78
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Clinical Use and Pathogenetic Basis of Laboratory Tests for the Evaluation of Primary Arterial Hypertension

&
Pages 393-452 | Published online: 10 Oct 2008

REFERENCES

  • Wolf-Maier K, Cooper R S, Kramer H, Banegas J R, Giampaoli S, Joffres M R, Poulter N, Primatesta P, Stegmayr B, Thamm M. Hypertension treatment and control in five European countries, Canada, and the United States. Hypertension 2004; 43: 10–17, [CSA]
  • Kearney P M, Whelton M, Reynolds K, Muntner P, Whelton P K, He J. Global burden of hypertension: analysis of worldwide data. Lancet 2005; 365: 217–223, [CSA]
  • 2003 European Society of Hypertension-European Society of Cardiology guidelines for the management of arterial hypertension. J Hypertens 2003; 21: 1011–1053, [CSA], [CROSSREF]
  • Kannel W B, D'Agostino R B, Sullivan L, Wilson P W. Concept and usefulness of cardiovascular risk profiles. Am Heart J 2004; 148: 16–26, [CSA], [CROSSREF]
  • Fogazzi G B, Grignani S. Urine microscopic analysis—an art abandoned by nephrologists?. Nephrol Dial Transplant 1998; 13: 2485–2487, [CSA], [CROSSREF]
  • Fairley K F, Birch D F. Hematuria: a simple method for identifying glomerular bleeding. Kidney Int 1982; 21: 105–108, [CSA]
  • Nolan C R, III, Anger M S, Kelleher S P. Eosinophiluria—a new method of detection and definition of the clinical spectrum. N Engl J Med 1986; 315: 1516–1519, [CSA]
  • Schramek P, Schuster F X, Georgopoulos M, Porpaczy P, Maier M. Value of urinary erythrocyte morphology in assessment of symptomless microhaematuria. Lancet 1989; 2: 1316–1319, [CSA], [CROSSREF]
  • DeSanto N G, Coppola S, Anastasio P, Coscarella G, Capasso G, Bellini L, Santangelo R, Massimo L, Siciliano A. Predicted creatinine clearance to assess glomerular filtration rate in chronic renal disease in humans. Am J Nephrol 1991; 11: 181–185, [CSA]
  • Rath B, Turner C, Hartley B, Chantler C. Evaluation of light microscopy to localise the site of haematuria. Arch Dis Child 1991; 66: 338–340, [CSA]
  • Bonow R O, Gheorghiade M. The diabetes epidemic: a national and global crisis. Am J Med 2004; 116: 2S–10S, Suppl 5A[CSA], [CROSSREF]
  • Fogazzi G B, Grignani S, Colucci P. Urinary microscopy as seen by nephrologists. Clin Chem Lab Med 1998; 36: 919–924, [CSA], [CROSSREF]
  • Fogazzi G B, Leong S O. The erythrocyte cast. Nephrol Dial Transplant 1996; 11: 1649–1652, [CSA]
  • K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 2002; 39: S1–S266, [CSA], [CROSSREF]
  • Himelman R B, Landzberg J S, Simonson J S, Amend W, Bouchard A, Merz R, Schiller N B. Cardiac consequences of renal transplantation: changes in left ventricular morphology and function. J Am Coll Cardiol 1988; 12: 915–923, [CSA]
  • Peteiro J, Alvarez N, Calvino R, Penas M, Ribera F, Castro B A. Changes in left ventricular mass and filling after renal transplantation are related to changes in blood pressure: an echocardiographic and pulsed Doppler study. Cardiology 1994; 85: 273–283, [CSA]
  • Parfrey P S, Harnett J D, Foley R N, Kent G M, Murray D C, Barre P E, Guttmann R D. Impact of renal transplantation on uremic cardiomyopathy. Transplantation 1995; 60: 908–914, [CSA]
  • Foley R N, Parfrey P S, Harnett J D, Kent G M, Martin C J, Murray D C, Barre P E. Clinical and echocardiographic disease in patients starting end-stage renal disease therapy. Kidney Int 1995; 47: 186–192, [CSA]
  • Levin A, Singer J, Thompson C R, Ross H, Lewis M. Prevalent left ventricular hypertrophy in the predialysis population: identifying opportunities for intervention. Am J Kidney Dis 1996; 27: 347–354, [CSA]
  • Foley R N, Parfrey P S, Sarnak M J. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis 1998; 32: S112–S119, [CSA]
  • Cheung A K, Sarnak M J, Yan G, Dwyer J T, Heyka R J, Rocco M V, Teehan B P, Levey A S. Atherosclerotic cardiovascular disease risks in chronic hemodialysis patients. Kidney Int 2000; 58: 353–362, [CSA], [CROSSREF]
  • Sarnak M J, Levey A S, Schoolwerth A C, Coresh J, Culleton B, Hamm L L, McCullough P A, Kasiske B L, Kelepouris E, Klag M J, Parfrey P, Pfeffer M, Raij L, Spinosa D J, Wilson P W. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation 2003; 108: 2154–2169, [CSA], [CROSSREF]
  • Shulman N B, Ford C E, Hall W D, Blaufox M D, Simon D, Langford H G, Schneider K A. Prognostic value of serum creatinine and effect of treatment of hypertension on renal function. Results from the hypertension detection and follow-up program. The Hypertension Detection and Follow-up Program Cooperative Group. Hypertension 1989; 13: I80–I93, [CSA]
  • Perry H M, Jr., Miller J P, Fornoff J R, Baty J D, Sambhi M P, Rutan G, Moskowitz D W, Carmody S E. Early predictors of 15-year end-stage renal disease in hypertensive patients. Hypertension 1995; 25: 587–594, [CSA]
  • Ruilope L M, Campo C, Rodriguez-Artalejo F, Lahera V, Garcia-Robles R, Rodicio J L. Blood pressure and renal function: therapeutic implications. J Hypertens 1996; 14: 1259–1263, [CSA]
  • Zanchetti A, Hansson L, Dahlof B, Elmfeldt D, Kjeldsen S, Kolloch R, Larochelle P, McInnes G T, Mallion J M, Ruilope L, Wedel H. Effects of individual risk factors on the incidence of cardiovascular events in the treated hypertensive patients of the Hypertension Optimal Treatment Study. HOT Study Group. J Hypertens 2001; 19: 1149–1159, [CSA], [CROSSREF]
  • Ruilope L M, Salvetti A, Jamerson K, Hansson L, Warnold I, Wedel H, Zanchetti A. Renal function and intensive lowering of blood pressure in hypertensive participants of the hypertension optimal treatment (HOT) study. J Am Soc Nephrol 2001; 12: 218–225, [CSA]
  • Ruilope L M, van Veldhuisen D J, Ritz E, Luscher T F. Renal function: the Cinderella of cardiovascular risk profile. J Am Coll Cardiol 2001; 38: 1782–1787, [CSA], [CROSSREF]
  • Manjunath G, Tighiouart H, Ibrahim H, Mac Leod B, Salem D N, Griffith J L, Coresh J, Levey A S, Sarnak M J. Level of kidney function as a risk factor for atherosclerotic cardiovascular outcomes in the community. J Am Coll Cardiol 2003; 41: 47–55, [CSA], [CROSSREF]
  • Perrone R D, Madias N E, Levey A S. Serum creatinine as an index of renal function: new insights into old concepts. Clin Chem 1992; 38: 1933–1953, [CSA]
  • Levey A S. Measurement of renal function in chronic renal disease. Kidney Int 1990; 38: 167–184, [CSA]
  • Shemesh O, Golbetz H, Kriss J P, Myers B D. Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int 1985; 28: 830–838, [CSA]
  • Levey A S, Perrone R D, Madias N E. Serum creatinine and renal function. Annu Rev Med 1988; 39: 465–490, [CSA], [CROSSREF]
  • Levey A S, Bosch J P, Lewis J B, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 1999; 130: 461–470, [CSA]
  • Culleton B F, Larson M G, Wilson P W, Evans J C, Parfrey P S, Levy D. Cardiovascular disease and mortality in a community-based cohort with mild renal insufficiency. Kidney Int 1999; 56: 2214–2219, [CSA], [CROSSREF]
  • Perrone R D, Steinman T I, Beck G J, Skibinski C I, Royal H D, Lawlor M, Hunsicker L G. Utility of radioisotopic filtration markers in chronic renal insufficiency: simultaneous comparison of 125I-iothalamate, 169Yb-DTPA, 99mTc-DTPA, and inulin. The Modification of Diet in Renal Disease Study. Am J Kidney Dis 1990; 16: 224–235, [CSA]
  • Wilson D M, Bergert J H, Larson T S, Liedtke R R. GFR determined by nonradiolabeled iothalamate using capillary electrophoresis. Am J Kidney Dis 1997; 30: 646–652, [CSA]
  • Deinum J, Derkx F H. Cystatin for estimation of glomerular filtration rate?. Lancet 2000; 356: 1624–1625, [CSA], [CROSSREF]
  • Fliser D, Ritz E. Serum cystatin C concentration as a marker of renal dysfunction in the elderly. Am J Kidney Dis 2001; 37: 79–83, [CSA]
  • Dharnidharka V R, Kwon C, Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis 2002; 40: 221–226, [CSA], [CROSSREF]
  • Wasen E, Isoaho R, Mattila K, Vahlberg T, Kivela S L, Irjala K. Estimation of glomerular filtration rate in the elderly: a comparison of creatinine-based formulae with serum cystatin C. J Intern Med 2004; 256: 70–78, [CSA], [CROSSREF]
  • Visvardis G, Griveas I, Zilidou R, Papadopoulou D, Mitsopoulos E, Kyriklidou P, Manou E, Ginikopoulou E, Meimaridou D, Pavlitou A, Sakellariou G. Glomerular filtration rate estimation in renal transplant patients based on serum cystatin-C levels: comparison with other markers of glomerular filtration rate. Transplant Proc 2004; 36: 1757–1759, [CSA], [CROSSREF]
  • Akbas S H, Yavuz A, Tuncer M, Ruhi C, Gurkan A, Cetinkaya R, Demirbas A, Gultekin M, Akaydin M, Ersoy F. Serum cystatin C as an index of renal function in kidney transplant patients. Transplant Proc 2004; 36: 99–101, [CSA], [CROSSREF]
  • Coresh J, Toto R D, Kirk K A, Whelton P K, Massry S, Jones C, Agodoa L, Van Lente F. Creatinine clearance as a measure of GFR in screenees for the African-American Study of Kidney Disease and Hypertension pilot study. Am J Kidney Dis 1998; 32: 32–42, [CSA]
  • Kost G J, Vu H T, Inn M, Du Plantier R, Fleisher M, Kroll M H, Spinosa J C. Multicenter study of whole-blood creatinine, total carbon dioxide content, and chemistry profiling for laboratory and point-of-care testing in critical care in the United States. Crit Care Med 2000; 28: 2379–2389, [CSA], [CROSSREF]
  • Ross J W, Miller W G, Myers G L, Praestgaard J. The accuracy of laboratory measurements in clinical chemistry: a study of 11 routine chemistry analytes in the College of American Pathologists Chemistry Survey with fresh frozen serum, definitive methods, and reference methods. Arch Pathol Lab Med 1998; 122: 587–608, [CSA]
  • Jelliffe R W. Estimation of creatinine clearance when urine cannot be collected. Lancet 1971; 1: 975–976, [CSA], [CROSSREF]
  • Siersbaek-Nielsen K, Hansen J M, Kampmann J, Kristensen M. Rapid evaluation of creatinine clearance. Lancet 1971; 1: 1133–1134, [CSA], [CROSSREF]
  • Mawer G E, Lucas S B, Knowles B R, Stirland R M. Computer-assisted prescribing of kanamycin for patients with renal insufficiency. Lancet 1972; 1: 12–15, [CSA], [CROSSREF]
  • Cockcroft D W, Gault M H. Prediction of creatinine clearance from serum creatinine. Nephron 1976; 16: 31–41, [CSA]
  • Rowe J W, Andres R, Tobin J D, Norris A H, Shock N W. The effect of age on creatinine clearance in men: a cross-sectional and longitudinal study. J Gerontol 1976; 31: 155–163, [CSA]
  • Tougaard L, Brochner-Mortensen J. An individual nomogram for determination of glomerular filtration rate from plasma creatinine. Scand J Clin Lab Invest 1976; 36: 395–397, [CSA]
  • Hull J H, Hak L J, Koch G G, Wargin W A, Chi S L, Mattocks A M. Influence of range of renal function and liver disease on predictability of creatinine clearance. Clin Pharmacol Ther 1981; 29: 516–521, [CSA]
  • Hallynck T, Soep H H, Thomis J, Boelaert J, Daneels R, Fillastre J P, De Rosa F, Rubinstein E, Hatala M, Spousta J, Dettli L. Prediction of creatinine clearance from serum creatinine concentration based on lean body mass. Clin Pharmacol Ther 1981; 30: 414–421, [CSA]
  • Bjornsson T D, Cocchetto D M, McGowan F X, Verghese C P, Sedor F. Nomogram for estimating creatinine clearance. Clin Pharmacokinet 1983; 8: 365–369, [CSA]
  • Gates G F. Creatinine clearance estimation from serum creatinine values: an analysis of three mathematical models of glomerular function. Am J Kidney Dis 1985; 5: 199–205, [CSA]
  • Salazar D E, Corcoran G B. Predicting creatinine clearance and renal drug clearance in obese patients from estimated fat-free body mass. Am J Med 1988; 84: 1053–1060, [CSA], [CROSSREF]
  • Robinson B A, Frampton C M, Colls B M, Atkinson C H, Fitzharris B M. Comparison of methods of assessment of renal function in patients with cancer treated with cisplatin, carboplatin or methotrexate. Aust N Z J Med 1990; 20: 657–662, [CSA]
  • Nankivell B J, Allen R D, O'Connell P J, Chapman J R. Erythrocytosis after renal transplantation: risk factors and relationship with GFR. Clin Transplant 1995; 9: 375–382, [CSA]
  • Davis G A, Chandler M H. Comparison of creatinine clearance estimation methods in patients with trauma. Am J Health Syst Pharm 1996; 53: 1028–1032, [CSA]
  • Sanaka M, Takano K, Shimakura K, Koike Y, Mineshita S. Serum albumin for estimating creatinine clearance in the elderly with muscle atrophy. Nephron 1996; 73: 137–144, [CSA]
  • Toto R D, Kirk K A, Coresh J, Jones C, Appel L, Wright J, Campese V, Olutade B, Agodoa L. Evaluation of serum creatinine for estimating glomerular filtration rate in African Americans with hypertensive nephrosclerosis: results from the African-American Study of Kidney Disease and Hypertension (AASK) Pilot Study. J Am Soc Nephrol 1997; 8: 279–287, [CSA]
  • Walser M. Assessing renal function from creatinine measurements in adults with chronic renal failure. Am J Kidney Dis 1998; 32: 23–31, [CSA]
  • Yukawa E, Hamachi Y, Higuchi S, Aoyama T. Predictive performance of equations to estimate creatinine clearance from serum creatinine in Japanese patients with congestive heart failure. Am J Ther 1999; 6: 71–76, [CSA]
  • Verhave J C, Balje-Volkers C P, Hillege H L, de Zeeuw D, de Jong P E. The reliability of different formulae to predict creatinine clearance. J Intern Med 2003; 253: 563–573, [CSA], [CROSSREF]
  • Charleson H A, Bailey R R, Stewart A. Quick prediction of creatinine clearance without the necessity of urine collection. N Z Med J 1980; 92: 425–426, [CSA]
  • Rolin H A, III, Hall P M, Wei R. Inaccuracy of estimated creatinine clearance for prediction of iothalamate glomerular filtration rate. Am J Kidney Dis 1984; 4: 48–54, [CSA]
  • Lemann J, Bidani A K, Bain R P, Lewis E J, Rohde R D. Use of the serum creatinine to estimate glomerular filtration rate in health and early diabetic nephropathy. Collaborative Study Group of Angiotensin Converting Enzyme Inhibition in Diabetic Nephropathy. Am J Kidney Dis 1990; 16: 236–243, [CSA]
  • Waller D G, Fleming J S, Ramsey B, Gray J. The accuracy of creatinine clearance with and without urine collection as a measure of glomerular filtration rate. Postgrad Med J 1991; 67: 42–46, [CSA]
  • Gault M H, Longerich L L, Harnett J D, Wesolowski C. Predicting glomerular function from adjusted serum creatinine. Nephron 1992; 62: 249–256, [CSA]
  • Goerdt P J, Heim-Duthoy K L, Macres M, Swan S K. Predictive performance of renal function estimate equations in renal allografts. Br J Clin Pharmacol 1997; 44: 261–265, [CSA], [CROSSREF]
  • Lewis J, Agodoa L, Cheek D, Greene T, Middleton J, O'Connor D, Ojo A, Phillips R, Sika M, Wright J, Jr. Comparison of cross-sectional renal function measurements in African Americans with hypertensive nephrosclerosis and of primary formulas to estimate glomerular filtration rate. Am J Kidney Dis 2001; 38: 744–753, [CSA]
  • Bostom A G, Kronenberg F, Ritz E. Predictive performance of renal function equations for patients with chronic kidney disease and normal serum creatinine levels. J Am Soc Nephrol 2002; 13: 2140–2144, [CSA], [CROSSREF]
  • Derosa G, Mugellini A, Ciccarelli L, Crescenzi G, Fogari R. Comparison between repaglinide and glimepiride in patients with type 2 diabetes mellitus: a one-year, randomized, double-blind assessment of metabolic parameters and cardiovascular risk factors. Clin Ther 2003; 25: 472–484, [CSA], [CROSSREF]
  • Skluzacek P A, Szewc R G, Nolan C R, III, Riley D J, Lee S, Pergola P E. Prediction of GFR in liver transplant candidates. Am J Kidney Dis 2003; 42: 1169–1176, [CSA], [CROSSREF]
  • Gaspari F, Ferrari S, Stucchi N, Centemeri E, Carrara F, Pellegrino M, Gherardi G, Gotti E, Segoloni G, Salvadori M, Rigotti P, Valente U, Donati D, Sandrini S, Sparacino V, Remuzzi G, Perico N. Performance of different prediction equations for estimating renal function in kidney transplantation. Am J Transplant 2004; 4: 1826–1835, [CSA], [CROSSREF]
  • Hallan S, Asberg A, Lindberg M, Johnsen H. Validation of the Modification of Diet in Renal Disease formula for estimating GFR with special emphasis on calibration of the serum creatinine assay. Am J Kidney Dis 2004; 44: 84–93, [CSA], [CROSSREF]
  • Rule A D, Larson T S, Bergstralh E J, Slezak J M, Jacobsen S J, Cosio F G. Using serum creatinine to estimate glomerular filtration rate: accuracy in good health and in chronic kidney disease. Ann Intern Med 2004; 141: 929–937, [CSA]
  • Rule A D, Gussak H M, Pond G R, Bergstralh E J, Stegall M D, Cosio F G, Larson T S. Measured and estimated GFR in healthy potential kidney donors. Am J Kidney Dis 2004; 43: 112–119, [CSA], [CROSSREF]
  • Coresh J, Astor B C, McQuillan G, Kusek J, Greene T, Van Lente F, Levey A S. Calibration and random variation of the serum creatinine assay as critical elements of using equations to estimate glomerular filtration rate. Am J Kidney Dis 2002; 39: 920–929, [CSA], [CROSSREF]
  • Clase C M, Garg A X, Kiberd B A. Prevalence of low glomerular filtration rate in nondiabetic Americans: third National Health and Nutrition Examination Survey (NHANES III). J Am Soc Nephrol 2002; 13: 1338–1349, [CSA], [CROSSREF]
  • Coresh J, Astor B C, Greene T, Eknoyan G, Levey A S. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: third National Health and Nutrition Examination Survey. Am J Kidney Dis 2003; 41: 1–12, [CSA], [CROSSREF]
  • Kampmann J, Siersbaek-Nielsen K, Kristensen M, Hansen J M. Rapid evaluation of creatinine clearance. Acta Med Scand 1974; 196: 517–520, [CSA]
  • Duncan L, Heathcote J, Djurdjev O, Levin A. Screening for renal disease using serum creatinine: who are we missing?. Nephrol Dial Transplant 2001; 16: 1042–1046, [CSA], [CROSSREF]
  • Coresh J, Eknoyan G, Levey A S. Estimating the prevalence of low glomerular filtration rate requires attention to the creatinine assay calibration. J Am Soc Nephrol 2002; 13: 2811–2812, [CSA], [CROSSREF]
  • Mogensen C E. Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N Engl J Med 1984; 310: 356–360, [CSA]
  • Yudkin J S, Forrest R D, Jackson C A. Microalbuminuria as predictor of vascular disease in non-diabetic subjects. Islington Diabetes Survey. Lancet 1988; 2: 530–533, [CSA], [CROSSREF]
  • Deckert T, Kofoed-Enevoldsen A, Norgaard K, Borch-Johnsen K, Feldt-Rasmussen B, Jensen T. Microalbuminuria. Implications for micro- and macrovascular disease. Diabetes Care 1992; 15: 1181–1191, [CSA]
  • Redon J, Liao Y, Lozano J V, Miralles A, Baldo E, Cooper R S. Factors related to the presence of microalbuminuria in essential hypertension. Am J Hypertens 1994; 7: 801–807, [CSA]
  • Jensen J S, Feldt-Rasmussen B, Strandgaard S, Schroll M, Borch-Johnsen K. Arterial hypertension, microalbuminuria, and risk of ischemic heart disease. Hypertension 2000; 35: 898–903, [CSA]
  • Mogensen C E. Microalbuminuria and hypertension with focus on type 1 and type 2 diabetes. J Intern Med 2003; 254: 45–66, [CSA], [CROSSREF]
  • Pedrinelli R, Catapano G, Dell'Omo G, Melillo E, Talarico L, Di Muro C, Giampietro O, Carmassi F, Giusti C, Di Bello V. Forearm blood flow reserve and cardiac and renal indexes of pressure load in normotensive and hypertensive individuals. Hypertension 1994; 24: 24–29, [CSA]
  • Pedrinelli R. Microalbuminuria in Hypertension. Nephron 1996; 73: 499–505, [CSA]
  • Pedrinelli R, Dell'Omo G, Di Bello V, Pontremoli R, Mariani M. Microalbuminuria, an integrated marker of cardiovascular risk in essential hypertension. J Hum Hypertens 2002; 16: 79–89, [CSA], [CROSSREF]
  • Rostand S G, Brown G, Kirk K A, Rutsky E A, Dustan H P. Renal insufficiency in treated essential hypertension. N Engl J Med 1989; 320: 684–688, [CSA]
  • Erley C M, Holzer M, Kramer B K, Risler T. Renal haemodynamics and organ damage in young hypertensive patients with different plasma renin activities after ACE inhibition. Nephrol Dial Transplant 1992; 7: 216–220, [CSA]
  • Parving H H. Microalbuminuria in essential hypertension and diabetes mellitus. J Hypertens Suppl 1996; 14: S89–S93, [CSA]
  • Molitch M E, De Fronzo R A, Franz M J, Keane W F, Mogensen C E, Parving H H. Diabetic nephropathy. Diabetes Care 2003; 26: S94–S98, Suppl 1[CSA]
  • Wachtell K, Olsen M H, Dahlof B, Devereux R B, Kjeldsen S E, Nieminen M S, Okin P M, Papademetriou V, Mogensen C E, Borch-Johnsen K, Ibsen H. Microalbuminuria in hypertensive patients with electrocardiographic left ventricular hypertrophy: the LIFE study. J Hypertens 2002; 20: 405–412, [CSA], [CROSSREF]
  • Redon J, Williams B. Microalbuminuria in essential hypertension: redefining the threshold. J Hypertens 2002; 20: 353–355, [CSA], [CROSSREF]
  • Dell'Omo G, Penno G, Giorgi D, Di Bello V, Mariani M, Pedrinelli R. Association between high-normal albuminuria and risk factors for cardiovascular and renal disease in essential hypertensive men. Am J Kidney Dis 2002; 40: 1–8, [CSA], [CROSSREF]
  • Gerstein H C, Mann J F, Yi Q, Zinman B, Dinneen S F, Hoogwerf B, Halle J P, Young J, Rashkow A, Joyce C, Nawaz S, Yusuf S. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA 2001; 286: 421–426, [CSA]
  • Viberti G C, Hill R D, Jarrett R J, Argyropoulos A, Mahmud U, Keen H. Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetes mellitus. Lancet 1982; 1: 1430–1432, [CSA]
  • Yuyun M F, Khaw K T, Luben R, Welch A, Bingham S, Day N E, Wareham N J. Microalbuminuria, cardiovascular risk factors and cardiovascular morbidity in a British population: the EPIC-Norfolk population-based study. Eur J Cardiovasc Prev Rehabil 2004; 11: 207–213, [CSA], [CROSSREF]
  • Poulsen P L. Blood pressure and cardiac autonomic function in relation to risk factors and treatment perspectives in Type 1 diabetes. J Renin Angiotensin Aldosterone Syst 2002; 3: 222–242, [CSA]
  • Miedema K. Laboratory tests in diagnosis and management of diabetes mellitus. Practical considerations. Clin Chem Lab Med 2003; 41: 1259–1265, [CSA], [CROSSREF]
  • Haffner S M, Gonzales C, Valdez R A, Mykkanen L, Hazuda H P, Mitchell B D, Monterrosa A, Stern M P. Is microalbuminuria part of the prediabetic state? The Mexico City Diabetes Study. Diabetologia 1993; 36: 1002–1006, [CSA]
  • Agrawal B, Berger A, Wolf K, Luft F C. Microalbuminuria screening by reagent strip predicts cardiovascular risk in hypertension. J Hypertens 1996; 14: 223–228, [CSA]
  • Mogensen C E, Viberti G C, Peheim E, Kutter D, Hasslacher C, Hofmann W, Renner R, Bojestig M, Poulsen P L, Scott G, Thoma J, Kuefer J, Nilsson B, Gambke B, Mueller P, Steinbiss J, Willamowski K D. Multicenter evaluation of the Micral-Test II test strip, an immunologic rapid test for the detection of microalbuminuria. Diabetes Care 1997; 20: 1642–1646, [CSA]
  • Gerber L M, Johnston K, Alderman M H. Assessment of a new dipstick test in screening for microalbuminuria in patients with hypertension. Am J Hypertens 1998; 11: 1321–1327, [CSA], [CROSSREF]
  • Gatzka C D, Reid C M, Lux A, Dart A M, Jennings G L. Left ventricular mass and microalbuminuria: relation to ambulatory blood pressure. Hypertension Diagnostic Service Investigators. Clin Exp Pharmacol Physiol 1999; 26: 514–516, [CSA], [CROSSREF]
  • Bog-Hansen E, Lindblad U, Ranstam J, Melander A, Rastam L. Impaired glucose metabolism and obesity in Swedish patients with borderline isolated systolic hypertension: Skaraborg Hypertension and Diabetes Project. Diabetes Obes Metab 2001; 3: 25–31, [CSA], [CROSSREF]
  • Mogensen C E. Microalbuminuria, blood pressure and diabetic renal disease: origin and development of ideas. Diabetologia 1999; 42: 263–285, [CSA], [CROSSREF]
  • Gerstein H C, Mann J F, Pogue J, Dinneen S F, Halle J P, Hoogwerf B, Joyce C, Rashkow A, Young J, Zinman B, Yusuf S. Prevalence and determinants of microalbuminuria in high-risk diabetic and nondiabetic patients in the Heart Outcomes Prevention Evaluation Study. The HOPE Study Investigators. Diabetes Care 2000; 23: B35–B39, (Suppl 2)[CSA]
  • Mattix H J, Hsu C Y, Shaykevich S, Curhan G. Use of the albumin/creatinine ratio to detect microalbuminuria: implications of sex and race. J Am Soc Nephrol 2002; 13: 1034–1039, [CSA]
  • Houlihan C A, Tsalamandris C, Akdeniz A, Jerums G. Albumin to creatinine ratio: a screening test with limitations. Am J Kidney Dis 2002; 39: 1183–1189, [CSA], [CROSSREF]
  • Jensen J S, Clausen P, Borch-Johnsen K, Jensen G, Feldt-Rasmussen B. Detecting microalbuminuria by urinary albumin/creatinine concentration ratio. Nephrol Dial Transplant 1997; 12: S6–S9, Suppl 2[CSA], [CROSSREF]
  • Hillege H L, Fidler V, Diercks G F, van Gilst W H, de Zeeuw D, van Veldhuisen D J, Gans R O, Janssen W M, Grobbee D E, de Jong P E. Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation 2002; 106: 1777–1782, [CSA], [CROSSREF]
  • Yudkin J S, Forrest R D, Jackson C A. Microalbuminuria as predictor of vascular disease in non-diabetic subjects. Islington Diabetes Survey. Lancet 1988; 2: 530–533, [CSA], [CROSSREF]
  • Gould M M, Mohamed-Ali V, Goubet S A, Yudkin J S, Haines A P. Microalbuminuria: associations with height and sex in non-diabetic subjects. BMJ 1993; 306: 240–242, [CSA]
  • Cirillo M, Senigalliesi L, Laurenzi M, Alfieri R, Stamler J, Stamler R, Panarelli W, De Santo N G. Microalbuminuria in nondiabetic adults: relation of blood pressure, body mass index, plasma cholesterol levels, and smoking: The Gubbio Population Study. Arch Intern Med 1998; 158: 1933–1939, [CSA], [CROSSREF]
  • Kuusisto J, Mykkanen L, Pyorala K, Laakso M. Hyperinsulinemic microalbuminuria. A new risk indicator for coronary heart disease. Circulation 1995; 91: 831–837, [CSA]
  • Frey F J. The hypertensive patient with hypokalaemia: the search for hyperaldosteronism. Nephrol Dial Transplant 2001; 16: 1112–1116, [CSA], [CROSSREF]
  • Verresen L, Lins R L, Neels H, De Broe M E. Effects of needle size and storage temperature on measurements of serum potassium. Clin Chem 1986; 32: 698–699, [CSA]
  • Johnston J D, Hawthorne S W. How to minimise factitious hyperkalaemia in blood samples from general practice. BMJ 1997; 314: 1200–1201, [CSA]
  • Rossi G P, Rossi E, Pavan E, Rosati N, Zecchel R, Semplicini A, Perazzoli F, Pessina A C. Screening for primary aldosteronism with a logistic multivariate discriminant analysis. Clin Endocrinol Oxf 1998; 49: 713–723, [CSA], [CROSSREF]
  • Mulatero P, Stowasser M, Loh K C, Fardella C E, Gordon R D, Mosso L, Gomez-Sanchez C E, Veglio F, Young W F, Jr. Increased diagnosis of primary aldosteronism, including surgically correctable forms, in centers from five continents. J Clin Endocrinol Metab 2004; 89: 1045–1050, [CSA], [CROSSREF]
  • Achard J M, Disse-Nicodeme S, Fiquet-Kempf B, Jeunemaitre X. Phenotypic and genetic heterogeneity of familial hyperkalaemic hypertension (Gordon syndrome). Clin Exp Pharmacol Physiol 2001; 28: 1048–1052, [CSA], [CROSSREF]
  • Wilson F H, Disse-Nicodeme S, Choate K A, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford D V, Lipkin G W, Achard J M, Feely M P, Dussol B, Berland Y, Unwin R J, Mayan H, Simon D B, Farfel Z, Jeunemaitre X, Lifton R P. Human hypertension caused by mutations in WNK kinases. Science 2001; 293: 1107–1112, [CSA], [CROSSREF]
  • Wilson F H, Kahle K T, Sabath E, Lalioti M D, Rapson A K, Hoover R S, Hebert S C, Gamba G, Lifton R P. Molecular pathogenesis of inherited hypertension with hyperkalemia: the Na-Cl cotransporter is inhibited by wild-type but not mutant WNK4. Proc Natl Acad Sci USA 2003; 100: 680–684, [CSA], [CROSSREF]
  • Goldstein D E, Little R R, Lorenz R A, Malone J I, Nathan D M, Peterson C M. Tests of glycemia in diabetes. Diabetes Care 2003; 26: S106–S108, Suppl 1[CSA]
  • Gaar K A, Jr. Erythrocytosis: a key to understanding the hemodynamic changes in hypertension. Med Hypotheses 1988; 27: 107–113, [CSA], [CROSSREF]
  • Murphy S. Polycythemia vera. Dis Mon 1992; 38: 153–212, [CSA]
  • Cinar Y, Demir G, Pac M, Cinar A B. Effect of hematocrit on blood pressure via hyperviscosity. Am J Hypertens 1999; 12: 739–743, [CSA], [CROSSREF]
  • Nasser S, Rees P J. Sleep apnoea: causes, consequences and treatment. Br J Clin Pract 1992; 46: 39–43, [CSA]
  • Vlahakos D V, Kosmas E N, Dimopoulou I, Ikonomou E, Jullien G, Vassilakos P, Marathias K P. Association between activation of the renin-angiotensin system and secondary erythrocytosis in patients with chronic obstructive pulmonary disease. Am J Med 1999; 106: 158–164, [CSA], [CROSSREF]
  • Marathias K P, Agroyannis B, Mavromoustakos T, Matsoukas J, Vlahakos D V. Hematocrit-lowering effect following inactivation of renin-angiotensin system with angiotensin converting enzyme inhibitors and angiotensin receptor blockers. Curr Top Med Chem 2004; 4: 483–486, [CSA], [CROSSREF]
  • Pollak R, Maddux M S, Cohan J, Jacobsson P K, Mozes M F. Erythrocythemia following renal transplantation: influence of diuretic therapy. Clin Nephrol 1988; 29: 119–123, [CSA]
  • Friman S, Nyberg G, Blohme I. Erythrocytosis after renal transplantation; treatment by removal of the native kidneys. Nephrol Dial Transplant 1990; 5: 969–973, [CSA]
  • Clyne N, Berglund B, Egberg N. Treatment with recombinant human erythropoietin induces a moderate rise in hematocrit and thrombin antithrombin in healthy subjects. Thromb Res 1995; 79: 125–129, [CSA], [CROSSREF]
  • Zeier M, Mandelbaum A, Ritz E. Hypertension in the transplanted patient. Nephron 1998; 80: 257–268, [CSA], [CROSSREF]
  • Smith K J, Bleyer A J, Little W C, Sane D C. The cardiovascular effects of erythropoietin. Cardiovasc Res 2003; 59: 538–548, [CSA], [CROSSREF]
  • Miyashita K, Tojo A, Kimura K, Goto A, Omata M, Nishiyama K, Fujita T. Blood pressure response to erythropoietin injection in hemodialysis and predialysis patients. Hypertens Res 2004; 27: 79–84, [CSA], [CROSSREF]
  • Martino R, Oliver A, Ballarin J M, Remacha A F. Postrenal transplant erythrocytosis: further evidence implicating erythropoietin production by the native kidneys. Ann Hematol 1994; 68: 201–203, [CSA], [CROSSREF]
  • Vasan R S, Larson M G, Leip E P, Evans J C, O'Donnell C J, Kannel W B, Levy D. Impact of high-normal blood pressure on the risk of cardiovascular disease. N Engl J Med 2001; 345: 1291–1297, [CSA], [CROSSREF]
  • Anderson K M, Wilson P W, Odell P M, Kannel W B. An updated coronary risk profile. A statement for health professionals. Circulation 1991; 83: 356–362, [CSA]
  • Conroy R M, Pyorala K, Fitzgerald A P, Sans S, Menotti A, De Backer G, De Bacquer D, Ducimetiere P, Jousilahti P, Keil U, Njolstad I, Oganov R G, Thomsen T, Tunstall-Pedoe H, Tverdal A, Wedel H, Whincup P, Wilhelmsen L, Graham I M. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J 2003; 24: 987–1003, [CSA], [CROSSREF]
  • Franklin S S, Wong N D. Cardiovascular risk evaluation: an inexact science. J Hypertens 2002; 20: 2127–2130, [CSA], [CROSSREF]
  • Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001; 285: 2486–2497, [CSA], [CROSSREF]
  • Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002; 106: 3143–3421, [CSA]
  • Stamler J, Daviglus M L, Garside D B, Dyer A R, Greenland P, Neaton J D. Relationship of baseline serum cholesterol levels in 3 large cohorts of younger men to long-term coronary, cardiovascular, and all-cause mortality and to longevity. JAMA 2000; 284: 311–318, [CSA], [CROSSREF]
  • Fredrickson D S, Levy R I, Lees R S. Fat transport in lipoproteins—an integrated approach to mechanisms and disorders. N Engl J Med 1967; 276: 34–42, [CSA]
  • O'Keefe J H, Jr., Cordain L, Harris W H, Moe R M, Vogel R. Optimal low-density lipoprotein is 50 to 70 mg/dl: lower is better and physiologically normal. J Am Coll Cardiol 2004; 43: 2142–2146, [CSA]
  • The Lipid Research Clinics Coronary Primary Prevention Trial results. I. Reduction in incidence of coronary heart disease. JAMA 1984; 251: 351–364, [CSA]
  • Pekkanen J, Linn S, Heiss G, Suchindran C M, Leon A, Rifkind B M, Tyroler H A. Ten-year mortality from cardiovascular disease in relation to cholesterol level among men with and without preexisting cardiovascular disease. N Engl J Med 1990; 322: 1700–1707, [CSA]
  • Turner R C, Millns H, Neil H A, Stratton I M, Manley S E, Matthews D R, Holman R R. Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom Prospective Diabetes Study (UKPDS: 23). BMJ 1998; 316: 823–828, [CSA]
  • MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002; 360: 7–22, [CSA], [CROSSREF]
  • Major outcomes in moderately hypercholesterolemic, hypertensive patients randomized to pravastatin vs usual care: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT-LLT). JAMA 2002; 288: 2998–3007, [CSA], [CROSSREF]
  • Shepherd J, Blauw G J, Murphy M B, Bollen E L, Buckley B M, Cobbe S M, Ford I, Gaw A, Hyland M, Jukema J W, Kamper A M, Macfarlane P W, Meinders A E, Norrie J, Packard C J, Perry I J, Stott D J, Sweeney B J, Twomey C, Westendorp R G. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet 2002; 360: 1623–1630, [CSA], [CROSSREF]
  • Sever P S, Dahlof B, Poulter N R, Wedel H, Beevers G, Caulfield M, Collins R, Kjeldsen S E, Kristinsson A, McInnes G T, Mehlsen J, Nieminen M, O'Brien E, Ostergren J. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial–Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet 2003; 361: 1149–1158, [CSA], [CROSSREF]
  • Economides P A, Caselli A, Tiani E, Khaodhiar L, Horton E S, Veves A. The effects of atorvastatin on endothelial function in diabetic patients and subjects at risk for type 2 diabetes. J Clin Endocrinol Metab 2004; 89: 740–747, [CSA], [CROSSREF]
  • Colhoun H M, Betteridge D J, Durrington P N, Hitman G A, Neil H A, Livingstone S J, Thomason M J, Mackness M I, Charlton-Menys V, Fuller J H. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet 2004; 364: 685–696, [CSA], [CROSSREF]
  • Grundy S M, Cleeman J I, Merz C N, Brewer H B, Jr., Clark L T, Hunninghake D B, Pasternak R C, Smith S C, Jr., Stone N J. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 2004; 110: 227–239, [CSA], [CROSSREF]
  • Cannon C P, Braunwald E, McCabe C H, Rader D J, Rouleau J L, Belder R, Joyal S V, Hill K A, Pfeffer M A, Skene A M. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med 2004; 350: 1495–1504, [CSA], [CROSSREF]
  • Bittner V. Non-high-density lipoprotein cholesterol and cardiovascular disease. Curr Opin Lipidol 2003; 14: 367–371, [CSA], [CROSSREF]
  • Hirsch G A, Blumenthal R S. Usefulness of non-high-density lipoprotein cholesterol determinations in the diagnosis and treatment of dyslipidemia. Am J Cardiol 2003; 91: 827–830, [CSA], [CROSSREF]
  • Gordon D J, Rifkind B M. High-density lipoprotein—the clinical implications of recent studies. N Engl J Med 1989; 321: 1311–1316, [CSA]
  • Genest J J, McNamara J R, Salem D N, Schaefer E J. Prevalence of risk factors in men with premature coronary artery disease. Am J Cardiol 1991; 67: 1185–1189, [CSA], [CROSSREF]
  • Bolibar I, von Eckardstein A, Assmann G, Thompson S. Short-term prognostic value of lipid measurements in patients with angina pectoris. The ECAT Angina Pectoris Study Group: European Concerted Action on Thrombosis and Disabilities. Thromb Haemost 2000; 84: 955–960, [CSA]
  • Dean B B, Borenstein J E, Henning J M, Knight K, Merz C N. Can change in high-density lipoprotein cholesterol levels reduce cardiovascular risk?. Am Heart J 2004; 147: 966–976, [CSA], [CROSSREF]
  • Gianturco S H, Bradley W A. Lipoprotein-mediated cellular mechanisms for atherogenesis in hypertriglyceridemia. Semin Thromb Hemost 1988; 14: 165–169, [CSA]
  • Ginsberg H N. Lipoprotein physiology in nondiabetic and diabetic states. Relationship to atherogenesis. Diabetes Care 1991; 14: 839–855, [CSA]
  • Geurian K, Pinson J B, Weart C W. The triglyceride connection in atherosclerosis. Ann Pharmacother 1992; 26: 1109–1117, [CSA]
  • Zilversmit D B. Atherogenic nature of triglycerides, postprandial lipidemia, and triglyceride-rich remnant lipoproteins. Clin Chem 1995; 41: 153–158, [CSA]
  • Krauss R M. Triglycerides and atherogenic lipoproteins: rationale for lipid management. Am J Med 1998; 105: 58S–62S, [CSA], [CROSSREF]
  • Austin M A. Triglyceride, small, dense low-density lipoprotein, and the atherogenic lipoprotein phenotype. Curr Atheroscler Rep 2000; 2: 200–207, [CSA]
  • Stewart M W, Laker M F, Alberti K G. The contribution of lipids to coronary heart disease in diabetes mellitus. J Intern Med Suppl 1994; 736: 41–46, [CSA]
  • Ayyobi A F, Brunzell J D. Lipoprotein distribution in the metabolic syndrome, type 2 diabetes mellitus, and familial combined hyperlipidemia. Am J Cardiol 2003; 92: 27J–33J, [CSA], [CROSSREF]
  • Castro C M. Postprandial lipaemia in familial combined hyperlipidaemia. Biochem Soc Trans 2003; 31: 1090–1093, [CSA]
  • Demacker P N. Laboratory-based assessment of plasma lipids and lipoproteins for the classification of familial hypercholesterolemic and hypertriglyceridemic states. Semin Vasc Med 2004; 4: 13–22, [CSA], [CROSSREF]
  • 2003 European Society of Hypertension-European Society of Cardiology guidelines for the management of arterial hypertension. J Hypertens 2003; 21: 1011–1053, [CSA], [CROSSREF]
  • Kannel W B. Cholesterol and risk of coronary heart disease and mortality in men. Clin Chem 1988; 34: B53–B59, [CSA]
  • Duriez P, Fruchart J C. High-density lipoprotein subclasses and apolipoprotein A-I. Clin Chim Acta 1999; 286: 97–114, [CSA], [CROSSREF]
  • Frank P G, Marcel Y L. Apolipoprotein A-I: structure-function relationships. J Lipid Res 2000; 41: 853–872, [CSA]
  • Segrest J P, Li L, Anantharamaiah G M, Harvey S C, Liadaki K N, Zannis V. Structure and function of apolipoprotein A-I and high-density lipoprotein. Curr Opin Lipidol 2000; 11: 105–115, [CSA], [CROSSREF]
  • Sorci-Thomas M G, Thomas M J. The effects of altered apolipoprotein A-I structure on plasma HDL concentration. Trends Cardiovasc Med 2002; 12: 121–128, [CSA], [CROSSREF]
  • Marcel Y L, Kiss R S. Structure-function relationships of apolipoprotein A-I: a flexible protein with dynamic lipid associations. Curr Opin Lipidol 2003; 14: 151–157, [CSA], [CROSSREF]
  • Ribalta J, Vallve J C, Girona J, Masana L. Apolipoprotein and apolipoprotein receptor genes, blood lipids and disease. Curr Opin Clin Nutr Metab Care 2003; 6: 177–187, [CSA], [CROSSREF]
  • Rohrer L, Hersberger M, von Eckardstein A. High density lipoproteins in the intersection of diabetes mellitus, inflammation and cardiovascular disease. Curr Opin Lipidol 2004; 15: 269–278, [CSA], [CROSSREF]
  • Walldius G, Jungner I. Apolipoprotein B and apolipoprotein A-I: risk indicators of coronary heart disease and targets for lipid-modifying therapy. J Intern Med 2004; 255: 188–205, [CSA], [CROSSREF]
  • Segrest J P, Jones M K, De Loof H, Dashti N. Structure of apolipoprotein B-100 in low density lipoproteins. J Lipid Res 2001; 42: 1346–1367, [CSA]
  • Pena-Diaz A, Izaguirre-Avila R, Angles-Cano E. Lipoprotein Lp(a) and atherothrombotic disease. Arch Med Res 2000; 31: 353–359, [CSA], [CROSSREF]
  • Koschinsky M L, Marcovina S M. Structure-function relationships in apolipoprotein(a): insights into lipoprotein(a) assembly and pathogenicity. Curr Opin Lipidol 2004; 15: 167–174, [CSA], [CROSSREF]
  • Scanu A M. The role of lipoprotein(a) in the pathogenesis of atherosclerotic cardiovascular disease and its utility as predictor of coronary heart disease events. Curr Cardiol Rep 2001; 3: 385–390, [CSA]
  • Deb A, Caplice N M. Lipoprotein(a): new insights into mechanisms of atherogenesis and thrombosis. Clin Cardiol 2004; 27: 258–264, [CSA]
  • Current status of blood cholesterol measurement in clinical laboratories in the United States: a report from the Laboratory Standardization Panel of the National Cholesterol Education Program. Clin Chem 1988; 34: 193–201, [CSA]
  • Bachorik P S, Ross J W. National Cholesterol Education Program recommendations for measurement of low-density lipoprotein cholesterol: executive summary. The National Cholesterol Education Program Working Group on Lipoprotein Measurement. Clin Chem 1995; 41: 1414–1420, [CSA]
  • Stein E A, Myers G L. National Cholesterol Education Program recommendations for triglyceride measurement: executive summary. The National Cholesterol Education Program Working Group on Lipoprotein Measurement. Clin Chem 1995; 41: 1421–1426, [CSA]
  • Warnick G R, Wood P D. National Cholesterol Education Program recommendations for measurement of high-density lipoprotein cholesterol: executive summary. The National Cholesterol Education Program Working Group on Lipoprotein Measurement. Clin Chem 1995; 41: 1427–1433, [CSA]
  • Friedewald W T, Levy R I, Fredrickson D S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972; 18: 499–502, [CSA]
  • Sniderman A D, Blank D, Zakarian R, Bergeron J, Frohlich J. Triglycerides and small dense LDL: the twin Achilles heels of the Friedewald formula. Clin Biochem 2003; 36: 499–504, [CSA], [CROSSREF]
  • Warnick G R, Myers G L, Cooper G R, Rifai N. Impact of the third cholesterol report from the adult treatment panel of the national cholesterol education program on the clinical laboratory. Clin Chem 2002; 48: 11–17, [CSA]
  • Myers G L, Kimberly M M, Waymack P P, Smith S J, Cooper G R, Sampson E J. A reference method laboratory network for cholesterol: a model for standardization and improvement of clinical laboratory measurements. Clin Chem 2000; 46: 1762–1772, [CSA]
  • Abraham W T. Preventing cardiovascular events in patients with diabetes mellitus. Am J Med 2004; 116: 39S–46S, Suppl 5A[CSA]
  • Simonson D C. Etiology and prevalence of hypertension in diabetic patients. Diabetes Care 1988; 11: 821–827, [CSA]
  • Kaplan N M. Hypertension and diabetes. J Hum Hypertens 2002; 16: S56–S60, Suppl 1[CSA], [CROSSREF]
  • Amos A F, McCarty D J, Zimmet P. The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabet Med 1997; 14: S1–S85, Suppl 5[CSA], [CROSSREF]
  • Bakris G L. The importance of blood pressure control in the patient with diabetes. Am J Med 2004; 116: 30S–38S, Suppl 5A[CSA], [CROSSREF]
  • Hayden M R, Tyagi S C. Is type 2 diabetes mellitus a vascular disease (atheroscleropathy) with hyperglycemia a late manifestation? The role of NOS, NO, and redox stress. Cardiovasc Diabetol 2003; 2: 2, [CSA], [CROSSREF]
  • Report o f. the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 1997; 20: 1183–1197, [CSA]
  • Fuller J H, Shipley M J, Rose G, Jarrett R J, Keen H. Coronary-heart-disease risk and impaired glucose tolerance. The Whitehall study. Lancet 1980; 1: 1373–1376, [CSA]
  • Alberti K G. The clinical implications of impaired glucose tolerance. Diabet Med 1996; 13: 927–937, [CSA], [CROSSREF]
  • Larsson H, Berglund G, Lindgarde F, Ahren B. Comparison of ADA and WHO criteria for diagnosis of diabetes and glucose intolerance. Diabetologia 1998; 41: 1124–1125, [CSA], [CROSSREF]
  • Burnett R W, D'Orazio P, Fogh-Andersen N, Kuwa K, Kulpmann W R, Larsson L, Lewnstam A, Maas A H, Mager G, Spichiger-Keller U. IFCC recommendation on reporting results for blood glucose. Clin Chim Acta 2001; 307: 205–209, [CSA], [CROSSREF]
  • Kuwa K, Nakayama T, Hoshino T, Tominaga M. Relationships of glucose concentrations in capillary whole blood, venous whole blood and venous plasma. Clin Chim Acta 2001; 307: 187–192, [CSA], [CROSSREF]
  • Haeckel R, Brinck U, Colic D, Janka H U, Puntmann I, Schneider J, Viebrock C. Comparability of blood glucose concentrations measured in different sample systems for detecting glucose intolerance. Clin Chem 2002; 48: 936–939, [CSA]
  • Self-monitoring o f. blood glucose. American Diabetes Association. Diabetes Care 1994; 17: 81–86, [CSA]
  • Fogh-Andersen N, Wimberley P D, Thode J, Siggaard-Andersen O. Direct reading glucose electrodes detect the molality of glucose in plasma and whole blood. Clin Chim Acta 1990; 189: 33–38, [CSA], [CROSSREF]
  • Fogh-Andersen N, D'Orazio P. Proposal for standardizing direct-reading biosensors for blood glucose. Clin Chem 1998; 44: 655–659, [CSA]
  • Diabetes mellitus: a major risk factor for cardiovascular disease. A joint editorial statement by the American Diabetes Association; The National Heart, Lung, and Blood Institute; The Juvenile Diabetes Foundation International; The National Institute of Diabetes and Digestive and Kidney Diseases; and The American Heart Association. Circulation 1999; 100: 1132–1133, [CSA]
  • Peters A L, Davidson M B, Schriger D L, Hasselblad V. A clinical approach for the diagnosis of diabetes mellitus: an analysis using glycosylated hemoglobin levels. Meta-Analysis Research Group on the Diagnosis of Diabetes Using Glycated Hemoglobin Levels. JAMA 1996; 276: 1246–1252, [CSA], [CROSSREF]
  • Sacks D B, Bruns D E, Goldstein D E, Maclaren N K, McDonald J M, Parrott M. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin Chem 2002; 48: 436–472, [CSA]
  • American Diabetes Association. Implications of the diabetes control and complications trial. Diabetes Care 2003; 26: S25–S27, Suppl 1[CSA]
  • Zimmet P, Boyko E J, Collier G R, de Court. Etiology of the metabolic syndrome: potential role of insulin resistance, leptin resistance, and other players. Ann NY Acad Sci 1999; 892: 25–44, [CSA]
  • Hu G, Qiao Q, Tuomilehto J, Balkau B, Borch-Johnsen K, Pyorala K. Prevalence of the metabolic syndrome and its relation to all-cause and cardiovascular mortality in nondiabetic European men and women. Arch Intern Med 2004; 164: 1066–1076, [CSA], [CROSSREF]
  • Hunt K J, Resendez R G, Williams K, Haffner S M, Stern M P. National Cholesterol Education Program versus World Health Organization metabolic syndrome in relation to all-cause and cardiovascular mortality in the San Antonio Heart Study. Circulation 2004; 110: 1251–1257, [CSA], [CROSSREF]
  • Lawlor D A, Ebrahim S, Davey S G. The metabolic syndrome and coronary heart disease in older women: findings from the British Women's Heart and Health Study. Diabet Med 2004; 21: 906–913, [CSA], [CROSSREF]
  • Schillaci G, Pirro M, Vaudo G, Gemelli F, Marchesi S, Porcellati C, Mannarino E. Prognostic value of the metabolic syndrome in essential hypertension. J Am Coll Cardiol 2004; 43: 1817–1822, [CSA], [CROSSREF]
  • St Onge M P, Janssen I, Heymsfield S B. Metabolic syndrome in normal-weight Americans: new definition of the metabolically obese, normal-weight individual. Diabetes Care 2004; 27: 2222–2228, [CSA]
  • McNeill A M, Rosamond W D, Girman C J, Golden S H, Schmidt M I, East H E, Ballantyne C M, Heiss G. The metabolic syndrome and 11-year risk of incident cardiovascular disease in the atherosclerosis risk in communities study. Diabetes Care 2005; 28: 385–390, [CSA]
  • Alberti K G, Zimmet P Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 1998; 15: 539–553, [CSA], [CROSSREF]
  • Hauner H. Insulin resistance and the metabolic syndrome-a challenge of the new millennium. Eur J Clin Nutr 2002; 56: S25–S29, Suppl 1[CSA], [CROSSREF]
  • Laaksonen D E, Lakka H M, Niskanen L K, Kaplan G A, Salonen J T, Lakka T A. Metabolic syndrome and development of diabetes mellitus: application and validation of recently suggested definitions of the metabolic syndrome in a prospective cohort study. Am J Epidemiol 2002; 156: 1070–1077, [CSA], [CROSSREF]
  • Ford E S, Giles W H. A comparison of the prevalence of the metabolic syndrome using two proposed definitions. Diabetes Care 2003; 26: 575–581, [CSA]
  • Grundy S M, Brewer H B, Jr., Cleeman J I, Smith S C, Jr., Lenfant C. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 2004; 109: 433–438, [CSA], [CROSSREF]
  • Jorgensen M E, Bjerregaard P, Gyntelberg F, Borch-Johnsen K. Prevalence of the metabolic syndrome among the Inuit in Greenland. A comparison between two proposed definitions. Diabet Med 2004; 21: 1237–1242, [CSA], [CROSSREF]
  • Marchesini G, Forlani G, Cerrelli F, Manini R, Natale S, Baraldi L, Ermini G, Savorani G, Zocchi D, Melchionda N. WHO and ATPIII proposals for the definition of the metabolic syndrome in patients with Type 2 diabetes. Diabet Med 2004; 21: 383–387, [CSA], [CROSSREF]
  • Miranda P J, De Fronzo R A, Califf R M, Guyton J R. Metabolic syndrome: definition, pathophysiology, and mechanisms. Am Heart J 2005; 149: 33–45, [CSA], [CROSSREF]
  • Matthews D R, Hosker J P, Rudenski A S, Naylor B A, Treacher D F, Turner R C. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412–419, [CSA], [CROSSREF]
  • Lebovitz H E. Insulin resistance: definition and consequences. Exp Clin Endocrinol Diabetes 2001; 109: S135–S148, Suppl 2 [CSA], [CROSSREF]
  • Hanley A J, Wagenknecht L E, D'Agostino R B, Jr., Zinman B, Haffner S M. Identification of subjects with insulin resistance and beta-cell dysfunction using alternative definitions of the metabolic syndrome. Diabetes 2003; 52: 2740–2747, [CSA]
  • Imperatore G, Riccardi G, Iovine C, Rivellese A A, Vaccaro O. Plasma fibrinogen: a new factor of the metabolic syndrome. A population-based study. Diabetes Care 1998; 21: 649–654, [CSA]
  • Raynaud E, Brun J F, Perez-Martin A, Orsetti A, Solere M. Negative correlation between plasma fibrinogen and insulin sensitivity measured with the minimal model technique. Clin Hemorheol Microcirc 1998; 18: 323–330, [CSA]
  • Bastard J P, Pieroni L, Hainque B. Relationship between plasma plasminogen activator inhibitor 1 and insulin resistance. Diabetes Metab Res Rev 2000; 16: 192–201, [CSA], [CROSSREF]
  • Carroll S, Cooke C B, Butterly R J. Plasma viscosity, fibrinogen and the metabolic syndrome: effect of obesity and cardiorespiratory fitness. Blood Coagul Fibrinolysis 2000; 11: 71–78, [CSA], [CROSSREF]
  • Ford E S. The metabolic syndrome and C-reactive protein, fibrinogen, and leukocyte count: findings from the Third National Health and Nutrition Examination Survey. Atherosclerosis 2003; 168: 351–358, [CSA], [CROSSREF]
  • Laaksonen D E, Niskanen L, Nyyssonen K, Punnonen K, Tuomainen T P, Valkonen V P, Salonen R, Salonen J T. C-reactive protein and the development of the metabolic syndrome and diabetes in middle-aged men. Diabetologia 2004; 47: 1403–1410, [CSA], [CROSSREF]
  • Rutter M K, Meigs J B, Sullivan L M, D'Agostino R B, Sr., Wilson P W. C-reactive protein, the metabolic syndrome, and prediction of cardiovascular events in the Framingham Offspring Study. Circulation 2004; 110: 380–385, [CSA], [CROSSREF]
  • Diez J J, Iglesias P. The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur J Endocrinol 2003; 148: 293–300, [CSA], [CROSSREF]
  • Murakami H, Ura N, Furuhashi M, Higashiura K, Miura T, Shimamoto K. Role of adiponectin in insulin-resistant hypertension and atherosclerosis. Hypertens Res 2003; 26: 705–710, [CSA], [CROSSREF]
  • Nussdorfer G G, Rossi G P, Malendowicz L K, Mazzocchi G. Autocrine/paracrine endothelin system in the physiology and pathology of steroid secreting tissues. Pharmacol Rev 1999; 51: 403–408, [CSA]
  • Blake G J, Ridker P M. Novel clinical markers of vascular wall inflammation. Circ Res 2001; 89: 763–771, [CSA]
  • Ridker P M, Cushman M, Stampfer M J, Tracy R P, Hennekens C H. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med 1997; 336: 973–979, [CSA], [CROSSREF]
  • Ridker P M, Cushman M, Stampfer M J, Tracy R P, Hennekens C H. Plasma concentration of C-reactive protein and risk of developing peripheral vascular disease. Circulation 1998; 97: 425–428, [CSA]
  • Ridker P M, Glynn R J, Hennekens C H. C-reactive protein adds to the predictive value of total and HDL cholesterol in determining risk of first myocardial infarction. Circulation 1998; 97: 2007–2011, [CSA]
  • Ridker P M, Hennekens C H, Buring J E, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 2000; 342: 836–843, [CSA]
  • Ridker P M, Stampfer M J, Rifai N. Novel risk factors for systemic atherosclerosis: a comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein(a), and standard cholesterol screening as predictors of peripheral arterial disease. JAMA 2001; 285: 2481–2485, [CSA], [CROSSREF]
  • Ridker P M. High-sensitivity C-reactive protein: potential adjunct for global risk assessment in the primary prevention of cardiovascular disease. Circulation 2001; 103: 1813–1818, [CSA]
  • Ridker P M, Buring J E, Cook N R, Rifai N. C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14719 initially healthy American women. Circulation 2003; 107: 391–397, [CSA], [CROSSREF]
  • Pearson T A, Mensah G A, Alexander R W, Anderson J L, Cannon R O, III, Criqui M, Fadl Y Y, Fortmann S P, Hong Y, Myers G L, Rifai N, Smith S C, Jr., Taubert K, Tracy R P, Vinicor F. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 2003; 107: 499–511, [CSA], [CROSSREF]
  • Roberts W L, Moulton L, Law T C, Farrow G, Cooper-Anderson M, Savory J, Rifai N. Evaluation of nine automated high-sensitivity C-reactive protein methods: implications for clinical and epidemiological applications. Part 2. Clin Chem 2001; 47: 418–425, [CSA]
  • Klag M J, Whelton P K, Randall B L, Neaton J D, Brancati F L, Ford C E, Shulman N B, Stamler J. Blood pressure and end-stage renal disease in men. N Engl J Med 1996; 334: 13–18, [CSA], [CROSSREF]
  • Caetano E P, Zatz R, Praxedes J N. The clinical diagnosis of hypertensive nephrosclerosis—how reliable is it?. Nephrol Dial Transplant 1999; 14: 288–290, [CSA], [CROSSREF]
  • Luft F C. Hypertensive nephrosclerosis—a cause of end-stage renal disease?. Nephrol Dial Transplant 2000; 15: 1515–1517, [CSA], [CROSSREF]
  • Tozawa M, Iseki K, Iseki C, Kinjo K, Ikemiya Y, Takishita S. Blood pressure predicts risk of developing end-stage renal disease in men and women. Hypertension 2003; 41: 1341–1345, [CSA], [CROSSREF]
  • Fox C S, Larson M G, Leip E P, Culleton B, Wilson P W, Levy D. Predictors of new-onset kidney disease in a community-based population. JAMA 2004; 291: 844–850, [CSA], [CROSSREF]
  • Bakris G L, Williams M, Dworkin L, Elliott W J, Epstein M, Toto R, Tuttle K, Douglas J, Hsueh W, Sowers J. Preserving renal function in adults with hypertension and diabetes: a consensus approach. National Kidney Foundation Hypertension and Diabetes Executive Committees Working Group. Am J Kidney Dis 2000; 36: 646–661, [CSA]
  • Kannel W B, Stampfer M J, Castelli W P, Verter J. The prognostic significance of proteinuria: the Framingham study. Am Heart J 1984; 108: 1347–1352, [CSA], [CROSSREF]
  • Bertani T, Cutillo F, Zoja C, Broggini M, Remuzzi G. Tubulo-interstitial lesions mediate renal damage in adriamycin glomerulopathy. Kidney Int 1986; 30: 488–496, [CSA]
  • Cameron J S. Proteinuria and progression in human glomerular diseases. Am J Nephrol 1990; 10: S81–S87, Suppl 1[CSA]
  • D'Amico G. Clinical factors in progressive renal injury. The role of proteinuria. Am J Kidney Dis 1991; 17: 48–52, [CSA]
  • Benigni A, Perico N, Remuzzi G. Research on renal endothelin in proteinuric nephropathies dictates novel strategies to prevent progression. Curr Opin Nephrol Hypertens 2001; 10: 1–6, [CSA]
  • Zelmanovitz T, Gross J L, Oliveira J, de Azevedo M J. Proteinuria is still useful for the screening and diagnosis of overt diabetic nephropathy. Diabetes Care 1998; 21: 1076–1079, [CSA]
  • Ginsberg J M, Chang B S, Matarese R A, Garella S. Use of single voided urine samples to estimate quantitative proteinuria. N Engl J Med 1983; 309: 1543–1546, [CSA]
  • Nathan D M, Rosenbaum C, Protasowicki V D. Single-void urine samples can be used to estimate quantitative microalbuminuria. Diabetes Care 1987; 10: 414–418, [CSA]
  • Schwab S J, Christensen R L, Dougherty K, Klahr S. Quantitation of proteinuria by the use of protein-to-creatinine ratios in single urine samples. Arch Intern Med 1987; 147: 943–944, [CSA], [CROSSREF]
  • Chu N F, Ferng S H, Shieh S D, Fan C D, Shyh T P, Chu P L. Assessment of proteinuria by using the protein/creatinine ratio of single-voided urine. J Formos Med Assoc 1990; 89: 657–660, [CSA]
  • Wilson D M, Anderson R L. Protein-osmolality ratio for the quantitative assessment of proteinuria from a random urinalysis sample. Am J Clin Pathol 1993; 100: 419–424, [CSA]
  • Cottiero R A, Madaio M P, Levey A S. Glomerular filtration rate and urinary albumin excretion rate in systemic lupus erythematosus. Nephron 1995; 69: 140–146, [CSA]
  • Rodby R A, Rohde R D, Sharon Z, Pohl M A, Bain R P, Lewis E J. The urine protein to creatinine ratio as a predictor of 24-hour urine protein excretion in type 1 diabetic patients with nephropathy. The Collaborative Study Group. Am J Kidney Dis 1995; 26: 904–909, [CSA]
  • Steinhauslin F, Wauters J P. Quantitation of proteinuria in kidney transplant patients: accuracy of the urinary protein/creatinine ratio. Clin Nephrol 1995; 43: 110–115, [CSA]
  • Zelmanovitz T, Gross J L, Oliveira J R, Paggi A, Tatsch M, Azevedo M J. The receiver operating characteristics curve in the evaluation of a random urine specimen as a screening test for diabetic nephropathy. Diabetes Care 1997; 20: 516–519, [CSA]
  • Ahn C W, Song Y D, Kim J H, Lim S K, Choi K H, Kim K R, Lee H C, Huh K B. The validity of random urine specimen albumin measurement as a screening test for diabetic nephropathy. Yonsei Med J 1999; 40: 40–45, [CSA]
  • Ng W Y, Lui K F, Thai A C. Evaluation of a rapid screening test for microalbuminuria with a spot measurement of urine albumin-creatinine ratio. Ann Acad Med Singapore 2000; 29: 62–65, [CSA]
  • Keane W F, Eknoyan G. Proteinuria, albuminuria, risk, assessment, detection, elimination (PARADE): a position paper of the National Kidney Foundation. Am J Kidney Dis 1999; 33: 1004–1010, [CSA]
  • Ruilope L M, Garcia-Puig J. Hyperuricemia and renal function. Curr Hypertens Rep 2001; 3: 197–202, [CSA]
  • Messerli F H, Frohlich E D, Dreslinski G R, Suarez D H, Aristimuno G G. Serum uric acid in essential hypertension: an indicator of renal vascular involvement. Ann Intern Med 1980; 93: 817–821, [CSA]
  • Facchini F, Chen Y D, Hollenbeck C B, Reaven G M. Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance, and plasma uric acid concentration. JAMA 1991; 266: 3008–3011, [CSA], [CROSSREF]
  • Puig J G, Ruilope L M. Uric acid as a cardiovascular risk factor in arterial hypertension. J Hypertens 1999; 17: 869–872, [CSA], [CROSSREF]
  • Ward H J. Uric acid as an independent risk factor in the treatment of hypertension. Lancet 1998; 352: 670–671, [CSA], [CROSSREF]
  • Alderman M H, Cohen H, Madhavan S, Kivlighn S. Serum uric acid and cardiovascular events in successfully treated hypertensive patients. Hypertension 1999; 34: 144–150, [CSA]
  • Franse L V, Pahor M, Di Bari M, Shorr R I, Wan J Y, Somes G W, Applegate W B. Serum uric acid, diuretic treatment and risk of cardiovascular events in the Systolic Hypertension in the Elderly Program (SHEP). J Hypertens 2000; 18: 1149–1154, [CSA], [CROSSREF]
  • Verdecchia P, Schillaci G, Reboldi G, Santeusanio F, Porcellati C, Brunetti P. Relation between serum uric acid and risk of cardiovascular disease in essential hypertension. The PIUMA study. Hypertension 2000; 36: 1072–1078, [CSA]
  • Wannamethee S G. Serum uric acid is not an independent risk factor for coronary heart disease. Curr Hypertens Rep 2001; 3: 190–196, [CSA]
  • Glick M R, Ryder K W, Jackson S A. Graphical comparisons of interferences in clinical chemistry instrumentation. Clin Chem 1986; 32: 470–475, [CSA]
  • Jamison R L. Hyponatremia: a re-examination. Curr Opin Nephrol Hypertens 1997; 6: 363–366, [CSA]
  • Goh K P. Management of hyponatremia. Am Fam Physician 2004; 69: 2387–2394, [CSA]
  • Baylis P H. The syndrome of inappropriate antidiuretic hormone secretion. Int J Biochem Cell Biol 2003; 35: 1495–1499, [CSA], [CROSSREF]
  • Fabian T J, Amico J A, Kroboth P D, Mulsant B H, Reynolds C F, III, Pollock B G. Paroxetine-induced hyponatremia in the elderly due to the syndrome of inappropriate secretion of antidiuretic hormone (SIADH). J Geriatr Psychiatry Neurol 2003; 16: 160–164, [CSA], [CROSSREF]
  • Stein B C, Levin R I. Natriuretic peptides: physiology, therapeutic potential, and risk stratification in ischemic heart disease. Am Heart J 1998; 135: 914–923, [CSA], [CROSSREF]
  • Gardner R S, Ozalp F, Murday A J, Robb S D, McDonagh T A. N-terminal pro-brain natriuretic peptide. A new gold standard in predicting mortality in patients with advanced heart failure. Eur Heart J 2003; 24: 1735–1743, [CSA], [CROSSREF]
  • Hall C. Essential biochemistry and physiology of (NT-pro)BNP. Eur J Heart Fail 2004; 6: 257–260, [CSA], [CROSSREF]
  • Stanek B, Frey B, Hulsmann M, Berger R, Sturm B, Strametz-Juranek J, Bergler-Klein J, Moser P, Bojic A, Hartter E, Pacher R. Prognostic evaluation of neurohumoral plasma levels before and during beta-blocker therapy in advanced left ventricular dysfunction. J Am Coll Cardiol 2001; 38: 436–442, [CSA], [CROSSREF]
  • Groenning B A, Nilsson J C, Sondergaard L, Pedersen F, Trawinski J, Baumann M, Larsson H B, Hildebrandt P R. Detection of left ventricular enlargement and impaired systolic function with plasma N-terminal pro brain natriuretic peptide concentrations. Am Heart J 2002; 143: 923–929, [CSA], [CROSSREF]
  • Bettencourt P. NT-proBNP and BNP: biomarkers for heart failure management. Eur J Heart Fail 2004; 6: 359–363, [CSA], [CROSSREF]
  • Richards A M, Lainchbury J G, Nicholls M G, Troughton R W, Yandle T G. BNP in hormone-guided treatment of heart failure. Trends Endocrinol Metab 2002; 13: 151–155, [CSA]
  • Hunt P J, Richards A M, Nicholls M G, Yandle T G, Doughty R N, Espiner E A. Immunoreactive amino-terminal pro-brain natriuretic peptide (NT-PROBNP): a new marker of cardiac impairment. Clin Endocrinol (Oxf) 1997; 47: 287–296, [CSA]
  • Koglin J, Pehlivanli S, Schwaiblmair M, Vogeser M, Cremer P, von Scheidt W. Role of brain natriuretic peptide in risk stratification of patients with congestive heart failure. J Am Coll Cardiol 2001; 38: 1934–1941, [CSA], [CROSSREF]
  • Richards A M, Doughty R, Nicholls M G, MacMahon S, Sharpe N, Murphy J, Espiner E A, Frampton C, Yandle T G. Plasma N-terminal pro-brain natriuretic peptide and adrenomedullin: prognostic utility and prediction of benefit from carvedilol in chronic ischemic left ventricular dysfunction. Australia-New Zealand Heart Failure Group. J Am Coll Cardiol 2001; 37: 1781–1787, [CSA], [CROSSREF]
  • Kruger S, Graf J, Kunz D, Stickel T, Hanrath P, Janssens U. brain natriuretic peptide levels predict functional capacity in patients with chronic heart failure. J Am Coll Cardiol 2002; 40: 718–722, [CSA], [CROSSREF]
  • Hildebrandt P, Boesen M, Olsen M, Wachtell K, Groenning B. N-terminal pro brain natriuretic peptide in arterial hypertension—a marker for left ventricular dimensions and prognosis. Eur J Heart Fail 2004; 6: 313–317, [CSA], [CROSSREF]
  • Clerico A, Del Ry S, Giannessi D. Measurement of cardiac natriuretic hormones (atrial natriuretic peptide, brain natriuretic peptide, and related peptides) in clinical practice: the need for a new generation of immunoassay methods. Clin Chem 2000; 46: 1529–1534, [CSA]
  • Maisel A S, Krishnaswamy P, Nowak R M, McCord J, Hollander J E, Duc P, Omland T, Storrow A B, Abraham W T, Wu A H, Clopton P, Steg P G, Westheim A, Knudsen C W, Perez A, Kazanegra R, Herrmann H C, McCullough P A. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med 2002; 347: 161–167, [CSA], [CROSSREF]
  • Collinson P O, Barnes S C, Gaze D C, Galasko G, Lahiri A, Senior R. Analytical performance of the N terminal pro B type natriuretic peptide (NT-proBNP) assay on the Elecsys 1010 and 2010 analysers. Eur J Heart Fail 2004; 6: 365–368, [CSA], [CROSSREF]
  • Weber K T. Fibrosis and hypertensive heart disease. Curr Opin Cardiol 2000; 15: 264–272, [CSA], [CROSSREF]
  • Lopez B, Gonzalez A, Varo N, Laviades C, Querejeta R, Diez J. Biochemical assessment of myocardial fibrosis in hypertensive heart disease. Hypertension 2001; 38: 1222–1226, [CSA]
  • Diez J, Laviades C. Monitoring fibrillar collagen turnover in hypertensive heart disease. Cardiovasc Res 1997; 35: 202–205, [CSA], [CROSSREF]
  • Bonetti P O, Lerman L O, Lerman A. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol 2003; 23: 168–175, [CSA], [CROSSREF]
  • Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988; 332: 411–415, [CSA], [CROSSREF]
  • Gryglewski R J, Botting R M, Vane J R. Mediators produced by the endothelial cell. Hypertension 1988; 12: 530–548, [CSA]
  • Ignarro L J. Endothelium-derived nitric oxide: pharmacology and relationship to the actions of organic nitrate esters. Pharm Res 1989; 6: 651–659, [CSA], [CROSSREF]
  • Vane J R, Anggard E E, Botting R M. Regulatory functions of the vascular endothelium. N Engl J Med 1990; 323: 27–36, [CSA]
  • Ignarro L J. Nitric oxide. A novel signal transduction mechanism for transcellular communication. Hypertension 1990; 16: 477–483, [CSA]
  • Vane J R, Botting R M. Secretory functions of the vascular endothelium. J Physiol Pharmacol 1992; 43: 195–207, [CSA]
  • Fleming I, Busse R. NO: the primary EDRF. J Mol Cell Cardiol 1999; 31: 5–14, [CSA], [CROSSREF]
  • Ignarro L J, Cirino G, Casini A, Napoli C. Nitric oxide as a signaling molecule in the vascular system: an overview. J Cardiovasc Pharmacol 1999; 34: 879–886, [CSA], [CROSSREF]
  • Rossi G P, Seccia T M, Albertin G, Pessina A C. Measurement of endothelin: clinical and research use. Ann Clin Biochem 2000; 37: 608–626, [CSA], [CROSSREF]
  • Seccia T M, Maiolino G, Pessina A C, Rossi G P. The molecular basis of the interplay between endothelin-1 and nitric oxide and its relevance for atherosclerosis and arterial and pulmonary hypertension. Vascular Disease Prevention 2005; 2: 53–66, [CSA], [CROSSREF]
  • Brunner H, Cockcroft J R, Deanfield J, Donald A, Ferrannini E, Halcox J, Klowski W, Luscher T F, Mancia G, Natali A, Oliver J J, Pessina A C, Rizzoni D, Rossi G P, Salvetti A, Spieker L E, Taddei S, Webb D J. Endothelial function and dysfunction. Part II: Association with Cardiovascular Risk Factors and Diseases. A Statement by the Working Group on Endothelins and Endothelial Factors of the European Society of Hypertension. J Hypertens 2005; 23: 233–246, [CSA], [CROSSREF]
  • Verma S, Szmitko P E, Anderson T J. Endothelial function: ready for prime time?. Can J Cardiol 2004; 20: 1335–1339, [CSA]
  • Schachinger V, Britten M B, Zeiher A M. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 2000; 101: 1899–906, [CSA]
  • Suwaidi J A, Hamasaki S, Higano S T, Nishimura R A, Holmes D R, Jr., Lerman A. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation 2000; 101: 948–954, [CSA]
  • Cohn J N. Arterial compliance to stratify cardiovascular risk: more precision in therapeutic decision making. Am J Hypertens 2001; 14(8 pt. 2)258S–263S, [CSA], [CROSSREF]
  • Modena M G, Bonetti L, Coppi F, Bursi F, Rossi R. Prognostic role of reversible endothelial dysfunction in hypertensive postmenopausal women. J Am Coll Cardiol 2002; 40: 505–510, [CSA], [CROSSREF]
  • Targonski P V, Bonetti P O, Pumper G M, Higano S T, Holmes D R, Jr., Lerman A. Coronary endothelial dysfunction is associated with an increased risk of cerebrovascular events. Circulation 2003; 107: 2805–2809, [CSA], [CROSSREF]
  • Motz W, Vogt M, Rabenau O, Scheler S, Luckhoff A, Strauer B E. Evidence of endothelial dysfunction in coronary resistance vessels in patients with angina pectoris and normal coronary angiograms. Am J Cardiol 1991; 68: 996–1003, [CSA], [CROSSREF]
  • Quyyumi A A, Cannon R O, III, Panza J A, Diodati J G, Epstein S E. Endothelial dysfunction in patients with chest pain and normal coronary arteries. Circulation 1992; 86: 1864–1871, [CSA]
  • Egashira K, Inou T, Hirooka Y, Yamada A, Urabe Y, Takeshita A. Evidence of impaired endothelium-dependent coronary vasodilatation in patients with angina pectoris and normal coronary angiograms. N Engl J Med 1993; 328: 1659–1664, [CSA], [CROSSREF]
  • Zeiher A M, Krause T, Schachinger V, Minners J, Moser E. Impaired endothelium-dependent vasodilation of coronary resistance vessels is associated with exercise-induced myocardial ischemia. Circulation 1995; 91: 2345–2352, [CSA]
  • Libby P. Current concepts of the pathogenesis of the acute coronary syndromes. Circulation 2001; 104: 365–372, [CSA]
  • Anderson T J, Gerhard M D, Meredith I T, Charbonneau F, Delagrange D, Creager M A, Selwyn A P, Ganz P. Systemic nature of endothelial dysfunction in atherosclerosis. Am J Cardiol 1995; 75: 71B–74B, [CSA], [CROSSREF]
  • Coll-Vinent B, Grau J M, Lopez-Soto A, Oristrell J, Font C, Bosch X, Mirapeix E, Urbano-Marquez A, Cid M C. Circulating soluble adhesion molecules in patients with classical polyarteritis nodosa. Br J Rheumatol 1997; 36: 1178–1183, [CSA], [CROSSREF]
  • Schonbeck U, Varo N, Libby P, Buring J, Ridker P M. Soluble CD40L and cardiovascular risk in women. Circulation 2001; 104: 2266–2268, [CSA]
  • Deanfield J, Donald A, Ferri C, Giannattasio C, Halcox J, Halligan S, Lerman A, Mancia G, Oliver J J, Pessina A C, Rizzoni D, Rossi G P, Salvetti A, Schiffrin E L, Taddei S, Webb D J. Endothelial function and dysfunction. Part I: Methodological issues for assessment in the different vascular beds: A statement by the Working Group on Endothelin and Endothelial Factors of the European Society of Hypertension. J Hypertens 2005; 23: 7–17, [CSA], [CROSSREF]
  • Dibbs Z, Thornby J, White B G, Mann D L. Natural variability of circulating levels of cytokines and cytokine receptors in patients with heart failure: implications for clinical trials. J Am Coll Cardiol 1999; 33: 1935–1942, [CSA], [CROSSREF]
  • Jung K, Lein M, Laube C, Lichtinghagen R. Blood specimen collection methods influence the concentration and the diagnostic validity of matrix metalloproteinase 9 in blood. Clin Chim Acta 2001; 314: 241–244, [CSA], [CROSSREF]
  • Sampson M J, Gopaul N, Davies I R, Hughes D A, Carrier M J. Plasma F2 isoprostanes: direct evidence of increased free radical damage during acute hyperglycemia in type 2 diabetes. Diabetes Care 2002; 25: 537–541, [CSA]
  • Kaden J J, Dempfle C E, Sueselbeck T, Brueckmann M, Poerner T C, Haghi D, Haase K K, Borggrefe M. Time-dependent changes in the plasma concentration of matrix metalloproteinase 9 after acute myocardial infarction. Cardiology 2003; 99: 140–144, [CSA], [CROSSREF]
  • Stumpf C, Lehner C, Eskafi S, Raaz D, Yilmaz A, Ropers S, Schmeisser A, Ludwig J, Daniel W G, Garlichs C D. Enhanced levels of CD154 (CD40 ligand) on platelets in patients with chronic heart failure. Eur J Heart Fail 2003; 5: 629–637, [CSA], [CROSSREF]
  • Shibata H, Nabika T, Moriyama H, Masuda J, Kobayashi S. Correlation of NO metabolites and 8-iso-prostaglandin F2a with periventricular hyperintensity severity. Arterioscler Thromb Vasc Biol 2004; 24: 1659–1663, [CSA], [CROSSREF]
  • Price D T, Loscalzo J. Cellular adhesion molecules and atherogenesis. Am J Med 1999; 107: 85–97, [CSA], [CROSSREF]
  • Blankenberg S, Barbaux S, Tiret L. Adhesion molecules and atherosclerosis. Atherosclerosis 2003; 170: 191–203, [CSA], [CROSSREF]
  • Mangge H, Hubmann H, Pilz S, Schauenstein K, Renner W, Marz W. Beyond cholesterol—inflammatory cytokines, the key mediators in atherosclerosis. Clin Chem Lab Med 2004; 42: 467–474, [CSA], [CROSSREF]
  • Ridker P M, Hennekens C H, Roitman-Johnson B, Stampfer M J, Allen J. Plasma concentration of soluble intercellular adhesion molecule 1 and risks of future myocardial infarction in apparently healthy men. Lancet 1998; 351: 88–92, [CSA], [CROSSREF]
  • Rohde L E, Hennekens C H, Ridker P M. Cross-sectional study of soluble intercellular adhesion molecule-1 and cardiovascular risk factors in apparently healthy men. Arterioscler Thromb Vasc Biol 1999; 19: 1595–1599, [CSA]
  • Demerath E, Towne B, Blangero J, Siervogel R M. The relationship of soluble ICAM-1, VCAM-1, P-selectin and E-selectin to cardiovascular disease risk factors in healthy men and women. Ann Hum Biol 2001; 28: 664–678, [CSA], [CROSSREF]
  • Ridker P M, Buring J E, Rifai N. Soluble P-selectin and the risk of future cardiovascular events. Circulation 2001; 103: 491–495, [CSA]
  • Calabresi L, Gomaraschi M, Villa B, Omoboni L, Dmitrieff C, Franceschini G. Elevated soluble cellular adhesion molecules in subjects with low HDL-cholesterol. Arterioscler Thromb Vasc Biol 2002; 22: 656–661, [CSA]
  • Schonbeck U, Libby P. CD40 signaling and plaque instability. Circ Res 2001; 89: 1092–1103, [CSA]
  • Varo N, de Lemos J A, Libby P, Morrow D A, Murphy S A, Nuzzo R, Gibson C M, Cannon C P, Braunwald E, Schonbeck U. Soluble CD40L: risk prediction after acute coronary syndromes. Circulation 2003; 108: 1049–1052, [CSA], [CROSSREF]
  • Katusic Z S. Superoxide anion and endothelial regulation of arterial tone. Free Radic Biol Med 1996; 20: 443–448, [CSA], [CROSSREF]
  • Wolin M S, Gupte S A, Oeckler R A. Superoxide in the vascular system. J Vasc Res 2002; 39: 191–207, [CSA], [CROSSREF]
  • Shishehbor M H, Hazen S L. Inflammatory and oxidative markers in atherosclerosis: relationship to outcome. Curr Atheroscler Rep 2004; 6: 243–250, [CSA]
  • Stocker R, Keaney J F, Jr. Role of oxidative modifications in atherosclerosis. Physiol Rev 2004; 84: 1381–1478, [CSA], [CROSSREF]
  • Patrono C, Fitz Gerald G A. Isoprostanes: potential markers of oxidant stress in atherothrombotic disease. Arterioscler Thromb Vasc Biol 1997; 17: 2309–2315, [CSA]
  • Mezzetti A, Cipollone F, Cuccurullo F. Oxidative stress and cardiovascular complications in diabetes: isoprostanes as new markers on an old paradigm. Cardiovasc Res 2000; 47: 475–488, [CSA], [CROSSREF]
  • Szmitko P E, Wang C H, Weisel R D, Jeffries G A, Anderson T J, Verma S. Biomarkers of vascular disease linking inflammation to endothelial activation: Part II. Circulation 2003; 108: 2041–2048, [CSA], [CROSSREF]
  • Ehara S, Ueda M, Naruko T, Haze K, Itoh A, Otsuka M, Komatsu R, Matsuo T, Itabe H, Takano T, Tsukamoto Y, Yoshiyama M, Takeuchi K, Yoshikawa J, Becker A E. Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes. Circulation 2001; 103: 1955–1960, [CSA]
  • Rossi G P, Cesari M, De Toni R, Zanchetta M, Maiolino G, Pedon L, Ganzaroli C, Maiolino P, Pessina A C. Antibodies to oxidized low-density lipoproteins and angiographically assessed coronary artery disease in white patients. Circulation 2003; 108: 2467–2472, [CSA], [CROSSREF]
  • Stamler J S, Singel D J, Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science 1992; 258: 1898–1902, [CSA]
  • Wennmalm A, Lanne B, Petersson A S. Detection of endothelial-derived relaxing factor in human plasma in the basal state and following ischemia using electron paramagnetic resonance spectrometry. Anal Biochem 1990; 187: 359–363, [CSA], [CROSSREF]
  • Arroyo C M, Kohno M. Difficulties encountered in the detection of nitric oxide (NO) by spin trapping techniques. A cautionary note. Free Radic Res Commun 1991; 14: 145–155, [CSA]
  • Guevara I, Iwanejko J, Dembinska-Kiec A, Pankiewicz J, Wanat A, Anna P, Golabek I, Bartus S, Malczewska-Malec M, Szczudlik A. Determination of nitrite/nitrate in human biological material by the simple Griess reaction. Clin Chim Acta 1998; 274: 177–188, [CSA], [CROSSREF]
  • Kurioka S, Koshimura K, Sugitani M, Murakami Y, Nishiki M, Kato Y. Analysis of urinary nitric oxide metabolites in healthy subjects. Endocr J 1999; 46: 421–428, [CSA]
  • Pierdomenico S D, Cipollone F, Lapenna D, Bucci A, Cuccurullo F, Mezzetti A. Endothelial function in sustained and white coat hypertension. Am J Hypertens 2002; 15: 946–952, [CSA], [CROSSREF]
  • Green L C, Wagner D A, Glogowski J, Skipper P L, Wishnok J S, Tannenbaum S R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 1982; 126: 131–138, [CSA], [CROSSREF]
  • Moshage H, Kok B, Huizenga J R, Jansen P L. Nitrite and nitrate determinations in plasma: a critical evaluation. Clin Chem 1995; 41: 892–896, [CSA]
  • Misko T P, Schilling R J, Salvemini D, Moore W M, Currie M G. A fluorometric assay for the measurement of nitrite in biological samples. Anal Biochem 1993; 214: 11–16, [CSA], [CROSSREF]
  • Tsikas D, Gutzki F M, Rossa S, Bauer H, Neumann C, Dockendorff K, Sandmann J, Frolich J C. Measurement of nitrite and nitrate in biological fluids by gas chromatography-mass spectrometry and by the Griess assay: problems with the Griess assay—solutions by gas chromatography-mass spectrometry. Anal Biochem 1997; 244: 208–220, [CSA], [CROSSREF]
  • Rossi G P, Seccia T M, Nussdorfer G G. Reciprocal regulation of endothelin-1 and nitric oxide: relevance in the physiology and pathology of the cardiovascular system. Int Rev Cytol 2001; 209: 241–272, [CSA]
  • The Homocysteine Studies Collaboration. Homocysteine and risk of ischemic heart disease and stroke: A meta-analysis. JAMA 2002; 288: 2015–2022, [CSA], [CROSSREF]
  • Graham I M, Daly L E, Refsum H M, Robinson K, Brattstrom L E, Ueland P M, Palma-Reis R J, Boers G H, Sheahan R G, Israelsson B, Uiterwaal C S, Meleady R, McMaster D, Verhoef P, Witteman J, Rubba P, Bellet H, Wautrecht J C, de Valk H W, Sales Luis A C, Parrot-Rouland F M, Tan K S, Higgins I, Garcon D, Andria G. Plasma homocysteine as a risk factor for vascular disease. The European Concerted Action Project. JAMA 1997; 277: 1775–1781, [CSA], [CROSSREF]
  • Eikelboom J W, Lonn E, Genest J, Jr., Hankey G, Yusuf S. Homocyst(e)ine and cardiovascular disease: a critical review of the epidemiologic evidence. Ann Intern Med 1999; 131: 363–375, [CSA]
  • Nygard O, Nordrehaug J E, Refsum H, Ueland P M, Farstad M, Vollset S E. Plasma homocysteine levels and mortality in patients with coronary artery disease. N Engl J Med 1997; 337: 230–236, [CSA], [CROSSREF]
  • Cesari M, Zanchetta M, Burlina A, Pedon L, Maiolino G, Sticchi D, Pessina A C, Rossi G P. Hyperhomocysteinemia is inversely related with left ventricular ejection fraction and predicts cardiovascular mortality in high-risk coronary artery disease hypertensives. Arterioscler Thromb Vasc Biol 2005; 25: 1–7, [CSA]
  • Mangoni A A, Jackson S H. Homocysteine and cardiovascular disease: current evidence and future prospects. Am J Med 2002; 112: 556–565, [CSA], [CROSSREF]
  • Schnyder G, Roffi M, Pin R, Flammer Y, Lange H, Eberli F R, Meier B, Turi Z G, Hess O M. Decreased rate of coronary restenosis after lowering of plasma homocysteine levels. N Engl J Med 2001; 345: 1593–1600, [CSA], [CROSSREF]
  • Lawrence de Koning A B, Werstuck G H, Zhou J, Austin R C. Hyperhomocysteinemia and its role in the development of atherosclerosis. Clin Biochem 2003; 36: 431–441, [CSA], [CROSSREF]
  • Clarke R, Daly L, Robinson K, Naughten E, Cahalane S, Fowler B, Graham I. Hyperhomocysteinemia: an independent risk factor for vascular disease. N Engl J Med 1991; 324: 1149–1155, [CSA]
  • Selhub J, Jacques P F, Bostom A G, D'Agostino R B, Wilson P W, Belanger A J, O'Leary D H, Wolf P A, Schaefer E J, Rosenberg I H. Association between plasma homocysteine concentrations and extracranial carotid-artery stenosis. N Engl J Med 1995; 332: 286–291, [CSA], [CROSSREF]
  • McCully K S. Homocysteine and vascular disease. Nat Med 1996; 2: 386–389, [CSA], [CROSSREF]
  • den Heijer M, Koster T, Blom H J, Bos G M, Briet E, Reitsma P H, Vandenbroucke J P, Rosendaal F R. Hyperhomocysteinemia as a risk factor for deep-vein thrombosis. N Engl J Med 1996; 334: 759–762, [CSA], [CROSSREF]
  • Ueland P M, Refsum H, Beresford S A, Vollset S E. The controversy over homocysteine and cardiovascular risk. Am J Clin Nutr 2000; 72: 324–332, [CSA]
  • Bostom A G, Shemin D, Verhoef P, Nadeau M R, Jacques P F, Selhub J, Dworkin L, Rosenberg I H. Elevated fasting total plasma homocysteine levels and cardiovascular disease outcomes in maintenance dialysis patients. A prospective study. Arterioscler Thromb Vasc Biol 1997; 17: 2554–2558, [CSA]
  • Moustapha A, Naso A, Nahlawi M, Gupta A, Arheart K L, Jacobsen D W, Robinson K, Dennis V W. Prospective study of hyperhomocysteinemia as an adverse cardiovascular risk factor in end-stage renal disease. Circulation 1998; 97: 138–141, [CSA]
  • Ducloux D, Motte G, Challier B, Gibey R, Chalopin J M. Serum total homocysteine and cardiovascular disease occurrence in chronic, stable renal transplant recipients: a prospective study. J Am Soc Nephrol 2000; 11: 134–137, [CSA]
  • Berg K, Malinow M R, Kierulf P, Upson B. Population variation and genetics of plasma homocyst(e)ine level. Clin Genet 1992; 41: 315–321, [CSA]
  • American Society of Human Genetics ACoMGTaTCWG. Measurement and use of total plasma homocysteine. Am J Hum Genet 1998; 63: 1541–1543, [CSA], [CROSSREF]
  • Blom H J. Genetic determinants of hyperhomocysteinaemia: the roles of cystathionine beta-synthase and 5,10-methylenetetrahydrofolate reductase. Eur J Pediatr 2000; 159: S208–S212, Suppl 3 [CSA]
  • Refsum H, Ueland P M, Nygard O, Vollset S E. Homocysteine and cardiovascular disease. Annu Rev Med 1998; 49: 31–62, [CSA], [CROSSREF]
  • Kraus J P, Janosik M, Kozich V, Mandell R, Shih V, Sperandeo M P, Sebastio G, de Franchis R, Andria G, Kluijtmans L A, Blom H, Boers G H, Gordon R B, Kamoun P, Tsai M Y, Kruger W D, Koch H G, Ohura T, Gaustadnes M. Cystathionine beta-synthase mutations in homocystinuria. Hum Mutat 1999; 13: 362–375, [CSA], [CROSSREF]
  • Vermeulen E G, Stehouwer C D, Twisk J W, van den B M, de Jong S C, Mackaay A J, van Campen C M, Visser F C, Jakobs C A, Bulterjis E J, Rauwerda J A. Effect of homocysteine-lowering treatment with folic acid plus vitamin B6 on progression of subclinical atherosclerosis: a randomised, placebo-controlled trial. Lancet 2000; 355: 517–522, [CSA], [CROSSREF]
  • Zhang X, Li H, Jin H, Ebin Z, Brodsky S, Goligorsky M S. Effects of homocysteine on endothelial nitric oxide production. Am J Physiol Renal Physiol 2000; 279: F671–F678, [CSA]
  • De Vriese A S, Blom H J, Heil S G, Mortier S, Kluijtmans L A, Van d V, Lameire N H. Endothelium-derived hyperpolarizing factor-mediated renal vasodilatory response is impaired during acute and chronic hyperhomocysteinemia. Circulation 2004; 109: 2331–2336, [CSA], [CROSSREF]
  • Neves M F, Endemann D, Amiri F, Virdis A, Pu Q, Rozen R, Schiffrin E L. Small artery mechanics in hyperhomocysteinemic mice: effects of angiotensin II. J Hypertens 2004; 22: 959–966, [CSA], [CROSSREF]
  • Stehouwer C D, van Guldener C. Does homocysteine cause hypertension?. Clin Chem Lab Med 2003; 41: 1408–1411, [CSA], [CROSSREF]
  • Nygard O, Vollset S E, Refsum H, Stensvold I, Tverdal A, Nordrehaug J E, Ueland M, Kvale G. Total plasma homocysteine and cardiovascular risk profile. The Hordaland Homocysteine Study. JAMA 1995; 274: 1526–1533, [CSA], [CROSSREF]
  • Sutton-Tyrrell K, Bostom A, Selhub J, Zeigler-Johnson C. High homocysteine levels are independently related to isolated systolic hypertension in older adults. Circulation 1997; 96: 1745–1749, [CSA]
  • Nakata Y, Katsuya T, Takami S, Sato N, Fu Y, Ishikawa K, Takiuchi S, Rakugi H, Miki T, Higaki J, Ogihara T. Methylenetetrahydrofolate reductase gene polymorphism: relation to blood pressure and cerebrovascular disease. Am J Hypertens 1998; 11: 1019–1023, [CSA]
  • Lip G Y, Edmunds E, Martin S C, Jones A F, Blann A D, Beevers D G. A pilot study of homocyst(e)ine levels in essential hypertension: relationship to von Willebrand factor, an index of endothelial damage. Am J Hypertens 2001; 14: 627–631, [CSA], [CROSSREF]
  • Kahleova R, Palyzova D, Zvara K, Zvarova J, Hrach K, Novakova I, Hyanek J, Bendlova B, Kozich V. Essential hypertension in adolescents: association with insulin resistance and with metabolism of homocysteine and vitamins. Am J Hypertens 2002; 15: 857–864, [CSA], [CROSSREF]
  • Lim U, Cassano P A. Homocysteine and blood pressure in the Third National Health and Nutrition Examination Survey, 1988-1994. Am J Epidemiol 2002; 156: 1105–1113, [CSA], [CROSSREF]
  • Neugebauer S, Tarnow L, Stehouwer C, Teerlink T, Baba T, Watanabe T, Parving H H. Total plasma homocysteine is associated with hypertension in Type I diabetic patients. Diabetologia 2002; 45: 1315–1324, [CSA], [CROSSREF]
  • Sundstrom J, Sullivan L, D'Agostino R B, Jacques P F, Selhub J, Rosenberg I H, Wilson P W, Levy D, Vasan R S. Plasma homocysteine, hypertension incidence, and blood pressure tracking: the Framingham Heart Study. Hypertension 2003; 42: 1100–1105, [CSA], [CROSSREF]
  • Lifton R P. Molecular genetics of human blood pressure variation. Science 1996; 272: 676–680, [CSA]
  • Schork N J. Genetically complex cardiovascular traits. Origins, problems, and potential solutions. Hypertension 1997; 29: 145–149, [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.