123
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Mitochondria As A Target For Early Detection and Diagnosis of Cancer

&
Pages 453-472 | Published online: 21 Oct 2008

REFERENCES

  • Jemal A, Clegg L X, Ward E, Ries L A, Wu X, Jamison P M, Wingo P A, Howe H L, Anderson R N, Edwards B K. Annual report to the nation on the status of cancer, 1975–2001, with a special feature regarding survival. Cancer 2004; 101: 3–27, [CSA]
  • Polyak K, Li Y, Zhu H, Lengauer C, Willson J K, Markowitz S D, Trush M A, Kinzler K W, Vogelstein B. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat Genet 1998; 20: 291–293, [CSA], [CROSSREF]
  • Fliss M S, Usadel H, Caballero O L, Wu L, Buta M R, Eleff S M, Jen J, Sidransky D. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science 2000; 287: 2017–2019, [CSA], [CROSSREF]
  • Jeronimo C, Nomoto S, Caballero O L, Usadel H, Henrique R, Varzim G, Oliveira J, Lopes C, Fliss M S, Sidransky D. Mitochondrial mutations in early stage prostate cancer and bodily fluids. Oncogene 2001; 20: 5195–5198, [CSA], [CROSSREF]
  • Ghadially F. Mitochondria. Ultrastructural Pathology of the Cell and Matrix 4th edition. Arnold Publication, Westminster, CA 1997; 1: 195–328
  • Johnson L V, Walsh M L, Chen L B. Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci USA 1980; 77: 990–994, [CSA]
  • Summerhayes I C, Wong D, Chen L B. Effect of microtubules and intermediate filaments on mitochondrial distribution. J Cell Sci 1983; 61: 87–105, [CSA]
  • Cipolat S, Martins de Brito O, Dal Zilio B, Scorrano L. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci USA 2004; 101: 15927–15932, [CSA], [CROSSREF]
  • Stryer L. Biochemistry Fourth edition. W.H. Freeman and Company, New York 1995, Fifth printing, 1998
  • Wallace D C. Mitochondrial diseases in man and mouse. Science 1999; 283: 1482–1488, [CSA], [CROSSREF]
  • Nelson D, Cox M M. Lehninger Principles of Biochemistry. Third edition. Worth Publishers, New York 2000
  • Maechler P, Wollheim C B. Mitochondrial function in normal and diabetic beta-cells. Nature 2001; 414: 807–812, [CSA], [CROSSREF]
  • Enns G M. The contribution of mitochondria to common disorders. Mol Genet Metab 2003; 80: 11–26, [CSA], [CROSSREF]
  • Verma M, Kagan J, Sidransky D, Srivastava S. Proteomic analysis of cancer-cell mitochondria. Nat Rev Cancer 2003; 3: 789–795, [CSA], [CROSSREF]
  • Tapon N, Harvey K F, Bell D W, Wahrer D C, Schiripo T A, Haber D A, Hariharan I K. salvador Promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 2002; 110: 467–478, [CSA], [CROSSREF]
  • Abrams J M. Competition and compensation: coupled to death in development and cancer. Cell 2002; 110: 403–406, [CSA], [CROSSREF]
  • Johnson A L. Intracellular mechanisms regulating cell survival in ovarian follicles. Anim Reprod Sci 2003; 78: 185–201, [CSA], [CROSSREF]
  • Quigley J G, Yang Z, Worthington M T, Phillips J D, Sabo K M, Sabath D E, Berg C L, Sassa S, Wood B L, Abkowitz J L. Identification of a human heme exporter that is essential for erythropoiesis. Cell 2004; 118: 757–766, [CSA], [CROSSREF]
  • Scorrano L, Oakes S A, Opferman J T, Cheng E H, Sorcinelli M D, Pozzan T, Korsmeyer S J. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 2003; 300: 135–139, [CSA], [CROSSREF]
  • Scorrano L, Korsmeyer S J. Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochem Biophys Res Commun 2003; 304: 437–444, [CSA], [CROSSREF]
  • Proskuryakov S Y, Konoplyannikov A G, Gabai V L. Necrosis: a specific form of programmed cell death?. Exp Cell Res 2003; 283: 1–16, [CSA], [CROSSREF]
  • Thress K, Henzel W, Shillinglaw W, Kornbluth S. Scythe: a novel reaper-binding apoptotic regulator. EMBOJ 1998; 17: 6135–6143, [CSA], [CROSSREF]
  • Thress K, Evans E K, Kornbluth S. Reaper-induced dissociation of a Scythe-sequestered cytochrome c-releasing activity. EMBOJ 1999; 18: 5486–5493, [CSA], [CROSSREF]
  • Kroemer G. Mitochondrial control of apoptosis: an overview. Biochem Soc Symp 1999; 66: 1–15, [CSA]
  • Costantini P, Jacotot E, Decaudin D, Kroemer G. Mitochondrion as a novel target of anticancer chemotherapy. J Natl Cancer Inst 2000; 92: 1042–1053, [CSA], [CROSSREF]
  • Brenner C, Kroemer G. Apoptosis. Mitochondria–the death signal integrators. Science 2000; 289: 1150–1151, [CSA], [CROSSREF]
  • Reed J C, Kroemer G. Mechanisms of mitochondrial membrane permeabilization. Cell Death Differ 2000; 7: 1145, [CSA], [CROSSREF]
  • Jacotot E, Ferri K F, El Hamel C, Brenner C, Druillennec S, Hoebeke J, Rustin P, Metivier D, Lenoir C, Geuskens M, Vieira H L, Loeffler M, Belzacq A S, Briand J P, Zamzami N, Edelman L, Xie Z H, Reed J C, Roques B P, Kroemer G. Control of mitochondrial membrane permeabilization by adenine nucleotide translocator interacting with HIV-1 viral protein rR and Bcl-2. J Exp Med 2001; 193: 509–519, [CSA], [CROSSREF]
  • Ikeda T, Sporn M, Honda T, Gribble G W, Kufe D. The novel triterpenoid CDDO and its derivatives induce apoptosis by disruption of intracellular redox balance. Cancer Res 2003; 63: 5551–5558, [CSA]
  • Nagy G, Barcza M, Gonchoroff N, Phillips P E, Perl A. Nitric oxide-dependent mitochondrial biogenesis generates Ca2+ signaling profile of lupus T cells. J Immunol 2004; 173: 3676–3683, [CSA]
  • Uren R T, Dewson G, Bonzon C, Lithgow T, Newmeyer D D, Kluck R M. Mitochondrial release of pro-apoptotic proteins: electrostatic interactions can hold cytochrome c but not Smac/DIABLO to mitochondrial membranes. J Biol Chem 2005; 280: 2266–2274, [CSA], [CROSSREF]
  • Garcia Fernandez M, Troiano L, Moretti L, Nasi M, Pinti M, Salvioli S, Dobrucki J, Cossarizza A. Early changes in intramitochondrial cardiolipin distribution during apoptosis. Cell Growth Differ 2002; 13: 449–455, [CSA]
  • Habano W, Sugai T, Nakamura S I, Uesugi N, Yoshida T, Sasou S. Microsatellite instability and mutation of mitochondrial and nuclear DNA in gastric carcinoma. Gastroenterology 2000; 118: 835–841, [CSA], [CROSSREF]
  • Jones J B, Song J J, Hempen P M, Parmigiani G, Hruban R H, Kern S E. Detection of mitochondrial DNA mutations in pancreatic cancer offers a “mass"-ive advantage over detection of nuclear DNA mutations. Cancer Res 2001; 61: 1299–1304, [CSA]
  • Copeland W C, Wachsman J T, Johnson F M, Penta J S. Mitochondrial DNA alterations in cancer. Cancer Invest 2002; 20: 557–569, [CSA], [CROSSREF]
  • Shay J W, Werbin H. Are mitochondrial DNA mutations involved in the carcinogenic process?. Mutat Res 1987; 186: 149–160, [CSA]
  • Shay J W, Ishii S. Unexpected nonrandom mitochondrial DNA segregation in human cell hybrids. Anticancer Res 1990; 10: 279–284, [CSA]
  • Coller H A, Khrapko K, Bodyak N D, Nekhaeva E, Herrero-Jimenez P, Thilly W G. High frequency of homoplasmic mitochondrial DNA mutations in human tumors can be explained without selection. Nat Genet 2001; 28: 147–150, [CSA], [CROSSREF]
  • Ha P K, Tong B C, Westra W H, Sanchez-Cespedes M, Parrella P, Zahurak M, Sidransky D, Califano J A. Mitochondrial C-tract alteration in premalignant lesions of the head and neck: a marker for progression and clonal proliferation. Clin Cancer Res 2002; 8: 2260–2265, [CSA]
  • Nomoto S, Sanchez-Cespedes M, Sidransky D. Identification of mtDNA mutations in human cancer. Methods Mol Biol 2002; 197: 107–117, [CSA]
  • Parrella P, Seripa D, Matera M G, Rabitti C, Rinaldi M, Mazzarelli P, Gravina C, Gallucci M, Altomare V, Flammia G, Casalino B, Benedetti-Panici P L, Fazio V M. Mutations of the D310 mitochondrial mononucleotide repeat in primary tumors and cytological specimens. Cancer Lett 2003; 190: 73–77, [CSA], [CROSSREF]
  • Tong B C, Ha P K, Dhir K, Xing M, Westra W H, Sidransky D, Califano J A. Mitochondrial DNA alterations in thyroid cancer. J Surg Oncol 2003; 82: 170–173, [CSA], [CROSSREF]
  • Parrella P, Xiao Y, Fliss M, Sanchez-Cespedes M, Mazzarelli P, Rinaldi M, Nicol T, Gabrielson E, Cuomo C, Cohen D, Pandit S, Spencer M, Rabitti C, Fazio V M, Sidransky D. Detection of mitochondrial DNA mutations in primary breast cancer and fine-needle aspirates. Cancer Res 2001; 61: 7623–7626, [CSA]
  • Chen J Z, Gokden N, Greene G F, Green B, Kadlubar F F. Simultaneous generation of multiple mitochondrial DNA mutations in human prostate tumors suggests mitochondrial hyper-mutagenesis. Carcinogenesis 2003; 24: 1481–1487, [CSA], [CROSSREF]
  • Maitra A, Cohen Y, Gillespie S E, Mambo E, Fukushima N, Hoque M O, Shah N, Goggins M, Califano J, Sidransky D, Chakravarti A. The Human MitoChip: a high-throughput sequencing microarray for mitochondrial mutation detection. Genome Res 2004; 14: 812–819, [CSA], [CROSSREF]
  • Taylor R W, McDonnell M T, Blakely E L, Chinnery P F, Taylor G A, Howell N, Zeviani M, Briem E, Carrara F, Turnbull D M. Genotypes from patients indicate no paternal mitochondrial DNA contribution. Ann Neurol 2003; 54: 521–524, [CSA], [CROSSREF]
  • Bohr V A, Stevnsner T, de Souza-Pinto N C. Mitochondrial DNA repair of oxidative damage in mammalian cells. Gene 2002; 286: 127–134, [CSA], [CROSSREF]
  • Lee J H, Yang E S, Park J W. Inactivation of NADP+-dependent isocitrate dehydrogenase by peroxynitrite. Implications for cytotoxicity and alcohol-induced liver injury. J Biol Chem 2003; 278: 51360–51371, [CSA], [CROSSREF]
  • Santos J H, Hunakova L, Chen Y, Bortner C, Van Houten B. Cell sorting experiments link persistent mitochondrial DNA damage with loss of mitochondrial membrane potential and apoptotic cell death. J Biol Chem 2003; 278: 1728–1734, [CSA], [CROSSREF]
  • Palacino J J, Sagi D, Goldberg M S, Krauss S, Motz C, Wacker M, Klose J, Shen J. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 2004; 279: 18614–18622, [CSA], [CROSSREF]
  • Rachek L I, Grishko V I, Musiyenko S I, Kelley M R, Le Doux S P, Wilson G L. Conditional targeting of the DNA repair enzyme hOGG1 into mitochondria. J Biol Chem 2002; 277: 44932–44937, [CSA], [CROSSREF]
  • Mason P A, Matheson E C, Hall A G, Lightowlers R N. Mismatch repair activity in mammalian mitochondria. Nucleic Acids Res 2003; 31: 1052–1058, [CSA], [CROSSREF]
  • Kornberg A, Baker T. DNA Replication. 2nd edition. W.H. Freeman and Company, New York 1992
  • Weber K, Wilson J N, Taylor L, Brierley E, Johnson M A, Turnbull D M, Bindoff L A. A new mtDNA mutation showing accumulation with time and restriction to skeletal muscle. Am J Hum Genet 1997; 60: 373–380, [CSA]
  • Wang J, Wilhelmsson H, Graff C, Li H, Oldfors A, Rustin P, Bruning J C, Kahn C R, Clayton D A, Barsh G S, Thoren P, Larsson N G. Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat Genet 1999; 21: 133–137, [CSA]
  • Bai R K, Wong L J. Detection and quantification of heteroplasmic mutant mitochondrial DNA by real-time amplification refractory mutation system quantitative PCR analysis: a single-step approach. Clin Chem 2004; 50: 996–1001, [CSA]
  • Bai R K, Perng C L, Hsu C H, Wong L J. Quantitative PCR analysis of mitochondrial DNA content in patients with mitochondrial disease. Ann NY Acad Sci 2004; 1011: 304–309, [CSA], [CROSSREF]
  • Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink J N, Rovio A T, Bruder C E, Bohlooly Y M, Gidlof S, Oldfors A, Wibom R, Tornell J, Jacobs H T, Larsson N G. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 2004; 429: 417–423, [CSA], [CROSSREF]
  • Martin G M, Loeb L A. Ageing: mice and mitochondria. Nature 2004; 429: 357–359, [CSA], [CROSSREF]
  • Cortopassi G A, Arnheim N. Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res 1990; 18: 6927–6933, [CSA]
  • Corral-Debrinski M, Shoffner J M, Lott M T, Wallace D C. Association of mitochondrial DNA damage with aging and coronary atherosclerotic heart disease. Mutat Res 1992; 275: 169–180, [CSA]
  • Corral-Debrinski M, Horton T, Lott M T, Shoffner J M, Beal M F, Wallace D C. Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat Genet 1992; 2: 324–329, [CSA], [CROSSREF]
  • Wang Y, Michikawa Y, Mallidis C, Bai Y, Woodhouse L, Yarasheski K E, Miller C A, Askanas V, Engel W K, Bhasin S, Attardi G. Muscle-specific mutations accumulate with aging in critical human mtDNA control sites for replication. Proc Natl Acad Sci USA 2001; 98: 4022–4027, [CSA], [CROSSREF]
  • Elson J L, Samuels D C, Turnbull D M, Chinnery P F. Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age. Am J Hum Genet 2001; 68: 802–806, [CSA], [CROSSREF]
  • Taylor S W, Warnock D E, Glenn G M, Zhang B, Fahy E, Gaucher S P, Capaldi R A, Gibson B W, Ghosh S S. An alternative strategy to determine the mitochondrial proteome using sucrose gradient fractionation and 1D PAGE on highly purified human heart mitochondria. J Proteome Res 2002; 1: 451–458, [CSA], [CROSSREF]
  • Brookes P S, Pinner A, Ramachandran A, Coward L, Barnes S, Kim H, Darley-Usmar V M. High throughput two-dimensional blue-native electrophoresis: a tool for functional proteomics of mitochondria and signaling complexes. Proteomics 2002; 2: 969–977, [CSA], [CROSSREF]
  • Taylor S W, Fahy E, Zhang B, Glenn G M, Warnock D E, Wiley S, Murphy A N, Gaucher S P, Capaldi R A, Gibson B W, Ghosh S S. Characterization of the human heart mitochondrial proteome. Nat Biotechnol 2003; 21: 281–286, [CSA], [CROSSREF]
  • Murray J, Zhang B, Taylor S W, Oglesbee D, Fahy E, Marusich M F, Ghosh S S, Capaldi R A. The subunit composition of the human NADH dehydrogenase obtained by rapid one-step immunopurification. J Biol Chem 2003; 278: 13619–13622, [CSA], [CROSSREF]
  • Lopez M F, Melov S. Applied proteomics: mitochondrial proteins and effect on function. Circ Res 2002; 90: 380–389, [CSA], [CROSSREF]
  • Kumar A, Agarwal S, Heyman J A, Matson S, Heidtman M, Piccirillo S, Umansky L, Drawid A, Jansen R, Liu Y, Cheung K H, Miller P, Gerstein M, Roeder G S, Snyder M. Subcellular localization of the yeast proteome. Genes Dev 2002; 16: 707–719, [CSA], [CROSSREF]
  • Werhahn W, Braun H P. Biochemical dissection of the mitochondrial proteome from Arabidopsis thaliana by three-dimensional gel electrophoresis. Electrophoresis 2002; 23: 640–646, [CSA], [CROSSREF]
  • Mootha V K, Bunkenborg J, Olsen J V, Hjerrild M, Wisniewski J R, Stahl E, Bolouri M S, Ray H N, Sihag S, Kamal M, Patterson N, Lander E S, Mann M. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 2003; 115: 629–640, [CSA], [CROSSREF]
  • Andreoli C, Prokisch H, Hortnagel K, Mueller J C, Munsterkotter M, Scharfe C, Meitinger T. MitoP2, an integrated database on mitochondrial proteins in yeast and man. Nucleic Acids Res 2004; 32 D459–462, Database issue[CSA], [CROSSREF]
  • Rezaul K, Wu L, Mayya V, Hwang S I, Han D K. A systematic characterization of mitochondrial proteome from a human T leukemia cells. Mol Cell Proteomics 2005; 4: 169–181, [CSA], [CROSSREF]
  • Venkatraman A, Landar A, Davis A J, Chamlee L, Sanderson T, Kim H, Page G, Pompilius M, Ballinger S, Darley-Usmar V, Bailey S M. Modification of the mitochondrial proteome in response to the stress of ethanol-dependent hepatotoxicity. J Biol Chem 2004; 279: 22092–22101, [CSA], [CROSSREF]
  • Lin T K, Hughes G, Muratovska A, Blaikie F H, Brookes P S, Darley-Usmar V, Smith R A, Murphy M P. Specific modification of mitochondrial protein thiols in response to oxidative stress: a proteomics approach. J Biol Chem 2002; 277: 17048–17056, [CSA], [CROSSREF]
  • Zazueta C, Zafra G, Vera G, Sanchez C, Chavez E. Advances in the purification of the mitochondrial Ca2+ uniporter using the labeled inhibitor 103Ru360. J Bioenerg Biomembr 1998; 30: 489–498, [CSA], [CROSSREF]
  • Cortese J D, Voglino L A, Hackenbrock C R. Novel fluorescence membrane fusion assays reveal GTP-dependent fusogenic properties of outer mitochondrial membrane-derived proteins. Biochim Biophys Acta 1998; 1371: 185–198, [CSA]
  • Villa A, Garcia-Simon M I, Blanco P, Sese B, Bogonez E, Satrustegui J. Affinity chromatography purification of mitochondrial inner membrane proteins with calcium transport activity. Biochim Biophys Acta 1998; 1373: 347–359, [CSA]
  • Koc E C, Burkhart W, Blackburn K, Moseley A, Koc H, Spremulli L L. A proteomics approach to the identification of mammalian mitochondrial small subunit ribosomal proteins. J Biol Chem 2000; 275: 32585–32591, [CSA], [CROSSREF]
  • Richly E, Chinnery P F, Leister D. Evolutionary diversification of mitochondrial proteomes: implications for human disease. Trends Genet 2003; 19: 356–362, [CSA], [CROSSREF]
  • Tong W H, Rouault T. Distinct iron-sulfur cluster assembly complexes exist in the cytosol and mitochondria of human cells. EMBO J 2000; 19: 5692–5700, [CSA], [CROSSREF]
  • Tong W H, Jameson G N, Huynh B H, Rouault T A. Subcellular compartmentalization of human Nfu, an iron-sulfur cluster scaffold protein, and its ability to assemble a [4Fe-4S] cluster. Proc Natl Acad Sci USA 2003; 100: 9762–9767, [CSA], [CROSSREF]
  • Alexander C, Votruba M, Pesch U E, Thiselton D L, Mayer S, Moore A, Rodriguez M, Kellner U, Leo-Kottler B, Auburger G, Bhattacharya S S, Wissinger B. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 2000; 26: 211–215, [CSA], [CROSSREF]
  • Delettre C, Lenaers G, Griffoin J M, Gigarel N, Lorenzo C, Belenguer P, Pelloquin L, Grosgeorge J, Turc-Carel C, Perret E, Astarie-Dequeker C, Lasquellec L, Arnaud B, Ducommun B, Kaplan J, Hamel C P. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 2000; 26: 207–210, [CSA], [CROSSREF]
  • Koehler C M, Leuenberger D, Merchant S, Renold A, Junne T, Schatz G. Human deafness dystonia syndrome is a mitochondrial disease. Proc Natl Acad Sci USA 1999; 96: 2141–2146, [CSA], [CROSSREF]
  • Tomlinson I P, Alam N A, Rowan A J, Barclay E, Jaeger E E, Kelsell D, Leigh I, Gorman P, Lamlum H, Rahman S, Roylance R R, Olpin S, Bevan S, Barker K, Hearle N, Houlston R S, Kiuru M, Lehtonen R, Karhu A, Vilkki S, Laiho P, Eklund C, Vierimaa O, Aittomaki K, Hietala M, Sistonen P, Paetau A, Salovaara R, Herva R, Launonen V, Aaltonen L A. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 2002; 30: 406–410, [CSA], [CROSSREF]
  • Temam S, Trassard M, Leroux G, Bosq J, Luboinski B, Lenoir G, Benard J, Janot F. Cytology vs molecular analysis for the detection of head and neck squamous cell carcinoma in oesopharyngeal brush samples: a prospective study in 56 patients. Br J Cancer 2003; 88: 1740–1745, [CSA], [CROSSREF]
  • van Houten V M, Tabor M P, van den Brekel M W, Kummer J A, Denkers F, Dijkstra J, Leemans R, van der Waal I, Snow G B, Brakenhoff R H. Mutated p53 as a molecular marker for the diagnosis of head and neck cancer. J Pathol 2002; 198: 476–486, [CSA], [CROSSREF]
  • Sidransky D, Von Eschenbach A, Tsai Y C, Jones P, Summerhayes I, Marshall F, Paul M, Green P, Hamilton S R, Frost P. Identification of p53 gene mutations in bladder cancers and urine samples. Science 1991; 252: 706–709, [CSA]
  • Brand R E, Ross M E, Shuber A P. Reproducibility of a multitarget stool-based DNA assay for colorectal cancer detection. Am J Gastroenterol 2004; 99: 1338–1341, [CSA], [CROSSREF]
  • Hoque M O, Lee J, Begum S, Yamashita K, Engles J M, Schoenberg M, Westra W H, Sidransky D. High-throughput molecular analysis of urine sediment for the detection of bladder cancer by high-density single-nucleotide polymorphism array. Cancer Res 2003; 63: 5723–5726, [CSA]
  • Ahrendt S A, Chow J T, Xu L H, Yang S C, Eisenberger C F, Esteller M, Herman J G, Wu L, Decker P A, Jen J, Sidransky D. Molecular detection of tumor cells in bronchoalveolar lavage fluid from patients with early stage lung cancer. J Natl Cancer Inst 1999; 91: 332–339, [CSA], [CROSSREF]
  • Hanson B J, Schulenberg B, Patton W F, Capaldi R A. A novel subfractionation approach for mitochondrial proteins: a three-dimensional mitochondrial proteome map. Electrophoresis 2001; 22: 950–959, [CSA], [CROSSREF]
  • Rabilloud T. Membrane proteins ride shotgun. Nat Biotechnol 2003; 21: 508–510, [CSA], [CROSSREF]
  • Tryoen-Toth P, Richert S, Sohm B, Mine M, Marsac C, Van Dorsselaer A, Leize E, Florentz C. Proteomic consequences of a human mitochondrial tRNA mutation beyond the frame of mitochondrial translation. J Biol Chem 2003; 278: 24314–24323, [CSA], [CROSSREF]
  • Mootha V K, Lepage P, Miller K, Bunkenborg J, Reich M, Hjerrild M, Delmonte T, Villeneuve A, Sladek R, Xu F, Mitchell G A, Morin C, Mann M, Hudson T J, Robinson B, Rioux J D, Lander E S. Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics. Proc Natl Acad Sci USA 2003; 100: 605–610, [CSA], [CROSSREF]
  • Tonge R, Shaw J, Middleton B, Rowlinson R, Rayner S, Young J, Pognan F, Hawkins E, Currie I, Davison M. Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 2001; 1: 377–396, [CSA], [CROSSREF]
  • Unlu M, Morgan M E, Minden J S. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 1997; 18: 2071–2077, [CSA], [CROSSREF]
  • Unlu M. Difference gel electrophoresis. Biochem Soc Trans 1999; 27: 547–549, [CSA]
  • Gharbi S, Gaffney P, Yang A, Zvelebil M J, Cramer R, Waterfield M D, Timms J F. Evaluation of two-dimensional differential gel electrophoresis for proteomic expression analysis of a model breast cancer cell system. Mol Cell Proteomics 2002; 1: 91–98, [CSA], [CROSSREF]
  • Ruepp S U, Tonge R P, Shaw J, Wallis N, Pognan F. Genomics and proteomics analysis of acetaminophen toxicity in mouse liver. Toxicol Sci 2002; 65: 135–150, [CSA], [CROSSREF]
  • Gygi S P, Rist B, Gerber S A, Turecek F, Gelb M H, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 1999; 17: 994–999, [CSA], [CROSSREF]
  • Gygi S P, Rist B, Aebersold R. Measuring gene expression by quantitative proteome analysis. Curr Opin Biotechnol 2000; 11: 396–401, [CSA], [CROSSREF]
  • Gygi S P, Rist B, Griffin T J, Eng J, Aebersold R. Proteome analysis of low-abundance proteins using multidimensional chromatography and isotope-coded affinity tags. J Proteome Res 2002; 1: 47–54, [CSA], [CROSSREF]
  • Smolka M, Zhou H, Aebersold R. Quantitative protein profiling using two-dimensional gel electrophoresis, isotope-coded affinity tag labeling, and mass spectrometry. Mol Cell Proteomics 2002; 1: 19–29, [CSA]
  • Kroemer G, Reed J C. Mitochondrial control of cell death. Nat Med 2000; 6: 513–519, [CSA]
  • Newmeyer D D, Ferguson-Miller S. Mitochondria: releasing power for life and unleashing the machineries of death. Cell 2003; 112: 481–490, [CSA], [CROSSREF]
  • Chang C, Werb Z. The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol 2001; 11: S37–43, [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.