126
Views
31
CrossRef citations to date
0
Altmetric
Research Article

THE VERTICAL TRANSMISSION OF HUMAN IMMUNODEFICIENCY VIRUS TYPE 1: Molecular and Biological Properties of the Virus

Pages 1-34 | Published online: 15 Oct 2008

REFERENCES

  • Chin J. Current and future dimensions of HIV/AIDS pandemic in women and children. Lancet 1990; 336(8709)221–224, [PUBMED], [INFOTRIEVE]
  • Bennett J V, Rogers M F. Child survival and perinatal infections with human immunodeficiency virus. Am J Dis Child 1991; 145(11)1242–1247, [PUBMED], [INFOTRIEVE], [CSA]
  • Ahmad N. Mother-to-infant transmission of AIDS. HIV. Society for AIDS Prevention and Education Publication, KathmanduNepal 1994; 1: 121–16
  • Ahmad N. Maternal-fetal transmission of human immunodeficiency virus. J Biomed Sci 1996; 3(4)238–250, [PUBMED], [INFOTRIEVE]
  • Ahmad N. Molecular mechanisms of human immunodeficiency virus type 1 mother-infant transmission. Adv Pharmacol 2000; 49: 387–416, [PUBMED], [INFOTRIEVE]
  • Blanche S, Rouzioux C, Moscato M L, et al. A prospective study of infants born to women seropositive for human immunodeficiency virus type 1. N Engl J Med 1989; 320(25)1643–1648, [PUBMED], [INFOTRIEVE], [CSA]
  • European Collaborative Study. Mother to child transmission of HIV infection. Lancet 1988; 332(8619)1039–1043, [CROSSREF]
  • European Collaborative Study. Cesarean section and risk of vertical transmission of HIV-1. Lancet 1994; 343(8911)1464–1467, [CROSSREF]
  • Italian Multicentre Study. Epidemiology, clinical features and prognostic factors of pediatric HIV infection. Lancet 1988; 332(8619)1043–46, [CROSSREF]
  • Mok J Q, Giaquinto C, DeRossi A, et al. Infants born to mothers seropositive for human immunodeficiency virus: Preliminary findings from a multicentre European study. Lancet 1987; 329(8543)1164–1168, [CROSSREF]
  • Ryder R W, Nsa W, Hassig S E, et al. Perinatal transmission of human immunodeficiency virus type 1 to infants of seropositive women in Zaire. N Engl J Med 1989; 320(25)1637–1642, [PUBMED], [INFOTRIEVE], [CSA]
  • Sprecher S, Soumenkoff G, Puissant F, et al. Vertical transmission of HIV in 15-week fetus. Lancet 1986; 2(8501)288–289, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Scott G M, Buck B E, Leterman J G, et al. Acquired immunodeficiency syndrome in infants. N Engl J Med 1984; 310: 76–81, [PUBMED], [INFOTRIEVE], [CSA]
  • Hoff R, Berardi V P, Weiblan B J, et al. Seroprevalence of human immunodeficiency virus among childbearing women. Estimation by testing samples of blood from newborns. N Engl J Med 1988; 318: 525–530, [PUBMED], [INFOTRIEVE], [CSA]
  • Adjoriolo-Johnson G, Cock K M, De, Ekpini E, et al. Prospective comparison of mother-to-child transmission of HIV-1 and HIV-2 in Abidjan, Ivory Coast. JAMA 1994; 272: 462–466, Erratum in JAMA 1994 272 19 1482 [CROSSREF]
  • Hira S K, Kamanga J, Bhat G J, et al. Perinatal transmission of HIV-1 in Zambia. BMJ 1989; 299: 1250–1252, [PUBMED], [INFOTRIEVE]
  • Report of a Consensus Workshop, Siena, Italy. Maternal factors involved in mother-to-child transmission of HIV-1. J Acquir Immune Defic Syndr 1992; 5: 1019–1029, January 17–18, 1992 [PUBMED], [INFOTRIEVE]
  • Rossi P, Moschese V, Broliden P A, et al. Presence of maternal antibodies to human immunodeficiency virus type-1 envelope glycoprotein gp120 epitopes correlates with the uninfected status of children born to seropositive mothers. Proc Natl Acad Sci USA 1989; 86: 8055–8058, [PUBMED], [INFOTRIEVE], [CSA]
  • Devash Y, Calvelli T A, Wood D G, et al. Vertical transmission of human immunodeficiency virus is correlated with the absence of high-affinity/acidity maternal antibodies to the gp120 principal neutralizing domain. Proc Natl Acad Sci USA 1990; 87: 3445–3449, Erratum in Proc Natl Acad Sci USA. 1991 88 (3) 1084 [PUBMED], [INFOTRIEVE], [CSA]
  • Halsey N A, Markham R, Wahren B, et al. Lack of association between antibodies to V3 loop peptides and maternal-infant HIV-1 transmission. J Acquir Immune Defic Syndr 1992; 5: 153–157, [PUBMED], [INFOTRIEVE]
  • Parekh B S, Shaffer N, Pau C P, et al. Lack of correlation between maternal antibodies to V3 loop peptides of gp120 and perinatal HIV-1 transmission. AIDS 1991; 5: 1179–1184, [PUBMED], [INFOTRIEVE]
  • Scarlatti G, Albert J, Rossi P, et al. Mother-to-child transmission of human immunodeficiency virus type 1: Correlation with neutralizing antibodies against primary isolates. J Infect Dis 1993; 168(1)207–210, [PUBMED], [INFOTRIEVE]
  • McClure H M, Anderson D C, Fultz P N, et al. Maternal transmission of SIVsmm in rhesus macaques. J Med Primatol 1991; 20(4)182–187, [PUBMED], [INFOTRIEVE]
  • Douglas G C, King B F. Maternal-fetal transmission of human immunodeficiency virus: A review of possible routes and cellular mechanisms of infection. Clin Infect Dis 1992; 15(4)678–691, [PUBMED], [INFOTRIEVE]
  • Mulder-Kampinga G A, Kuiken C, Dekker J, et al. Genomic human immunodeficiency virus type 1 RNA variation in mother and child following intra-uterine virus transmission. J Gen Virol 1993; 74(Pt 9)1747–1756, [PUBMED], [INFOTRIEVE], [CSA]
  • Lyman W D, Kress Y, Rashbaum W K. An AIDS-virus associated antigen localized in human fetal brain. Ann NY Acad Sci 1988; 540: 628–629, [PUBMED], [INFOTRIEVE], [CSA]
  • Bawdon R E, Gravell M, Hamilton R, et al. Studies on the placental transfer of cell-free human immunodeficiency virus and p24 antigen in an ex vivo human placental model. J Soc Gynecol Investig 1994; 1(1)45–48, [PUBMED], [INFOTRIEVE], [CSA]
  • Schwartz D A, Nahmias A J. Human immunodeficiency virus and the placenta. Current concepts of vertical transmission in relation to other viral agents. Ann Clin Lab Sci 1991; 21(4)264–274, [PUBMED], [INFOTRIEVE]
  • Calvelli T A, Rubinstein A. Pediatric HIV infection. A review. Immunodefic Rev 1990; 2(2)83–127, [PUBMED], [INFOTRIEVE]
  • Viscarello R R, Cullen M T, DeGennaro N J, et al. Fetal blood sampling in human immunodeficiency virus-seropositive women before elective midtrimester termination of pregnancy. Am J Obstet Gynecol 1992; 167(4 Pt 1)1075–1079, [PUBMED], [INFOTRIEVE]
  • Lairmore M D, Cuthbert P S, Utley L L, et al. Cellular localization of CD4 in the human placenta. Implications for maternal-to-fetal transmission of HIV. J Immunol 1993; 151(3)1673–1681, [PUBMED], [INFOTRIEVE]
  • Lia J E, De, Bendon R W. Normal and abnormal placental development. Danforth's Obstetrics and Gynecolog7th ed., J R Scott. Lippincott, Philadelphia 1994; p 49
  • Maury W, Potts B J, Rabson A B. HIV-1 infection of first-trimester and term human placental tissue: A possible mode of maternal-fetal transmission. J Infect Dis 1989; 160(4)583–588, [PUBMED], [INFOTRIEVE]
  • Chandwani S, Greco M A, Mittal K, et al. Pathology and human immunodeficiency virus expression in placentas of seropositive women. J Infect Dis 1991; 163(5)1134–1138, [PUBMED], [INFOTRIEVE]
  • Nair P, Alger L, Hines S, et al. Maternal and neonatal characteristics associated with HIV infection in infants of seropositive women. J Acquir Immune Defic Syndr 1993; 6(3)298–302, [PUBMED], [INFOTRIEVE], [CSA]
  • Bryson Y J, Luzuriaga K, Sullivan J L, et al. Proposed definitions for in utero versus intrapartum transmission of HIV-1. N Engl J Med 1992; 327(17)1246–1247, [PUBMED], [INFOTRIEVE]
  • Henin Y, Mandelbrot L, Henrion R, et al. Virus excretion in the cervicovaginal secretions of pregnant and non-pregnant HIV-infected women. J Acquir Immune Defic Syndr 1993; 6(1)72–75, [PUBMED], [INFOTRIEVE], [CSA]
  • Ehrnst A, Lindgren S, Dictor M, et al. HIV in pregnant women and their offspring: Evidence for late transmission. Lancet 1991; 338(8761)203–207, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Krivine A, Firtion G, Cao L, et al. HIV replication during the first weeks of life. Lancet 1992; 339(8803)1187–1189, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Rouzioux C, Costagliola D, Burgard M. Timing of mother-to-child transmission depends on maternal status. The HIV Infection in Newborns French Collaborative Study Group. AIDS 1993; 7(Suppl 2)S49–S52, [PUBMED], [INFOTRIEVE]
  • Davison-Fairburn B, Baskin G, Murphey-Corb M. Maternal-fetal transmission of SIV in 2 species of monkeys. Symp Nonhum Primate Models. AIDS 1992; 10: 29–35
  • Fazely F, Sharma P L, Fratazzi C, et al. Simian immunodeficiency virus infection via amniotic fluid: A model to study fetal immunopathogenesis and prophylaxis. J Acquir Immune Defic Syndr 1993; 6(2)107–114, [PUBMED], [INFOTRIEVE]
  • Goedert J J, Duliege A-M, Amos C I, et al. High risk of HIV-1 infection for first-born twins. The International Registry of HIV-exposed twins. Lancet 1991; 338(8781)1471–1475, [PUBMED], [INFOTRIEVE]
  • Bulterys M, Chao A, Dushimimana A, et al. HIV exposed twins. Lancet 1992; 339(8793)628, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • The European Mode of Delivery Collaboration. Elective caesarean-section versus vaginal delivery in prevention of vertical HIV-1 transmission: A randomized clinical trial. Lancet 1999; 353(9158)1035–1039, [CROSSREF]
  • Kreiss J. Breastfeeding and vertical transmission of HIV-1. Acta Paediatr Suppl 1997; 421: 113–117, [PUBMED], [INFOTRIEVE], [CSA]
  • Lepage P, Perre P, Van de, Carael M, et al. Postnatal transmission of HIV from mother to child. Lancet 1987; 2(8555)400, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Cocchi P, Cocchi C, Weinbreck P, et al. Postnatal transmission of HIV infection. Lancet 1988; 1(8583)482, [CROSSREF]
  • Ziegler J B, Cooper D A, Johnson R O, et al. Postnatal transmission of AIDS associated retrovirus from mother to infant. Lancet 1985; 1(8434)896–898, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Dunn D T, Newell M L, Ades A E, et al. Risk of human immunodeficiency virus type 1 transmission through breast feeding. Lancet 1992; 340(8819)585–588, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Wout A B, van't, Kootstra N A, Mulder–kampinga G A, et al. Macrophage-tropic variants initiate human immunodeficiency virus type 1 infection after sexual, parenteral, and vertical transmission. J Clin Invest 1994; 94(5)2060–2067, [PUBMED], [INFOTRIEVE], [CSA]
  • Nduati R W, John G C, Richardson B A, et al. Human immunodeficiency virus type 1 infected cells in breast milk: Association with immunosuppression and vitamin A deficiency. J Infect Dis 1995; 172(6)1461–1468, [PUBMED], [INFOTRIEVE]
  • Semba R D, Kumwenda N, Hoover D R, et al. Human immunodeficiency virus load in breast milk, mastitis and mother to child transmission. J Infect Dis 1999; 180(1)93–98, [PUBMED], [INFOTRIEVE]
  • Becquart P, Hocini H, Levy M, et al. Secretory anti-human immunodeficiency virus (HIV) antibodies in colostrum and breast milk are not a major determinant of the protection of early postnatal transmission of HIV. J Infect Dis 2000; 181(2)532–539, [PUBMED], [INFOTRIEVE]
  • Connor R I, Ho D D. Human immunodeficiency virus type 1 variants with increased replicative capacity develop during the asymptomatic stage before disease progression. J Virol 1994; 68(7)4400–4408, [PUBMED], [INFOTRIEVE], [CSA]
  • Oleske J, Minnefor A, Cooper R, Jr, et al. Immune deficiency syndrome in children. JAMA 1983; 249(17)2345–2349, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Mayaux M J, Blanche S, Rouzioux C, et al. Maternal factors associated with perinatal HIV-1 transmission: The French cohort study: 7 years of follow-up observation. J Acquir Immune Defic Syndr Hum Retrovirol 1995; 8(2)188–194, [PUBMED], [INFOTRIEVE]
  • Garcia P M, Kalish L A, Pitt J, et al. Maternal levels of plasma human immunodeficiency virus type 1 RNA and risk of perinatal transmission. Women and Infants Transmission Study Group. N Engl J Med 1999; 341(6)394–402, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Fang G, Burger H, Grimson R, et al. Maternal plasma human immunodeficiency virus type 1 RNA level: A determinant and projected threshold for mother-to-child transmission. Proc Natl Acad Sci USA 1995; 92(26)12100–12104, [PUBMED], [INFOTRIEVE], [CSA]
  • Dickover R E, Garratty E M, Herman S A, et al. Identification of levels of maternal HIV-1 RNA associated with risk of perinatal transmission. Effect of maternal zidovudine treatment on viral load. JAMA 1996; 275(8)599–605, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Cao Y, Krogstad P, Korber B T, et al. Maternal HIV-1 viral load and vertical transmission of infection. The Ariel Project for the prevention of HIV transmission from mother to infant. Nat Med 1997; 3(5)549–552, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Semba R D. Overview of potential role of vitamin A in mother to child transmission of HIV-1. Acta Paediatr Suppl 1997; 421: 107–112, [PUBMED], [INFOTRIEVE], [CSA]
  • Burns D N, FitzGerald G, Semba R, et al. Vitamin A and other nutritional indices during pregnancy in human immunodeficiency virus infection: Prevalence, clinical correlates and outcome. Clin Infect Dis 1999; 29(2)328–334, [PUBMED], [INFOTRIEVE]
  • Konduri K, Jones T, Moore E, et al. Peripartum blood secretion contact linked to vertical transmission of HIV infection. Am J Obstet Gynecol 1993; 1443: 420
  • Newell M L, Peckham C. Risk factors for vertical transmission of HIV-1 and early markers of HIV-1 infection in children. AIDS 1993; 7(Suppl 1)S91–S97, [PUBMED], [INFOTRIEVE]
  • Center for Disease Control. HIV/AIDS Surveillance Report. January, 161992
  • Nicholas S W, Sondheimer D L, Willoughby A D, et al. Human immunodeficiency virus infection in childhood, adolescence, and pregnancy: A status report and national research agenda. Pediatrics 1989; 83(2)293–308, [PUBMED], [INFOTRIEVE], [CSA]
  • Weiblen B J, Lee F K, Cooper E R, et al. Early diagnosis of HIV infection in infants by detection of IgA HIV antibodies. Lancet 1990; 335(8696)988–990, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Amadori A, Rossi A, de, Giaquinto C, et al. In vitro production of HIV-specific antibody in children at risk of AIDS. Lancet 1988; 1(8590)852–854, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Laure F, Courgnand V, Rouzioux C, et al. Detection of HIV-1 DNA in infants and children by means of the polymerase chain reaction. Lancet 1988; 2(8610)538–541, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Rossi A, De, Ades A E, Mammano F, et al. Antigen detection, virus culture, polymerase chain reaction, and in vitro antibody production in the diagnosis of vertically transmitted HIV-1 infection. AIDS 1991; 5(1)15–20, [PUBMED], [INFOTRIEVE]
  • Chouquet C, Burgard M, Richardson S, et al. Timing of mother to child HIV-1 transmission and diagnosis of infection based on polymerase chain reaction in the neonatal period by a non-parametric method. AIDS 1997; 11(9)1183–1184, [PUBMED], [INFOTRIEVE]
  • Rogers M F, Ou C Y, Rayfield M, et al. Use of the polymerase chain reaction for early detection of the proviral sequences of human immunodeficiency virus in infants born to seropositive mothers. New York City Collaborative Study of Maternal HIV Transmission and Montefiore Medical Center HIV Perinatal Transmission Study Group. N Engl J Med 1989; 320(25)1649–1654, [PUBMED], [INFOTRIEVE], [CSA]
  • Cooper E R, Nugent P, Diaz C, et al. After AIDS Clinical Trial 076: the changing pattern of zidovudine use during pregnancy, and the subsequent reduction in vertical transmission of human immunodeficiency virus in a cohort of infected women and their infants. Women and Infants Transmission Study Group. J Infect Dis 1996; 174(6)1207–1211, [PUBMED], [INFOTRIEVE]
  • Shaffer N, Chuachoowong R, Mock P A, et al. Short-course zidovudine for perinatal HIV-1 transmission in Bangkok, Thailand: A randomized controlled trial. Bangkok Collaborative Perinatal HIV Transmission Study Group. Lancet 1999; 353(9155)773–780, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Wiktor S Z, Ekpini E, Karon J M, et al. Short-course oral zidovudine for prevention of mother-to-child transmission of HIV-1 in Abidjan, Cote d'Ivoire: A randomized trial. Lancet 1999; 353(9155)781–785, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Jackson J B, Musoke P, Fleming T. Intrapartum and neonatal single-dose nevirapine compared with zidovudine for prevention of mother-to-child transmission of HIV-1 in Kampala, Uganda: 18-month follow-up of the HIVNET 012 randomized trial. Lancet 2003; 362(9387)859–868, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • McGowan J P, Crane M, Wiznia A A, et al. Combination antiretroviral therapy in human immunodeficiency virus-infected pregnant women. Obstet Gynecol 1999; 94(5 Pt 1)641–646, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Frenkel L M, Wagner L E, 2nd, Demeter L M, et al. Effects of zidovudine use during pregnancy on resistance and vertical transmission of human immunodeficiency virus type 1. Clin Infect Dis 1995; 20(5)1321–1326, [PUBMED], [INFOTRIEVE]
  • Minkoff H, Augenbraum M. Antiretroviral therapy for pregnant women. Am J Obstet Gynecol 1997; 176(2)478–489, [PUBMED], [INFOTRIEVE], [CSA]
  • Dyke R B, Van. Opportunistic infections in pediatric HIV disease. Ann NY Acad Sci 1993; 693: 158–165, [CSA]
  • Schnittman S M, Denning S M, Greenhouse J J, et al. Evidence for susceptibility of intrathymic T-cell precursors and their progeny carrying T-cell antigen receptor phenotypes TCR alpha beta+ and TCR gamma delta+ to human immunodeficiency virus infection: A mechanism for CD4+ (T4) lymphocyte depletion. Proc Natl Acad Sci USA 1990; 87(19)7727–7731, [PUBMED], [INFOTRIEVE], [CSA]
  • Rubinstein A, Sicklick M, Gupta A, et al. Acquired immunodeficiency with reversed T4/T8 ratios in infants born to promiscuous and drug-addicted mothers. JAMA 1983; 249(17)2350–2356, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Stanley S K, McCune J M, Kaneshima H, et al. Human immunodeficiency virus infection of the human thymus and description of the thymic microenvironment in the SCID-hu mouse. J Exptl Med 1993; 178(4)1151–1163, [CROSSREF]
  • Koup R A, Wilson C B. Clinical immunology of HIV-infected children. Pediatric AIDS: The Challenge of HIV Infection in Infants, Children, and Adolescents, P A Pizzo, C M Wilfert. Williams and Wilkins. 1993; pp. 158–165
  • Auger I, Thomas P, DeGruttola V, et al. Incubation periods for pediatric AIDS patients. Nature 1988; 336(6199)575–577, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Rogers M F, Thomas P A, Starcher E T, et al. Acquired immunodeficiency syndrome in children: Report of the Centers for Disease Control Natural Surveillance, 1982–1985. Pediatrics 1987; 79(6)1008–1014, [PUBMED], [INFOTRIEVE], [CSA]
  • Tersmette M, Goede R E, de, Al B J, et al. Differential syncytium-inducing capacity of human immunodeficiency virus isolates: Frequent detection of syncytium-inducing isolates in patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. J Virol 1988; 62(6)2026–2032, [PUBMED], [INFOTRIEVE], [CSA]
  • Koyanagi Y, Miles S, Mitsuyasu R T, et al. Dual infection of the central nervous system by AIDS viruses with distinct cellular tropism. Science 1987; 236(4803)819–822, [PUBMED], [INFOTRIEVE]
  • Cheng-Mayer C, Seto D, Tateno M, et al. Biologic features of HIV-1 that correlate with virulence in the host. Science 1990; 240: 80–82
  • Hutto C, Zhou Y, He J, et al. Longitudinal studies of viral sequence, viral phenotype and immunologic parameters of HIV-1 infection on perinatally infected twins with discordant disease course. J Virol 1996; 70(6)3589–3598, [PUBMED], [INFOTRIEVE], [CSA]
  • Strunnikova N, Ray S C, Livingston R A, et al. Convergent evolution within the V3 loop domain of HIV type 1 in association with disease progression. J Virol 1995; 69(12)7548–7558, [PUBMED], [INFOTRIEVE], [CSA]
  • Resino S, Gurbindo D, Cano J, et al. Predictive markers of clinical outcome in vertically infected HIV-1 infants. A prospective longitudinal study. Pediatric Research 2000; 47(4 Pt 1)509–515, [PUBMED], [INFOTRIEVE], [CSA]
  • Casper C, Naver L, Clevestig P, et al. Coreceptor change appears after immune deficiency is established in children infected with different HIV-1 subtypes. AIDS Res Hum Retroviruses 2002; 18(5)343–352, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Ganeshan S, Dickover R E, Korber B T, et al. Human immunodeficiency virus type 1 genetic evolution in children with divergent rates of development of disease. J Virol 1997; 71(1)663–677, [PUBMED], [INFOTRIEVE], [CSA]
  • Matala E, Hahn T, Yedavalli V R, Ahmad N. Biological characterization of HIV type 1 envelope V3 regions from mothers and infants associated with perinatal transmission. AIDS Res Hum Retroviruses 2001; 17(18)1725–1735, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Sleasman J W, Aleixo L F, Morton A, et al. CD4+ memory T cells are the predominant population of HIV-1-infected lymphocytes in neonates and children. AIDS 1996; 10(13)1477–1484, [PUBMED], [INFOTRIEVE]
  • Mo H, Monard S, Pollack H, et al. Expression patterns of the HIV type 1 coreceptors CCR5 and CXCR4 on CD4+ T cells and monocytes from cord and adult blood. AIDS Res Hum Retroviruses 1998; 14(7)607–617, [PUBMED], [INFOTRIEVE], [CSA]
  • Zaitseva M B, Lee S, Rabin R L, et al. CXCR4 and CCR5 on human thymocytes: Biological function and role in HIV-1 infection. J Immunol 1998; 161(6)3103–3113, [PUBMED], [INFOTRIEVE]
  • Ullum H, Lepri A C, Victor J, et al. Increased losses of CD4+CD45RA+ cells in later stages of HIV infection is related to increased risk of death: Evidence from a cohort of 347 HIV infected individuals. AIDS 1997; 11(12)1479–1485, [PUBMED], [INFOTRIEVE]
  • Joshi V V, Oleske J M. Pathologic appraisal of the thymus gland in acquired immunodeficiency syndrome in children. A study of four cases and a review of the literature. Arch Path Lab Med 1985; 109(2)142–146, [PUBMED], [INFOTRIEVE]
  • Grody W W, Fligiel S, Naeim F. Thymus involution in the acquired immunodeficiency syndrome. Am J Clin Pathol 1985; 84(1)85–95, [PUBMED], [INFOTRIEVE]
  • Rosenzweig M, Clark D P, Gaulton G N. Selective thymocyte depletion in neonatal HIV-1 thymic infection. AIDS 1993; 7(12)1601–1605, [PUBMED], [INFOTRIEVE]
  • Clark D R, Ampel N M, Hallett C A, et al. Peripheral blood from human immunodeficiency virus type 1-infected patients displays diminished T cell generation capacity. J Infect Dis 1997; 176(3)649–654, [PUBMED], [INFOTRIEVE]
  • Kitchen S G, Zack J A. CXCR4 expression during lymphopoiesis: Implications for human immunodeficiency virus type 1 infection of the thymus. J Virol 1997; 71(9)6928–6934, [PUBMED], [INFOTRIEVE], [CSA]
  • Balotta C, Vigano A, Riva C, et al. HIV type 1 phenotype correlates with the stage of infection in vertically infected children. AIDS Res Hum Retrovirus 1996; 12(13)1247–1253, [CSA]
  • Wolinsky S M, Wike C M, Korber B T, et al. Selective transmission of human immunodeficiency virus type-1 variants from mothers to infants. Science 1992; 255(5048)1134–1137, [PUBMED], [INFOTRIEVE]
  • Ahmad N, Baroudy B M, Baker R C, et al. Genetic analysis of human immunodeficiency virus type 1 envelope V3 region isolates from mothers and infants after perinatal transmission. J Virol 1995; 69(2)1001–1012, [PUBMED], [INFOTRIEVE], [CSA]
  • Contag C H, Ehrnst A, Duda J, et al. Mother-to-infant transmission of human immunodeficiency virus type 1 involving five envelope sequence subtypes. J Virol 1997; 71(2)1292–1300, [PUBMED], [INFOTRIEVE], [CSA]
  • Mulder-Kampinga G A, Simonon A, Kuiken C L, et al. Similarity in env and gag genes between genomic RNAs of human immunodeficiency virus type 1 (HIV-1) from mother and infant is unrelated to time of HIV-1 RNA positivity in the child. J Virol 1995; 69(4)2285–2296, [PUBMED], [INFOTRIEVE], [CSA]
  • Pasquier C, Cayrou C, Blancher A, et al. Molecular evidence for mother-to-child transmission of multiple variants by analysis of RNA and DNA sequences of human immunodeficiency virus type 1. J Virol 1998; 72(11)8493–8501, [PUBMED], [INFOTRIEVE], [CSA]
  • Sato H, Shiino T, Kodaka N, et al. Evolution and biological characterization of human immunodeficiency virus type 1 subtype E gp120 V3 sequences following horizontal and vertical transmission in a single family. J Virol 1999; 73(5)3551–3559, [PUBMED], [INFOTRIEVE], [CSA]
  • Scarlatti G, Leitner T, Halapi E, et al. Comparison of variable region 3 sequences of human immunodeficiency virus type 1 from infected children with the RNA and DNA sequences of the virus populations of their mothers. Proc Nat Acad Sci USA 1993; 90(5)1721–1725, [PUBMED], [INFOTRIEVE], [CSA]
  • Dickover R E, Garratty E M, Plaeger S, et al. Perinatal transmission of a major, minor and multiple maternal HIV type 1 variants in utero and intrapartum. J Virol 2001; 75(5)2194–2203, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Lamers S L, Sleasman J W, She J X, et al. Persistence of multiple maternal genotypes of human immunodeficiency virus type 1 in infants infected by vertical transmission. J Clin Invest 1994; 93(1)380–390, [PUBMED], [INFOTRIEVE], [CSA]
  • Amedee A M, Lacour N, Gierman J L, et al. Genotypic selection of simian immunodeficiency virus in macaque infants infected transplacentally. J Virol 1995; 69(12)7982–7990, [PUBMED], [INFOTRIEVE], [CSA]
  • Cichutek K, Merget H, Norley S, et al. Development of quasispecies of human immunodeficiency virus type 1 in vivo. Proc Natl Acad Sci USA 1992; 89(16)7365–7369, [PUBMED], [INFOTRIEVE], [CSA]
  • McNearney T, Westervelt P, Thielan B J, et al. Limited sequence heterogeneity among biologically distinct human immunodeficiency virus type 1 isolates from individuals involved in a clustered infectious outbreak. Proc Natl Acad Sci USA 1990; 87(5)1917–1921, [PUBMED], [INFOTRIEVE], [CSA]
  • Pang S, Shlesinger Y, Daar E S, et al. Rapid generation of sequence variation during primary HIV-1 infection. AIDS 1992; 6(5)453–460, Erratum in following 606 AIDS 1992 6 (6) [PUBMED], [INFOTRIEVE]
  • Wolfs T F, Zwart G, Bakker M, et al. HIV-1 genomic RNA diversification following sexual and parental virus transmission. Virology 1992; 189(1)103–110, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Zhu T, Mo H, Wang N, et al. Genotypic and phenotypic characterization of HIV-1 patients with primary infection. Science 1993; 261(5125)1179–1181, [PUBMED], [INFOTRIEVE]
  • Zhang L Q, MacKenzie P, Cleland A, et al. Selection for specific sequences in the external envelope protein of human immunodeficiency virus type 1 upon primary infection. J Virol 1993; 67(6)3345–3356, [PUBMED], [INFOTRIEVE], [CSA]
  • Kliks S C, Wara D W, Landers D V, et al. Features of HIV-1 that could influence maternal-child transmission. JAMA 1994; 272(6)467–474, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Ahmad N, Matala E, Yedavalli V RK, et al. Characterization of human immunodeficiency virus type 1 involved in maternal-fetal transmission. Advances in Animal Virology, S Jameel, L Villarreal. Mohan Primlani for Oxford & IBH Publishing, New Delhi 2000; pp 352–370
  • Alkhatib G, Combadiere C, Broder C, et al. CC CKR5: A RANTES, MIP-1_alpha, MIP-1ß receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 1996; 272(5270)1955–1958, [PUBMED], [INFOTRIEVE]
  • Feng Y, Broder C, Kennedy P, et al. HIV-1 entry cofactor: Functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 1996; 272(5263)872–877, [PUBMED], [INFOTRIEVE]
  • Choe H, Farzan M, Sun Y, et al. The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 1996; 85(7)1135–1845, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Richman D D, Bozzette S A. The impact of syncytium-inducing phenotype of human immunodeficiency virus on disease progression. J Infect Dis 1994; 169(5)968–974, [PUBMED], [INFOTRIEVE]
  • Dean M M, Carrington C, Winkler G A, et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 1996; 273: 1856–1862, [PUBMED], [INFOTRIEVE]
  • Philpott S, Burger H, Charboneau T, et al. CCR5 genotype and resistance to vertical transmission of HIV-1. J Acquir Immune Defic Syndr 1999; 21: 189–193, [PUBMED], [INFOTRIEVE]
  • Weiss R A. Cellular receptors and viral glycoproteins involved in retrovirus entry. The Retroviridae, J A Levy. Plenum Press, New York 1993; pp 1–108
  • Shioda T, Levy J A, Cheng-Mayer C. Macrophage and T cell line tropisms of HIV-1 are determined by specific regions of the envelope gp120 gene. Nature 1991; 349: 167–169, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Wiley R L, Smith D H, Lasky L A, et al. In vitro mutagenesis identifies a region within the envelope gene of the human immunodeficiency virus that is critical for infectivity. J Virol 1988; 62: 139–147, [CSA]
  • Rusche J R, Javaherian K, McDanal C, et al. Antibodies that inhibit fusion of human immunodeficiency virus-infected cells bind a 24-amino acid sequence of the viral envelope, gp120. Proc Natl Acad Sci USA 1988; 85: 3198–3202, [PUBMED], [INFOTRIEVE], [CSA]
  • Putney S D, Matthews T J, Robey W G, et al. HTLV-III/LAV-neutralizing antibodies to an E. coli produced fragment of the virus envelope. Science 1986; 234: 1392–1395, [PUBMED], [INFOTRIEVE]
  • Matthews T J, Langlois A J, Robey W G, et al. Restricted neutralization of divergent human T-lymphotrophic virus type III isolates by antibodies to the major envelope glycoprotein. Proc Natl Acad Sci USA 1986; 83: 9709–9713, [PUBMED], [INFOTRIEVE], [CSA]
  • Hwang S S, Boyle T J, Lyerly H K, et al. Identification of the envelope V3 loop as the primary determinant of cell tropism in HIV-1. Science 1991; 253: 71–74, [PUBMED], [INFOTRIEVE]
  • Westervelt P, Trowbridge D B, Epstein L G, et al. Macrophage tropism determinants of human immunodeficiency virus type 1 in vivo. J Virol 1992; 66: 2577–2582, [PUBMED], [INFOTRIEVE], [CSA]
  • Toohey K, Wehrly K, Nisho J, et al. Human immunodeficiency virus envelope V1 and V2 regions influence replication efficiency in macrophages by affecting virus spread. Virology 1995; 213: 70–79, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Koito A, Harrowe G, Levy J, et al. Functional role of the V1/V2 region of HIV-1 env gp120 in infection of primary macrophages and soluble CD4 neutralization. J Virol 1994; 68: 2253–2259, [PUBMED], [INFOTRIEVE], [CSA]
  • Stamatatos L, Cheng-Mayer C. Evidence that the structural conformation of envelope gp120 affects HIV-1 infectivity, host range, and syncytium-forming ability. J Virol 1993; 67: 5635–5639, [PUBMED], [INFOTRIEVE], [CSA]
  • Willey R L, Theodore T S, Martin M A. Amino acid substitutions in the human immunodeficiency virus type 1 gp120 V3 loop that change viral tropism also alter physical and functional properties of the virion envelope. J Virol 1994; 68(7)4409–4419, [PUBMED], [INFOTRIEVE], [CSA]
  • Sova P, Ranst M, van, Gupta P, et al. Conservation of an intact human immunodeficiency virus type 1 vif gene in vitro and in vivo. J Virol 1995; 69(4)2557–2564, [PUBMED], [INFOTRIEVE], [CSA]
  • Goh W C, Rogel M E, Kinsey C M, et al. HIV-1 Vpr increases viral expression by manipulation of the cell cycle: A mechanism for selection of Vpr in vivo. Nat Med 1998; 4(1)65–71, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Connor R I, Chen B K, Choe S, et al. Vpr is required for efficient replication of human immunodeficiency virus type 1 in mononuclear phagocytes. Virology 1995; 206(2)935–944, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Gabuzda D H, Li H, Lawrence K, et al. Essential role of vif in establishing productive HIV-1 infection in peripheral blood T lymphocytes and monocytes/macrophages. J Acquir Immune Defic Syndr 1994; 7(9)908–915, [PUBMED], [INFOTRIEVE], [CSA]
  • Schwedler U, von, Kornbluth R S, Trono D. The nuclear localization signal of the matrix protein of human immunodeficiency virus type 1 allows the establishment of infection in macrophages and quiescent T lymphocytes. Proc Natl Acad Sci USA 1994; 91(15)6992–6996, [PUBMED], [INFOTRIEVE], [CSA]
  • Hahn T, Matala E, Chappey C, et al. Characterization of mother-infant HIV-1 gag p17 sequences associated with perinatal transmission. AIDS Res Hum Retroviruses 1999; 15(10)875–888, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Yedavalli V R, Chappey C, Matala E, et al. Conservation of an intact vif gene of human immunodeficiency virus type 1 during maternal-fetal transmission. J Virol 1998; 72(2)1092–1102, [PUBMED], [INFOTRIEVE], [CSA]
  • Yedavalli V R, Chappey C, Ahmad N. Maintenance of an intact human immunodeficiency virus type 1 vpr gene following mother-to-infant transmission. J Virol 1998; 72(8)6937–6943, [PUBMED], [INFOTRIEVE], [CSA]
  • Husain M, Hahn T, Yedavalli V R, et al. Characterization of HIV type 1 tat sequences associated with perinatal transmission. AIDS Res Hum Retroviruses 2001; 17(8)765–773, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Yedavalli V R, Husain M, Horodner A, et al. Molecular characterization of HIV type 1 vpu genes from mothers and infants after perinatal transmission. AIDS Res Hum Retroviruses 2001; 17(18)1089–1098, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Hahn T, Ramakrishnan R, Ahmad N. Evaluation of genetic diversity of human immunodeficiency virus type 1 NEF gene associated with vertical transmission. J Biomed Sci 2003; 10(4)436–450, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Yang X, Goncalves J, Gabuzda D. Phosphorylation of Vif and its role in HIV-1 replication. J Biol Chem 1996; 271(17)10121–10129, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Narwa R, Roques P, Courpotin C, et al. Characterization of human immunodeficiency virus type 1 p17 matrix protein motifs associated with mother-to-child transmission. J Virol 1996; 70(7)4474–4483, [PUBMED], [INFOTRIEVE], [CSA]
  • Oberste M S, Gonda M A. Conservation of amino acid sequence motifs in lentivirus Vif proteins. Virus Genes 1992; 6(1)95–102, [PUBMED], [INFOTRIEVE], [CSA]
  • Mahalingam S, Ayyavoo V, Patel M, et al. Nuclear import, virion incorporation, and cell cycle arrest/differentiation are mediated by distinct functional domains of human immunodeficiency virus type 1 Vpr. J Virol 1997; 71(9)6339–6347, [PUBMED], [INFOTRIEVE], [CSA]
  • Macreadie I G, Castelli L A, Hewish D R, et al. A domain of human immunodeficiency virus type 1 Vpr containing repeated H(S/F)RIG amino acid motifs causes cell growth arrest and structural defects. Proc Natl Acad Sci USA 1995; 92(7)2770–2774, [PUBMED], [INFOTRIEVE], [CSA]
  • Mahalingam S, Khan S A, Jabbar M A, et al. Identification of residues in the N-terminal acidic domain of HIV-1 Vpr essential for virion incorporation. Virology 1995; 207(1)297–302, [PUBMED], [INFOTRIEVE], [CSA]
  • Marzio P, Di, Choe S, Ebright M, et al. Mutational analysis of cell cycle arrest, nuclear localization and virion packaging of human immunodeficiency virus type 1 Vpr. J Virol 1995; 69(12)7909–7916, [PUBMED], [INFOTRIEVE], [CSA]
  • Strebel K, Klimkait T, Maldarelli F, et al. Molecular and biochemical analyses of human immunodeficiency virus type 1 vpu protein. J Virol 1989; 63(9)3784–3791, [PUBMED], [INFOTRIEVE], [CSA]
  • Terwilliger E F, Cohen E A, Lu Y C, et al. Functional role of human immunodeficiency virus type 1 vpu. Proc Natl Acad Sci USA 1989; 86(13)5163–5167, [PUBMED], [INFOTRIEVE], [CSA]
  • Kimura T, Nishikawa M, Ohyama A. Intracellular membrane traffic of human immunodeficiency virus type 1 envelope glycoproteins: Vpu liberates Golgi-targeted gp160 from CD4-dependent retention in the endoplasmic reticulum. J Biochem (Tokyo) 1994; 115(5)1010–1020, [CSA]
  • Schubert U, Clouse K A, Strebel K. Augmentation of virus secretion by the human immunodeficiency virus type 1 Vpu protein is cell type independent and occurs in cultured human primary macrophages and lymphocytes. J Virol 1995; 69(12)7699–7711, [PUBMED], [INFOTRIEVE], [CSA]
  • Yao X J, Friborg J, Checroune F, et al. Degradation of CD4 induced by human immunodeficiency virus type 1 Vpu protein: A predicted alpha-helix structure in the proximal cytoplasmic region of CD4 contributes to Vpu sensitivity. Virology 1995; 209(2)615–623, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Schubert U, Strebel K. Differential activities of the human immunodeficiency virus type 1-encoded Vpu protein are regulated by phosphorylation and occur in different cellular compartments. J Virol 1994; 68(4)2260–2271, [PUBMED], [INFOTRIEVE], [CSA]
  • Tiganos E, Friborg J, Allain B, et al. Structural and functional analysis of the membrane-spanning domain of the human immunodeficiency virus type 1 Vpu protein. Virology 1998; 251(1)96–107, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • McCormick-Davis C, Dalton S B, Singh D K, et al. Comparison of Vpu sequences from diverse geographical isolates of HIV type 1 identifies the presence of highly variable domains, additional invariant amino acids, and a signature sequence motif common to subtype C isolates. AIDS Res Hum Retroviruses 2000; 16(11)1089–1095, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Bour S, Schubert U, Strebel K. The human immunodeficiency virus type 1 Vpu protein specifically binds to the cytoplasmic domain of CD4: Implications for the mechanism of degradation. J Virol 1995; 69(3)1510–1520, [PUBMED], [INFOTRIEVE], [CSA]
  • Myers G, Korber B, Hahn B H, et al. Human retroviruses and AIDS database. Theoretical Biology. Los Alamos National Laboratory, Las Alamos, NM 1995
  • Aldrovandi G M, Gao L, Bristol G, et al. Regions of human immunodeficiency virus type 1 nef required for function in vivo. J Virol 1998; 72(9)7032–7039, [PUBMED], [INFOTRIEVE], [CSA]
  • Welker R, Harris M, Cardel B, et al. Virion incorporation of human immunodeficiency virus type 1 Nef is mediated by a bipartite membrane-targeting signal: Analysis of its role in enhancement of viral infectivity. J Virol 1998; 72(11)8833–8840, [PUBMED], [INFOTRIEVE], [CSA]
  • Grzesiek S, Stahl S J, Wingfield P T, et al. The CD4 determinant for downregulation by HIV-1 Nef directly binds to Nef. Mapping of the Nef binding surface by NMR. Biochemistry 1996; 35(32)10256–10261, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Baur A S, Sass G, Laffert B, et al. The N-terminus of Nef from HIV-1/SIV associates with a protein complex containing Lck and a serine kinase. Immunity 1997; 6(3)283–291, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Bresnahan P A, Yonemoto W, Ferrell S, et al. A dileucine motif in HIV-1 Nef acts as an internalization signal for CD4 downregulation and binds the AP-1 clathrin adaptor. Curr Biol 1998; 8(22)1235–1238, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Fackler O T, d'Aloja P, Baur A S, et al. Nef from human immunodeficiency virus type 1(F12) inhibits viral production and infectivity. J Virol 2001; 75(14)6601–6608, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Mangasarian A, Piguet V, Wang J K, et al. Nef-induced CD4 and major histocompatibility complex class I (MHC-I) down-regulation are governed by distinct determinants: N-terminal alpha helix and proline repeat of Nef selectively regulate MHC-I trafficking. J Virol 1999; 73(3)1964–1973, [PUBMED], [INFOTRIEVE], [CSA]
  • Akari H, Arold S, Fukumori T, et al. Nef-induced major histocompatibility complex class I down-regulation is functionally dissociated from its virion incorporation, enhancement of viral infectivity, and CD4 down-regulation. J Virol 2000; 74(6)2907–2912, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Saksela K, Cheng G, Baltimore D. Proline-rich (PxxP) motifs in HIV-1 Nef bind to SH3 domains of a subset of Src kinases and are required for the enhanced growth of Nef+ viruses but not for down-regulation of CD4. EMBO J 1995; 14(3)484–491, [PUBMED], [INFOTRIEVE], [CSA]
  • Iafrate A J, Bronson S, Skowronski J. Separable functions of Nef disrupt two aspects of T cell receptor machinery: CD4 expression and CD3 signaling. EMBO J 1997; 16(4)673–684, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Price D A, Goulder P J, Klenerman P, et al. Positive selection of HIV-1 cytotoxic T lymphocyte escape variants during primary infection. Proc Natl Acad Sci USA 1997; 94(5)1890–1895, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Wilson C C, Brown R C, Korber B T, et al. Frequent detection of escape from cytotoxic T-lymphocyte recognition in perinatal human immunodeficiency virus (HIV) type 1 transmission: the Ariel Project for the prevention of transmission of HIV from mother to infant. J Virol 1999; 73(5)3975–3985, [PUBMED], [INFOTRIEVE], [CSA]
  • Rana T M, Jeang K T. Biochemical and functional interactions between HIV-1 Tat Protein and TAR RNA. Arch Biochem Biophysics 1999; 365(2)175–185, [CSA], [CROSSREF]
  • Hauber J, Malim M H, Cullen B R. Mutational analysis of the conserved basic domain of human immunodeficiency virus tat protein. J Virol 1989; 63(3)1181–1187, [PUBMED], [INFOTRIEVE], [CSA]
  • Jeang K T, Xiao H, Rich E A. Multifaceted activities of the HIV-1 transactivator of transcription, Tat. J Biol Chem 1999; 274(41)28837–28840, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Matala E, Crandall K A, Baker R C, et al. Limited heterogeneity of HIV type 1 in infected mothers correlates with lack of vertical transmission. AIDS Res Hum Retroviruses 2000; 16(15)1481–1489, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Hahn T, Ahmad N. Genetic characterization of HIV-1 gag p17 matrix genes in isolates from infected mothers lacking perinatal transmission. AIDS Res Hum Retroviruses 2001; 17(17)1673–1680, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Yedavalli V R, Ahmad N. Low conservation of HIV Type 1 vif and vpr genes in infected mothers correlates with lack of vertical transmission. AIDS Res Hum Retroviruses 2001; 17(10)911–923, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.