1,012
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Recent Advances in Enhancement Techniques for Blood Fingerprints

&
Pages 442-461 | Published online: 31 Aug 2022

References

  • Faulds, H. On the Skin-Furrows of the Hand. Nature 1880, 22, 605–605. DOI: 10.1038/022605a0.
  • Rawtani, D.; Tharmavaram, M.; Pandey, G.; Hussain, C. M. Functionalized Nanomaterial for Forensic Sample Analysis. TrAC, Trends Anal. Chem. 2019, 120, 115661. DOI: 10.1016/j.trac.2019.115661.
  • Peng, D.; Liu, X.; Huang, M.; Wang, D.; Liu, R. A Novel Monodisperse SiO 2@ C-Dot for the Rapid and Facile Identification of Latent Fingermarks Using Self-Quenching Resistant Solid-State Fluorescence. Dalton Trans. 2018, 47, 5823–5830. DOI: 10.1039/C8DT00579F.
  • Ding, L.; Peng, D.; Wang, R.; Li, Q. A User-Secure and Highly Selective Enhancement of Latent Fingerprints by Magnetic Composite Powder Based on Carbon Dot Fluorescence. J. Alloys Compd. 2021, 856, 158160. DOI: 10.1016/j.jallcom.2020.158160.
  • Wang, R.; Huang, Z.; Ding, L.; Yang, F.; Peng, D. Carbon Dot Powders with Cross-Linking-Based Long-Wavelength Emission for Multicolor Imaging of Latent Fingerprints. ACS Appl. Nano. Mater. 2022, 5, 2214–2221. DOI: 10.1021/acsanm.1c03901.
  • Peng, D.; He, S.; Zhang, Y.; Yao, L.; Nie, W.; Liao, Z.; Cai, W.; Ye, X. Blue Light-Induced Rare-Earth Free Phosphors for the Highly Sensitive and Selective Imaging of Latent Fingerprints Based on Enhanced Hydrophobic Interaction. J. Materiomics 2022, 8, 229–238. DOI: 10.1016/j.jmat.2021.03.005.
  • Peng, D.; Huang, M.; Xiao, Y.; Zhang, Y.; Lei, L.; Zhu, J. Highly-Selective Recognition of Latent Fingermarks by La-Sensitized Ce Nanocomposites via Electrostatic Binding. Chem. Commun. (Camb.) 2019, 55, 10579–10582. DOI: 10.1039/C9CC04257A.
  • Peng, D.; Wu, X.; Liu, X.; Huang, M.; Wang, D.; Liu, R. Color-Tunable Binuclear (Eu, Tb) Nanocomposite Powder for the Enhanced Development of Latent Fingerprints Based on Electrostatic Interactions. ACS Appl. Mater. Interfaces 2018, 10, 32859–32866. DOI: 10.1021/acsami.8b10371.
  • Singh, R. Narration and Legacy of Important Chemical Spot Tests in Forensic Investigation. Crit. Rev. Anal. Chem. 2022, 52, 35–52. DOI: 10.1080/10408347.2020.1785837.
  • Oiye, É. N.; Ribeiro, M. F. M.; Katayama, J. M. T.; Tadini, M. C.; Balbino, M. A.; Eleotério, I. C.; Magalhães, J.; Castro, A. S.; Silva, R. S. M.; da Cruz Júnior, J. W.; et al. Electrochemical Sensors Containing Schiff Bases and Their Transition Metal Complexes to Detect Analytes of Forensic, Pharmaceutical and Environmental Interest. A Review. Crit. Rev. Anal. Chem. 2019, 49, 488–509. DOI: 10.1080/10408347.2018.1561242.
  • Bossers, L. C.; Roux, C.; Bell, M.; McDonagh, A. M. Methods for the Enhancement of Fingermarks in Blood. Forensic Sci. Int. 2011, 210, 1–11. DOI: 10.1016/j.forsciint.2011.04.006.
  • Wirstam, M.; Blomberg, M. R.; Siegbahn, P. E. Reaction Mechanism of Compound I Formation in Heme Peroxidases: A Density Functional Theory Study. J. Am. Chem. Soc. 1999, 121, 10178–10185. DOI: 10.1021/ja991997c.
  • Bleay, S. M.; Croxton, R. S.; De Puit, M. Fingerprint Development Techniques: Theory and Application. John Wiley & Sons Ltd. Press: Hoboken, 2018.
  • Grimberg, Z.; Tavor Re'em, T.; Levin-Elad, M. Heat and Let Dye: Fixing Blood‐Contaminated Fingermarks Using Heat. J. Forensic Sci. 2022, 67, 955–963. DOI: 10.1111/1556-4029.14993.
  • Adler, O.; Adler, R. Über Das Verhalten Gewisser Organischer Verbindungen Gegenüber Blut Mit Besonderer Berücksichtigung Des Nachweises Von Blut. Hoppe-Seyler’s Zeit. Physiol. Chem. 1904, 41, 59–67. DOI: 10.1515/bchm2.1904.41.1-2.59.
  • Holland, V.; Saunders, B.; Rose, F.; Walpole, A. A Safer Substitute for Benzidine in the Detection of Blood. Tetrahedron 1974, 30, 3299–3302. DOI: 10.1016/S0040-4020(01)97504-0.
  • Farrugia, K. J.; Savage, K. A.; Bandey, H.; Ciuksza, T.; Daéid, N. N. Chemical Enhancement of Footwear Impressions in Blood on Fabric—Part 2: peroxidase Reagents. Sci. Justice 2011, 51, 110–121. DOI: 10.1016/j.scijus.2010.11.002.
  • Hussain, J.; Pounds, C. The Enhancement of Marks Made in Blood with 3, 3', 4, 4'-Tetraaminobiphenyl; Forensic Science Service: Birmingham; 1989.
  • Caldwell, J. P.; Kim, N. D. Extension of the Color Suite Available for Chemical Enhancement of Fingerprints in Blood. J. Forensic Sci. 2002, 47, 332–340. DOI: 10.1520/JFS15253J.[PMC].[11908604.
  • Oliver, S.; Smale, T.; Arthur, I. The Use of ortho-Phenylenediamine and Zar-Pro™ Strips for the Development of Bloodmarks on a Dark-Coloured, Non-Porous Surface. Forensic Sci. Int. 2018, 288, 97–106. DOI: 10.1016/j.forsciint.2018.04.021.
  • Albrecht, H. O. Über Die Chemiluminescenz Des Aminophthalsäurehydrazids. Z. Phys. Chem. 1928, 136, 321–330. DOI: 10.1515/zpch-1928-13625.
  • Cavalcanti, D. R.; Barros, R. M. Escondendo Manchas de Sangue em Locais de Crime: Análise da Ação Antioxidante Dos Chás Verde e Preto Sobre o Luminol. BJFS 2016, 6, 47–60. DOI: 10.17063/bjfs6(1)y201647.
  • Akemann, E.; Bushong, L. C.; Jones, W. M. Using Luminol to Detect Bloodstains Exposed to Fire, Heat, and Soot on Multiple Surfaces. J. Forensic Identif. 2018, 68, 438–453.
  • Passi, N.; Garg, R. K.; Yadav, M.; Singh, R. S.; Kharoshah, M. A. Effect of Luminol and Bleaching Agent on the Serological and DNA Analysis from Bloodstain. Egypt. J. Forensic Sci. 2012, 2, 54–61. DOI: 10.1016/j.ejfs.2012.04.003.
  • Farrugia, K. J.; Bandey, H.; Dawson, L.; Daéid, N. N. A Comparison of Enhancement Techniques for Footwear Impressions on Dark and Patterned Fabrics. J. Forensic Sci. 2013, 58, 1472–1485. DOI: 10.1111/1556-4029.12209.
  • Munro, M.; Deacon, P.; Farrugia, K. J. A Preliminary Investigation into the Use of Alginates for the Lifting and Enhancement of Fingermarks in Blood. Sci. Justice 2014, 54, 185–191. DOI: 10.1016/j.scijus.2013.11.002.
  • Nagesh, D.; Ghosh, S. A Time Period Study on the Efficiency of Luminol in the Detection of Bloodstains Concealed by Paint on Different Surfaces. Forensic Sci. Int. 2017, 275, 1–7. DOI: 10.1016/j.forsciint.2017.01.028.
  • Streeting, C. A.; Chaseling, J.; Krosch, M. N.; Wright, K. A Comparison of ABAcard® Hematrace® and RSIDTM-Blood Tests on Dried, Diluted Bloodstains Treated with Leucocrystal Violet or Luminol. Aust. J. Forensic Sci. 2022, 54, 108–118. DOI: 10.1080/00450618.2020.1781256.
  • Fox, A.; Gittos, M.; Harbison, S.; Fleming, R.; Wivell, R. Exploring the Recovery and Detection of Messenger RNA and DNA from Enhanced Fingermarks in Blood. Sci. Justice 2014, 54, 192–198. DOI: 10.1016/j.scijus.2014.01.001.
  • McCarthy, D. Sulfosalicylic Acid and Rhodamine 6G as a Fixing and Development Solution for the Enhancement of Blood Impressions. J. Forensic Identif. 2014, 64, 351–374.
  • Seo, Y.-H.; Yu, J.-S. Reducing the Bubbling of LCV by Inhibition of Catalase Activity. J. Korea Contents Assoc. 2019, 19, 249–256. DOI: 10.5392/JKCA.2019.19.06.249.
  • Praska, N.; Langenburg, G. Reactions of Latent Prints Exposed to Blood. Forensic Sci. Int. 2013, 224, 51–58. DOI: 10.1016/j.forsciint.2012.10.027.
  • Lin, S.; Luo, Y.; Xie, L.; Yu, Y.; Mi, Z. Faux Blood Fingermark on Pistol: Latent Fingerprint Developed by Whole Blood. J. Forensic Sci. 2019, 64, 1913–1915. DOI: 10.1111/1556-4029.14118.
  • Deininger, L.; Francese, S.; Clench, M.; Langenburg, G.; Sears, V.; Sammon, C. Investigation of Infinite Focus Microscopy for the Determination of the Association of Blood with Fingermarks. Sci. Justice 2018, 58, 397–404. DOI: 10.1016/j.scijus.2018.07.001.
  • Caldwell, J. P.; Henderson, W.; Kim, N. D. ABTS: A Safe Alternative to DAB for the Enhancement of Blood Fingerprints. J. Forensic Sci. 2000, 45, 785–794. DOI: 10.1520/JFS14771J.[PMC].[10914571.
  • Pereira, P. The Use of Various Chemical Blood Reagents to Develop Blood Fingerprint or Footwear Impressions. J. Forensic Identif. 2014, 64, 43. DOI.
  • Lee, W.; Hong, S. Photoluminescence of Blood by Acidic Hydrogen Peroxide—a Preliminary Test. J. Forensic Sci. 2022, 67, 161–168. DOI: 10.1111/1556-4029.14866.
  • Farrugia, K. J.; Savage, K. A.; Bandey, H.; Daéid, N. N. Chemical Enhancement of Footwear Impressions in Blood on Fabric – Part 1: Protein Stains. Sci. Justice 2011, 51, 99–109. DOI: 10.1016/j.scijus.2010.11.001.
  • Nettleton, G.; Johnson, L. R.; Sehlinger, T. E. Thin Layer Chromatography of Commercial Samples of Amido Black 10B. Stain Technol. 1986, 61, 329–336. DOI: 10.3109/10520298609113581.
  • Hartley, G.; Glynn, C. L. A Comparative Analysis of Protein and Peroxidase Blood Enhancement Reagents following Laundering and Their Impact on DNA Recovery. 2017, DOI: 10.16966/jfra.101.
  • Harush-Brosh, Y.; Levy-Herman, Y.; Bengiat, R.; Oz, C.; Levin-Elad, M.; Horowitz, M.; Faerman, M. Back to Amido Black: Uncovering Touch DNA in Blood-Contaminated Fingermarks. J. Forensic Sci. 2021, 66, 1697–1703. DOI: 10.1111/1556-4029.14783.
  • Hong, S.; Seo, J. Y. Chemical Enhancement of Fingermark in Blood on Thermal Paper. Forensic Sci. Int. 2015, 257, 379–384. DOI: 10.1016/j.forsciint.2015.10.011.
  • Bentolila, A.; Reuveny, S. A.; Attias, D.; Elad, M. L. Using Alginate Gel Followed by Chemical Enhancement to Recover Blood-Contaminated Fingermarks from Fabrics. J. Forensic Identif. 2016, 66, 13–21. DOI.
  • Groth, S.; Webster, R.; Datyner, A. Two New Staining Procedures for Quantitative Estimation of Proteins on Electrophoretic Strips. Biochim. Biophys. Acta 1963, 71, 377–391. DOI: 10.1016/0006-3002(63)91092-8.[PMC].[18421828.
  • Mattson, P.; Bilous, P. Coomassie Brilliant Blue: An Excellent Reagent for the Enhancement of Faint Bloody Fingerprints. Can. Soc. Forensic Sci. J. 2014, 47, 20–36. DOI: 10.1080/00085030.2014.885728.
  • Tsai, L.-C.; Lee, C.-C.; Chen, C.-C.; Lee, J. C.-I.; Wang, S.-M.; Huang, N.-E.; Linacre, A.; Hsieh, H.-M. The Influence of Selected Fingerprint Enhancement Techniques on Forensic DNA Typing of Epithelial Cells Deposited on Porous Surfaces. J. Forensic Sci. 2016, 61, S221–S225. DOI: 10.1111/1556-4029.12893.
  • Theeuwen, A.; Van Barneveld, S.; Drok, J.; Keereweer, I.; Limborgh, J.; Naber, W.; Velders, T. Enhancement of Footwear Impressions in Blood. Forensic Sci. Int. 1998, 95, 133–151. DOI: 10.1016/s0379-0738(98)00084-x[PMC].[9722976.
  • Corcoran, E. Evaluation of current methods for processing bloody fingerprints on non-porous substrates exposed to various contaminants. Ph.D. Dissertation, Boston University, Boston, Massachusetts, 2017.
  • Petretei, D. Enhancement of Fingerprints in Diluted Blood. Probl. Forensic Sci. 2019, 120, 267–277. DOI.
  • Frégeau, C. J.; Germain, O.; Fourney, R. M. Fingerprint Enhancement Revisited and the Effects of Blood Enhancement Chemicals on Subsequent Profiler plus™ Fluorescent Short Tandem Repeat DNA Analysis of Fresh and Aged Bloody Fingerprints. J. Forensic Sci. 2000, 45, 14688J–146380. DOI: 10.1520/JFS14688J.
  • Chingthongkham, P.; Chomean, S.; Suppajariyawat, P.; Kaset, C. Enhancement of Bloody Fingerprints on Non-Porous Surfaces Using Lac Dye (Laccifer lacca). Forensic Sci. Int. 2020, 307, 110119. DOI: 10.1016/j.forsciint.2019.110119.
  • Farrugia, K. J.; Bandey, H.; Savage, K.; NicDaéid, N. Chemical Enhancement of Footwear Impressions in Blood on Fabric — Part 3: Amino Acid Staining. Sci. Justice 2013, 53, 8–13. DOI: 10.1016/j.scijus.2012.08.003.
  • Ruhemann, S. CXXXII.—Cyclic di-and Tri-Ketones. J. Chem. Soc. Trans. 1910, 97, 1438–1449. DOI: 10.1039/CT9109701438.
  • Odén, S.;Hofsten, B. V. Detection of Fingerprints by the Ninhydrin Reaction. Nature 1954, 173, 449–450. doi:10.1038/173449a0.
  • Yang, R.; Lian, J. Studies on the Development of Latent Fingerprints by the Method of Solid–Medium Ninhydrin. Forensic Sci. Int. 2014, 242, 123–126. DOI: 10.1016/j.forsciint.2014.06.036.
  • Hauze, D. B.; Petrovskaia, O.; Taylor, B.; Joullié, M. M.; Ramotowski, R.; Cantu, A. 1, 2-Indanediones: New Reagents for Visualizing the Amino Acid Components of Latent Prints. J. Forensic Sci. 1998, 43, 14300J–143747. DOI: 10.1520/JFS14300J.
  • Mangle, M. F.; Xu, X.; de Puit, M. Performance of 1, 2-Indanedione and the Need for Sequential Treatment of Fingerprints. Sci. Justice 2015, 55, 343–346. DOI: 10.1016/j.scijus.2015.04.002.
  • Lin, S-w.; Ip, S. C.; Lam, T-t.; Tan, T-f.; Yeung, W-l.; Tam, W-m Compatibility of DNA IQ™, QIAamp® DNA Investigator, and QIAsymphony® DNA Investigator® with Various Fingerprint Treatments. Int. J. Legal Med. 2017, 131, 293–301. DOI: 10.1007/s00414-016-1447-8.
  • Kim, D.; Ryu, H.; Jeong, S.; Joo, I.; Hong, S. Enhancement of Fingerprint in Blood Deposited on the Surface of Thermal Paper by Using the Mixture of Polyvinylpyrrolidone and 1, 2-Indanedione. Anal. Sci. Technol. 2021, 34, 122–127. DOI: 10.5806/AST.2021.34.3.122.
  • Grigg, R.; Mongkolaussavaratana, T.; Anthony Pounds, C.; Sivagnanam, S. Sivagnanam, S. 1, 8-Diazafluorenone and Related Compounds. A New Reagent for the Detection of (α-Amino Acids and Latent Fingerprints. Tetrahedron Lett. 1990, 31, 7215–7218. DOI: 10.1016/S0040-4039(00)97283-6.
  • Laurin, N.; Célestin, F.; Clark, M.; Wilkinson, D.; Yamashita, B.; Frégeau, C. New Incompatibilities Uncovered Using the Promega DNA IQ™ Chemistry. Forensic Sci. Int. 2015, 257, 134–141. DOI: 10.1016/j.forsciint.2015.07.029.
  • Prabakaran, E.; Pillay, K. Nanomaterials for Latent Fingerprint Detection: A Review. J. Mater. Res. Technol. 2021, 12, 1856–1885. DOI: 10.1016/j.jmrt.2021.03.110.
  • Bergeron, J. Development of Bloody Prints on Dark Surfaces with Titanium Dioxide and Methanol. J. Forensic Identif. 2003, 53, 149. DOI.
  • Bouwmeester, M.; Leegwater, J.; de Puit, M. Comparison of the Reagents SPR-W and Acid Yellow 7 for the Visualization of Blood Marks on a Dark Surface. J. Forensic Identif. 2016, 66, 289–302 DOI.
  • Bouwmeester, M.; Gorré, S.; Rodriguez, C.; de Puit, M. A Comparison of Reagents for the Visualization of Blood Prints on Knives with Black Handles. J. Forensic Identif. 2011, 61, 353–362. DOI.
  • Au, C.; Jackson-Smith, H.; Quinones, I.; Jones, B.; Daniel, B. Wet Powder Suspensions as an Additional Technique for the Enhancement of Bloodied Marks. Forensic Sci. Int. 2011, 204, 13–18. DOI: 10.1016/j.forsciint.2010.04.044.
  • Peng, D.; Liu, X.; Huang, M.; Liu, R. Characterization of a Novel Co2TiO4 Nanopowder for the Rapid Identification of Latent and Blood Fingerprints. Anal. Lett. 2018, 51, 1796–1808. DOI: 10.1080/00032719.2017.1391827.
  • Huang, M.; Peng, D. A Rapid and Dual-Mode Visualization of Latent and Bloody Fingermarks Using Cr-and Sb-Codoped Titanium Dioxide Nanoparticles. J Mater Sci. 2021, 56, 5543–5554. DOI: 10.1007/s10853-020-05651-x.
  • Meng, L.; Ren, Y.; Zhou, Z.; Li, C.; Wang, C.; Fu, S. Monodisperse Silica Nanoparticle Suspension for Developing Latent Blood Fingermarks. Forensic Sci. Res. 2020, 5, 38–46. DOI: 10.1080/20961790.2018.1446721.
  • Becue, A.; Moret, S.; Champod, C.; Margot, P. Use of Quantum Dots in Aqueous Solution to Detect Blood Fingermarks on Non-Porous Surfaces. Forensic Sci. Int. 2009, 191, 36–41. DOI: 10.1016/j.forsciint.2009.06.005.
  • Moret, S.; Bécue, A.; Champod, C. Cadmium-Free Quantum Dots in Aqueous Solution: Potential for Fingermark Detection, Synthesis and an Application to the Detection of Fingermarks in Blood on Non-Porous Surfaces. Forensic Sci. Int. 2013, 224, 101–110. DOI: 10.1016/j.forsciint.2012.11.009.
  • Li, B.-Y.; Zhang, X.-L.; Zhang, L.-Y.; Wang, T.-T.; Li, L.; Wang, C.-G.; Su, Z.-M. NIR-Responsive NaYF4: Yb, Er, Gd Fluorescent Upconversion Nanorods for the Highly Sensitive Detection of Blood Fingerprints. Dyes Pigm. 2016, 134, 178–185. DOI: 10.1016/j.dyepig.2016.07.014.
  • Wang, M.; Li, M.; Yu, A.; Zhu, Y.; Yang, M.; Mao, C. Fluorescent Nanomaterials for the Development of Latent Fingerprints in Forensic Sciences. Adv. Funct. Mater. 2017, 27, 1606243. DOI: 10.1002/adfm.201606243.
  • Wang, Y.; Wang, J.; Ma, Q.; Li, Z.; Yuan, Q. Recent Progress in Background-Free Latent Fingerprint Imaging. Nano Res. 2018, 11, 5499–5518. DOI: 10.1007/s12274-018-2073-1.
  • Li, J.; Zhu, X.; Xue, M.; Feng, W.; Ma, R.; Li, F. Nd3+-Sensitized Upconversion Nanostructure as a Dual-Channel Emitting Optical Probe for near Infrared-to-near Infrared Fingerprint Imaging. Inorg. Chem. 2016, 55, 10278–10283. DOI: 10.1021/acs.inorgchem.6b01536.
  • Wang, H.; Ji, X.; Li, Z.; Huang, F. Fluorescent Supramolecular Polymeric Materials. Adv. Mater. 2017, 29, 1606117. DOI: 10.1002/adma.201606117.
  • Fan, Z.; Zhang, C.; Chen, J.; Ma, R.; Lu, Y.; Wu, J.-W.; Fan, L.-J. Highly Stable, Nondestructive, and Simple Visualization of Latent Blood Fingerprints Based on Covalent Bonding between the Fluorescent Conjugated Polymer and Proteins in Blood. ACS Appl. Mater. Interfaces 2021, 13, 15621–15632. DOI: 10.1021/acsami.1c00710.
  • Fan, Z.; Zhang, C.; Ma, R.; Fan, L.-J. Dye-Soaked Cotton Pads for Latent Blood Fingerprint Development. SN Appl. Sci. 2020, 2, 1–14. DOI: 10.1007/s42452-020-03671-5.
  • Zhang, C.; Fan, Z.; Zhan, H.; Zhou, H.; Ma, R.; Fan, L.-J. Fluorescent Cationic Conjugated Polymer-Based Adaptive Developing Strategy for Both Sebaceous and Blood Fingerprints. ACS Appl. Mater. Interfaces 2021, 13, 27419–27429. DOI: 10.1021/acsami.1c04741.
  • Malik, A. H.; Kalita, A.; Iyer, P. K. Development of Well-Preserved, Substrate-Versatile Latent Fingerprints by Aggregation-Induced Enhanced Emission-Active Conjugated Polyelectrolyte. ACS Appl. Mater. Interfaces 2017, 9, 37501–37508. DOI: 10.1021/acsami.7b13390.
  • Wang, Z.; Zhang, P.; Liu, H.; Zhao, Z.; Xiong, L.; He, W.; Kwok, R. T.; Lam, J. W.; Ye, R.; Tang, B. Z. Robust Serum Albumin-Responsive AIEgen Enables Latent Bloodstain Visualization in High Resolution and Reliability for Crime Scene Investigation. ACS Appl. Mater. Interfaces 2019, 11, 17306–17312. DOI: 10.1021/acsami.9b04269.
  • Qiu, Z.; Hao, B.; Gu, X.; Wang, Z.; Xie, N.; Lam, J. W.; Hao, H.; Tang, B. Z. A General Powder Dusting Method for Latent Fingerprint Development Based on. Sci. China Chem. 2018, 61, 966–970. DOI: 10.1007/s11426-018-9280-1.
  • Barros, H. L.; Mileski, T.; Dillenburg, C.; Stefani, V. Fluorescent Benzazole Dyes for Bloodstain Detection and Bloody Fingermark Enhancement. Forensic Chem. 2017, 5, 16–25. DOI: 10.1016/j.forc.2017.05.004.
  • Barros, H. L.; Stefani, V. A New Methodology for the Visualization of Latent Fingermarks on the Sticky Side of Adhesive Tapes Using Novel Fluorescent Dyes. Forensic Sci. Int. 2016, 263, 83–91. DOI: 10.1016/j.forsciint.2016.03.053.
  • Barros, H. L.; Stefani, V. Micro-Structured Fluorescent Powders for Detecting Latent Fingerprints on Different Types of Surfaces. J. Photochem. Photobiol. A 2019, 368, 137–146. DOI: 10.1016/j.jphotochem.2018.09.046.
  • Liu, C.-M.; Zhang, L.-Y.; Li, L.; Li, B.-Y.; Wang, C.-G.; Wang, T.-T. Specific Detection of Latent Human Blood Fingerprints Using Antibody Modified NaYF4: Yb, Er, Gd Fluorescent Upconversion Nanorods. Dyes Pigm. 2018, 149, 822–829. DOI: 10.1016/j.dyepig.2017.11.050.
  • Xu, L.; Cao, Z.; Ma, R.; Wang, Z.; Qin, Q.; Liu, E.; Su, B. Visualization of Latent Fingermarks by Enhanced Chemiluminescence Immunoassay and Pattern Recognition. Anal. Chem. 2019, 91, 12859–12865. DOI: 10.1021/acs.analchem.9b02631.
  • Li, B.; Beveridge, P.; O'Hare, W. T.; Islam, M. The Application of Visible Wavelength Reflectance Hyperspectral Imaging for the Detection and Identification of Blood Stains. Sci. Justice 2014, 54, 432–438. DOI: 10.1016/j.scijus.2014.05.003.
  • Cadd, S.; Li, B.; Beveridge, P.; O'Hare, W. T.; Campbell, A.; Islam, M. The Non-Contact Detection and Identification of Blood Stained Fingerprints Using Visible Wavelength Reflectance Hyperspectral Imaging: Part 1. Sci. Justice 2016, 56, 181–190. DOI: 10.1016/j.scijus.2016.01.004.
  • Cadd, S.; Li, B.; Beveridge, P.; O'Hare, W. T.; Campbell, A.; Islam, M. The Non-Contact Detection and Identification of Blood Stained Fingerprints Using Visible Wavelength Hyperspectral Imaging: Part II Effectiveness on a Range of Substrates. Sci. Justice 2016, 56, 191–200. DOI: 10.1016/j.scijus.2016.01.005.
  • Cadd, S.; Li, B.; Beveridge, P.; William, T.; Campbell, A.; Islam, M. A Comparison of Visible Wavelength Reflectance Hyperspectral Imaging and Acid Black 1 for the Detection and Identification of Blood Stained Fingerprints. Sci. Justice 2016, 56, 247–255. DOI: 10.1016/j.scijus.2015.12.007.
  • Cadd, S.; Li, B.; Beveridge, P.; O'Hare, W. T.; Islam, M. Age Determination of Blood-Stained Fingerprints Using Visible Wavelength Reflectance Hyperspectral Imaging. J. Imaging 2018, 4, 141. DOI: 10.3390/jimaging4120141.
  • Bailey, M. J.; Bradshaw, R.; Francese, S.; Salter, T. L.; Costa, C.; Ismail, M.; Webb, R. P.; Bosman, I.; Wolff, K.; de Puit, M. Rapid Detection of Cocaine, Benzoylecgonine and Methylecgonine in Fingerprints Using Surface Mass Spectrometry. Analyst 2015, 140, 6254–6259. DOI: 10.1039/C5AN00112A.
  • Hinners, P.; Thomas, M.; Lee, Y. J. Determining Fingerprint Age with Mass Spectrometry Imaging via Ozonolysis of Triacylglycerols. Anal. Chem. 2020, 92, 3125–3132. DOI: 10.1021/acs.analchem.9b04765.
  • Francese, S.; Bradshaw, R.; Denison, N. An Update on MALDI Mass Spectrometry Based Technology for the Analysis of Fingermarks–Stepping into Operational Deployment. Analyst 2017, 142, 2518–2546. DOI: 10.1039/c7an00569e.
  • Bradshaw, R.; Bleay, S.; Clench, M.; Francese, S. Direct Detection of Blood in Fingermarks by MALDI MS Profiling and Imaging. Sci. Justice 2014, 54, 110–117. DOI: 10.1016/j.scijus.2013.12.004.
  • Lauzon, N.; Chaurand, P. Detection of Exogenous Substances in Latent Fingermarks by Silver-Assisted LDI Imaging MS: Perspectives in Forensic Sciences. Analyst 2018, 143, 3586–3594. DOI: 10.1039/C8AN00688A.
  • Francese, S. Criminal Profiling through MALDI MS Based Technologies–Breaking Barriers towards Border-Free Forensic Science. Aust. J. Forensic Sci 2019, 51, 623–635. DOI: 10.1080/00450618.2018.1561949.
  • Tian, L.; Wang, X.; Zhao, L.; Shi, M.; Wang, H.; Zhang, X.; Zhang, M. Direct Detection of Label-Free Blood Fingermarks by SECM Imaging. Electrochem. Commun. 2019, 102, 89–93. DOI: 10.1016/j.elecom.2019.04.003.
  • Lakhtakia, A.; Shaler, R. C.; Martín‐Palma, R. J.; Motyka, M. A.; Pulsifer, D. P. Solid‐State Acquisition of Fingermark Topology Using Dense Columnar Thin Films. J. Forensic Sci. 2011, 56, 612–616. DOI: 10.1111/j.1556-4029.2010.01685.x.
  • Shaler, R. C.; Lakhtakia, A.; Rogers, J.; Pulsifer, D. P.; Martí N-Palma, R. J. Columnar-Thin-Film Acquisition of Fingerprint Topology. J. Nanophotonics 2011, 5, 051509. DOI: 10.1117/1.3556154.
  • Williams, S. F.; Pulsifer, D. P.; Shaler, R. C.; Ramotowski, R. S.; Brazelle, S.; Lakhtakia, A. Comparison of the Columnar-Thin-Film and Vacuum-Metal-Deposition Techniques to Develop Sebaceous Fingermarks on Nonporous Substrates. J. Forensic Sci. 2015, 60, 295–302. DOI: 10.1111/1556-4029.12648.
  • Williams, S. F.; Pulsifer, D. P.; Lakhtakia, A.; Shaler, R. C. Visualization of Partial Bloody Fingerprints on Nonporous Substrates Using Columnar Thin Films. Can. Soc. Forensic Sci. J. 2015, 48, 20–35. DOI: 10.1080/00085030.2014.987464.
  • Plazibat, S. L.; Roy, R.; Swiontek, S. E.; Lakhtakia, A. Generation of DNA Profiles from Fingerprints Developed with Columnar Thin Film Technique. Forensic Sci. Int. 2015, 257, 453–457. DOI: 10.1016/j.forsciint.2015.10.031.
  • Goecker, Z. C.; Swiontek, S. E.; Lakhtakia, A.; Roy, R. Comparison of Quantifiler® Trio and InnoQuant™ Human DNA Quantification Kits for Detection of DNA Degradation in Developed and Aged Fingerprints. Forensic Sci. Int. 2016, 263, 132–138. DOI: 10.1016/j.forsciint.2016.04.009.
  • Tiedge, T. M.; McAtee, P. D.; McCormick, M. N.; Lakhtakia, A.; Roy, R. Massively Parallel Sequencing and STR Analysis from Partial Bloody Fingerprints Enhanced with Columnar Thin Films. Forensic Sci. Int. Genet. 2020, 49, 102369. DOI: 10.1016/j.fsigen.2020.102369.
  • Zarate, J. Llifting And Preserving Bloody Impressions For Law Enforcement U.S. 2010/0040765Al, Feb. 18, 2010.
  • Zarate, J.; Morden, C. A Fluorogenic Method for Lifting, Enhancing, and Preserving Bloody Impression Evidence. 2011, 61, 260–280. J. Forensic Identif. DOI.
  • Kemme, M. Evaluation of Zar-Pro Lifting Strip Fidelity in Comparison to Other Blood Fingerprint Enhancement Methods. Ph.D. Dissertation, Boston University, Boston, Massachusetts, 2014.
  • Bunaciu, A. A.; Fleschin, Ş.; Hoang, V. D.; Aboul-Enein, H. Y. Vibrational Spectroscopy in Body Fluids Analysis. Crit. Rev. Anal. Chem. 2017, 47, 67–75. DOI: 10.1080/10408347.2016.1209104.
  • Zulfiqar, M.; Ahmad, M.; Sohaib, A.; Mazzara, M.; Distefano, S. Hyperspectral Imaging for Bloodstain Identification. Sensors 2021, 21, 3045. DOI: 10.3390/s21093045.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.