365
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Recent Developments in the Sensitive Electrochemical Assay of Common Opioid Drugs

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 882-895 | Published online: 19 Jul 2022

References

  • Goldberg, D. S.; McGee, S. J. Pain as a Global Public Health Priority. BMC Public Health 2011, 11, 1–5. DOI: 10.1186/1471-2458-11-770/PEER-REVIEW.
  • Treede, R. D.; Rief, W.; Barke, A.; Aziz, Q.; Bennett, M. I.; Benoliel, R.; Cohen, M.; Evers, S.; Finnerup, N. B.; First, M. B.; et al. A Classification of Chronic Pain for ICD-11. Pain 2015, 156, 1003–1007. DOI: 10.1097/J.PAIN.0000000000000160.
  • FAQs About Opioids. National Institute on Drug Abuse (NIDA) https://nida.nih.gov/publications/opioid-facts-teens/faqs-about-opioids (accessed Apr 9, 2022).
  • Jayawardana, S.; Forman, R.; Johnston-Webber, C.; Campbell, A.; Berterame, S.; de Joncheere, C.; Aitken, M.; Mossialos, E. Global Consumption of Prescription Opioid Analgesics between 2009-2019: A Country-Level Observational Study. eClinicalMedicine 2021, 42, 101198. DOI: 10.1016/J.ECLINM.2021.101198.
  • Yu, L. Opioids. Ref. Modul. Biomed. Sci. 2014. DOI: 10.1016/B978-0-12-801238-3.00248-8.
  • Congressional Research Service. Consumption of Prescription Opioids for Pain: A Comparison of Opioid Use in the United States and Other Countries. CRS 2021. https://crsreports.congress.gov/product/pdf/R/R46805.
  • Glasscott, M. W.; Vannoy, K. J.; Iresh Fernando, P. U. A.; Kosgei, G. K.; Moores, L. C.; Dick, J. E. Electrochemical Sensors for the Detection of Fentanyl and Its Analogs: Foundations and Recent Advances. TrAC Trends Anal. Chem. 2020, 132, 116037. DOI: 10.1016/j.trac.2020.116037.
  • Mynttinen, E.; Wester, N.; Lilius, T.; Kalso, E.; Koskinen, J.; Laurila, T. Simultaneous Electrochemical Detection of Tramadol and O-Desmethyltramadol with Nafion-Coated Tetrahedral Amorphous Carbon Electrode. Electrochim. Acta 2019, 295, 347–353. DOI: 10.1016/j.electacta.2018.10.148.
  • Pratiwi, R.; Noviana, E.; Fauziati, R.; Carrão, D. B.; Gandhi, F. A.; Majid, M. A.; Saputri, F. A. A Review of Analytical Methods for Codeine Determination. Molecules 2021, 26, 800. DOI: 10.3390/molecules26040800.
  • Dowell, D.; Haegerich, T. M.; Chou, R. CDC Guideline for Prescribing Opioids for Chronic Pain — United States, 2016. MMWR Recomm. Rep. 2016, 65, 1–49. DOI: 10.15585/mmwr.rr6501e1.
  • U.S. Department of Health & Human Services. U.S. Opioid Dispensing Rate Maps https://www.cdc.gov/drugoverdose/rxrate-maps/index.html (accessed Apr 16, 2022).
  • Manchikanti, L.; Kaye, A. M.; Kaye, A. D. Current State of Opioid Therapy and Abuse. Curr. Pain Headache Rep. 2016, 20, 34. DOI: 10.1007/s11916-016-0564-x.
  • Wilson, N.; Kariisa, M.; Seth, P.; Smith, H.; Davis, N. L. Drug and Opioid-Involved Overdose Deaths-United States 2017–2018. Morb. Mortal. Wkly. Rep. 2017, 69, 290–297.
  • Verrinder, E.; Wester, N.; Leppänen, E.; Lilius, T.; Kalso, E.; Mikladal, B.; Varjos, I.; Koskinen, J.; Laurila, T. Electrochemical Detection of Morphine in Untreated Human Capillary Whole Blood. ACS Omega 2021, 6, 11563–11569. DOI: 10.1021/acsomega.1c00773.
  • Dagar, M.; Yadav, S.; Sai, V. V. R.; Satija, J.; Bhatia, H. Emerging Trends in Point-of-Care Sensors for Illicit Drugs Analysis. Talanta 2022, 238, 123048. DOI: 10.1016/j.talanta.2021.123048.
  • Park, K.; Otte, A. Prevention of Opioid Abuse and Treatment of Opioid Addiction: Current Status and Future Possibilities. Annu. Rev. Biomed. Eng. 2019, 21, 61–84. DOI: 10.1146/annurev-bioeng-060418-052155.
  • Morone, N. E.; Weiner, D. K. Pain as the Fifth Vital Sign: Exposing the Vital Need for Pain Education. Clin. Ther. 2013, 35, 1728–1732. DOI: 10.1016/j.clinthera.2013.10.001.
  • Florence, C. S.; Zhou, C.; Luo, F.; Xu, L. The Economic Burden of Prescription Opioid Overdose, Abuse, and Dependence in the United States, 2013. Med. Care 2016, 54, 901–906. DOI: 10.1097/MLR.0000000000000625.
  • ji Kwon, N.; Han, E. A Review of Drug Abuse in Recently Reported Cases of Driving under the Influence of Drugs (DUID) in Asia, USA, and Europe. Forensic Sci. Int. 2019, 302, 109854. DOI: 10.1016/j.forsciint.2019.06.012.
  • Laycock, H.; Bantel, C. Opioid Mechanisms and Opioid Drugs. Anaesth. Intensive Care Med. 2019, 20, 450–455. DOI: 10.1016/j.mpaic.2019.05.009.
  • Azevedo, K.; Johnson, M.; Wassermann, M.; Evans-Wall, J. Drugs of Abuse—Opioids, Sedatives, Hypnotics. Crit. Care Clin. 2021, 37, 501–516. DOI: 10.1016/j.ccc.2021.03.003.
  • Kim, J.; Ji, D.; Kang, S.; Park, M.; Yang, W.; Kim, E.; Choi, H.; Lee, S. Simultaneous Determination of 18 Abused Opioids and Metabolites in Human Hair Using LC-MS/MS and Illegal Opioids Abuse Proven by Hair Analysis. J. Pharm. Biomed. Anal. 2014, 89, 99–105. DOI: 10.1016/j.jpba.2013.10.041.
  • Whalen, K.; Finkel, R.; Panavelil, T. A., Eds. Lippincott Illustrated Reviews: Pharmacology, 6th ed.; Wolters Kluwer: Philadelphia, 2015.
  • Li, J.; Zhang, T.; Sun, J.; Ren, F.; Jia, H.; Yu, Z.; Cheng, J.; Shi, W. Synthesis and Evaluation of Peptide–Fentanyl Analogue Conjugates as Dual μ/δ-Opioid Receptor Agonists for the Treatment of Pain. Chinese Chem. Lett. 2022, 33, 4107–4110. DOI: 10.1016/j.cclet.2021.11.036.
  • Dargan, P.; Wood, D., Eds. Novel Synthetic Opioids. In Novel Psychoactive Substances: Classification Pharmacology Toxicology; Elsevier: London, 2021, pp 447–474. DOI: 10.1016/B978-0-12-818788-3.00018-8.
  • Katzung, B. G.; Masters, S. B.; Trevor, A. J., Eds. Basic & Clinical Pharmacology; McGraw-Hill: New York, 13th ed. 2015.
  • Moreno-Vicente, R.; Fernández-Nieva, Z.; Navarro, A.; Gascón-Crespí, I.; Farré-Albaladejo, M.; Igartua, M.; Hernández, R. M.; Pedraz, J. L. Development and Validation of a Bioanalytical Method for the Simultaneous Determination of Heroin, Its Main Metabolites, Naloxone and Naltrexone by LC-MS/MS in Human Plasma Samples: Application to a Clinical Trial of Oral Administration of a Heroin/Naloxo. J. Pharm. Biomed. Anal. 2015, 114, 105–112. DOI: 10.1016/j.jpba.2015.04.044.
  • Foroughi, M. M.; Jahani, S.; Aramesh-Boroujeni, Z.; Vakili Fathabadi, M.; Hashemipour Rafsanjani, H.; Rostaminasab Dolatabad, M. Template-Free Synthesis of ZnO/Fe3O4/Carbon Magnetic Nanocomposite: Nanotubes with Hexagonal Cross Sections and Their Electrocatalytic Property for Simultaneous Determination of Oxymorphone and Heroin. Microchem. J. 2021, 170, 106679. DOI: 10.1016/j.microc.2021.106679.
  • Ares-Fuentes, A. M.; Lorenzo, R. A.; Fernández, P.; Fernández, A. M.; Furton, K. G.; Kabir, A.; Carro, A. M. Determination of Synthetic Opioids in Oral Fluid Samples Using Fabric Phase Sorptive Extraction and Gas Chromatography-Mass Spectrometry. J. Chromatogr. A 2022, 1663, 462768. DOI: 10.1016/j.chroma.2021.462768.
  • Boogaerts, T.; Quireyns, M.; Covaci, A.; De Loof, H.; van Nuijs, A. L. N. Analytical Method for the Simultaneous Determination of a Broad Range of Opioids in Influent Wastewater: Optimization, Validation and Applicability to Monitor Consumption Patterns. Talanta 2021, 232, 122443. DOI: 10.1016/j.talanta.2021.122443.
  • Eckart, K.; Röhrich, J.; Breitmeier, D.; Ferner, M.; Laufenberg-Feldmann, R.; Urban, R. Development of a New Multi-Analyte Assay for the Simultaneous Detection of Opioids in Serum and Other Body Fluids Using Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2015, 1001, 1–8. DOI: 10.1016/j.jchromb.2015.06.028.
  • Gozdzialski, L.; Aasen, J.; Larnder, A.; Ramsay, M.; Borden, S. A.; Saatchi, A.; Gill, C. G.; Wallace, B.; Hore, D. K. Portable Gas Chromatography–Mass Spectrometry in Drug Checking: Detection of Carfentanil and Etizolam in Expected Opioid Samples. Int. J. Drug Policy 2021, 97, 103409. DOI: 10.1016/j.drugpo.2021.103409.
  • Massano, M.; Incardona, C.; Gerace, E.; Negri, P.; Alladio, E.; Salomone, A.; Vincenti, M. Development and Validation of a UHPLC-HRMS-QTOF Method for the Detection of 132 New Psychoactive Substances and Synthetic Opioids, Including Fentanyl, in Dried Blood Spots. Talanta 2022, 241, 123265. DOI: 10.1016/j.talanta.2022.123265.
  • Rasanen, I.; Kyber, M.; Szilvay, I.; Rintatalo, J.; Ojanperä, I. Single-Calibrant Quantification of Seized Synthetic Opioids by Liquid Chromatography-Chemiluminescence Nitrogen Detection. Forensic Sci. Int. 2019, 305, 110001. DOI: 10.1016/j.forsciint.2019.110001.[PMC].[31704516].
  • Merone, G. M.; Tartaglia, A.; Rossi, S.; Santavenere, F.; Bassotti, E.; D’Ovidio, C.; Bonelli, M.; Rosato, E.; de Grazia, U.; Locatelli, M.; et al. Fast Quantitative LC-MS/MS Determination of Illicit Substances in Solid and Liquid Unknown Seized Samples. Anal. Chem. 2021, 93, 16308–16313. DOI: 10.1021/acs.analchem.1c03310.
  • Merone, G. M.; Tartaglia, A.; Rossi, S.; Santavenere, F.; Bassotti, E.; D'Ovidio, C.; Rosato, E.; de Grazia, U.; Locatelli, M.; Boccio, P. D.; et al. Fast LC–MS/MS Screening Method for the Evaluation of Drugs, Illicit Drugs, and Other Compounds in Biological Matrices. Talanta Open 2022, 5, 100105. DOI: 10.1016/j.talo.2022.100105.
  • Lotfi, A.; Karimi, S.; Hassanzadeh, J. Preconcentration of Codeine in Pharmaceutical and Human Urine Samples by Multi-Walled Carbon Nanotubes and Its Spectrophotometric Determination. Can. J. Chem. 2016, 94, 857–864. DOI: 10.1139/cjc-2016-0312.
  • Cao, J.; Chen, X. Y.; Zhao, W. R. Determination of Morphine in Human Urine by the Novel Competitive Fluorescence Immunoassay. J. Anal. Methods Chem. 2019, 2019, 7826090. DOI: 10.1155/2019/7826090.
  • Ahmed, S. R.; Chand, R.; Kumar, S.; Mittal, N.; Srinivasan, S.; Rajabzadeh, A. R. Recent Biosensing Advances in the Rapid Detection of Illicit Drugs. TrAC Trends Anal. Chem. 2020, 131, 116006. DOI: 10.1016/j.trac.2020.116006.
  • Shende, C.; Brouillette, C.; Farquharson, S. Detection of Codeine and Fentanyl in Saliva, Blood Plasma and Whole Blood in 5-Minutes Using a SERS Flow-Separation Strip. Analyst 2019, 144, 5449–5454. DOI: 10.1039/c9an01087d.
  • Locatelli, M.; Tartaglia, A.; Ulusoy, H. I.; Ulusoy, S.; Savini, F.; Rossi, S.; Santavenere, F.; Merone, G. M.; Bassotti, E.; D'Ovidio, C.; et al. Fabric-Phase Sorptive Membrane Array as a Noninvasive in Vivo Sampling Device for Human Exposure to Different Compounds. Anal. Chem. 2021, 93, 1957–1961. DOI: 10.1021/acs.analchem.0c04663.
  • Ren, S.; Zeng, J.; Zheng, Z.; Shi, H. Perspective and Application of Modified Electrode Material Technology in Electrochemical Voltammetric Sensors for Analysis and Detection of Illicit Drugs. Sens. Actuators A Phys. 2021, 329, 112821. DOI: 10.1016/j.sna.2021.112821.
  • Mynttinen, E.; Wester, N.; Lilius, T.; Kalso, E.; Mikladal, B.; Varjos, I.; Sainio, S.; Jiang, H.; Kauppinen, E. I.; Koskinen, J.; et al. Electrochemical Detection of Oxycodone and Its Main Metabolites with Nafion-Coated Single-Walled Carbon Nanotube Electrodes. Anal. Chem. 2020, 92, 8218–8227. DOI: 10.1021/acs.analchem.0c00450.
  • Aliabadi, A.; Rounaghi, G. H. A Novel Electrochemical Sensor for Determination of Morphine in a Sub-Microliter of Human Urine Sample. J. Electroanal. Chem. 2019, 832, 204–208. DOI: 10.1016/j.jelechem.2018.10.052.
  • Ren, S.; Feng, R.; Cheng, S.; Wang, Q.; Zheng, Z. Synergistic Catalytic Acceleration of MXene/MWCNTs as Decorating Materials for Ultrasensitive Detection of Morphine. Electroanalysis 2021, 33, 1471–1483. DOI: 10.1002/elan.202100039.
  • Dennis, S. Ed. Membrane Applications of Nanomaterials. Handb. Nanomater. Anal. Chem. Mod. Trends Anal;‌ Elsevier: ‌Netherlands‌, 2020, 159–182. DOI: 10.1016/B978-0-12-816699-4.00007-4.
  • Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644. DOI: 10.1021/acs.chemmater.7b02847.
  • Rajaei, M.; Foroughi, M. M.; Jahani, S.; Shahidi Zandi, M.; Hassani Nadiki, H. Sensitive Detection of Morphine in the Presence of Dopamine with La3+ Doped Fern-like CuO Nanoleaves/MWCNTs Modified Carbon Paste Electrode. J. Mol. Liq. 2019, 284, 462–472. DOI: 10.1016/j.molliq.2019.03.135.
  • Khosropour, H.; Rezaei, B.; Alinajafi, H. A.; Ensafi, A. A. Electrochemical Sensor Based on Glassy Carbon Electrode Modified by Polymelamine Formaldehyde/Graphene Oxide Nanocomposite for Ultrasensitive Detection of Oxycodone. Mikrochim. Acta 2021, 188, 1. DOI: 10.1007/s00604-020-04655-3.
  • Afkhami, a.; Gomar, F.; Madrakian, T. CoFe2O4 Nanoparticles Modified Carbon Paste Electrode for Simultaneous Detection of Oxycodone and Codeine in Human Plasma and Urine. Sens. Actuators B Chem. 2016, 233, 263–271. DOI: 10.1016/j.snb.2016.04.067.
  • Bahrami, G.; Ehzari, H.; Mirzabeigy, S.; Mohammadi, B.; Arkan, E. Fabrication of a Sensitive Electrochemical Sensor Based on Electrospun Magnetic Nanofibers for Morphine Analysis in Biological Samples. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 106, 110183. DOI: 10.1016/j.msec.2019.110183.
  • Sanati, A. L.; Karimi-Maleh, H.; Badiei, A.; Biparva, P.; Ensafi, A. A. A. Voltammetric Sensor Based on NiO/CNTs Ionic Liquid Carbon Paste Electrode for Determination of Morphine in the Presence of Diclofenac. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 35, 379–385. DOI: 10.1016/j.msec.2013.11.031.
  • Talemi, R. P.; Mashhadizadeh, M. H. A Novel Morphine Electrochemical Biosensor Based on Intercalative and Electrostatic Interaction of Morphine with Double Strand DNA Immobilized onto a Modified Au Electrode. Talanta 2015, 131, 460–466. DOI: 10.1016/j.talanta.2014.08.009.
  • Nigović, B.; Sadiković, M.; Sertić, M. Multi-Walled Carbon Nanotubes/Nafion Composite Film Modified Electrode as a Sensor for Simultaneous Determination of Ondansetron and Morphine. Talanta 2014, 122, 187–194. DOI: 10.1016/j.talanta.2014.01.026.
  • Bagheri, H.; Khoshsafar, H.; Afkhami, A.; Amidi, S. Sensitive and Simple Simultaneous Determination of Morphine and Codeine Using a Zn 2 SnO 4 Nanoparticle/Graphene Composite Modified Electrochemical Sensor. New J. Chem. 2016, 40, 7102–7112. DOI: 10.1039/C6NJ00505E.
  • Afsharmanesh, E.; Karimi-Maleh, H.; Pahlavan, A.; Vahedi, J. Electrochemical Behavior of Morphine at ZnO/CNT Nanocomposite Room Temperature Ionic Liquid Modified Carbon Paste Electrode and Its Determination in Real Samples. J. Mol. Liq. 2013, 181, 8–13. DOI: 10.1016/j.molliq.2013.02.002.
  • Beitollahi, H.; Nejad, F. G. Magnetic Core–Shell Graphene Oxide/Fe3O4@SiO2 Nanocomposite for Sensitive and Selective Electrochemical Detection of Morphine Using Modified Graphite Screen Printed Electrode. J. Anal. Chem. 2020, 75, 127–134. DOI: 10.1134/S1061934820010049/TABLES/1.
  • Baghayeri, M.; Nabavi, S.; Hasheminejad, E.; Ebrahimi, V. Introducing an Electrochemical Sensor Based on Two Layers of Ag Nanoparticles Decorated Graphene for Rapid Determination of Methadone in Human Blood Serum. Top. Catal. 2021, 65, 623–632. DOI: 10.1007/S11244-021-01483-4.
  • Rezaei, B.; Tajaddodi, A.; Ensafi, A. A. An Innovative Highly Sensitive Electrochemical Sensor Based on Modified Electrode with Carbon Quantum Dots and Multiwall Carbon Nanotubes for Determination of Methadone Hydrochloride in Real Samples. Anal. Methods 2020, 12, 5210–5218. DOI: 10.1039/D0AY01374A.
  • Afkhami, A.; Soltani-Felehgari, F.; Madrakian, T. A Sensitive Electrochemical Sensor for Rapid Determination of Methadone in Biological Fluids Using Carbon Paste Electrode Modified with Gold Nanofilm. Talanta 2014, 128, 203–210. DOI: 10.1016/J.TALANTA.2014.03.003.
  • Alipour, E.; Majidi, M. R.; Hoseindokht, O. Development of Simple Electrochemical Sensor for Selective Determination of Methadone in Biological Samples Using Multi-Walled Carbon Nanotubes Modified Pencil Graphite Electrode. J. Chinese Chem. Soc. 2015, 62, 461–468. DOI: 10.1002/jccs.201400391.
  • Amiri-Aref, M.; Raoof, J. B.; Ojani, R. Electrocatalytic Oxidation and Selective Determination of an Opioid Analgesic Methadone in the Presence of Acetaminophen at a Glassy Carbon Electrode Modified with Functionalized Multi-Walled Carbon Nanotubes: Application for Human Urine, Saliva and Pharmaceutical Samples Analysis. Colloids Surf. B Biointerfaces 2013, 109, 287–293. DOI: 10.1016/J.COLSURFB.2013.03.055.
  • Mohammadi, N.; Bahmaei, M.; Sharif, A. M. Highly Sensitive CuZnO-Fe3O4/RGO Modified Glassy Carbon Electrode for the Electrochemical Determination of Acetaminophen, Tyrosine and Codeine in Human Blood Plasma and Urine. J. Electroanal. Chem. 2021, 902, 115768. DOI: 10.1016/j.jelechem.2021.115768.
  • Huang, L.; Yang, X.; Qi, C.; Niu, X.; Zhao, C.; Zhao, X.; Shangguan, D.; Yang, Y. A Label-Free Electrochemical Biosensor Based on a DNA Aptamer against Codeine. Anal. Chim. Acta 2013, 787, 203–210. DOI: 10.1016/j.aca.2013.05.024.
  • Li, Y.; Li, K.; Song, G.; Liu, J.; Zhang, K.; Ye, B. Electrochemical Behavior of Codeine and Its Sensitive Determination on Graphene-Based Modified Electrode. Sens. Actuators B Chem. 2013, 182, 401–407. DOI: 10.1016/j.snb.2013.03.023.
  • Asturias-Arribas, L.; Asunción Alonso-Lomillo, M.; Domínguez-Renedo, O.; Julia Arcos-Martínez, M. Cytochrome P450 2D6 Based Electrochemical Sensor for the Determination of Codeine. Talanta 2014, 129, 315–319. DOI: 10.1016/j.talanta.2014.05.053.
  • Hasanpour, F.; Taei, M.; Tahmasebi, S. Ultra-Sensitive Electrochemical Sensing of Acetaminophen and Codeine in Biological Fluids Using CuO/CuFe 2 O 4 Nanoparticles as a Novel Electrocatalyst. J Food Drug Anal 2018, 26, 879–886. DOI: 10.1016/j.jfda.2017.10.001.
  • Švorc, Ľ.; Sochr, J.; Svítková, J.; Rievaj, M.; Bustin, D. Rapid and Sensitive Electrochemical Determination of Codeine in Pharmaceutical Formulations and Human Urine Using a Boron-Doped Diamond Film Electrode. Electrochim. Acta 2013, 87, 503–510. DOI: 10.1016/j.electacta.2012.09.111.
  • Simioni, N. B.; Oliveira, G. G.; Vicentini, F. C.; Lanza, M. R. V.; Janegitz, B. C.; Fatibello-Filho, O. Nanodiamonds Stabilized in Dihexadecyl Phosphate Film for Electrochemical Study and Quantification of Codeine in Biological and Pharmaceutical Samples. Diam. Relat. Mater. 2017, 74, 191–196. DOI: 10.1016/j.diamond.2017.03.007.
  • Wong, A.; Riojas, A. C.; Baena-Moncada, A. M.; Sotomayor, M. D. P. T. A New Electrochemical Platform Based on Carbon Black Paste Electrode Modified with α-Cyclodextrin and Hierarchical Porous Carbon Used for the Simultaneous Determination of Dipyrone and Codeine. Microchem. J. 2021, 164, 106032. DOI: 10.1016/j.microc.2021.106032.
  • Ensafi, A. A.; Ahmadi, N.; Rezaei, B.; Abarghoui, M. M. A New Electrochemical Sensor for the Simultaneous Determination of Acetaminophen and Codeine Based on Porous Silicon/Palladium Nanostructure. Talanta 2015, 134, 745–753. DOI: 10.1016/j.talanta.2014.12.028.
  • Afkhami, A.; Khoshsafar, H.; Bagheri, H.; Madrakian, T. Facile Simultaneous Electrochemical Determination of Codeine and Acetaminophen in Pharmaceutical Samples and Biological Fluids by Graphene-CoFe2O4 Nancomposite Modified Carbon Paste Electrode. Sens. Actuators B Chem. 2014, 203, 909–918. DOI: 10.1016/j.snb.2014.07.031.
  • Ensafi, A. A.; Abarghoui, M. M.; Rezaei, B. Simultaneous Determination of Morphine and Codeine Using Pt Nanoparticles Supported on Porous Silicon Flour Modified Ionic Liquid Carbon Paste Electrode. Sens. Actuators B Chem. 2015, 219, 1–9. DOI: 10.1016/j.snb.2015.05.010.
  • Mashadizadeh, M. H.; Abdollahi, G.; Yousefi, T. SmHCF/Multiwalled Carbon Nanotube Modified Glassy Carbon Electrode for the Determination of Codeine. J. Electroanal. Chem. 2016, 780, 68–74. DOI: 10.1016/j.jelechem.2016.09.001.
  • Habibi, B.; Abazari, M.; Pournaghi-Azar, M. H. Simultaneous Determination of Codeine and Caffeine Using Single-Walled Carbon Nanotubes Modified Carbon-Ceramic Electrode. Colloids Surf. B Biointerfaces 2014, 114, 89–95. DOI: 10.1016/j.colsurfb.2013.09.026.
  • Bahadori, H.; Majidi, M. R.; Alipour, E. An Electrochemical Sensor for Simultaneous Determination of Some Pharmaceutical Compounds Using Ionic Liquid and Pd Nanoparticles Supported on Porous Silicon Doped Carbon-Ceramic Electrode as a Renewable Surface Composite Electrode. Microchem. J. 2021, 161, 105724. DOI: 10.1016/j.microc.2020.105724.
  • Barfidokht, A.; Mishra, R. K.; Seenivasan, R.; Liu, S.; Hubble, L. J.; Wang, J.; Hall, D. A. Wearable Electrochemical Glove-Based Sensor for Rapid and on-Site Detection of Fentanyl. Sensors Actuators, B Chem 2019, 296, 126422. DOI: 10.1016/j.snb.2019.04.053.
  • Sohouli, E.; Keihan, A. H.; Shahdost-fard, F.; Naghian, E.; Plonska-Brzezinska, M. E.; Rahimi-Nasrabadi, M.; Ahmadi, F. A Glassy Carbon Electrode Modified with Carbon Nanoonions for Electrochemical Determination of Fentanyl. Mater. Sci. Eng. C 2020, 110, 110684. DOI: 10.1016/j.msec.2020.110684.
  • Ott, C. E.; Cunha-Silva, H.; Kuberski, S. L.; Cox, J. A.; Arcos-Martínez, M. J.; Arroyo-Mora, L. E. Electrochemical Detection of Fentanyl with Screen-Printed Carbon Electrodes Using Square-Wave Adsorptive Stripping Voltammetry for Forensic Applications. J. Electroanal. Chem. 2020, 873, 114425. DOI: 10.1016/j.jelechem.2020.114425.
  • Wester, N.; Mynttinen, E.; Etula, J.; Lilius, T.; Kalso, E.; Mikladal, B. F.; Zhang, Q.; Jiang, H.; Sainio, S.; Nordlund, D.; et al. Carbon Nanotube Network Electrodes for the Detection of Fentanyl Citrate. ACS Appl. Nano Mater. 2020, 3, 1203–1212. DOI: 10.1021/acsanm.9b01951.
  • Mishra, R. K.; Krishnakumar, A.; Zareei, A.; Heredia-Rivera, U.; Rahimi, R. Electrochemical Sensor for Rapid Detection of Fentanyl Using Laser-Induced Porous Carbon-Electrodes. Mikrochim. Acta 2022, 189, 198. DOI: 10.1007/s00604-022-05299-1.
  • Ahmar, H.; Fakhari, A. R.; Tabani, H.; Shahsavani, A. Optimization of Electromembrane Extraction Combined with Differential Pulse Voltammetry Using Modified Screen-Printed Electrode for the Determination of Sufentanil. Electrochim. Acta 2013, 96, 117–123. DOI: 10.1016/j.electacta.2013.02.049.
  • Mishra, R. K.; Goud, K. Y.; Li, Z.; Moonla, C.; Mohamed, M. A.; Tehrani, F.; Teymourian, H.; Wang, J. Continuous Opioid Monitoring along with Nerve Agents on a Wearable Microneedle Sensor Array. J Am. Chem. Soc. 2020, 142, 5991–5995. DOI: 10.1021/jacs.0c01883.
  • Moonla, C.; Goud, K. Y.; Teymourian, H.; Tangkuaram, T.; Ingrande, J.; Suresh, P.; Wang, J. An Integrated Microcatheter-Based Dual-Analyte Sensor System for Simultaneous, Real-Time Measurement of Propofol and Fentanyl. Talanta 2020, 218, 121205. DOI: 10.1016/j.talanta.2020.121205.
  • Naghian, E.; Marzi Khosrowshahi, E.; Sohouli, E.; Ahmadi, F.; Rahimi-Nasrabadi, M.; Safarifard, V. A New Electrochemical Sensor for the Detection of Fentanyl Lethal Drug by a Screen-Printed Carbon Electrode Modified with the Open-Ended Channels of Zn(Ii)-MOF. New J. Chem. 2020, 44, 9271–9277. DOI: 10.1039/D0NJ01322F.
  • Mostafa Najafi; Sohouli E.; Mousavi, F. An Electrochemical Sensor for Fentanyl Detection Based on Multi-Walled Carbon Nanotubes as Electrocatalyst and the Electrooxidation Mechanism. J. Anal. Chem. 2020, 75, 1209–1217. DOI: 10.1134/S1061934820090130.
  • Felipe Montiel, N.; Parrilla, M.; Beltrán, V.; Nuyts, G.; Van Durme, F.; De Wael, K. The Opportunity of 6-Monoacetylmorphine to Selectively Detect Heroin at Preanodized Screen Printed Electrodes. Talanta 2021, 226, 122005. DOI: 10.1016/J.TALANTA.2020.122005.
  • Taei, M.; Hasanpour, F.; Hajhashemi, V.; Movahedi, M.; Baghlani, H. Simultaneous Detection of Morphine and Codeine in Urine Samples of Heroin Addicts Using Multi-Walled Carbon Nanotubes Modified SnO2–Zn2SnO4 Nanocomposites Paste Electrode. Appl. Surf. Sci 2016, 363, 490–498. DOI: 10.1016/j.apsusc.2015.12.074.
  • Shang, Z. Y.; Han, C. F.; Song, Q. J. An Electrochemiluminescence Sensor with Molecularly Imprinted Polymer for Heroin Detection. Fenxi Huaxue/Chinese J. Anal. Chem. 2014, 42, 904–908. DOI: 10.1016/S1872-2040(14)60748-9.
  • Arabali, V.; Malekmohammadi, S.; Karimi, F. Surface Amplification of Pencil Graphite Electrode Using CuO Nanoparticle/Polypyrrole Nanocomposite; A Powerful Electrochemical Strategy for Determination of Tramadol. Microchem. J 2020, 158, 105179. DOI: 10.1016/j.microc.2020.105179.
  • Kolahi-Ahari, S.; Deiminiat, B.; Rounaghi, G. H. Modification of a Pencil Graphite Electrode with Multiwalled Carbon Nanotubes Capped Gold Nanoparticles for Electrochemical Determination of Tramadol. J. Electroanal. Chem 2020, 862, 113996. DOI: 10.1016/j.jelechem.2020.113996.
  • Jahromi, Z.; Mirzaei, E.; Savardashtaki, A.; Afzali, M.; Afzali, Z. A Rapid and Selective Electrochemical Sensor Based on Electrospun Carbon Nanofibers for Tramadol Detection. Microchem. J. 2020, 157, 104942. DOI: 10.1016/j.microc.2020.104942.
  • Diouf, A.; Aghoutane, Y.; Burhan, H.; Sen, F.; Bouchikhi, B.; El Bari, N. Tramadol Sensing in Non-Invasive Biological Fluids Using a Voltammetric Electronic Tongue and an Electrochemical Sensor Based on Biomimetic Recognition. Int. J. Pharm. 2021, 593, 120114. DOI: 10.1016/j.ijpharm.2020.120114.
  • Bagherinasab, Z.; Beitollahi, H.; Yousefi, M.; Bagherzadeh, M.; Hekmati, M. Rapid Sol Gel Synthesis of BaFe12O19 Nanoparticles: An Excellent Catalytic Application in the Electrochemical Detection of Tramadol in the Presence of Acetaminophen. Microchem. J. 2020, 156, 104803. DOI: 10.1016/j.microc.2020.104803.
  • Tavana, T.; Rezvani, A. R.; Karimi-Maleh, H. Pt-Pd-Doped NiO Nanoparticle Decorated at Single-Wall Carbon Nanotubes: An Excellent, Powerful Electrocatalyst for the Fabrication of an Electrochemical Sensor to Determine Nalbuphine in the Presence of Tramadol as Two Opioid Analgesic Drugs. J. Pharm. Biomed. Anal 2020, 189, 113397. DOI: 10.1016/j.jpba.2020.113397.
  • Deiminiat, B.; Rounaghi, G. H.; M. H, A.-Z. Development of a New Electrochemical Imprinted Sensor Based on Poly-Pyrrole, Sol–Gel and Multiwall Carbon Nanotubes for Determination of Tramadol. Sens. Actuators B Chem. 2017, 238, 651–659. DOI: 10.1016/j.snb.2016.07.110.
  • Atta, N. F.; Galal, A.; Hassan, S. H. Ultrasensitive Determination of Nalbuphine and Tramadol Narcotic Analgesic Drugs for Postoperative Pain Relief Using Nano-Cobalt Oxide/Ionic Liquid Crystal/Carbon Nanotubes-Based Electrochemical Sensor. J. Electroanal. Chem. 2019, 839, 48–58. DOI: 10.1016/j.jelechem.2019.03.002.
  • Dehdashti, A.; Babaei, A. Designing and Characterization of a Novel Sensing Platform Based on Pt Doped NiO/MWCNTs Nanocomposite for Enhanced Electrochemical Determination of Epinephrine and Tramadol Simultaneously. J. Electroanal. Chem 2020, 862, 113949. DOI: 10.1016/j.jelechem.2020.113949.
  • Amin, S.; Hameed, A.; Memon, N.; Solangi, A. R.; Aslam, M.; Soomro, M. T. The Efficacy of the Nafion® Blended CTAB Protected Au Nanoparticles for the Electrochemical Detection of Tramadol in Wastewater: A Parametric Investigation. J. Environ. Chem. Eng. 2016, 4, 3825–3834. DOI: 10.1016/j.jece.2016.08.010.
  • Molaakbari, E.; Mostafavi, A.; Beitollahi, H.; Tohidiyan, Z. Synthesis of Conductive Polymeric Ionic Liquid/Ni Nanocomposite and Its Application to Construct a Nanostructure Based Electrochemical Sensor for Determination of Warfarin in the Presence of Tramadol. Talanta 2017, 171, 25–31. DOI: 10.1016/j.talanta.2017.04.041.
  • Afkhami, A.; Khoshsafar, H.; Bagheri, H.; Madrakian, T. Preparation of NiFe2O4/Graphene Nanocomposite and Its Application as a Modifier for the Fabrication of an Electrochemical Sensor for the Simultaneous Determination of Tramadol and Acetaminophen. Anal. Chim. Acta 2014, 831, 50–59. DOI: 10.1016/j.aca.2014.04.061.
  • Afkhami, A.; Ghaedi, H.; Madrakian, T.; Ahmadi, M.; Mahmood-Kashani, H. Fabrication of a New Electrochemical Sensor Based on a New Nano-Molecularly Imprinted Polymer for Highly Selective and Sensitive Determination of Tramadol in Human Urine Samples. Biosens. Bioelectron. 2013, 44, 34–40. DOI: 10.1016/j.bios.2012.11.030.
  • Machelska, H.; Celik, M. Ö. Advances in Achieving Opioid Analgesia without Side Effects. Front. Pharmacol. 2018, 9, 1388. DOI: 10.3389/fphar.2018.01388.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.