436
Views
79
CrossRef citations to date
0
Altmetric
Research Article

Monogenic Hypocholesterolaemic Lipid Disorders and Apolipoprotein B Metabolism

, &
Pages 515-545 | Published online: 10 Oct 2008

REFERENCES

  • Hegele R A. Monogenic dyslipidemias: window on determinants of plasma lipoprotein metabolism. Am J Hum Genet 2001; 69: 1161–1177, [CSA]
  • Kane J P, Hardman D A, Paulus H E. Heterogeneity of apolipoprotein B: isolation of a new species from human chylomicrons. Proc Natl Acad Sci USA 1980; 77: 2465–2469, [CSA]
  • Young S G, Bertics S J, Scott T M, Dubois B W, Curtiss L K, Witztum J L. Parallel expression of the MB19 genetic polymorphism in apoprotein B-100 and apoprotein B-48. Evidence that both apoproteins are products of the same gene. J Biol Chem 1986; 261: 2995–2998, [CSA]
  • Chen S H, Habib G, Yang C Y, Gu Z W, Lee B R, Weng S A, Silberman S R, Cai S J, Deslypere J P, Rosseneu M. Apolipoprotein B-48 is the product of a messenger RNA with an organ-specific in-frame stop codon. Science 1987; 238: 363–366, [CSA]
  • Powell L M, Wallis S C, Pease R J, Edwards Y H, Knott T J, Scott J. A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine. Cell 1987; 50: 831–840, [CSA], [CROSSREF]
  • Jackson K G, Williams C M. Apolipoprotein B-48: comparison of fasting concentrations measured in normolipidaemic individuals using SDS-PAGE, immunoblotting and ELISA. Atherosclerosis 2004; 176: 207–217, [CSA], [CROSSREF]
  • Deeb S S, Disteche C, Motulsky A G, Lebo R V, Kan Y W. Chromosomal localization of the human apolipoprotein B gene and detection of homologous RNA in monkey intestine. Proc Natl Acad Sci USA 1986; 83: 419–422, [CSA]
  • Blackhart B D, Ludwig E M, Pierotti V R, Caiati L, Onasch M A, Wallis S C, Powell L, Pease R, Knott T J, Chu M L. Structure of the human apolipoprotein B gene. J Biol Chem 1986; 261: 15364–15367, [CSA]
  • Chen S H, Yang C Y, Chen P F, Setzer D, Tanimura M, Li W H, Gotto A M, Jr., Chan L. The complete cDNA and amino acid sequence of human apolipoprotein B-100. J Biol Chem 1986; 261: 12918–129121, [CSA]
  • Allison A C, Blumberg B S. An isoprecipitation reaction distinguishing human serum-protein types. Lancet 1961; 1: 634–637, [CSA], [CROSSREF]
  • Boerwinkle E, Chan L. A three codon insertion/deletion polymorphism in the signal peptide region of the human apolipoprotein B (APOB) gene directly typed by the polymerase chain reaction. Nucleic Acids Res 1989; 17: 4003, [CSA]
  • Turner P R, Talmud P J, Visvikis S, Ehnholm C, Tiret L. DNA polymorphisms of the apoprotein B gene are associated with altered plasma lipoprotein concentrations but not with perceived risk of cardiovascular disease. European Atherosclerosis Research Study. Atherosclerosis 1995; 116: 221–234, [CSA], [CROSSREF]
  • Boekholdt S M, Peters R J, Fountoulaki K, Kastelein J J, Sijbrands E J. Molecular variation at the apolipoprotein B gene locus in relation to lipids and cardiovascular disease: a systematic meta-analysis. Hum Genet 2003; 113: 417–425, [CSA], [CROSSREF]
  • Boerwinkle E, Xiong W J, Fourest E, Chan L. Rapid typing of tandemly repeated hypervariable loci by the polymerase chain reaction: application to the apolipoprotein B 3′ hypervariable region. Proc Natl Acad Sci USA 1989; 86: 212–226, [CSA]
  • Hixson J E, Powers P K, McMahan C A. The human apolipoprotein B 3′ hypervariable region: detection of eight new alleles and comparisons of allele frequencies in blacks and whites. Hum Genet 1993; 91: 475–479, [CSA], [CROSSREF]
  • Ludwig E H, Friedl W, McCarthy B J. High-resolution analysis of a hypervariable region in the human apolipoprotein B gene. Am J Hum Genet 1989; 45: 458–464, [CSA]
  • Navaratnam N, Morrison J R, Bhattacharya S, Patel D, Funahashi T, Giannoni F, Teng B B, Davidson N O, Scott J. The p27 catalytic subunit of the apolipoprotein B mRNA editing enzyme is a cytidine deaminase. J Biol Chem 1993; 268: 20709–20712, [CSA]
  • Oka K, Kobayashi K, Sullivan M, Martinez J, Teng B B, Ishimura-Oka K, Chan L. Tissue-specific inhibition of apolipoprotein B mRNA editing in the liver by adenovirus-mediated transfer of a dominant negative mutant APOBEC-1 leads to increased low density lipoprotein in mice. J Biol Chem 1997; 272: 1456–1460, [CSA], [CROSSREF]
  • Mehta A, Kinter M T, Sherman N E, Driscoll D M. Molecular cloning of apobec-1 complementation factor, a novel RNA-binding protein involved in the editing of apolipoprotein B mRNA. Mol Cell Biol 2000; 20: 1846–1854, [CSA], [CROSSREF]
  • Lellek H, Kirsten R, Diehl I, Apostel F, Buck F, Greeve J. Purification and molecular cloning of a novel essential component of the apolipoprotein B mRNA editing enzyme-complex. J Biol Chem 2000; 275: 19848–19856, [CSA], [CROSSREF]
  • Anant S, Henderson J O, Mukhopadhyay D, Navaratnam N, Kennedy S, Min J, Davidson N O. Novel role for RNA-binding protein CUGBP2 in mammalian RNA editing. CUGBP2 modulates C to U editing of apolipoprotein B mRNA by interacting with apobec-1 and ACF, the apobec-1 complementation factor. J Biol Chem 2001; 276: 47338–47351, [CSA], [CROSSREF]
  • Anant S, Davidson N O. An AU-rich sequence element (UUUN[A/U]U) downstream of the edited C in apolipoprotein B mRNA is a high-affinity binding site for Apobec-1: binding of Apobec-1 to this motif in the 3′ untranslated region of c-myc increases mRNA stability. Mol Cell Biol 2000; 20: 1982–1992, [CSA], [CROSSREF]
  • Mukhopadhyay D, Anant S, Lee R M, Kennedy S, Viskochil D, Davidson N O. C– > U editing of neurofibromatosis 1 mRNA occurs in tumors that express both the type II transcript and apobec-1, the catalytic subunit of the apolipoprotein B mRNA-editing enzyme. Am J Hum Genet 2002; 70: 38–50, [CSA], [CROSSREF]
  • Pullinger C R, North J D, Teng B B, Rifici V A, Ronhild de Brito A E, Scott J. The apolipoprotein B gene is constitutively expressed in HepG2 cells: regulation of secretion by oleic acid, albumin, and insulin, and measurement of the mRNA half-life. J Lipid Res 1989; 30: 1065–1077, [CSA]
  • Boren J, Veniant M M, Young S G. Apo B100-containing lipoproteins are secreted by the heart. J Clin Invest 1998; 101: 1197–1202, [CSA]
  • Teng B, Verp M, Salomon J, Davidson N O. Apolipoprotein B messenger RNA editing is developmentally regulated and widely expressed in human tissues. J Biol Chem 1990; 265: 20616–20620, [CSA]
  • Sivaram P, Vanni-Reyes T, Goldberg I J. Endothelial cells synthesize and process apolipoprotein B. J Biol Chem 1996; 271: 15261–15266, [CSA], [CROSSREF]
  • Nielsen L B, Veniant M, Boren J, Raabe M, Wong J S, Tam C, Flynn L, Vanni-Reyes T, Gunn M D, Goldberg I J, Hamilton R L, Young S G. Genes for apolipoprotein B and microsomal triglyceride transfer protein are expressed in the heart: evidence that the heart has the capacity to synthesize and secrete lipoproteins. Circulation 1998; 98: 13–16, [CSA]
  • Nielsen L B. Lipoprotein production by the heart: a novel pathway of triglyceride export from cardiomyocytes. Scand J Clin Lab Invest Suppl 2002; 237: 35–40, [CSA], [CROSSREF]
  • Madsen E M, Lindegaard M L, Andersen C B, Damm P, Nielsen L B. Human placenta secretes apolipoprotein B-100-containing lipoproteins. J Biol Chem 2004; 279: 55271–55276, [CSA], [CROSSREF]
  • Wang A B, Liu D P, Liang C C. Regulation of human apolipoprotein B gene expression at multiple levels. Exp Cell Res 2003; 290: 1–12, [CSA], [CROSSREF]
  • Yang C Y, Gu Z W, Weng S A, Kim T W, Chen S H, Pownall H J, Sharp P M, Liu S W, Li W H, Gotto A M, Jr. Structure of apolipoprotein B-100 of human low density lipoproteins. Arteriosclerosis 1989; 9: 96–108, [CSA]
  • Swaminathan N, Aladjem F. The monosaccharide composition and sequence of the carbohydrate moiety of human serum low density lipoproteins. Biochemistry 1976; 15: 1516–1522, [CSA], [CROSSREF]
  • De Loof H, Rosseneu M, Yang C Y, Li W H, Gotto A M, Jr., Chan L. Human apolipoprotein B: analysis of internal repeats and homology with other apolipoproteins. J Lipid Res 1987; 28: 1455–1465, [CSA]
  • Segrest J P, Jones M K, Dashti N. N-terminal domain of apolipoprotein B has structural homology to lipovitellin and microsomal triglyceride transfer protein: a “lipid pocket” model for self-assembly of apob-containing lipoprotein particles. J Lipid Res 1999; 40: 1401–1416, [CSA]
  • Segrest J P, Jones M K, De Loof H, Dashti N. Structure of apolipoprotein B-100 in low density lipoproteins. J Lipid Res 2001; 42: 1346–1367, [CSA]
  • Milne R, Theolis R, Jr., Maurice R, Pease R J, Weech P K, Rassart E, Fruchart J C, Scott J, Marcel Y L. The use of monoclonal antibodies to localize the low density lipoprotein receptor-binding domain of apolipoprotein B. J Biol Chem 1989; 264: 19754–19760, [CSA]
  • Soria L F, Ludwig E H, Clarke H R, Vega G L, Grundy S M, McCarthy B J. Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100. Proc Natl Acad Sci USA 1989; 86: 587–591, [CSA]
  • Knott T J, Pease R J, Powell L M, Wallis S C, Rall S C, Jr., Innerarity T L, Blackhart B, Taylor W H, Marcel Y, Milne R. Complete protein sequence and identification of structural domains of human apolipoprotein B. Nature 1986; 323: 734–738, [CSA], [CROSSREF]
  • Boren J, Lee I, Zhu W, Arnold K, Taylor S, Innerarity T L. Identification of the low density lipoprotein receptor-binding site in apolipoprotein B100 and the modulation of its binding activity by the carboxyl terminus in familial defective apo-B100. J Clin Invest 1998; 101: 1084–1093, [CSA]
  • Boren J, Ekstrom U, Agren B, Nilsson-Ehle P, Innerarity T L. The molecular mechanism for the genetic disorder familial defective apolipoprotein B100. J Biol Chem 2001; 276: 9214–9218, [CSA], [CROSSREF]
  • Shelness G S, Thornburg J T. Role of intramolecular disulfide bond formation in the assembly and secretion of apolipoprotein B-100-containing lipoproteins. J Lipid Res 1996; 37: 408–419, [CSA]
  • Berglund L, Ramakrishnan R. Lipoprotein(a): an elusive cardiovascular risk factor. Arterioscler Thromb Vasc Biol 2004; 24: 2219–2226, [CSA], [CROSSREF]
  • Becker L, McLeod R S, Marcovina S M, Yao Z, Koschinsky M L. Identification of a critical lysine residue in apolipoprotein B-100 that mediates noncovalent interaction with apolipoprotein(a). J Biol Chem 2001; 276: 36155–36162, [CSA], [CROSSREF]
  • McCormick S P, Ng J K, Cham C M, Taylor S, Marcovina S M, Segrest J P, Hammer R E, Young S G. Transgenic mice expressing human apoB95 and apoB97. Evidence that sequences within the carboxyl-terminal portion of human apoB100 are important for the assembly of lipoprotein. J Biol Chem 1997; 272: 23616–23622, [CSA], [CROSSREF]
  • McCormick S P, Ng J K, Taylor S, Flynn L M, Hammer R E, Young S G. Mutagenesis of the human apolipoprotein B gene in a yeast artificial chromosome reveals the site of attachment for apolipoprotein(a). Proc Natl Acad Sci USA 1995; 92: 10147–10151, [CSA]
  • Callow M J, Rubin E M. Site-specific mutagenesis demonstrates that cysteine 4326 of apolipoprotein B is required for covalent linkage with apolipoprotein (a) in vivo. J Biol Chem 1995; 270: 23914–23917, [CSA], [CROSSREF]
  • Boren J, Olin K, Lee I, Chait A, Wight T N, Innerarity T L. Identification of the principal proteoglycan-binding site in LDL. A single-point mutation in apo-B100 severely affects proteoglycan interaction without affecting LDL receptor binding. J Clin Invest 1998; 101: 2658–2664, [CSA]
  • Karpe F, Steiner G, Uffelman K, Olivecrona T, Hamsten A. Postprandial lipoproteins and progression of coronary atherosclerosis. Atherosclerosis 1994; 106: 83–97, [CSA], [CROSSREF]
  • Groot P H, van Stiphout W A, Krauss X H, Jansen H, van Tol A, van Ramshorst E, Chin-On S, Hofman A, Cresswell S R, Havekes L. Postprandial lipoprotein metabolism in normolipidemic men with and without coronary artery disease. Arterioscler Thromb 1991; 11: 653–652, [CSA]
  • Flood C, Gustafsson M, Richardson P E, Harvey S C, Segrest J P, Boren J. Identification of the proteoglycan binding site in apolipoprotein B48. J Biol Chem 2002; 277: 32228–32233, [CSA]
  • Choi S Y, Sivaram P, Walker D E, Curtiss L K, Gretch D G, Sturley S L, Attie A D, Deckelbaum R J, Goldberg I J. Lipoprotein lipase association with lipoproteins involves protein-protein interaction with apolipoprotein B. J Biol Chem 1995; 270: 8081–8086, [CSA]
  • Weisgraber K H, Rall S C, Jr. Human apolipoprotein B-100 heparin-binding sites. J Biol Chem 1987; 262: 11097–11103, [CSA]
  • Chan L, Boerwinkle E. Structure, function, molecular genetics, and epidemiology of apolipoprotein B. Semin Liver Dis 1992; 12: 311–320, [CSA]
  • Bakillah A, Jamil H, Hussain M M. Lysine and arginine residues in the N-terminal 18% of apolipoprotein B are critical for its binding to microsomal triglyceride transfer protein. Biochemistry 1998; 37: 3727–3734, [CSA], [CROSSREF]
  • Hussain M M, Shi J, Dreizen P. Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J Lipid Res 2003; 44: 22–32, [CSA], [CROSSREF]
  • Olofsson S O, Asp L, Boren J. The assembly and secretion of apolipoprotein B-containing lipoproteins. Curr Opin Lipidol 1999; 10: 341–346, [CSA], [CROSSREF]
  • Shelness G S, Ingram M F, Huang X F, De Lozier J A. Apolipoprotein B in the rough endoplasmic reticulum: translation, translocation and the initiation of lipoprotein assembly. J Nutr 1999; 129: 456S–462S, [CSA]
  • Chuck S L, Lingappa V R. Pause transfer: a topogenic sequence in apolipoprotein B mediates stopping and restarting of translocation. Cell 1992; 68: 9–21, [CSA], [CROSSREF]
  • Kivlen M H, Dorsey C A, Lingappa V R, Hegde R S. Asymmetric distribution of pause transfer sequences in apolipoprotein B-100. J Lipid Res 1997; 38: 1149–1162, [CSA]
  • Zhang J, Herscovitz H. Nascent lipidated apoB is transported to the Golgi as an incompletely folded intermediate as probed by its association with network of ER molecular chaperones, GRP94, ERp72, BiP, calreticulin and cyclophilin B. J Biol Chem 2002; 22: 22, [CSA]
  • Pariyarath R, Wang H, Aitchison J D, Ginsberg H N, Welch W J, Johnson A E, Fisher E A. Co-translational interactions of apoprotein B with the ribosome and translocon during lipoprotein assembly or targeting to the proteasome. J Biol Chem 2001; 276: 541–550, [CSA], [CROSSREF]
  • Wetterau J R, Combs K A, Spinner S N, Joiner B J. Protein disulfide isomerase is a component of the microsomal triglyceride transfer protein complex. J Biol Chem 1990; 265: 9801–9807, [CSA]
  • Lamberg A, Jauhiainen M, Metso J, Ehnholm C, Shoulders C, Scott J, Pihlajaniemi T, Kivirikko K I. The role of protein disulphide isomerase in the microsomal triacylglycerol transfer protein does not reside in its isomerase activity. Biochem J 1996; 315: 533–536, [CSA]
  • Sharp D, Blinderman L, Combs K A, Kienzle B, Ricci B, Wager-Smith K, Gil C M, Turck C W, Bouma M E, Rader D J. Cloning and gene defects in microsomal triglyceride transfer protein associated with abetalipoproteinaemia. Nature 1993; 365: 65–69, [CSA], [CROSSREF]
  • Hussain M M, Bakillah A, Jamil H. Apolipoprotein B binding to microsomal triglyceride transfer protein decreases with increases in length and lipidation: implications in lipoprotein biosynthesis. Biochemistry 1997; 36: 13060–13067, [CSA], [CROSSREF]
  • Jamil H, Gordon D A, Eustice D C, Brooks C M, Dickson J K, Jr., Chen Y, Ricci B, Chu C H, Harrity T W, Ciosek C P, Jr., Biller S A, Gregg R E, Wetterau J R. An inhibitor of the microsomal triglyceride transfer protein inhibits apoB secretion from HepG2 cells. Proc Natl Acad Sci USA 1996; 93: 11991–11995, [CSA], [CROSSREF]
  • Bakillah A, Nayak N, Saxena U, Medford R M, Hussain M M. Decreased secretion of apoB follows inhibition of apoB-MTP binding by a novel antagonist. Biochemistry 2000; 39: 4892–4899, [CSA], [CROSSREF]
  • Liang J, Ginsberg H N. Microsomal triglyceride transfer protein binding and lipid transfer activities are independent of each other, but both are required for secretion of apolipoprotein B lipoproteins from liver cells. J Biol Chem 2001; 276: 28606–28612, [CSA], [CROSSREF]
  • Atzel A, Wetterau J R. Mechanism of microsomal triglyceride transfer protein catalyzed lipid transport. Biochemistry 1993; 32: 10444–10450, [CSA], [CROSSREF]
  • Atzel A, Wetterau J R. Identification of two classes of lipid molecule binding sites on the microsomal triglyceride transfer protein. Biochemistry 1994; 33: 15382–15388, [CSA], [CROSSREF]
  • Jamil H, Chu C H, Dickson J K, Jr., Chen Y, Yan M, Biller S A, Gregg R E, Wetterau J R, Gordon D A. Evidence that microsomal triglyceride transfer protein is limiting in the production of apolipoprotein B-containing lipoproteins in hepatic cells. J Lipid Res 1998; 39: 1448–1454, [CSA]
  • Dashti N, Gandhi M, Liu X, Lin X, Segrest J P. The N-terminal 1000 residues of apolipoprotein B associate with microsomal triglyceride transfer protein to create a lipid transfer pocket required for lipoprotein assembly. Biochemistry 2002; 41: 6978–6987, [CSA], [CROSSREF]
  • Richardson P E, Manchekar M, Dashti N, Jones M K, Beigneux A, Young S G, Harvey S C, Segrest J P. Assembly of lipoprotein particles containing apolipoprotein-B: Structural model for the nascent lipoprotein particle. Biophys J 2005; 88: 2789–2800, [CSA], [CROSSREF]
  • Yao Z, Tran K, McLeod R S. Intracellular degradation of newly synthesized apolipoprotein B. J Lipid Res 1997; 38: 1937–1953, [CSA]
  • Fraser F, Corstorphine C G, Price N T, Zammit V A. Evidence that carnitine palmitoyltransferase I (CPT I) is expressed in microsomes and peroxisomes of rat liver. Distinct immunoreactivity of the N-terminal domain of the microsomal protein. FEBS Lett 1999; 446: 69–74, [CSA], [CROSSREF]
  • Fraser F, Corstorphine C G, Zammit V A. Subcellular distribution of mitochondrial carnitine palmitoyltransferase I in rat liver. Evidence for a distinctive N-terminal structure of the microsomal but not the peroxisomal enzyme. Adv Exp Med Biol 1999; 466: 17–25, [CSA]
  • Liang J J, Oelkers P, Guo C, Chu P C, Dixon J L, Ginsberg H N, Sturley S L. Overexpression of human diacylglycerol acyltransferase 1, acyl-coa:cholesterol acyltransferase 1, or acyl-CoA:cholesterol acyltransferase 2 stimulates secretion of apolipoprotein B-containing lipoproteins in McA-RH7777 cells. J Biol Chem 2004; 279: 44938–44944, [CSA], [CROSSREF]
  • Waterman I J, Zammit V A. Activities of overt and latent diacylglycerol acyltransferases (DGATsI and II) in liver microsomes of ob/ob mice. Int J Obes Relat Metab Disord 2002; 26: 742–743, [CSA], [CROSSREF]
  • Joyce C, Skinner K, Anderson R A, Rudel L L. Acyl-coenzyme A:cholesteryl acyltransferase 2. Curr Opin Lipidol 1999; 10: 89–95, [CSA], [CROSSREF]
  • Raabe M, Veniant M M, Sullivan M A, Zlot C H, Bjorkegren J, Nielsen L B, Wong J S, Hamilton R L, Young S G. Analysis of the role of microsomal triglyceride transfer protein in the liver of tissue-specific knockout mice. J Clin Invest 1999; 103: 1287–1298, [CSA]
  • Pan M, Liang Js J S, Fisher E A, Ginsberg H N. The late addition of core lipids to nascent apolipoprotein B100, resulting in the assembly and secretion of triglyceride-rich lipoproteins, is independent of both microsomal triglyceride transfer protein activity and new triglyceride synthesis. J Biol Chem 2002; 277: 4413–4421, [CSA], [CROSSREF]
  • Kulinski A, Rustaeus S, Vance J E. Microsomal triacylglycerol transfer protein is required for lumenal accretion of triacylglycerol not associated with apoB, as well as for apoB lipidation. J Biol Chem 2002; 277: 31516–31525, [CSA], [CROSSREF]
  • Tran K, Thorne-Tjomsland G, De Long C J, Cui Z, Shan J, Burton L, Jamieson J C, Yao Z. Intracellular assembly of very low density lipoproteins containing apolipoprotein B100 in rat hepatoma McA-RH7777 cells. J Biol Chem 2002; 277: 31187–31200, [CSA], [CROSSREF]
  • Rusinol A, Verkade H, Vance J E. Assembly of rat hepatic very low density lipoproteins in the endoplasmic reticulum. J Biol Chem 1993; 268: 3555–3562, [CSA]
  • Yamaguchi J, Gamble M V, Conlon D, Liang J S, Ginsberg H N. The conversion of apoB100 low density lipoprotein/high density lipoprotein particles to apoB100 very low density lipoproteins in response to oleic acid occurs in the endoplasmic reticulum and not in the Golgi in McA RH7777 cells. J Biol Chem 2003; 278: 42643–42651, [CSA], [CROSSREF]
  • Ginsberg H N. Synthesis and secretion of apolipoprotein B from cultured liver cells. Curr Opin Lipidol 1995; 6: 275–280, [CSA]
  • Vilas G L, Berthiaume L G. A role for palmitoylation in the quality control, assembly and secretion of apolipoprotein B. Biochem J 2004; 377: 121–130, [CSA], [CROSSREF]
  • Vukmirica J, Tran K, Liang X, Shan J, Yuan J, Miskie B A, Hegele R A, Resh M D, Yao Z. Assembly and secretion of very low density lipoproteins containing apolipoprotein B48 in transfected McA-RH7777 cells. Lack of evidence that palmitoylation of apolipoprotein B48 is required for lipoprotein secretion. J Biol Chem 2003; 278: 14153–14161, [CSA], [CROSSREF]
  • Elovson J, Chatterton J E, Bell G T, Schumaker V N, Reuben M A, Puppione D L, Reeve J R, Jr., Young N L. Plasma very low density lipoproteins contain a single molecule of apolipoprotein B. J Lipid Res 1988; 29: 1461–1473, [CSA]
  • Mensenkamp A R, Jong M C, van Goor H, van Luyn M J, Bloks V, Havinga R, Voshol P J, Hofker M H, van Dijk K W, Havekes L M, Kuipers F. Apolipoprotein E participates in the regulation of very low density lipoprotein-triglyceride secretion by the liver. J Biol Chem 1999; 274: 35711–35718, [CSA], [CROSSREF]
  • Phillips M L, Pullinger C, Kroes I, Kroes J, Hardman D A, Chen G, Curtiss L K, Gutierrez M M, Kane J P, Schumaker V N. A single copy of apolipoprotein B-48 is present on the human chylomicron remnant. J Lipid Res 1997; 38: 1170–1177, [CSA]
  • van Greevenbroek M M, de Bruin T W. Chylomicron synthesis by intestinal cells in vitro and in vivo. Atherosclerosis 1998; 141: S9–S16, [CSA], [CROSSREF]
  • Wilcox L J, Barrett P HR, Huff M W. Differential regulation of apolipoprotein B secretion from HepG2 cells by two HMG-CoA reductase inhibitors, atorvastatin and simvastatin. J Lipid Res 1999; 40: 1078–1089, [CSA]
  • Wilcox L J, Barrett P HR, Newton R S, Huff M W. ApoB100 secretion from HepG2 cells is decreased by the ACAT inhibitor CI-1011: an effect associated with enhanced intracellular degradation of apoB. Arterioscler Thromb Vasc Biol 1999; 19: 939–949, [CSA]
  • Borchardt R A, Davis R A. Intrahepatic assembly of very low density lipoproteins. Rate of transport out of the endoplasmic reticulum determines rate of secretion. J Biol Chem 1987; 262: 16394–16402, [CSA]
  • Sato R, Imanaka T, Takatsuki A, Takano T. Degradation of newly synthesized apolipoprotein B-100 in a pre-Golgi compartment. J Biol Chem 1990; 265: 11880–11884, [CSA]
  • Pontrelli L, Sidiropoulos K G, Adeli K. Translational control of apolipoprotein B mRNA: Regulation via cis elements in the 5′ and 3′ untranslated regions. Biochemistry 2004; 43: 6734–6744, [CSA], [CROSSREF]
  • Fisher E A, Zhou M, Mitchell D M, Wu X, Omura S, Wang H, Goldberg A L, Ginsberg H N. The degradation of apolipoprotein B100 is mediated by the ubiquitin-proteasome pathway and involves heat shock protein 70. J Biol Chem 1997; 272: 20427–20434, [CSA], [CROSSREF]
  • Gusarova V, Caplan A J, Brodsky J L, Fisher E A. Apoprotein B degradation is promoted by the molecular chaperones hsp90 and hsp70. J Biol Chem 2001; 276: 24891–24900, [CSA], [CROSSREF]
  • Yeung S J, Chen S H, Chan L. Ubiquitin-proteasome pathway mediates intracellular degradation of apolipoprotein B. Biochemistry 1996; 35: 13843–13848, [CSA], [CROSSREF]
  • Liang J S, Kim T, Fang S, Yamaguchi J, Weissman A M, Fisher E A, Ginsberg H N. Overexpression of the tumor autocrine motility factor receptor Gp78, a ubiquitin protein ligase, results in increased ubiquitinylation and decreased secretion of apolipoprotein B100 in HepG2 cells. J Biol Chem 2003; 278: 23984–23988, [CSA]
  • Chen Y, Le Caherec F, Chuck S L. Calnexin and other factors that alter translocation affect the rapid binding of ubiquitin to apoB in the Sec61 complex. J Biol Chem 1998; 273: 11887–11894, [CSA]
  • Adeli K, Macri J, Mohammadi A, Kito M, Urade R, Cavallo D. Apolipoprotein B is intracellularly associated with an ER-60 protease homologue in HepG2 cells. J Biol Chem 1997; 272: 22489–22494, [CSA], [CROSSREF]
  • Cavallo D, Rudy D, Mohammadi A, Macri J, Adeli K. Studies on degradative mechanisms mediating post-translational fragmentation of apolipoprotein B and the generation of the 70-kDa fragment. J Biol Chem 1999; 274: 23135–23143, [CSA], [CROSSREF]
  • Qiu W, Kohen-Avramoglu R, Rashid-Kolvear F, Au C S, Chong T M, Lewis G F, Trinh D K, Austin R C, Urade R, Adeli K. Overexpression of the endoplasmic reticulum 60 protein ER-60 downregulates apoB100 secretion by inducing its intracellular degradation via a nonproteasomal pathway: evidence for an ER-60-mediated and pCMB-sensitive intracellular degradative pathway. Biochemistry 2004; 43: 4819–4831, [CSA], [CROSSREF]
  • Adeli K, Wettesten M, Asp L, Mohammadi A, Macri J, Olofsson S O. Intracellular assembly and degradation of apolipoprotein B-100-containing lipoproteins in digitonin-permeabilized HEP G2 cells. J Biol Chem 1997; 272: 5031–5039, [CSA], [CROSSREF]
  • Gillian-Daniel D L, Bates P W, Tebon A, Attie A D. Endoplasmic reticulum localization of the low density lipoprotein receptor mediates presecretory degradation of apolipoprotein B. Proc Natl Acad Sci USA 2002; 99: 4337–4342, [CSA], [CROSSREF]
  • Twisk J, Gillian-Daniel D L, Tebon A, Wang L, Barrett P HR, Attie A D. The role of the LDL receptor in apolipoprotein B secretion. J Clin Invest 2000; 105: 521–532, [CSA]
  • Larsson S L, Skogsberg J, Bjokegren J, Shelness G S, Hou L, Ledford A S, Parks J S, Weinberg R B. The low density lipoprotein receptor prevents secretion of dense apoB100-containing lipoproteins from the liver. J Biol Chem 2004; 279: 831–836, [CSA], [CROSSREF]
  • Fisher E A, Pan M, Chen X, Wu X, Wang H, Jamil H, Sparks J D, Williams K J. The triple threat to nascent apolipoprotein B. Evidence for multiple, distinct degradative pathways. J Biol Chem 2001; 276: 27855–27863, [CSA], [CROSSREF]
  • Wang H, Chen X, Fisher E A. N-3 fatty acids stimulate intracellular degradation of apoprotein B in rat hepatocytes. J Clin Invest 1993; 91: 1380–1439, [CSA]
  • Pan M, Cederbaum A I, Zhang Y L, Ginsberg H N, Williams K J, Fisher E A. Lipid peroxidation and oxidant stress regulate hepatic apolipoprotein B degradation and VLDL production. J Clin Invest 2004; 113: 1277–1287, [CSA], [CROSSREF]
  • Brown M S, Goldstein J L. A receptor-mediated pathway for cholesterol homeostasis. Science 1986; 232: 34–47, [CSA]
  • Havel R J, Kane J P. Structure and metabolism of plasma lipoproteins. The Metabolic and Molecular Bases of Inherited Disease, C R Scriver, A L Beaudet, W S Sly, D Valle, B Childs, K Kinzler, B Vogelstein. McGraw-Hill, New York 2001; 2705–2716
  • Young S G. Recent progress in understanding apolipoprotein B. Circulation 1990; 82: 1574–1594, [CSA]
  • Herz J, Hamann U, Rogne S, Myklebost O, Gausepohl H, Stanley K K. Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor. EMBO J 1988; 7: 4119–4127, [CSA]
  • Cooper A D. Hepatic uptake of chylomicron remnants. J Lipid Res 1997; 38: 2173–2192, [CSA]
  • Sakai J, Hoshino A, Takahashi S, Miura Y, Ishii H, Suzuki H, Kawarabayasi Y, Yamamoto T. Structure, chromosome location, and expression of the human very low density lipoprotein receptor gene. J Biol Chem 1994; 269: 2173–2182, [CSA]
  • Takahashi S, Sakai J, Fujino T, Hattori H, Zenimaru Y, Suzuki J, Miyamori I, Yamamoto T T. The very low-density lipoprotein (VLDL) receptor: characterization and functions as a peripheral lipoprotein receptor. J Atheroscler Thromb 2004; 11: 200–208, [CSA]
  • Kane J P, Havel R J. Disorders of the biogenesis and secretion of lipoproteins containing the B apolipoproteins. The Metabolic and Molecular Bases of Inherited Disease, C R Scriver, A L Beaudet, W S Sly, D Valle, B Childs, K Kinzler, B Vogelstein. McGraw-Hill, New York 2001; 2717–2752
  • Cohen J, Pertsemlidis A, Kotowski I K, Graham R, Garcia C K, Hobbs H H. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet 2005; 37: 161–165, [CSA], [CROSSREF]
  • Abifadel M, Varret M, Rabes J P, Allard D, Ouguerram K, Devillers M, Cruaud C, Benjannet S, Wickham L, Erlich D, Derre A, Villeger L, Farnier M, Beucler I, Bruckert E, Chambaz J, Chanu B, Lecerf J M, Luc G, Moulin P, Weissenbach J, Prat A, Krempf M, Junien C, Seidah N G, Boileau C. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 2003; 34: 154–156, [CSA], [CROSSREF]
  • Jones B, Jones E L, Bonney S A, Patel H N, Mensenkamp A R, Eichenbaum-Voline S, Rudling M, Myrdal U, Annesi G, Naik S, Meadows N, Quattrone A, Islam S A, Naoumova R P, Angelin B, Infante R, Levy E, Roy C C, Freemont P S, Scott J, Shoulders C C. Mutations in a Sar1 GTPase of COPII vesicles are associated with lipid absorption disorders. Nat Genet 2003; 34: 29–31, [CSA], [CROSSREF]
  • Berriot-Varoqueaux N, Aggerbeck L P, Samson-Bouma M, Wetterau J R. The role of the microsomal triglygeride transfer protein in abetalipoproteinemia. Annu Rev Nutr 2000; 20: 663–697, [CSA], [CROSSREF]
  • Wetterau J R, Aggerbeck L P, Bouma M E, Eisenberg C, Munck A, Hermier M, Schmitz J, Gay G, Rader D J, Gregg R E. Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia. Science 1992; 258: 999–1001, [CSA]
  • Shoulders C C, Brett D J, Bayliss J D, Narcisi T M, Jarmuz A, Grantham T T, Leoni P R, Bhattacharya S, Pease R J, Cullen P M. Abetalipoproteinemia is caused by defects of the gene encoding the 97 kDa subunit of a microsomal triglyceride transfer protein. Hum Mol Genet 1993; 2: 2109–2116, [CSA]
  • Yang X P, Inazu A, Yagi K, Kajinami K, Koizumi J, Mabuchi H. Abetalipoproteinemia caused by maternal isodisomy of chromosome 4q containing an intron 9 splice acceptor mutation in the microsomal triglyceride transfer protein gene. Arterioscler Thromb Vasc Biol 1999; 19: 1950–1955, [CSA]
  • Ricci B, Sharp D, O'Rourke E, Kienzle B, Blinderman L, Gordon D, Smith-Monroy C, Robinson G, Gregg R E, Rader D J. A 30-amino acid truncation of the microsomal triglyceride transfer protein large subunit disrupts its interaction with protein disulfide-isomerase and causes abetalipoproteinemia. J Biol Chem 1995; 270: 14281–14285, [CSA], [CROSSREF]
  • Rehberg E F, Samson-Bouma M E, Kienzle B, Blinderman L, Jamil H, Wetterau J R, Aggerbeck L P, Gordon D A. A novel abetalipoproteinemia genotype. Identification of a missense mutation in the 97-kDa subunit of the microsomal triglyceride transfer protein that prevents complex formation with protein disulfide isomerase. J Biol Chem 1996; 271: 29945–29952, [CSA], [CROSSREF]
  • Mann C J, Anderson T A, Read J, Chester S A, Harrison G B, Kochl S, Ritchie P J, Bradbury P, Hussain F S, Amey J, Vanloo B, Rosseneu M, Infante R, Hancock J M, Levitt D G, Banaszak L J, Scott J, Shoulders C C. The structure of vitellogenin provides a molecular model for the assembly and secretion of atherogenic lipoproteins. J Mol Biol 1999; 285: 391–408, [CSA], [CROSSREF]
  • Ohashi K, Ishibashi S, Osuga J, Tozawa R, Harada K, Yahagi N, Shionoiri F, Iizuka Y, Tamura Y, Nagai R, Illingworth D R, Gotoda T, Yamada N. Novel mutations in the microsomal triglyceride transfer protein gene causing abetalipoproteinemia. J Lipid Res 2000; 41: 1199–1204, [CSA]
  • Di Leo E, Lancellotti S, Penacchioni J Y, Cefalu A B, Averna M, Pisciotta L, Bertolini S, Calandra S, Gabelli C, Tarugi P. Mutations in MTP gene in abeta- and hypobeta-lipoproteinemia. Atherosclerosis 2005; 180: 311–318, [CSA], [CROSSREF]
  • Chowers I, Banin E, Merin S, Cooper M, Granot E. Long-term assessment of combined vitamin A and E treatment for the prevention of retinal degeneration in abetalipoproteinaemia and hypobetalipoproteinaemia patients. Eye 2001; 15: 525–530, [CSA]
  • Averna M, Marcovina S M, Noto D, Cole T G, Krul E S, Schonfeld G. Familial hypobetalipoproteinemia is not associated with low levels of lipoprotein(a). Arterioscler Thromb Vasc Biol 1995; 15: 2165–2175, [CSA]
  • Hegele R A, Sutherland S, Robertson M, Wu L, Emi M, Hopkins P N, Williams R R, Lalouel J M. The effect of genetic determinants of low density lipoprotein levels on lipoprotein (a). Clin Invest Med 1991; 14: 146–152, [CSA]
  • Schonfeld G. Familial hypobetalipoproteinemia: A review. J Lipid Res 2003; 44: 878–883, [CSA], [CROSSREF]
  • Ogata H, Akagi K, Baba M, Nagamatsu A, Suzuki N, Nomiyama K, Fujishima M. Fatty liver in a case with heterozygous familial hypobetalipoproteinemia. Am J Gastroenterol 1997; 92: 339–342, [CSA]
  • Glueck C J, Gartside P, Fallat R W, Sielski J, Steiner P M. Longevity syndromes: familial hypobeta and familial hyperalpha lipoproteinemia. J Lab Clin Med 1976; 88: 941–957, [CSA]
  • Sankatsing R R, Fouchier S W, de Haan S, Hutten B A, de Groot E, Kastelein J J, Stroes E S. Hepatic and cardiovascular consequences of familial hypobetalipoproteinemia. Arterioscler Thromb Vasc Biol 2005; 25: 1977–1984, [CSA]
  • Elias N, Patterson B W, Schonfeld G. Decreased production rates of VLDL triglycerides and apoB-100 in subjects heterozygous for familial hypobetalipoproteinemia. Arterioscler Thromb Vasc Biol 1999; 19: 2714–2721, [CSA]
  • Pulai J I, Averna M, Srivastava R A, Latour M A, Clouse R E, Ostlund R E, Schonfeld G. Normal intestinal dietary fat and cholesterol absorption, intestinal apolipoprotein B (apoB) mRNA levels, and apoB-48 synthesis in a hypobetalipoproteinemic kindred without any apoB truncation. Metabolism 1997; 46: 1095–1100, [CSA], [CROSSREF]
  • Young S G, Bertics S J, Curtiss L K, Witztum J L. Characterization of an abnormal species of apolipoprotein B, apolipoprotein B-37, associated with familial hypobetalipoproteinemia. J Clin Invest 1987; 79: 1831–1841, [CSA]
  • Collins D R, Knott T J, Pease R J, Powell L M, Wallis S C, Robertson S, Pullinger C R, Milne R W, Marcel Y L, Humphries S E. Truncated variants of apolipoprotein B cause hypobetalipoproteinaemia. Nucleic Acids Res 1988; 16: 8361–8375, [CSA]
  • Lancellotti S, Di Leo E, Penacchioni J Y, Balli F, Viola L, Bertolini S, Calandra S, Tarugi P, Larsson S L, Skogsberg J, Bjokegren J, Shelness G S, Hou L, Ledford A S, Parks J S, Weinberg R B. Hypobetalipoproteinemia with an apparently recessive inheritance due to a “de novo” mutation of apolipoprotein B. Biochim Biophys Acta 2004; 1688: 61–67, [CSA]
  • Yue P, Isley W L, Harris W S, Rosipal S, Akin C D, Schonfeld G. Genetic variants of ApoE account for variability of plasma low-density lipoprotein and apolipoprotein B levels in FHBL. Atherosclerosis 2005; 178: 107–113, [CSA], [CROSSREF]
  • Welty F K, Lahoz C, Tucker K L, Ordovas J M, Wilson P W, Schaefer E J. Frequency of apoB and apoE gene mutations as causes of hypobetalipoproteinemia in the Framingham offspring population. Arterioscler Thromb Vasc Biol 1998; 18: 1745–1751, [CSA]
  • Burnett J R, Shan J, Miskie B A, Whitfield A J, Yuan J, Tran K, McKnight C J, Hegele R A, Yao Z. A novel nontruncating APOB gene mutation, R463W, causes familial hypobetalipoproteinemia. J Biol Chem 2003; 278: 13442–13452, [CSA], [CROSSREF]
  • Yuan B, Neuman R, Duan S H, Weber J L, Kwok P Y, Saccone N L, Wu J S, Liu K Y, Schonfeld G. Linkage of a gene for familial hypobetalipoproteinemia to chromosome 3p21.1-22. Am J Hum Genet 2000; 66: 1699–1704, [CSA], [CROSSREF]
  • Neuman R J, Yuan B, Gerhard D S, Liu K Y, Yue P, Duan S, Averna M, Schonfeld G. Replication of linkage of familial hypobetalipoproteinemia to schromosome 3p in six kindreds. J Lipid Res 2002; 43: 407–415, [CSA]
  • Narcisi T M, Shoulders C C, Chester S A, Read J, Brett D J, Harrison G B, Grantham T T, Fox M F, Povey S, de Bruin T W. Mutations of the microsomal triglyceride-transfer-protein gene in abetalipoproteinemia. Am J Hum Genet 1995; 57: 1298–1310, [CSA]
  • Byers P H. Killing the messenger: new insights into nonsense-mediated mRNA decay. J Clin Invest 2002; 109: 3–6, [CSA], [CROSSREF]
  • Burnett J R, Barrett P HR. Apolipoprotein B metabolism: tracer kinetics, models, and metabolic studies. Crit Rev Clin Lab Sci 2002; 39: 89–137, [CSA]
  • Parhofer K G, Barrett P HR, Aguilar-Salinas C A, Schonfeld G. Positive linear correlation between the length of truncated apolipoprotein B and its secretion rate: in vivo studies in human apoB-89, apoB-75, apoB-54.8, and apoB-31 heterozygotes. J Lipid Res 1996; 37: 844–852, [CSA]
  • Parhofer K G, Barrett P HR, Bier D M, Schonfeld G. Lipoproteins containing the truncated apolipoprotein, Apo B-89, are cleared from human plasma more rapidly than Apo B-100-containing lipoproteins in vivo. J Clin Invest 1992; 89: 1931–1937, [CSA]
  • Krul E S, Parhofer K G, Barrett P HR, Wagner R D, Schonfeld G. ApoB-75, a truncation of apolipoprotein B associated with familial hypobetalipoproteinemia: genetic and kinetic studies. J Lipid Res 1992; 33: 1037–1050, [CSA]
  • Yao Z, McLeod R S. Synthesis and secretion of hepatic apolipoprotein B-containing lipoproteins. Biochim Biophys Acta 1994; 1212: 152–166, [CSA]
  • Yao Z M, Blackhart B D, Linton M F, Taylor S M, Young S G, McCarthy B J. Expression of carboxyl-terminally truncated forms of human apolipoprotein B in rat hepatoma cells. Evidence that the length of apolipoprotein B has a major effect on the buoyant density of the secreted lipoproteins. J Biol Chem 1991; 266: 3300–3308, [CSA]
  • Chen Z, Saffitz J E, Latour M A, Schonfeld G. Truncated apo B-70.5-containing lipoproteins bind to megalin but not the LDL receptor. J Clin Invest 1999; 103: 1419–1430, [CSA]
  • Wang S, McLeod R S, Gordon D A, Yao Z. The microsomal triglyceride transfer protein facilitates assembly and secretion of apolipoprotein B-containing lipoproteins and decreases cotranslational degradation of apolipoprotein B in transfected COS-7 cells. J Biol Chem 1996; 271: 14124–14133, [CSA], [CROSSREF]
  • Shelness G S, Hou L, Ledford A S, Parks J S, Weinberg R B. Identification of the lipoprotein initiating domain of apolipoprotein B. J Biol Chem 2003; 278: 44702–44707, [CSA], [CROSSREF]
  • Lapierre L R, Currie D L, Yao Z, Wang J, McLeod R S. Amino acid sequences within the beta1 domain of human apolipoprotein B can mediate rapid intracellular degradation. J Lipid Res 2004; 45: 366–377, [CSA], [CROSSREF]
  • Linton M F, Farese R V, Young S G. Familial hypobetalipoproteinemia. J Lipid Res 1993; 34: 521–541, [CSA]
  • Schonfeld G, Patterson B W, Yablonskiy D A, Tanoli T S, Averna M, Elias N, Yue P, Ackerman J. Fatty liver in familial hypobetalipoproteinemia: triglyceride assembly into VLDL particles is affected by the extent of hepatic steatosis. J Lipid Res 2003; 44: 470–478, [CSA], [CROSSREF]
  • Tanoli T, Yue P, Yablonskiy D, Schonfeld G. Fatty liver in familial hypobetalipoproteinemia: roles of the APOB defects, intra-abdominal adipose tissue, and insulin sensitivity. J Lipid Res 2004; 45: 941–947, [CSA], [CROSSREF]
  • Tarugi P, Lonardo A, Ballarini G, Grisendi A, Pulvirenti M, Bagni A, Calandra S. Fatty liver in heterozygous hypobetalipoproteinemia caused by a novel truncated form of apolipoprotein B. Gastroenterology 1996; 111: 1125–1133, [CSA], [CROSSREF]
  • Whitfield A J, Barrett P HR, Robertson K, Havlat M F, van Bockxmeer F M, Burnett J R. Liver dysfunction and steatosis in familial hypobetalipoproteinemia. Clin Chem 2005; 51: 266–269, [CSA], [CROSSREF]
  • Chen Z, Fitzgerald R L, Averna M R, Schonfeld G. A targeted apolipoprotein B-38.9-producing mutation causes fatty livers in mice due to the reduced ability of apolipoprotein B-38.9 to transport triglycerides. J Biol Chem 2000; 275: 32807–32815, [CSA], [CROSSREF]
  • Yue P, Tanoli T, Wilhelm O, Patterson B, Yablonskiy D, Schonfeld G. Absence of fatty liver in familial hypobetalipoproteinemia linked to chromosome 3p21. Metabolism 2005; 54: 682–688, [CSA], [CROSSREF]
  • Homanics G E, Smith T J, Zhang S H, Lee D, Young S G, Maeda N. Targeted modification of the apolipoprotein B gene results in hypobetalipoproteinemia and developmental abnormalities in mice. Proc Natl Acad Sci USA 1993; 90: 2389–2393, [CSA]
  • Kim E, Cham C M, Veniant M M, Ambroziak P, Young S G. Dual mechanisms for the low plasma levels of truncated apolipoprotein B proteins in familial hypobetalipoproteinemia. Analysis of a new mouse model with a nonsense mutation in the Apob gene. J Clin Invest 1998; 101: 1468–1477, [CSA]
  • Farese R V, Jr., Ruland S L, Flynn L M, Stokowski R P, Young S G. Knockout of the mouse apolipoprotein B gene results in embryonic lethality in homozygotes and protection against diet-induced hypercholesterolemia in heterozygotes. Proc Natl Acad Sci USA 1995; 92: 1774–1778, [CSA]
  • Chen Z, Fitzgerald R L, Schonfeld G. Hypobetalipoproteinemic mice with a targeted apolipoprotein (apo) B-27.6-specifying mutation: in vivo evidence for an important role of amino acids 1254-1744 of apoB in lipid transport and metabolism of the apoB-containing lipoprotein. J Biol Chem 2002; 277: 14135–14145, [CSA]
  • Chen Z, Fitzgerald R L, Li G, Davidson N O, Schonfeld G, Saffitz J E, Semenkovich C F, Averna M R. Hepatic secretion of apoB-100 is impaired in hypobetalipoproteinemic mice with an apoB-38.9-specifying allele. J Lipid Res 2004; 45: 155–163, [CSA], [CROSSREF]
  • Chen Z, Fitzgerald R L, Saffitz J E, Semenkovich C F, Schonfeld G, Averna M R. Amino terminal 38.9% of apolipoprotein B-100 is sufficient to support cholesterol-rich lipoprotein production and atherosclerosis. Arterioscler Thromb Vasc Biol 2003; 23: 668–674, [CSA], [CROSSREF]
  • Lin X, Schonfeld G, Yue P, Chen Z. Hepatic fatty acid synthesis is suppressed in mice with fatty livers due to targeted apolipoprotein B38.9 mutation. Arterioscler Thromb Vasc Biol 2002; 22: 476–482, [CSA], [CROSSREF]
  • Lin X, Yue P, Xie Y, Davidson N O, Sakata N, Ostlund R E, Jr., Chen Z, Schonfeld G. Reduced intestinal fat absorptive capacity but enhanced susceptibility to diet-induced fatty liver in mice heterozygous for ApoB38.9 truncation. Am J Physiol Gastrointest Liver Physiol 2005; 289: G146–G152, [CSA], [CROSSREF]
  • Welty F K, Guida K A, Andersen J J. Donor splice-site mutation (210+1G_C) in the apoB gene causes a very low level of apoB-100 and LDL cholesterol. Arterioscler Thromb Vasc Biol 2001; 21: 1864–1865, [CSA]
  • Whitfield A J, Marais A D, Robertson K, Barrett P HR, Bockxmeer F M, Burnett J R. Four novel mutations in APOB causing heterozygous and homozygous familial hypobetalipoproteinemia. Hum Mutat 2003; 22: 178, [CSA], [CROSSREF]
  • Huang L S, Kayden H, Sokol R J, Breslow J L. ApoB gene nonsense and splicing mutations in a compound heterozygote for familial hypobetalipoproteinemia. J Lipid Res 1991; 32: 1341–1348, [CSA]
  • Wu J, Kim J, Li Q, Kwok P Y, Cole T G, Cefalu B, Averna M, Schonfeld G. Known mutations of apoB account for only a small minority of hypobetalipoproteinemia. J Lipid Res 1999; 40: 955–959, [CSA]
  • Hegele R A, Miskie B A. Acanthocytosis in a patient with homozygous familial hypobetalipoproteinemia due to a novel APOB splice site mutation. Clin Genet 2002; 61: 101–103, [CSA], [CROSSREF]
  • Tarugi P, Lonardo A, Gabelli C, Sala F, Ballarini G, Cortella I, Previato L, Bertolini S, Cordera R, Calandra S. Phenotypic expression of familial hypobetalipoproteinemia in three kindreds with mutations of apolipoprotein B gene. J Lipid Res 2001; 42: 1552–1561, [CSA]
  • Yue P, Yuan B, Gerhard D S, Neuman R J, Isley W L, Harris W S, Schonfeld G. Novel mutations of APOB cause ApoB truncations undetectable in plasma and familial hypobetalipoproteinemia. Hum Mutat 2002; 20: 110–116, [CSA], [CROSSREF]
  • Fouchier S W, Sankatsing R R, Peter J, Castillo S, Pocovi M, Alonso R, Kastelein J J, Defesche J C. High frequency of APOB gene mutations causing familial hypobetalipoproteinaemia in patients of Dutch and Spanish descent. J Med Genet 2005; 42: e23, [CSA], [CROSSREF]
  • Huang L S, Ripps M E, Korman S H, Deckelbaum R J, Breslow J L. Hypobetalipoproteinemia due to an apolipoprotein B gene exon 21 deletion derived by Alu-Alu recombination. J Biol Chem 1989; 264: 11394–11400, [CSA]
  • Lancellotti S, Zaffanello M, Leo E D, Costa L, Lonardo A, Tarugi P. Pediatric gallstone disease in familial hypobetalipoproteinemia. J Hepatol 2005; 43: 188–191, [CSA], [CROSSREF]
  • Talmud P J, Krul E S, Pessah M, Gay G, Schonfeld G, Humphries S E, Infante R. Donor splice mutation generates a lipid-associated apolipoprotein B-27.6 in a patient with homozygous hypobetalipoproteinemia. J Lipid Res 1994; 35: 468–477, [CSA]
  • Young S G, Hubl S T, Smith R S, Snyder S M, Terdiman J F. Familial hypobetalipoproteinemia caused by a mutation in the apolipoprotein B gene that results in a truncated species of apolipoprotein B (B-31). A unique mutation that helps to define the portion of the apolipoprotein B molecule required for the formation of buoyant, triglyceride-rich lipoproteins. J Clin Invest 1990; 85: 933–942, [CSA]
  • McCormick S P, Fellowes A P, Walmsley T A, George P M. Apolipoprotein B-32: a new truncated mutant of human apolipoprotein B capable of forming particles in the low density lipoprotein range. Biochim Biophys Acta 1992; 1138: 290–296, [CSA]
  • Young S G, Pullinger C R, Zysow B R, Hofmann-Radvani H, Linton M F, Farese R V, Jr., Terdiman J F, Snyder S M, Grundy S M, Vega G L. Four new mutations in the apolipoprotein B gene causing hypobetalipoproteinemia, including two different frameshift mutations that yield truncated apolipoprotein B proteins of identical length. J Lipid Res 1993; 34: 501–507, [CSA]
  • Ohashi K, Ishibashi S, Yamamoto M, Osuga J, Yazaki Y, Yukawa S, Yamada N. A truncated species of apolipoprotein B (B-38.7) in a patient with homozygous hypobetalipoproteinemia associated with diabetes mellitus. Arterioscler Thromb Vasc Biol 1998; 18: 1330–1334, [CSA]
  • Groenewegen W A, Averna M R, Pulai J, Krul E S, Schonfeld G. Apolipoprotein B-38.9 does not associate with apo[a] and forms two distinct HDL density particle populations that are larger than HDL. J Lipid Res 1994; 35: 1012–1025, [CSA]
  • Krul E S, Kinoshita M, Talmud P, Humphries S E, Turner S, Goldberg A C, Cook K, Boerwinkle E, Schonfeld G. Two distinct truncated apolipoprotein B species in a kindred with hypobetalipoproteinemia. Arteriosclerosis 1989; 9: 856–568, [CSA]
  • Talmud P, King-Underwood L, Krul E, Schonfeld G, Humphries S. The molecular basis of truncated forms of apolipoprotein B in a kindred with compound heterozygous hypobetalipoproteinemia. J Lipid Res 1989; 30: 1773–1779, [CSA]
  • Srivastava N, Noto D, Averna M, Pulai J, Srivastava R A, Cole T G, Latour M A, Patterson B W, Schonfeld G. A new apolipoprotein B truncation (apo B-43.7) in familial hypobetalipoproteinemia: genetic and metabolic studies. Metabolism 1996; 45: 1296–1304, [CSA], [CROSSREF]
  • Welty F K, Ordovas J, Schaefer E J, Wilson P W, Young S G. Identification and molecular analysis of two apoB gene mutations causing low plasma cholesterol levels. Circulation 1995; 92: 2036–2040, [CSA]
  • Young S G, Bihain B, Flynn L M, Sanan D A, Ayrault-Jarrier M, Jacotot B. Asymptomatic homozygous hypobetalipoproteinemia associated with apolipoprotein B45.2. Hum Mol Genet 1994; 3: 741–744, [CSA]
  • Young S G, Hubl S T, Chappell D A, Smith R S, Claiborne F, Snyder S M, Terdiman J F. Familial hypobetalipoproteinemia associated with a mutant species of apolipoprotein B (B-46). N Engl J Med 1989; 320: 1604–1610, [CSA]
  • Ruotolo G, Zanelli T, Tettamanti C, Ragogna F, Parlavecchia M, Vigano F, Catapano A L. Hypobetalipoproteinemia associated with apo B-48.4, a truncated protein only 14 amino acids longer than apo B-48. Atherosclerosis 1998; 137: 125–131, [CSA], [CROSSREF]
  • Hardman D A, Pullinger C R, Hamilton R L, Kane J P, Malloy M J. Molecular and metabolic basis for the metabolic disorder normotriglyceridemic abetalipoproteinemia. J Clin Invest 1991; 88: 1722–1729, [CSA]
  • Groenewegen W A, Krul E S, Schonfeld G. Apolipoprotein B-52 mutation associated with hypobetalipoproteinemia is compatible with a misaligned pairing deletion mechanism. J Lipid Res 1993; 34: 971–981, [CSA]
  • Tarugi P, Lonardo A, Ballarini G, Erspamer L, Tondelli E, Bertolini S, Calandra S. A study of fatty liver disease and plasma lipoproteins in a kindred with familial hypobetalipoproteinemia due to a novel truncated form of apolipoprotein B (APO B-54.5). J Hepatol 2000; 33: 361–370, [CSA], [CROSSREF]
  • Wagner R D, Krul E S, Tang J, Parhofer K G, Garlock K, Talmud P, Schonfeld G. ApoB-54.8, a truncated apolipoprotein found primarily in VLDL, is associated with a nonsense mutation in the apoB gene and hypobetalipoproteinemia. J Lipid Res 1991; 32: 1001–1011, [CSA]
  • Talmud P J, Converse C, Krul E, Huq L, McIlwaine G G, Series J J, Boyd P, Schonfeld G, Dunning A, Humphries S. A novel truncated apolipoprotein B (apo B55) in a patient with familial hypobetalipoproteinemia and atypical retinitis pigmentosa. Clin Genet 1992; 42: 62–70, [CSA]
  • Pulai J I, Latour M A, Kwok P Y, Schonfeld G. Diabetes mellitus in a new kindred with familial hypobetalipoproteinemia and an apolipoprotein B truncation (apoB-55). Atherosclerosis 1998; 136: 289–295, [CSA]
  • Pullinger C R, Hillas E, Hardman D A, Chen G C, Naya-Vigne J M, Iwasa J A, Hamilton R L, Lalouel J M, Williams R R, Kane J P. Two apolipoprotein B gene defects in a kindred with hypobetalipoproteinemia, one of which results in a truncated variant, apoB-61, in VLDL and LDL. J Lipid Res 1992; 33: 699–710, [CSA]
  • Welty F K, Hubl S T, Pierotti V R, Young S G. A truncated species of apolipoprotein B (B67) in a kindred with familial hypobetalipoproteinemia. J Clin Invest 1991; 87: 1748–1754, [CSA]
  • Groenewegen W A, Krul E S, Averna M R, Pulai J, Schonfeld G. Dysbetalipoproteinemia in a kindred with hypobetalipoproteinemia due to mutations in the genes for apoB (apoB-70.5) and apoE (apoE2). Arterioscler Thromb 1994; 14: 1695–1704, [CSA]
  • Farese R V, Jr., Garg A, Pierotti V R, Vega G L, Young S G. A truncated species of apolipoprotein B, B-83, associated with hypobetalipoproteinemia. J Lipid Res 1992; 33: 569–577, [CSA]
  • Linton M F, Pierotti V, Young S G. Reading-frame restoration with an apolipoprotein B gene frameshift mutation. Proc Natl Acad Sci USA 1992; 89: 11431–11435, [CSA]
  • Gabelli C, Bilato C, Martini S, Tennyson G E, Zech L A, Corsini A, Albanese M, Brewer H B, Jr., Crepaldi G, Baggio G. Homozygous familial hypobetalipoproteinemia. Increased LDL catabolism in hypobetalipoproteinemia due to a truncated apolipoprotein B species, apo B-87Padova. Arterioscler Thromb Vasc Biol 1996; 16: 1189–1196, [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.