156
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Cytokines in the Differentiation Therapy of Leukemia: From Laboratory Investigations to Clinical Applications

, &
Pages 473-514 | Published online: 10 Oct 2008

REFERENCES

  • Friend C, Scher W, Holland J G, Sato T. Hemoglobin synthesis in murine virus-induced leukemic cells in vitro: stimulation of erythroid differentiation by dimethyl sulfoxide. Proc Natl Acad Sci USA 1971; 68: 378–382, [CSA]
  • Gomez-Vidal J A, Campos J, Marchal J A, Boulaiz H, Gallo M A, Carrillo E, Espinosa A, Aranega A. Actual targets in cytodifferentiation cancer therapy. Curr Top Med Chem 2004; 4: 175–202, [CSA], [CROSSREF]
  • Lotem J, Sachs L. Epigenetics wins over genetics: induction of differentiation in tumor cells. Semin Cancer Biol 2002; 12: 339–346, [CSA], [CROSSREF]
  • Sell S. Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol 2004; 51: 1–28, [CSA]
  • Spira A I, Carducci M A. Differentiation therapy. Curr Opin Pharmacol 2003; 3: 338–343, [CSA], [CROSSREF]
  • Zelent A, Petrie K, Chen Z, Lotan R, Lubbert M, Tallman M S, Ohno R, Degos L, Waxman S. Molecular target-based treatment of human cancer: summary of the 10th international conference on differentiation therapy. Cancer Res 2005; 65: 1117–1123, [CSA], [CROSSREF]
  • Olsson I, Bergh G, Ehinger M, Gullberg U. Cell differentiation in acute myeloid leukemia. Eur J Haematol 1996; 57: 1–16, [CSA]
  • Waxman S. Differentiation therapy in acute myelogenous leukemia (non-APL). Leukemia 2000; 14: 491–496, [CSA], [CROSSREF]
  • Tallmann M S. Curative therapeutic approaches to APL. Ann Hematol 2004; 83: S81–S82, Suppl 1[CSA]
  • Alexander W S. Cytokines in hematopoiesis. Int Rev Immunol 1998; 16: 651–682, [CSA]
  • Lotem J, Sachs L. Cytokine control of developmental programs in normal hematopoiesis and leukemia. Oncogene 2002; 21: 3284–3294, [CSA], [CROSSREF]
  • Schwarzmeier J D. The role of cytokines in haematopoiesis. Eur J Haematol Suppl 1996; 60: 69–74, [CSA]
  • Smith C. Hematopoietic stem cells and hematopoiesis. Cancer Control 2003; 10: 9–16, [CSA]
  • Weissman I L. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 2000; 287: 1442–1446, [CSA], [CROSSREF]
  • Metcalf D. Stem cells, pre-progenitor cells and lineage-committed cells: are our dogmas correct?. Ann NY Acad Sci 1999; 872: 289–303, [CSA]
  • Tavian M, Robin C, Coulombel L, Peault B. The human embryo, but not its yolk sac, generates lympho-myeloid stem cells: mapping multipotent hematopoietic cell fate in intraembryonic mesoderm. Immunity 2001; 15: 487–495, [CSA], [CROSSREF]
  • Peault B, Oberlin E, Tavian M. Emergence of hematopoietic stem cells in the human embryo. C R Biol 2002; 325: 1021–1026, [CSA]
  • Leibnitz R. Development of the human immune system. Developmental Immunotoxicology, S D Holladay. CRC Press, Boca Raton 2005; 21–42
  • Evans T. Developmental biology of hematopoiesis. Hematol Oncol Clin North Am 1997; 11: 1115–1147, [CSA], [CROSSREF]
  • Jones R J, Collector M I, Barber J P, Vala M S, Fackler M J, May W S, Griffin C A, Hawkins A L, Zehnbauer B A, Hilton J, Colvin O M, Sharkis S J. Characterization of mouse lymphohematopoietic stem cells lacking spleen colony-forming activity. Blood 1996; 88: 487–491, [CSA]
  • Barreda D R, Hanington P C, Belosevic M. Regulation of myeloid development and function by colony stimulating factors. Dev Comp Immunol 2004; 28: 509–554, [CSA], [CROSSREF]
  • Thomas D, Vadas M, Lopez A. Regulation of haematopoiesis by growth factors—emerging insights and therapies. Expert Opin Biol Ther 2004; 4: 869–879, [CSA], [CROSSREF]
  • Metcalf D. The molecular control of hematopoiesis: progress and problems with gene manipulation. Stem Cells 1998; 16: 314–321, [CSA]
  • Bradley T R, Metcalf D. The growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci 1966; 44: 287–299, [CSA]
  • Pluznik D H, Sachs L. The induction of clones of normal mast cells by a substance from conditioned medium. Exp Cell Res 1966; 43: 553–563, [CSA], [CROSSREF]
  • Till J E, McCulloch E A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 1961; 14: 213–222, [CSA]
  • Metcalf D. Colony stimulating factors and hemopoiesis. Ann Acad Med Singapore 1988; 17: 166–170, [CSA]
  • Morstyn G, Foote M A. Introduction to hematopoietic growth factors—a general overview. Cancer Drug Discovery and Development—Hematopoietic Growth Factors in Oncology: Basic Science and Clinical Therapeutics, G Morstyn, M A Foote, G J Lieschke. Humana Press, Totowa, NJ 2004; 3–10
  • Crosier P S, Clark S C. Basic biology of the hematopoietic growth factors. Semin Oncol 1992; 19: 349–361, [CSA]
  • Youn B S, Mantel C, Broxmeyer H E. Chemokines, chemokine receptors and hematopoiesis. Immunol Rev 2000; 177: 150–174, [CSA], [CROSSREF]
  • Sachs L. The control of hematopoiesis and leukemia: from basic biology to the clinic. Proc Natl Acad Sci USA 1996; 93: 4742–4749, [CSA], [CROSSREF]
  • Watowich S S, Wu H, Socolovsky M, Klingmuller U, Constantinescu S N, Lodish H F. Cytokine receptor signal transduction and the control of hematopoietic cell development. Annu Rev Cell Dev Biol 1996; 12: 91–128, [CSA], [CROSSREF]
  • Vitale M, Bassini A, Secchiero P, Mirandola P, Ponti C, Zamai L, Mariani A R, Falconi M, Azzali G. NK-active cytokines IL-2, IL-12, and IL-15 selectively modulate specific protein kinase C (PKC) isoforms in primary human NK cells. Anat Rec 2002; 266: 87–92, [CSA], [CROSSREF]
  • Lentzsch S, Chatterjee M, Gries M, Bommert K, Gollasch H, Dorken B, Bargou R C. PI3-K/AKT/FKHR and MAPK signaling cascades are redundantly stimulated by a variety of cytokines and contribute independently to proliferation and survival of multiple myeloma cells. Leukemia 2004; 18: 1883–1890, [CSA], [CROSSREF]
  • Rane S G, Reddy E P. JAKs, STATs and Src kinases in hematopoiesis. Oncogene 2002; 21: 3334–3358, [CSA], [CROSSREF]
  • Sachs L. The molecular control of blood cell development. Science 1987; 238: 1374–1379, [CSA]
  • Metcalf D. The colony-stimulating factors: discovery to clinical use. The Florey Lecture, 1991. Philos Trans R Soc Lond B Biol Sci 1991; 333: 147–173, [CSA]
  • Hara T, Miyajima A. Function and signal transduction mediated by the interleukin 3 receptor system in hematopoiesis. Stem Cells 1996; 14: 605–618, [CSA]
  • Mangi M H, Newland A C. Interleukin-3 in hematology and oncology: current state of knowledge and future directions. Cytokines Cell Mol Ther 1999; 5: 87–95, [CSA]
  • Burdach S, Nishinakamura R, Dirksen U, Murray R. The physiologic role of interleukin-3, interleukin-5, granulocyte-macrophage colony-stimulating factor, and the beta c receptor system. Curr Opin Hematol 1998; 5: 177–180, [CSA]
  • Takeyama K, Ohto H. PBSC mobilization. Transfus Apheresis Sci 2004; 31: 233–243, [CSA], [CROSSREF]
  • Lyman S D, Jacobsen S E. c-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities. Blood 1998; 91: 1101–1134, [CSA]
  • Sun Z, Yergeau D A, Tuypens T, Tavernier J, Paul C C, Baumann M A, Tenen D G, Ackerman S J. Identification and characterization of a functional promoter region in the human eosinophil IL-5 receptor alpha subunit gene. J Biol Chem 1995; 270: 1462–1471, [CSA], [CROSSREF]
  • Kimura H, Ishibashi T, Uchida T, Maruyama Y, Friese P, Burstein S A. Interleukin 6 is a differentiation factor for human megakaryocytes in vitro. Eur J Immunol 1990; 20: 1927–1931, [CSA]
  • Withy R M, Rafield L F, Beck A K, Hoppe H, Williams N, McPherson J M. Growth factors produced by human embryonic kidney cells that influence megakaryopoiesis include erythropoietin, interleukin 6, and transforming growth factor-beta. J Cell Physiol 1992; 153: 362–372, [CSA], [CROSSREF]
  • Fisher J W. Erythropoietin: physiology and pharmacology update. Exp Biol Med (Maywood) 2003; 228: 1–14, [CSA]
  • Nomura S, Ogami K, Kawamura K, Tsukamoto I, Kudo Y, Kanakura Y, Kitamura Y, Miyazaki H, Kato T. Cellular localization of thrombopoietin mRNA in the liver by in situ hybridization. Exp Hematol 1997; 25: 565–572, [CSA]
  • Wu H, Liu X, Jaenisch R, Lodish H F. Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 1995; 83: 59–67, [CSA], [CROSSREF]
  • Koury M J, Sawyer S T, Brandt S J. New insights into erythropoiesis. Curr Opin Hematol 2002; 9: 93–100, [CSA], [CROSSREF]
  • Choi E S, Hokom M M, Chen J L, Skrine J, Faust J, Nichol J, Hunt P. The role of megakaryocyte growth and development factor in terminal stages of thrombopoiesis. Br J Haematol 1996; 95: 227–233, [CSA], [CROSSREF]
  • Kaushansky K, Lin N, Grossmann A, Humes J, Sprugel K H, Broudy V C. Thrombopoietin expands erythroid, granulocyte-macrophage, and megakaryocytic progenitor cells in normal and myelosuppressed mice. Exp Hematol 1996; 24: 265–269, [CSA]
  • Ogawa M. Differentiation and proliferation of hematopoietic stem cells. Blood 1993; 81: 2844–2853, [CSA]
  • Keller J R, Bartelmez S H, Sitnicka E, Ruscetti F W, Ortiz M, Gooya J M, Jacobsen S E. Distinct and overlapping direct effects of macrophage inflammatory protein-1 alpha and transforming growth factor beta on hematopoietic progenitor/stem cell growth. Blood 1994; 84: 2175–2181, [CSA]
  • Fortunel N O, Hatzfeld J A, Monier M N, Hatzfeld A. Control of hematopoietic stem/progenitor cell fate by transforming growth factor-beta. Oncol Res 2003; 13: 445–453, [CSA]
  • Bedi A, Sharkis S J. Mechanisms of cell commitment in myeloid cell differentiation. Curr Opin Hematol 1995; 2: 12–21, [CSA]
  • Juarez J, Bendall L. SDF-1 and CXCR4 in normal and malignant hematopoiesis. Histol Histopathol 2004; 19: 299–309, [CSA]
  • Lataillade J J, Domenech J, Le Bousse-Kerdiles M C. Stromal cell-derived factor-1 (SDF-1)/CXCR4 couple plays multiple roles on haematopoietic progenitors at the border between the old cytokine and new chemokine worlds: survival, cell cycling and trafficking. Eur Cytokine Netw 2004; 15: 177–188, [CSA]
  • Migliaccio G, Migliaccio A R, Adamson J W. In vitro differentiation and proliferation of human hematopoietic progenitors: the effects of interleukins 1 and 6 are indirectly mediated by production of granulocyte-macrophage colony-stimulating factor and interleukin 3. Exp Hematol 1991; 19: 3–10, [CSA]
  • Schneider E, Ploemacher R E, Navarro S, van B C, Dy M. Characterization of murine hematopoietic progenitor subsets involved in interleukin-3-induced interleukin-6 production. Blood 1991; 78: 329–338, [CSA]
  • Shabo Y, Lotem J, Sachs L. Induction of genes for transcription factors by normal hematopoietic regulatory proteins in the differentiation of myeloid leukemic cells. Leukemia 1990; 4: 797–801, [CSA]
  • Lotem J, Shabo Y, Sachs L. The network of hemopoietic regulatory proteins in myeloid cell differentiation. Cell Growth Differ 1991; 2: 421–427, [CSA]
  • Metcalf D. Lineage commitment of hemopoietic progenitor cells in developing blast cell colonies: influence of colony-stimulating factors. Proc Natl Acad Sci USA 1991; 88: 11310–11314, [CSA]
  • Wetzler M, Kurzrock R, Taylor K, Spitzer G, Kantarjian H, Baiocchi G, Ku S, Gutterman J U, Talpaz M. Constitutive and induced expression of growth factors in normal and chronic phase chronic myelogenous leukemia Ph1 bone marrow stroma. Cancer Res 1990; 50: 5801–5805, [CSA]
  • Lisovsky M, Braun S E, Ge Y, Takahira H, Lu L, Savchenko V G, Lyman S D, Broxmeyer H E. Flt3-ligand production by human bone marrow stromal cells. Leukemia 1996; 10: 1012–1018, [CSA]
  • Wetzler M, Talpaz M, Lowe D G, Baiocchi G, Gutterman J U, Kurzrock R. Constitutive expression of leukemia inhibitory factor RNA by human bone marrow stromal cells and modulation by IL-1, TNF-alpha, and TGF-beta. Exp Hematol 1991; 19: 347–351, [CSA]
  • Aman M J, Keller U, Derigs G, Mohamadzadeh M, Huber C, Peschel C. Regulation of cytokine expression by interferon-alpha in human bone marrow stromal cells: inhibition of hematopoietic growth factors and induction of interleukin-1 receptor antagonist. Blood 1994; 84: 4142–4150, [CSA]
  • Zhu J, Emerson S G. Hematopoietic cytokines, transcription factors and lineage commitment. Oncogene 2002; 21: 3295–3313, [CSA], [CROSSREF]
  • Henderson E S, McArthur J. Diagnosis, classification, and assessment of response to treatment. Leukemia, E S Henderson, T A Lister, M F Greaves. Saunders, Philadelphia 2002; 227–248
  • Xie Y, Davies S M, Xiang Y, Robison L L, Ross J A. Trends in leukemia incidence and survival in the United States (1973–1998). Cancer 2003; 97: 2229–2235, [CSA], [CROSSREF]
  • Bain B, Catovsky D. Current concerns in haematology. 2: Classification of acute leukaemia. J Clin Pathol 1990; 43: 882–887, [CSA]
  • Jaffe E S, Harris N L, Diebold J, Muller-Hermelink H K. World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues. A progress report. Am J Clin Pathol 1999; 111: S8–S12, [CSA]
  • Pui C H, Evans W E. Acute lymphoblastic leukemia. N Engl J Med 1998; 339: 605–615, [CSA], [CROSSREF]
  • Bonnet D, Dick J E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737, [CSA], [CROSSREF]
  • Gilliland D G, Jordan C T, Felix C A. The molecular basis of leukemia. Hematology (Am Soc Hematol Educ Program) 2004; 80–97, [CSA]
  • Guan Y, Gerhard B, Hogge D E. Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML). Blood 2003; 101: 3142–3149, [CSA], [CROSSREF]
  • Hope K J, Jin L, Dick J E. Human acute myeloid leukemia stem cells. Arch Med Res 2003; 34: 507–514, [CSA], [CROSSREF]
  • Hope K J, Jin L, Dick J E. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 2004; 5: 738–743, [CSA], [CROSSREF]
  • Larochelle A, Vormoor J, Hanenberg H, Wang J C, Bhatia M, Lapidot T, Moritz T, Murdoch B, Xiao X L, Kato I, Williams D A, Dick J E. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat Med 1996; 2: 1329–1337, [CSA], [CROSSREF]
  • Wang J C, Lapidot T, Cashman J D, Doedens M, Addy L, Sutherland D R, Nayar R, Laraya P, Minden M, Keating A, Eaves A C, Eaves C J, Dick J E. High level engraftment of NOD/SCID mice by primitive normal and leukemic hematopoietic cells from patients with chronic myeloid leukemia in chronic phase. Blood 1998; 91: 2406–2414, [CSA]
  • Huntly B J, Gilliland D G. Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer 2005; 5: 311–321, [CSA], [CROSSREF]
  • Cozzio A, Passegue E, Ayton P M, Karsunky H, Cleary M L, Weissman I L. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 2003; 17: 3029–3035, [CSA], [CROSSREF]
  • Huntly B J, Shigematsu H, Deguchi K, Lee B H, Mizuno S, Duclos N, Rowan R, Amaral S, Curley D, Williams I R, Akashi K, Gilliland D G. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 2004; 6: 587–596, [CSA], [CROSSREF]
  • Izraeli S. Leukaemia—a developmental perspective. Br J Haematol 2004; 126: 3–10, [CSA], [CROSSREF]
  • Moqattash S, Lutton J D. Leukemia cells and the cytokine network. Proc Soc Exp Biol Med 1998; 219: 8–27, [CSA]
  • Kiss C, Benko I, Kovacs P. Leukemic cells and the cytokine patchwork. Pediatr Blood Cancer 2004; 42: 113–121, [CSA], [CROSSREF]
  • Lang R A, Metcalf D, Cuthbertson R A, Lyons I, Stanley E, Kelso A, Kannourakis G, Williamson D J, Klintworth G K, Gonda T J. Transgenic mice expressing a hemopoietic growth factor gene (GM-CSF) develop accumulations of macrophages, blindness, and a fatal syndrome of tissue damage. Cell 1987; 51: 675–686, [CSA], [CROSSREF]
  • Testa N G, Dexter T M. Haemopoietic growth factors: their role in acute myeloblastic leukaemia. Br Med Bull 1989; 45: 582–589, [CSA]
  • Alexander W S, Nicola N A. Hemopoietic growth factor receptor abnormalities in leukemia. Leuk Res 1998; 22: 1097–1111, [CSA], [CROSSREF]
  • Goyal R K, Longmore G D. Abnormalities of cytokine receptor signalling contributing to diseases of red blood cell production. Ann Med 1999; 31: 208–216, [CSA]
  • Boissan M, Feger F, Guillosson J J, Arock M. c-Kit and c-kit mutations in mastocytosis and other hematological diseases. J Leukoc Biol 2000; 67: 135–148, [CSA]
  • Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K, Sonoda Y, Fujimoto T, Misawa S. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 1996; 10: 1911–1918, [CSA]
  • Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S, Asou N, Kuriyama K, Yagasaki F, Shimazaki C, Akiyama H, Saito K, Nishimura M, Motoji T, Shinagawa K, Takeshita A, Saito H, Ueda R, Ohno R, Naoe T. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001; 97: 2434–2439, [CSA], [CROSSREF]
  • Locatelli F, Rossi F. Incidence and pathogenesis of tumor lysis syndrome. Contrib Nephrol 2005; 147: 61–68, [CSA]
  • Joel S P, Robatiner A. Pharmacology of antileukemic drugs. Leukemia, E S Henderson, T A Lister, M F Greaves. Saunders, Philadelphia 2002; 394–440
  • Featherstone C, Delaney G, Jacob S, Barton M. Estimating the optimal utilization rates of radiotherapy for hematologic malignancies from a review of the evidence: Part II—leukemia and myeloma. Cancer 2005; 103: 393–401, [CSA], [CROSSREF]
  • Pui C H. Recent advances in the biology and treatment of childhood acute lymphoblastic leukemia. Curr Opin Hematol 1998; 5: 292–301, [CSA]
  • Negrin R S, Blume K G. Hematopoietic cell transplantation in the leukemias. Leukemia, E S Henderson, T A Lister, M F Greaves. Saunders, Philadelphia 2002; 459–484
  • Finiewicz K J, Larson R A. Dose-intensive therapy for adult acute lymphoblastic leukemia. Semin Oncol 1999; 26: 6–20, [CSA]
  • Zittoun R A, Mandelli F, Willemze R, de Witte T, Labar B, Resegotti L, Leoni F, Damasio E, Visani G, Papa G. Autologous or allogeneic bone marrow transplantation compared with intensive chemotherapy in acute myelogenous leukemia. European Organization for Research and Treatment of Cancer (EORTC) and the Gruppo Italiano Malattie Ematologiche Maligne dell'Adulto (GIMEMA) Leukemia Cooperative Groups. N Engl J Med 1995; 332: 217–223, [CSA], [CROSSREF]
  • Khouri I F, Keating M, Korbling M, Przepiorka D, Anderlini P, O'brien S, Giralt S, Ippoliti C, von W B, Gajewski J, Donato M, Claxton D, Ueno N, Andersson B, Gee A, Champlin R. Transplant-lite: induction of graft-versus-malignancy using fludarabine-based nonablative chemotherapy and allogeneic blood progenitor-cell transplantation as treatment for lymphoid malignancies. J Clin Oncol 1998; 16: 2817–2824, [CSA]
  • Choudhury B A, Liang J C, Thomas E K, Flores-Romo L, Xie Q S, Agusala K, Sutaria S, Sinha I, Champlin R E, Claxton D F. Dendritic cells derived in vitro from acute myelogenous leukemia cells stimulate autologous, antileukemic T-cell responses. Blood 1999; 93: 780–786, [CSA]
  • Leszczyniecka M, Roberts T, Dent P, Grant S, Fisher P B. Differentiation therapy of human cancer: basic science and clinical applications. Pharmacol Ther 2001; 90: 105–156, [CSA], [CROSSREF]
  • Huberman E, Callaham M F. Induction of terminal differentiation in human promyelocytic leukemia cells by tumor-promoting agents. Proc Natl Acad Sci USA 1979; 76: 1293–1297, [CSA]
  • Koeffler H P, Bar-Eli M, Territo M. Phorbol diester-induced macrophage differentiation of leukemic blasts from patients with human myelogenous leukemia. J Clin Invest 1980; 66: 1101–1108, [CSA]
  • Sachs L. The differentiation of myeloid leukaemia cells: new possibilities for therapy. Br J Haematol 1978; 40: 509–517, [CSA]
  • Cai X, Shen Y L, Zhu Q, Jia P M, Yu Y, Zhou L, Huang Y, Zhang J W, Xiong S M, Chen S J, Wang Z Y, Chen Z, Chen G Q. Arsenic trioxide-induced apoptosis and differentiation are associated respectively with mitochondrial transmembrane potential collapse and retinoic acid signaling pathways in acute promyelocytic leukemia. Leukemia 2000; 14: 262–270, [CSA], [CROSSREF]
  • Drach J, McQueen T, Engel H, Andreeff M, Robertson K A, Collins S J, Malavasi F, Mehta K. Retinoic acid-induced expression of CD38 antigen in myeloid cells is mediated through retinoic acid receptor-alpha. Cancer Res 1994; 54: 1746–1752, [CSA]
  • Kraft A S, William F, Pettit G R, Lilly M B. Varied differentiation responses of human leukemias to bryostatin 1. Cancer Res 1989; 49: 1287–1293, [CSA]
  • Yamamoto-Yamaguchi Y, Tomida M, Hozumi M, Maurer H R, Okabe T, Takaku F. Combined effects of differentiation-inducing factor and other cytokines on induction of differentiation of mouse myeloid leukemic cells. Jpn J Cancer Res 1989; 80: 115–121, [CSA]
  • Chan S C, Fung M C, Mak N K, Leung K N. Involvement of interleukin-1 in the differentiation-inducing activity of tumor necrosis factor-a on a murine myeloid leukemia (WEHI-3B JCS). Inter J Oncol 1997; 10: 821–826, [CSA]
  • Fung M C, Mak N K, Leung K N, Hapel A J. Decreased expression of J11d antigen during monocytic differentiation of M1 myeloid leukemic cells. Cell Immunol 1992; 141: 121–130, [CSA], [CROSSREF]
  • Mak N K, Fung M C, Leung K N, Hapel A J. Monocytic differentiation of a myelomonocytic leukemic cell (WEHI 3B JCS) is induced by tumour necrosis factor-alpha (TNF-alpha). Cell Immunol 1993; 150: 1–14, [CSA], [CROSSREF]
  • Chen F, Rao J, Studzinski G P. Specific association of increased cyclin-dependent kinase 5 expression with monocytic lineage of differentiation of human leukemia HL60 cells. J Leukoc Biol 2000; 67: 559–566, [CSA]
  • Manfredini R, Trevisan F, Grande A, Tagliafico E, Montanari M, Lemoli R, Visani G, Tura S, Ferrari S, Ferrari S. Induction of a functional vitamin D receptor in all-trans-retinoic acid-induced monocytic differentiation of M2-type leukemic blast cells. Cancer Res 1999; 59: 3803–3811, [CSA]
  • Rusiniak M E, Yu M, Ross D T, Tolhurst E C, Slack J L. Identification of B94 (TNFAIP2) as a potential retinoic acid target gene in acute promyelocytic leukemia. Cancer Res 2000; 60: 1824–1829, [CSA]
  • Cutolo M, Villaggio B, Bisso A, Sulli A, Coviello D, Dayer J M. Presence of estrogen receptors in human myeloid monocytic cells (THP-1 cell line). Eur Cytokine Netw 2001; 12: 368–372, [CSA]
  • Trinchieri G, Kobayashi M, Rosen M, Loudon R, Murphy M, Perussia B. Tumor necrosis factor and lymphotoxin induce differentiation of human myeloid cell lines in synergy with immune interferon. J Exp Med 1986; 164: 1206–1225, [CSA], [CROSSREF]
  • Testa U, Masciulli R, Tritarelli E, Pustorino R, Mariani G, Martucci R, Barberi T, Camagna A, Valtieri M, Peschle C. Transforming growth factor-beta potentiates vitamin D3-induced terminal monocytic differentiation of human leukemic cell lines. J Immunol 1993; 150: 2418–2430, [CSA]
  • Lopez J A, Newburger P E, Condino-Neto A. The effect of IFN-gamma and TNF-alpha on the eosinophilic differentiation and NADPH oxidase activation of human HL-60 clone 15 cells. J Interferon Cytokine Res 2003; 23: 737–744, [CSA], [CROSSREF]
  • El Marjou M, Montalescot V, Buzyn A, Geny B. Modifications in phospholipase D activity and isoform expression occur upon maturation and differentiation in vivo and in vitro in human myeloid cells. Leukemia 2000; 14: 2118–2127, [CSA], [CROSSREF]
  • Koeffler H P, Golde D W. Human myeloid leukemia cell lines: a review. Blood 1980; 56: 344–350, [CSA]
  • Semizarov D, Glesne D, Laouar A, Schiebel K, Huberman E. A lineage-specific protein kinase crucial for myeloid maturation. Proc Natl Acad Sci USA 1998; 95: 15412–15417, [CSA], [CROSSREF]
  • Song J H, Kim J M, Kim S H, Kim H J, Lee J J, Sung M H, Hwang S Y, Kim T S. Comparison of the gene expression profiles of monocytic versus granulocytic lineages of HL-60 leukemia cell differentiation by DNA microarray analysis. Life Sci 2003; 73: 1705–1719, [CSA], [CROSSREF]
  • Zheng X, Ravatn R, Lin Y, Shih W C, Rabson A, Strair R, Huberman E, Conney A, Chin K V. Gene expression of TPA induced differentiation in HL-60 cells by DNA microarray analysis. Nucleic Acids Res 2002; 30: 4489–4499, [CSA], [CROSSREF]
  • Juan H F, Lin J Y, Chang W H, Wu C Y, Pan T L, Tseng M J, Khoo K H, Chen S T. Biomic study of human myeloid leukemia cells differentiation to macrophages using DNA array, proteomic, and bioinformatic analytical methods. Electrophoresis 2002; 23: 2490–2504, [CSA], [CROSSREF]
  • Larizza L, Magnani I, Beghini A. The Kasumi-1 cell line: A t(8;21)-kit mutant model for acute myeloid leukemia. Leuk Lymphoma 2005; 46: 247–255, [CSA], [CROSSREF]
  • Chiu C P, Lee F. IL-6 is a differentiation factor for M1 and WEHI-3B myeloid leukemic cells. J Immunol 1989; 142: 1909–1915, [CSA]
  • Maeda M, Ichikawa Y. Production of a colony-stimulating factor following differentiation of leukemic myleoblasts to macrophages. J Cell Physiol 1980; 102: 323–331, [CSA], [CROSSREF]
  • Parant M, Vinit M A, Damais C, Riveau G, Chedid L. Production of differentiation-stimulating factor for murine leukemic myeloblast line by monocytic cells stimulated by a nonpyrogenic muramyl dipeptide derivative. Exp Hematol 1985; 13: 221–228, [CSA]
  • Takenaga K, Honma Y, Okabe-Kado J, Hozumi M. Production of differentiation-inhibiting factor in cultured mouse myeloid leukemia cells treated with retinoic acid. Cancer Res 1981; 41: 1948–1953, [CSA]
  • Tanaka H, Abe E, Miyaura C, Shiina Y, Suda T. 1 alpha,25-dihydroxyvitamin D3 induces differentiation of human promyelocytic leukemia cells (HL-60) into monocyte-macrophages, but not into granulocytes. Biochem Biophys Res Commun 1983; 117: 86–92, [CSA], [CROSSREF]
  • Li J, Finch R A, Xiao W, Sartorelli A C. Identification of a repressor of the differentiation of WEHI-3B D-leukemia cells. Exp Cell Res 1998; 242: 274–284, [CSA], [CROSSREF]
  • Rice A M, Holtz K M, Karp J, Rollins S, Sartorelli A C. Analysis of the relationship between Scl transcription factor complex protein expression patterns and the effects of LiCl on ATRA-induced differentiation in blast cells from patients with acute myeloid leukemia. Leuk Res 2004; 28: 1227–1237, [CSA], [CROSSREF]
  • Du Y, Campbell J L, Nalbant D, Youn H, Bass A C, Cobos E, Tsai S, Keller J R, Williams S C. Mapping gene expression patterns during myeloid differentiation using the EML hematopoietic progenitor cell line. Exp Hematol 2002; 30: 649–658, [CSA], [CROSSREF]
  • Ma X, Husain T, Peng H, Lin S, Mironenko O, Maun N, Johnson S, Tuck D, Berliner N, Krause D S, Perkins A S. Development of a murine hematopoietic progenitor complementary DNA microarray using a subtracted complementary DNA library. Blood 2002; 100: 833–844, [CSA], [CROSSREF]
  • Valtieri M, Tweardy D J, Caracciolo D, Johnson K, Mavilio F, Altmann S, Santoli D, Rovera G. Cytokine-dependent granulocytic differentiation. Regulation of proliferative and differentiative responses in a murine progenitor cell line. J Immunol 1987; 138: 3829–3835, [CSA]
  • Cleaves R, Wang Q F, Friedman A D. C/EBPalphap30, a myeloid leukemia oncoprotein, limits G-CSF receptor expression but not terminal granulopoiesis via site-selective inhibition of C/EBP DNA binding. Oncogene 2004; 23: 716–725, [CSA], [CROSSREF]
  • O'Donnell L C, Druhan L J, Avalos B R. Molecular characterization and expression analysis of leucine-rich alpha2-glycoprotein, a novel marker of granulocytic differentiation. J Leukoc Biol 2002; 72: 478–485, [CSA]
  • Gery S, Gombart A F, Fung Y K, Koeffler H P. C/EBPepsilon interacts with retinoblastoma and E2F1 during granulopoiesis. Blood 2004; 103: 828–835, [CSA], [CROSSREF]
  • Kumar A, Lee C M, Reddy E P. c-Myc is essential but not sufficient for c-Myb-mediated block of granulocytic differentiation. J Biol Chem 2003; 278: 11480–11488, [CSA], [CROSSREF]
  • Radomska H S, Huettner C S, Zhang P, Cheng T, Scadden D T, Tenen D G. CCAAT/enhancer binding protein alpha is a regulatory switch sufficient for induction of granulocytic development from bipotential myeloid progenitors. Mol Cell Biol 1998; 18: 4301–4314, [CSA]
  • Nerlov C, McNagny K M, Doderlein G, Kowenz-Leutz E, Graf T. Distinct C/EBP functions are required for eosinophil lineage commitment and maturation. Genes Dev 1998; 12: 2413–2423, [CSA]
  • Zhang P, Iwama A, Datta M W, Darlington G J, Link D C, Tenen D G. Upregulation of interleukin 6 and granulocyte colony-stimulating factor receptors by transcription factor CCAAT enhancer binding protein alpha (C/EBP alpha) is critical for granulopoiesis. J Exp Med 1998; 188: 1173–1184, [CSA], [CROSSREF]
  • Bellon T, Perrotti D, Calabretta B. Granulocytic differentiation of normal hematopoietic precursor cells induced by transcription factor PU.1 correlates with negative regulation of the c-myb promoter. Blood 1997; 90: 1828–1839, [CSA]
  • Kim J, Ogata Y, Feldman R A. Fes tyrosine kinase promotes survival and terminal granulocyte differentiation of factor-dependent myeloid progenitors (32D) and activates lineage-specific transcription factors. J Biol Chem 2003; 278: 14978–14984, [CSA], [CROSSREF]
  • Yaron Y, McAdara J K, Lynch M, Hughes E, Gasson J C. Identification of novel functional regions important for the activity of HOXB7 in mammalian cells. J Immunol 2001; 166: 5058–5067, [CSA]
  • Baron M. An overview of the Notch signalling pathway. Semin Cell Dev Biol 2003; 14: 113–119, [CSA], [CROSSREF]
  • Schroeder T, Just U. Notch signalling via RBP-J promotes myeloid differentiation. EMBO J 2000; 19: 2558–2568, [CSA], [CROSSREF]
  • Matsuo Y, Drexler H G, Kaneda K, Kojima K, Ohtsuki Y, Hara M, Yasukawa M, Tanimoto M, Orita K. Megakaryoblastic leukemia cell line MOLM-16 derived from minimally differentiated acute leukemia with myeloid/NK precursor phenotype. Leuk Res 2003; 27: 165–171, [CSA], [CROSSREF]
  • Lozzio C B, Lozzio B B. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 1975; 45: 321–334, [CSA]
  • Vainchenker W, Testa U, Guichard J, Titeux M, Breton-Gorius J. Heterogeneity in the cellular commitment of a human leukemic cell line: K 562. Blood Cells 1981; 7: 357–375, [CSA]
  • Munoz-Alonso M J, Acosta J C, Richard C, Delgado M D, Sedivy J, Leon J. p21Cip1 and p27Kip1 induce distinct cell cycle effects and differentiation programs in myeloid leukemia cells. J Biol Chem 2005; 280: 18120–18129, [CSA], [CROSSREF]
  • Uzunoglu S, Uslu R, Tobu M, Saydam G, Terzioglu E, Buyukkececi F, Omay S B. Augmentation of methylprednisolone-induced differentiation of myeloid leukemia cells by serine/threonine protein phosphatase inhibitors. Leuk Res 1999; 23: 507–512, [CSA], [CROSSREF]
  • Gery S, Tanosaki S, Hofmann W K, Koppel A, Koeffler H P. C/EBPdelta expression in a BCR-ABL-positive cell line induces growth arrest and myeloid differentiation. Oncogene 2005; 24: 1589–1597, [CSA], [CROSSREF]
  • Takahashi M, Narita M, Ayres F, Satoh N, Abe T, Yanao T, Furukawa T, Toba K, Hirohashi T, Aizawa Y. Cytoplasmic expression of EGFP in dendritic cells transfected with in vitro transcribed mRNA or cellular total RNA extracted from EGFP expressing leukemia cells. Med Oncol 2003; 20: 335–348, [CSA], [CROSSREF]
  • Hajas G, Zsiros E, Laszlo T, Hajdu P, Somodi S, Rethi B, Gogolak P, Ludanyi K, Panyi G, Rajnavolgyi E. New phenotypic, functional and electrophysiological characteristics of KG-1 cells. Immunol Lett 2004; 92: 97–106, [CSA], [CROSSREF]
  • Hulette B C, Rowden G, Ryan C A, Lawson C M, Dawes S M, Ridder G M, Gerberick G F. Cytokine induction of a human acute myelogenous leukemia cell line (KG-1) to a CD1a+ dendritic cell phenotype. Arch Dermatol Res 2001; 293: 147–158, [CSA], [CROSSREF]
  • Li J, Mbow M L, Sun L, Li L, Yang G, Griswold D E, Schantz A, Shealy D J, Goletz T J, Wan J, Peritt D. Induction of dendritic cell maturation by IL-18. Cell Immunol 2004; 227: 103–108, [CSA]
  • Yoshida Y, Sakaguchi H, Ito Y, Okuda M, Suzuki H. Evaluation of the skin sensitization potential of chemicals using expression of co-stimulatory molecules, CD54 and CD86, on the naive THP-1 cell line. Toxicol in Vitro 2003; 17: 221–228, [CSA]
  • Lindner I, Kharfan-Dabaja M A, Ayala E, Kolonias D, Carlson L M, Beazer-Barclay Y, Scherf U, Hnatyszyn J H, Lee K P. Induced dendritic cell differentiation of chronic myeloid leukemia blasts is associated with down-regulation of BCR-ABL. J Immunol 2003; 171: 1780–1791, [CSA]
  • Erben U, Thiel E, Bittroff-Leben A, Schoch C, Fichtner I, Durkop H, Notter M. CS-1, a novel c-kithi+ acute myeloid leukemia cell line with dendritic cell differentiation capacity and absent immunogenicity. Int J Cancer 2003; 105: 232–240, [CSA], [CROSSREF]
  • Masterson A J, Sombroek C C, De Gruijl T D, Graus Y M, van d V, Lougheed S M, van den Eertwegh A J, Pinedo H M, Scheper R J. MUTZ-3, a human cell line model for the cytokine-induced differentiation of dendritic cells from CD34+ precursors. Blood 2002; 100: 701–703, [CSA], [CROSSREF]
  • Degos L. Differentiating agents in the treatment of leukemia. Leuk Res 1990; 14: 717–719, [CSA], [CROSSREF]
  • Hozumi M. Differentiation therapy of leukemia: achievements, limitations and future prospects. Int J Hematol 1998; 68: 107–129, [CSA], [CROSSREF]
  • Touw I P, Dong F. Hematopoietic growth factors in leukemia. Pathol Res Pract 1996; 192: 734–742, [CSA]
  • Ward C J, Crocker J, Chan S J, Stockley R A, Burnett D. Changes in the expression of elastase and cathepsin B with differentiation of U937 promonocytes by GMCSF. Biochem Biophys Res Commun 1990; 167: 659–664, [CSA], [CROSSREF]
  • Koss A, Lucero G, Koziner B. Granulocyte-colony stimulating factor, granulocyte-macrophage colony stimulating factor and interleukin 4 induce differentiation in the U-937 human monocytic leukemia cell line. Leuk Lymphoma 1996; 22: 163–171, [CSA]
  • Goliaei B, Deizadji A. Effects of hyperthermia and granulocyte-macrophage colony-stimulating factor on the differentiation of human leukemic cell line U937. Leuk Res 1998; 22: 705–710, [CSA], [CROSSREF]
  • Hozumi M, Tomida M, Yamamoto-Yamaguchi Y, Kasukabe T, Okabe-Kado J, Honma Y, Hayashi M. Protein factors that regulate the growth and differentiation of mouse myeloid leukaemia cells. Ciba Found Symp 1990; 148: 25–33, [CSA]
  • Senga T, Iwamoto S, Yoshida T, Yokota T, Adachi K, Azuma E, Hamaguchi M, Iwamoto T. LSSIG is a novel murine leukocyte-specific GPCR that is induced by the activation of STAT3. Blood 2003; 101: 1185–1187, [CSA], [CROSSREF]
  • Zhang J, Shen B, Li Y, Sun Y. STAT3 exerts two-way regulation in the biological effects of IL-6 in M1 leukemia cells. Leuk Res 2001; 25: 463–472, [CSA], [CROSSREF]
  • Michishita M, Hirayoshi K, Tsuru A, Nakamura N, Yoshida Y, Okuma M, Nagata K. Effects of type-beta 1 transforming growth factor on the proliferation and differentiation of mouse myelomonocytic leukemia cells (M1). Exp Cell Res 1991; 196: 107–113, [CSA], [CROSSREF]
  • Kamano H, Tanaka T, Ohnishi H, Kubota Y, Ikeda K, Takahara J, Irino S, Ottalenghi S. Effects of the antisense myb expression on hemin- and erythropoietin-induced erythroid differentiation of K562 cells. Biochem Mol Biol Int 1994; 34: 85–92, [CSA]
  • Burger P E, Lukey P T, Coetzee S, Wilson E L. Basic fibroblast growth factor modulates the expression of glycophorin A and c-kit and inhibits erythroid differentiation in K562 cells. J Cell Physiol 2002; 190: 83–91, [CSA], [CROSSREF]
  • Hodge D R, Li D, Qi S M, Farrar W L. IL-6 induces expression of the Fli-1 proto-oncogene via STAT3. Biochem Biophys Res Commun 2002; 292: 287–291, [CSA], [CROSSREF]
  • Peetre C, Gullberg U, Nilsson E, Olsson I. Effects of recombinant tumor necrosis factor on proliferation and differentiation of leukemic and normal hemopoietic cells in vitro. Relationship to cell surface receptor. J Clin Invest 1986; 78: 1694–1700, [CSA]
  • Mak N K, Leung K N, Fung M C, Hapel A J. Augmentation of tumor necrosis factor-alpha-induced monocytic differentiation of a myelomonocytic leukemia (WEHI-3B JCS) by pertussis toxin. Immunobiology 1994; 190: 1–12, [CSA]
  • Leung K N, Mak N K, Fung M C, Hapel A J. Synergistic effect of IL-4 and TNF-alpha in the induction of monocytic differentiation of a mouse myeloid leukaemic cell line (WEHI-3B JCS). Immunology 1994; 81: 65–72, [CSA]
  • Kamijo R, Takeda K, Nagumo M, Konno K. Effects of combinations of transforming growth factor-beta 1 and tumor necrosis factor on induction of differentiation of human myelogenous leukemic cell lines. J Immunol 1990; 144: 1311–1316, [CSA]
  • De B F, Falk L A, Ellingsworth L R, Ruscetti F W, Faltynek C R. Synergy between transforming growth factor-beta and tumor necrosis factor-alpha in the induction of monocytic differentiation of human leukemic cell lines. Blood 1990; 75: 626–632, [CSA]
  • Brouwer R E, van der H M, Kluin-Nelemans H C, van Zelderen-Bhola S, Willemze R, Falkenburg J H. The generation of dendritic-like cells with increased allostimulatory function from acute myeloid leukemia cells of various FAB subclasses. Hum Immunol 2000; 61: 565–574, [CSA], [CROSSREF]
  • Narita M, Takahashi M, Liu A, Ayres F, Satoh N, Abe T, Nikkuni K, Furukawa T, Toba K, Aizawa Y. Generation of dendritic cells from leukaemia cells of a patient with acute promyelocytic leukaemia by culture with GM-CSF, IL-4 and TNF-alpha. Acta Haematol 2001; 106: 89–94, [CSA], [CROSSREF]
  • Kharfan-Dabaja M, Ayala E, Lindner I, Cejas P J, Bahlis N J, Kolonias D, Carlson L M, Lee K P. Differentiation of acute and chronic myeloid leukemic blasts into the dendritic cell lineage: analysis of various differentiation-inducing signals. Cancer Immunol Immunother 2005; 54: 25–36, [CSA], [CROSSREF]
  • Gabriele L, Borghi P, Rozera C, Sestili P, Andreotti M, Guarini A, Montefusco E, Foa R, Belardelli F. IFN-alpha promotes the rapid differentiation of monocytes from patients with chronic myeloid leukemia into activated dendritic cells tuned to undergo full maturation after LPS treatment. Blood 2004; 103: 980–987, [CSA], [CROSSREF]
  • Liebermann D A, Hoffman-Liebermann B. Proto-oncogene expression and dissection of the myeloid growth to differentiation developmental cascade. Oncogene 1989; 4: 583–592, [CSA]
  • Larsson L G, Pettersson M, Oberg F, Nilsson K, Luscher B. Expression of mad, mxi1, max and c-myc during induced differentiation of hematopoietic cells: opposite regulation of mad and c-myc. Oncogene 1994; 9: 1247–1252, [CSA]
  • Zervos A S, Gyuris J, Brent R. Mxi1, a protein that specifically interacts with Max to bind Myc-Max recognition sites. Cell 1993; 72: 223–232, [CSA], [CROSSREF]
  • Liu J, Clegg C H, Shoyab M. Regulation of EGR-1, c-jun, and c-myc gene expression by oncostatin M. Cell Growth Differ 1992; 3: 307–313, [CSA]
  • Sjin R M, Lord K A, Abdollahi A, Hoffman B, Liebermann D A. Interleukin-6 and leukemia inhibitory factor induction of JunB is regulated by distinct cell type-specific cis-acting elements. J Biol Chem 1999; 274: 28697–28707, [CSA], [CROSSREF]
  • Nguyen H Q, Hoffman-Liebermann B, Liebermann D A. The zinc finger transcription factor Egr-1 is essential for and restricts differentiation along the macrophage lineage. Cell 1993; 72: 197–209, [CSA], [CROSSREF]
  • Xia Q, Wang H X, Wang J, Zhang J Y, Liu B Y, Li A L, Lv M, Hu M R, Yu M, Feng J N, Yang S C, Zhang X M, Shen B F. Proteomic analysis of interleukin 6-induced differentiation in mouse myeloid leukemia cells. Int J Biochem Cell Biol 2005; 37: 1197–1207, [CSA], [CROSSREF]
  • Matsuda T, Hirano T. Association of p72 tyrosine kinase with Stat factors and its activation by interleukin-3, interleukin-6, and granulocyte colony-stimulating factor. Blood 1994; 83: 3457–3461, [CSA]
  • Sakurai T, Yamada T, Kihara-Negishi F, Teramoto S, Sato Y, Izawa T, Oikawa T. Effects of overexpression of the Ets family transcription factor TEL on cell growth and differentiation of K562 cells. Int J Oncol 2003; 22: 1327–1333, [CSA]
  • Mangan J K, Rane S G, Kang A D, Amanullah A, Wong B C, Reddy E P. Mechanisms associated with IL-6-induced up-regulation of Jak3 and its role in monocytic differentiation. Blood 2004; 103: 4093–4101, [CSA], [CROSSREF]
  • Hirano T, Ishihara K, Hibi M. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 2000; 19: 2548–2556, [CSA], [CROSSREF]
  • Drexler H G, Zaborski M, Quentmeier H. Cytokine response profiles of human myeloid factor-dependent leukemia cell lines. Leukemia 1997; 11: 701–708, [CSA], [CROSSREF]
  • Katagiri T, Miyazawa K, Nishimaki J, Yaguchi M, Kawanishi Y, Ohyashiki K. Combination of granulocyte colony-stimulating factor and low-dose cytosine arabinoside further enhances myeloid differentiation in leukemia cells in vitro. Leuk Lymphoma 2000; 39: 173–184, [CSA]
  • Glasow A, Prodromou N, Xu K, von Lindern M, Zelent A. Retinoids and myelomonocytic growth factors cooperatively activate RARA and induce human myeloid leukemia cell differentiation via MAP kinase pathways. Blood 2005; 105: 341–349, [CSA], [CROSSREF]
  • Fenaux P, De Botton S. Retinoic acid syndrome. Recognition, prevention and management. Drug Saf 1998; 18: 273–279, [CSA]
  • Hsu H C, Tsai W H, Chen P G, Hsu M L, Ho C K, Wang S Y. In vitro effect of granulocyte-colony stimulating factor and all-trans retinoic acid on the expression of inflammatory cytokines and adhesion molecules in acute promyelocytic leukemic cells. Eur J Haematol 1999; 63: 11–18, [CSA]
  • Camarasa M V, Castro-Galache M D, Carrasco-Garcia E, Garcia-Morales P, Saceda M, Ferragut J A. Differentiation and drug resistance relationships in leukemia cells. J Cell Biochem 2005; 94: 98–108, [CSA], [CROSSREF]
  • Lawson N D, Krause D S, Berliner N. Normal neutrophil differentiation and secondary granule gene expression in the EML and MPRO cell lines. Exp Hematol 1998; 26: 1178–1185, [CSA]
  • Kishi K, Toba K, Azegami T, Tsukada N, Uesugi Y, Masuko M, Niwano H, Hashimoto S, Sakaue M, Furukawa T, Koike T, Takahashi H, Maekawa T, Abe T, Aizawa Y. Hematopoietic cytokine-dependent differentiation to eosinophils and neutrophils in a newly established acute promyelocytic leukemia cell line with t(15;17). Exp Hematol 1998; 26: 135–142, [CSA]
  • Chelbi-Alix M K, Bobe P, Benoit G, Canova A, Pine R. Arsenic enhances the activation of Stat1 by interferon gamma leading to synergistic expression of IRF-1. Oncogene 2003; 22: 9121–9130, [CSA], [CROSSREF]
  • Moldenhauer A, Nociari M, Lam G, Salama A, Rafii S, Moore M A. Tumor necrosis factor alpha-stimulated endothelium: an inducer of dendritic cell development from hematopoietic progenitors and myeloid leukemic cells. Stem Cells 2004; 22: 144–157, [CSA], [CROSSREF]
  • Vedantham S, Gamliel H, Golomb H M. Mechanism of interferon action in hairy cell leukemia: a model of effective cancer biotherapy. Cancer Res 1992; 52: 1056–1066, [CSA]
  • Bedi A, Griffin C A, Barber J P, Vala M S, Hawkins A L, Sharkis S J, Zehnbauer B A, Jones R J. Growth factor-mediated terminal differentiation of chronic myeloid leukemia. Cancer Res 1994; 54: 5535–5538, [CSA]
  • Glaspy J A. Hematopoietic management in oncology practice. Part 1. Myeloid growth factors. Oncology (Williston Park) 2003; 17: 1593–1603, [CSA]
  • Nimubona S, Grulois I, Bernard M, Drenou B, Godard M, Fauchet R, Lamy T. Complete remission in hypoplastic acute myeloid leukemia induced by G-CSF without chemotherapy: report on three cases. Leukemia 2002; 16: 1871–1873, [CSA]
  • Lanza F, Rigolin G M, Castagnari B, Moretti S, Castoldi G. Potential clinical applications of rhGM-CSF in acute myeloid leukemia based on its biologic activity and receptor interaction. Haematologica 1997; 82: 239–245, [CSA]
  • Boyer M W, Waller E K, Bray R A, Unangst T, Johnson T S, Phillips C, Jurickova I, Winton E F, Yeager A M. Cytokine upregulation of the antigen presenting function of acute myeloid leukemia cells. Leukemia 2000; 14: 412–418, [CSA], [CROSSREF]
  • Paquette R L, Hsu N, Said J, Mohammed M, Rao N P, Shih G, Schiller G, Sawyers C, Glaspy J A. Interferon-alpha induces dendritic cell differentiation of CML mononuclear cells in vitro and in vivo. Leukemia 2002; 16: 1484–1489, [CSA], [CROSSREF]
  • Roddie P H, Horton Y, Turner M L. Primary acute myeloid leukaemia blasts resistant to cytokine-induced differentiation to dendritic-like leukaemia cells can be forced to differentiate by the addition of bryostatin-1. Leukemia 2002; 16: 84–93, [CSA], [CROSSREF]
  • Braun S, Gerhartz H H, Schmetzer H M. Lymphokine-activated killer (LAK) cells and cytokines synergize to kill clonal cells in acute myeloid leukemia (AML) in vitro. Haematologia (Budap) 2000; 30: 271–288, [CSA], [CROSSREF]
  • Pospisilova D, Borovickova J, Polouckova A, Spisek R, Sediva A, Hrusak O, Stary J, Bartunkova J. Generation of functional dendritic cells for potential use in the treatment of acute lymphoblastic leukemia. Cancer Immunol Immunother 2002; 51: 72–78, [CSA], [CROSSREF]
  • Chao J R, Wang J M, Lee S F, Peng H W, Lin Y H, Chou C H, Li J C, Huang H M, Chou C K, Kuo M L, Yen J J, Yang-Yen H F. mcl-1 is an immediate-early gene activated by the granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling pathway and is one component of the GM-CSF viability response. Mol Cell Biol 1998; 18: 4883–4898, [CSA]
  • Ikeda H, Kanakura Y, Furitsu T, Kitayama H, Sugahara H, Nishiura T, Karasuno T, Tomiyama Y, Yamatodani A, Kanayama Y. Changes in phenotype and proliferative potential of human acute myeloblastic leukemia cells in culture with stem cell factor. Exp Hematol 1993; 21: 1686–1694, [CSA]
  • Buhring H J, Herbst R, Kostka G, Bossenmaier B, Bartke I, Kropshofer H, Kalbacher H, Busch F W, Muller C A, Schlessinger J. Modulation of p145c-kit function in cells of patients with acute myeloblastic leukemia. Cancer Res 1993; 53: 4424–4431, [CSA]
  • Bergamaschi G, Carlo-Stella C, Cazzola M, de Fazio P, Pedrazzoli P, Peverali F A, Della Valle G. Tumor necrosis factor alpha down-regulates c-myc mRNA expression and induces in vitro monocytic differentiation in fresh blast cells from patients with acute myeloblastic leukemia. Leukemia 1990; 4: 426–430, [CSA]
  • Hirai H, Shimazaki C, Yamagata N, Goto H, Inaba T, Kikuta T, Sumikuma T, Sudo Y, Ashihara E, Fujita N, Hibi S, Imashuku S, Ito E, Nakagawa M. Effects of thrombopoietin (c-mpl ligand) on growth of blast cells from patients with transient abnormal myelopoiesis and acute myeloblastic leukemia. Eur J Haematol 1997; 59: 38–46, [CSA]
  • Cignetti A, Bryant E, Allione B, Vitale A, Foa R, Cheever M A. CD34(+) acute myeloid and lymphoid leukemic blasts can be induced to differentiate into dendritic cells. Blood 1999; 94: 2048–2055, [CSA]
  • Graeber T G, Shuai K. Rapid gene repression triggered by interleukin-6 at the onset of monocyte differentiation. Biochem Biophys Res Commun 2000; 267: 863–869, [CSA], [CROSSREF]
  • Piekorz R P, Rinke R, Gouilleux F, Neumann B, Groner B, Hocke G M. Modulation of the activation status of Stat5a during LIF-induced differentiation of M1 myeloid leukemia cells. Biochim Biophys Acta 1998; 1402: 313–323, [CSA], [CROSSREF]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.