, J.; Antonietti, M. Poly(Ionic Liquid)s: Polymers Expanding Classical Property Profiles. Polymer 2011, 52, 1469–1482. DOI: 10.1016/j.polymer.2011.01.043.
  • Kim, T. Y.; Lee, H. W.; Stoller, M.; Dreyer, D. R.; Bielawski, C. W.; Ruoff, R. S.; Suh, K. S. High-Performance Supercapacitors Based on Poly (Ionic Liquid)-Modified Graphene Electrodes. ACS Nano 2011, 5, 436–442. DOI: 10.1021/nn101968p.
  • Sá, A. C. D.; Barbosa, S. C.; Raymundo-Pereira, P. A.; Wilson, D.; Shimizu, F. M.; Raposo, M.; Oliveira, O. N. Flexible Carbon Electrodes for Electrochemical Detection of Bisphenol A, Hydroquinone and Catechol in Water Samples. Chemosensors 2020, 8, 103. DOI: 10.3390/chemosensors8040103.
  • Li, J. R.; Sculley, J.; Zhou, H. C. Metal–Organic Frameworks for Separations. Chem. Rev. 2012, 112, 869–932. DOI: 10.1021/cr200190s.
  • Lu, K.; Aung, T.; Guo, N.; Weichselbaum, R.; Lin, W. Nanoscale Metal–Organic Frameworks for Therapeutic, Imaging, and Sensing Applications. Adv. Mater. 2018, 30, 1707634. DOI: 10.1002/adma.201707634.
  • Liu, L.; Zhou, Y.; Liu, S.; Xu, M. The Applications of Metal − Organic Frameworks in Electrochemical Sensors. ChemElectroChem. 2018, 5, 6–19. DOI: 10.1002/celc.201700931.
  • Chidambaram, A.; Stylianou, K. C. Electronic Metal–Organic Framework Sensors. Inorg. Chem. Front. 2018, 5, 979–998. DOI: 10.1039/C7QI00815E.
  • Kempahanumakkagari, S.; Vellingiri, K.; Deep, A.; Kwon, E. E.; Bolan, N.; Kim, K. H. Metal–Organic Framework Composites as Electrocatalysts for Electrochemical Sensing Applications. Coord. Chem. Rev. 2018, 357, 105–129. DOI: 10.1016/j.ccr.2017.11.028.
  • Liu, X. W.; Sun, T. J.; Hu, J. L.; Wang, S. D. Composites of Metal–Organic Frameworks and Carbon-Based Materials: Preparations, Functionalities and Applications. J. Mater. Chem. A. 2016, 4, 3584–3616. DOI: 10.1039/C5TA09924B.
  • Wang, X.; Shi, Y.; Shan, J.; Zhou, H.; Li, M. Electrochemical Sensor for Determination of Bisphenol a Based on MOF-Reduced Graphene Oxide Composites Coupled with Cetyltrimethylammonium Bromide Signal Amplification. Ionics 2020, 26, 3135–3146. DOI: 10.1007/s11581-019-03260-6.
  • Guo, Y.; Sun, Y.; Wang, Y.; He, H.; Zhu, Y. Thiol-and Alkyne-Functionalized Copper Nanoparticles as Electrocatalysts for Bisphenol A (BPA) Oxidation. J. Solid State Electrochem. 2019, 23, 91–100. DOI: 10.1007/s10008-018-4114-9.
  • Wang, X.; Lu, X.; Wu, L.; Chen, J. 3D Metal-Organic Framework as Highly Efficient Biosensing Platform for Ultrasensitive and Rapid Detection of Bisphenol A. Biosens. Bioelectron. 2015, 65, 295–301. DOI: 10.1016/j.bios.2014.10.010.
  • Lou, C.; Jing, T.; Tian, J.; Zheng, Y.; Zhang, J.; Dong, M.; Wang, C.; Hou, C.; Fan, J.; Guo, Z. 3-Dimensional Graphene/Cu/Fe3O4 Composites: immobilized Laccase Electrodes for Detecting Bisphenol A. J. Mater. Res. 2019, 34, 2964–2975. DOI: 10.1557/jmr.2019.248.
  • Ling, L. J.; Xu, J. P.; Deng, Y. H.; Peng, Q.; Chen, J. H.; He, Y, S.; Nie, Y. J. One-Pot Hydrothermal Synthesis of Amine-Functionalized Metal–Organic Framework/Reduced Graphene Oxide Composites for the Electrochemical Detection of Bisphenol A. Anal. Methods 2018, 10, 2722–2730. DOI: 10.1039/C8AY00052B.
  • Wang, Y.; Shao, Y.; Matson, D. W.; Li, J.; Lin, Y. Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing. ACS Nano 2010, 4, 1790–1798. DOI: 10.1021/nn100315s.
  • Wang, D. W.; Gentle, I. R.; Lu, G. Q. M. Enhanced Electrochemical Sensitivity of PtRh Electrodes Coated with Nitrogen-Doped Graphene. Electrochem. Commun. 2010, 12, 1423–1427. DOI: 10.1016/j.elecom.2010.07.037.
  • Jiao, S.; Jin, J.; Wang, L. Tannic Acid Functionalized N-Doped Graphene Modified Glassy Carbon Electrode for the Determination of Bisphenol A in Food Package. Talanta 2014, 122, 140–144. DOI: 10.1016/j.talanta.2014.01.063.
  • Manna, B. Rational Functionalization of Reduced Graphene Oxide with an Imidazole Group for the Electrochemical Sensing of Bisphenol a–an Endocrine Disruptor. Analyst 2018, 143, 3451–3457. DOI: 10.1039/C8AN00642C.
  • Aiken, I. I. I.; Finke, J. D.; G, R. A Review of Modern Transition-Metal Nanoclusters: their Synthesis, Characterization, and Applications in Catalysis. J. Mol. Catal. A: Chem. 1999, 145, 1–44. DOI: 10.1016/S1381-1169(99)00098-9.
  • Lu, Y.; Wei, W.; Chen, W. Copper Nanoclusters: Synthesis, Characterization and Properties. Chin. Sci. Bull. 2012, 57, 41–47. DOI: 10.1007/s11434-011-4896-y.
  • Mahmoudi, E.; Hajian, A.; Rezaei, M.; Afkhami, A.; Amine, A.; Bagheri, H. A Novel Platform Based on Graphene Nanoribbons/Protein Capped Au-Cu Bimetallic Nanoclusters: Application to the Sensitive Electrochemical Determination of Bisphenol A. Microchem. J. 2019, 145, 242–251. DOI: 10.1016/j.microc.2018.10.044.
  • Su, B.; Shao, H.; Li, N.; Chen, X.; Cai, Z.; Chen, X. A Sensitive Bisphenol a Voltammetric Sensor Relying on AuPd Nanoparticles/Graphene Composites Modified Glassy Carbon Electrode. Talanta 2017, 166, 126–132. DOI: 10.1016/j.talanta.2017.01.049.
  • Liang, H.; Zhao, Y.; Ye, H.; Li, C. P. Ultrasensitive and Ultrawide Range Electrochemical Determination of Bisphenol a Based on PtPd Bimetallic Nanoparticles and Cationic Pillar [5] Arene Decorated Graphene. J. Electroanal. Chem. 2019, 855, 113487. DOI: 10.1016/j.jelechem.2019.113487.
  • Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T. A.; Nakamoto, Y. P. Bridged Symmetrical Pillar [5] Arenes: their Lewis Acid Catalyzed Synthesis and Host–Guest Property. J. Am. Chem. Soc. 2008, 130, 5022–5023. DOI: 10.1021/ja711260m.
  • Sun, J.; Hua, B.; Li, Q.; Zhou, J.; Yang, J. Acid/Base-Controllable Fret and Self-Assembling Systems Fabricated by Rhodamine b Functionalized Pillar [5] Arene-Based Host–Guest Recognition Motifs. Org. Lett. 2018, 20, 365–368. DOI: 10.1021/acs.orglett.7b03612.
  • Sau, T. K.; Rogach, A. L.; Jäckel, F.; Klar, T. A.; Feldmann, J. Properties and Applications of Colloidal Nonspherical Noble Metal Nanoparticles. Adv. Mater. 2010, 22, 1805–1825. DOI: 10.1002/adma.200902557.
  • Saha, K.; Agasti, S. S.; Kim, C.; Li, X.; Rotello, V. M. Gold Nanoparticles in Chemical and Biological Sensing. Chem. Rev. 2012, 112, 2739–2779. DOI: 10.1021/cr2001178.
  • Tian, C.; Chen, D.; Lu, N.; Li, Y.; Cui, R.; Han, Z.; Zhang, G. Electrochemical Bisphenol a Sensor Based on Nanoporous PtFe Alloy and Graphene Modified Glassy Carbon Electrode. J. Electroanal. Chem. 2018, 830, 27–33. DOI: 10.1016/j.jelechem.2018.10.023.
  • Karabiberoğlu, Ş. U. Sensitive Voltammetric Determination of Bisphenol a Based on a Glassy Carbon Electrode Modified with Copper Oxide‐Zinc Oxide Decorated on Graphene Oxide. Electroanalysis 2019, 31, 91–102. DOI: 10.1002/elan.201800415.
  • Zou, J.; Zhao, G. Q.; Teng, J.; Liu, Q.; Jiang, X. Y.; Jiao, F. P.; Yu, J. G. Highly Sensitive Detection of Bisphenol a in Real Water Samples Based on in-Situ Assembled Graphene Nanoplatelets and Gold Nanoparticles Composite. Microchem. J. 2019, 145, 693–702. DOI: 10.1016/j.microc.2018.11.040.
  • Kadimisetty, K.; Mosa, I. M.; Malla, S.; Satterwhite-Warden, J. E.; Kuhns, T. M.; Faria, R. C.; Lee, N. H.; Rusling, J. F. 3D-Printed Supercapacitor-Powered Electrochemiluminescent Protein Immunoarray. Biosens. Bioelectron. 2016, 77, 188–193. DOI: 10.1016/j.bios.2015.09.017. [PMC][26406460]
  • Gugoasa, L. A.; Stefan-van Staden, R. I.; van Staden, J. F.; Coroș, M.; Pruneanu, S. Electrochemical Determination of Bisphenol a in Saliva by a Novel Three-Dimensional (3D) Printed Gold-Reduced Graphene Oxide (rGO) Composite Paste Electrode. Anal. Lett. 2019, 52, 2583–2606. DOI: 10.1080/00032719.2019.1620262.
  • Niu, X.; Yang, W.; Wang, G.; Ren, J.; Guo, H.; Gao, J. A Novel Electrochemical Sensor of Bisphenol a Based on Stacked Graphene Nanofibers/Gold Nanoparticles Composite Modified Glassy Carbon Electrode. Electrochim. Acta 2013, 98, 167–175. DOI: 10.1016/j.electacta.2013.03.064.
  • Pan, D.; Gu, Y.; Lan, H.; Sun, Y.; Gao, H. Functional Graphene-Gold Nano-Composite Fabricated Electrochemical Biosensor for Direct and Rapid Detection of Bisphenol A. Anal. Chim. Acta 2015, 853, 297–302. DOI: 10.1016/j.aca.2014.11.004.
  • Vilian, A. E.; Giribabu, K.; Choe, S. R.; Muruganantham, R.; Lee, H.; Roh, C.; Huh, Y. S.; Han, Y. K. A Spick-and-Span Approach to the Immobilization of Horseradish Peroxidase on Au Nanospheres Incorporated with a Methionine/Graphene Biomatrix for the Determination of Endocrine Disruptor Bisphenol A. Sens. Actuators B: Chem. 2017, 251, 804–812. DOI: 10.1016/j.snb.2017.05.122.
  • Hao, Y. U.; Xiao, F. E. N. G.; Xiao-Xia, C. H. E. N.; Jin-Li, Q. I. A. O.; Xiao-Ling, G. A. O.; Na, X. U.; Lou-Jun, G. A. O. Electrochemical Determination of Bisphenol a on a Glassy Carbon Electrode Modified with Gold Nanoparticles Loaded on Reduced Graphene Oxide-Multi Walled Carbon Nanotubes Composite. Chin. J. Anal. Chem. 2017, 45, 713–720. DOI: 10.1016/S1872-2040(17)61014-4.
  • Huang, N.; Liu, M.; Li, H.; Zhang, Y.; Yao, S. Synergetic Signal Amplification Based on Electrochemical Reduced Graphene Oxide-Ferrocene Derivative Hybrid and Gold Nanoparticles as an Ultra-Sensitive Detection Platform for Bisphenol A. Anal. Chim. Acta 2015, 853, 249–257. DOI: 10.1016/j.aca.2014.10.016.
  • Xu, X.; Zheng, Q.; Bai, G.; Song, L.; Yao, Y.; Cao, X.; Liu, S.; Yao, C. Polydopamine Induced in-Situ Growth of Au Nanoparticles on Reduced Graphene Oxide as an Efficient Biosensing Platform for Ultrasensitive Detection of Bisphenol A. Electrochim. Acta 2017, 242, 56–65. DOI: 10.1016/j.electacta.2017.05.007.
  • Ghazizadeh, A. J.; Afkhami, A.; Bagheri, H. Voltammetric Determination of 4-Nitrophenol Using a Glassy Carbon Electrode Modified with a gold-ZnO-SiO2 Nanostructure. Mikrochim Acta 2018, 185, 296. DOI: 10.1007/s00604-018-2840-4.
  • Zhang, Y.; Cheng, Y.; Zhou, Y.; Li, B.; Gu, W.; Shi, X.; Xian, Y. Electrochemical Sensor for Bisphenol a Based on Magnetic Nanoparticles Decorated Reduced Graphene Oxide. Talanta 2013, 107, 211–218. DOI: 10.1016/j.talanta.2013.01.012.
  • Gross, M. A.; Moreira, S. G.; Pereira-da-Silva, M. A.; Sodré, F. F.; Paterno, L. G. Multilayered Iron Oxide/Reduced Graphene Oxide Nanocomposite Electrode for Voltammetric Sensing of bisphenol-A in Lake Water and Thermal Paper Samples. Sci. Total Environ. 2021, 763, 142985. DOI: 10.1016/j.scitotenv.2020.142985.
  • Chen, F. P.; Jin, G. P.; Su, J. Y.; Feng, X. Electrochemical Preparation of Uniform CuO/Cu2O Heterojunction on β-Cyclodextrin-Modified Carbon Fibers. J. Appl. Electrochem. 2016, 46, 379–388. DOI: 10.1007/s10800-016-0926-4.
  • Zhang, F.; Li, Y.; Gu, Y. E.; Wang, Z.; Wang, C. One-Pot Solvothermal Synthesis of a Cu2O/Graphene Nanocomposite and Its Application in an Electrochemical Sensor for Dopamine. Microchim. Acta 2011, 173, 103–109. DOI: 10.1007/s00604-010-0535-6.
  • Shi, R.; Liang, J.; Zhao, Z.; Liu, A.; Tian, Y. An Electrochemical Bisphenol a Sensor Based on One Step Electrochemical Reduction of Cuprous Oxide Wrapped Graphene Oxide Nanoparticles Modified Electrode. Talanta 2017, 169, 37–43. DOI: 10.1016/j.talanta.2017.03.042.
  • Akilarasan, M.; Kogularasu, S.; Chen, S. M.; Chen, T. W.; Lin, S. H. One-Step Synthesis of Reduced Graphene Oxide Sheathed Zinc Oxide Nanoclusters for the Trace Level Detection of Bisphenol A in Tissue Papers. Ecotoxicol. Environ. Saf. 2018, 161, 699–705. DOI: 10.1016/j.ecoenv.2018.06.045.
  • Vu, T. D.; Duy, P. K.; Bui, H. T.; Han, S. H.; Chung, H. Reduced Graphene Oxide–Nickel Sulfide (NiS) Composited on Mechanical Pencil Lead as a Versatile and Cost-Effective Sensor for Electrochemical Measurements of Bisphenol a and Mercury (II). Sens. Actuators B: Chem. 2019, 281, 320–325. DOI: 10.1016/j.snb.2018.08.139.
  • Duan, Y.; Li, S.; Lei, S.; Qiao, J.; Zou, L.; Ye, B. Highly Sensitive Determination of Bisphenol a Based on MoCuSe Nanoparticles Decorated Reduced Graphene Oxide Modified Electrode. J. Electroanal. Chem. 2018, 827, 137–144. DOI: 10.1016/j.jelechem.2018.08.011.
  • Cai, R.; Rao, W.; Zhang, Z.; Long, F.; Yin, Y. An Imprinted Electrochemical Sensor for Bisphenol a Determination Based on Electrodeposition of a Graphene and Ag Nanoparticle Modified Carbon Electrode. Anal. Methods 2014, 6, 1590–1597. DOI: 10.1039/C3AY42125B.
  • Baccarin, M.; Ciciliati, M. A.; Oliveira, O. N.; Jr, Cavalheiro, E. T.; Raymundo-Pereira, P. A. Pen Sensor Made with Silver Nanoparticles Decorating Graphite-Polyurethane Electrodes to Detect bisphenol-A in Tap and River Water Samples. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 114, 110989. DOI: 10.1016/j.msec.2020.110989.
  • Zhang, S.; Shi, Y.; Wang, J.; Xiao, L.; Yang, X.; Cui, R.; Han, Z. Nanocomposites Consisting of Nanoporous Platinum-Silicon and Graphene for Electrochemical Determination of Bisphenol A. Microchim. Acta 2020, 187, 1–8. DOI: 10.1007/s00604-020-4219-6.
  • Campos, A. M.; Raymundo-Pereira, P. A.; Cincotto, F. H.; Canevari, T. C.; Machado, S. A. Sensitive Determination of the Endocrine Disruptor Bisphenol a at Ultrathin Film Based on Nanostructured Hybrid Material SiO2/GO/AgNP. J Solid State Electrochem. 2016, 20, 2503–2507. DOI: 10.1007/s10008-015-3098-y.
  • Hou, K.; Huang, L.; Qi, Y.; Huang, C.; Pan, H.; Du, M. A Bisphenol A Sensor Based on Novel Self-Assembly of Zinc Phthalocyaninetetrasulfonic Acid-Functionalized Graphene Nanocomposites. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 49, 640–647. DOI: 10.1016/j.msec.2015.01.064.
  • Elbaz, L.; Kreller, C. R.; Henson, N. J.; Brosha, E. L. Electrocatalysis of Oxygen Reduction with Platinum Supported on Molybdenum Carbide–Carbon Composite. J. Electroanal. Chem. 2014, 720, 34–40. DOI: 10.1016/j.jelechem.2014.02.023.
  • Radja, I.; Djelad, H.; Morallon, E.; Benyoucef, A. Characterization and Electrochemical Properties of Conducting Nanocomposites Synthesized from p-Anisidine and Aniline with Titanium Carbide by Chemical Oxidative Method. Synth. Met. 2015, 202, 25–32. DOI: 10.1016/j.synthmet.2015.01.028.
  • Gholivand, M. B.; Akbari, A. A Novel and High Sensitive MWCNTs-Nickel Carbide/Hollow Fiber-Pencil Graphite Modified Electrode for in Situ Ultra-Trace Analysis of Bisphenol A. J. Electroanal. Chem. 2018, 817, 9–17. DOI: 10.1016/j.jelechem.2018.03.065.
  • Cai, J.; Sun, B.; Li, W.; Gou, X.; Gou, Y.; Li, D.; Hu, F. Novel Nanomaterial of Porous Graphene Functionalized Black Phosphorus as Electrochemical Sensor Platform for Bisphenol A Detection. J. Electroanal. Chem. 2019, 835, 1–9. DOI: 10.1016/j.jelechem.2019.01.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.