423
Views
62
CrossRef citations to date
0
Altmetric
Research Article

Polyamines and the Intestinal Tract

&
Pages 365-411 | Published online: 10 Oct 2008

REFERENCES

  • Cohen S S. A Guide to the Polyamines. University Press, New York, Oxford 1998; 1–595
  • Morgan D ML. Polyamines. An overview. Mol Biotechnol 1999; 11: 229–250
  • Thomas T, Thomas T J. Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Mol Life Sci 2001; 58: 344–358
  • Wallace H M, Fraser A V, Hughes A. A perspective of polyamine metabolism. Biochem J 2003; 376: 1–14
  • Seiler N. Pharmacologic properties of the natural polyamines and their depletion by biosynthesis inhibitors as a therapeutic approach. Prog Drug Res 1991; 37: 107–159
  • Williams K. Modulation and block of ion channels: a new biology of polyamines. Cell Signal 1997; 9: 1–13
  • Seiler N. Pharmacological aspects of cytotoxic polyamine analogs and derivatives for cancer therapy. Pharmacol Ther 2005; 107: 99–119
  • Seiler N, Atanassov C L. The natural polyamines ad the immune system. Prog Drug Res 1994; 43: 87–142
  • Bachrach U, Wang Y C, Tabib A. Polyamines: new cues in cellular signal transduction. News Physiol Sci 2001; 16: 106–109
  • Childs A C, Mehta D J, Gerner E W. Polyamine-dependent gene expression. Cell Mol Life Sci 2003; 60: 1394–1406
  • Schipper R G, Penning L C, Verhofstad A J. Involvement of polyamines in apoptosis. Facts and controversies: effectors or protectors?. Semin Cancer Biol 2000; 55–68
  • Pignatti C, Tantini B, Stefanelli C, Flamigni F. Signal transduction pathways linking polyamines to apoptosis. Amino Acids 2004; 27: 359–365
  • Seiler N, Raul F. Polyamines and apoptosis. J Cell Mol Med 2005; 9: 623–642
  • Seiler N, Atanassov C L, Raul F. Polyamine metabolism as target for cancer chemoprevention (review). Int J Oncol 1998; 13: 993–1006
  • Gerner E W, Meyskens F L, Jr. Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer 2004; 4: 781–792
  • Frydman B, Valasinas A. Polyamine-based chemotherapy of cancer. Exp Opin Ther Patents 1999; 9: 1055–1068
  • Seiler N. Thirty years of polyamine-related approaches to cancer therapy. Retrospect and prospect. Part I. Selective enzyme inhibitors. Current Drug Design 2003; 4: 537–564
  • Seiler N. Thirty years of polyamine-related approaches to cancer therapy. Retrospect and prospect. Part 2. Structural analogues and derivatives. Current Drug Design 2003; 4: 565–585
  • Moinard C, Cynober L, de Bandt J P. Polyamines: metabolism and implications in human diseases. Clin Nutr 2005; 24: 184–197
  • Milovic V. Polyamines in the gut lumen: bioavailability and biodistribution. Eur J Gastroenterol Hepatol 2001; 13: 1021–1025
  • Wallace H M, Caslake R. Polyamines and colon cancer. Eur J Gastroenterol Hepatol 2001; 13: 1033–1039
  • Milovic V, Tuchanowa L. Polyamines and colon cancer. Biochem Soc Trans 2003; 34: 381–383
  • Johnson L R, McCormack S A. Healing of gastrointestinal mucosa: involvement of polyamines. News Physiol Sci 1999; 14: 12–17
  • Polyamines in Health and Nutrition, S Bardocz, N White. Kluwer Academic Publishers, Boston, Dordrecht, London 1999; 1–335
  • Blachier F, M'Rabet-Touil H, Posho L, Morel M T, Bernard F, Darey-Villon B, Dure P. Polyamine metabolism in enterocytes isolated from newborn pigs. Biochim Biophys Acta 1992; 1175: 21–26
  • Moulinoux J P, Quemener V, Delcros J G, Cipolla B. Circulating polyamines as biological markers for cancer. Polyamines in Cancer: Basic Mechanisms and Clinical Approaches, K Nishioka. RG Landes, Austin 1996; 233–249
  • Seiler N, Daune G, Bolkenius F N, Knödgen B. Ornithine aminotransferase activity, tissue ornithine concentrations and polyamine metabolism. Int J Biochem 1989; 21: 425–432
  • Ikeguchi Y, Bewley M C, Pegg A E. Aminopropyltransferases: function, structure and genetics. J Biochem (Tokyo) 2006; 139: 1–9
  • Seiler N. Functions of polyamine acetylation. Can J Physiol Pharmacol 1987; 65: 2024–2035
  • Niiranen K, Pietila M, Pirrtila T J, Jarvinen H, Halmekytö M, Korhonen V P, Keinanen T A, Alhonen L, Jänne J. Targeted disruption of spermidine/spermine N1- acetyltransferase gene in mouse embryonic stem cells. Effects on polyamine homeostasis and sensitivity to polyamine analogues. J Biol Chem 2002; 277: 25323–25328
  • Seiler N, Duranton B, Raul F. The polyamine oxidase inactivator MDL 72527. Prog Drug Res 2002; 59: 1–40
  • Sarhan S, Quemener V, Moulinoux J P, Knödgen B, Seiler N. On the degradation and elimination of spermine by the vertebrate organism. Int J Biochem 1991; 23: 817–626
  • Wang Y, Hacker A, Murray-Stewart T, Frydman B, Valasinas A, Fraser A V, Woster P M, Casero R A, Jr. Properties of recombinant human N1-acetylpolyamine oxidase (hPAO): potential role in determining drug sensitivity. Cancer Chemother Pharmacol 2005; 56: 83–90
  • Luk G D, Bayless T M, Baylin S B. Diamine oxidase (histaminase). A circulating marker for rat intestinal mucosal maturation and integrity. J Clin Invest 1980; 66: 66–70
  • Noto T, Tanaka T, Nakajima T. Urinary metabolites of polyamines in rats. J. Biochem (Tokyo) 1978; 83: 543–552
  • Van d en, Berg G A, Kingma A W, Elzinga H, Muskiet F A. Catabolism of polyamines in the rat. Polyamines and their non-alpha-amino acid metabolites. Biochim Biophys Acta 1984; 802: 175–187
  • Morgan D M. Oxidized polyamines and the growth of human vascular endothelial cell. Prevention of cytotoxic effects by selective acetylation. Biochem J 1987; 242: 347–352
  • Piedie A, Huang Y, Hacker A, Zhang Z, Woster P M, Davidson N E, Casero R A, Jr. Spermine oxidase SMO (PAOh1), not N1-acetylpolyamine oxidase PAO, is the primary source of cytotoxic H2O2 in polyamine analogue-treated human breast cancer cell lines. J Biol Chem 2005; 280: 39843–39851
  • Agostinelli E, Seiler N. Non-irradiation derived reactive oxygen species (ROS) and cancer. Therapeutic implications. Amino Acids 2006; 31: 341–355
  • Gawel-Thompson K J, Greene R M. Epidermal growth factor: modulator of murine embryonic palate mesenchymal cell proliferation, polyamine biosynthesis and polyamine transport. J Cell Physiol 1989; 140: 359–370
  • Persson L, Lövkvist Wallström E, Nasizadeh S, Dartsch A, Jeppsson A, Wendt A, Holmgren J. Regulation of mammalian ornithine decarboxylase. Biochem Soc Trans 1998; 26: 575–579
  • Shantz L M, Pegg A E. Translational regulation of ornithine decarboxylase and other enzymes of the polyamine pathway. Int J Biochem Cell Biol 1999; 31: 107–122
  • Shantz L M, Holm I, Jänne O A, Pegg A E. Regulation of S-adenosylmethionine decarboxylase activity by alterations in the intracellular polyamine content. Biochem J 1992; 288: 511–518
  • Ekstrom J L, Tolbert W D, Xiong H, Pegg A E, Ealick S E. Structure of a human S- adenosylmethionine decarboxylase self-processing ester intermediate and mechanism of putrescine stimulation of processing as revealed by the H243A mutant. Biochemistry 2001; 40: 9495–9504
  • Casero R A, Jr., Pegg A E. Spermidine/spermine N1-acetyltransferase—the turning point in polyamine metabolism. FASEB J 1993; 17: 653–661
  • Coleman C S, Huang H, Pegg A E. Structure and critical residues at the active site of spermidine/spermine N1-acetyltransferase. Biochem J 1996; 316: 697–701
  • Mangold U. The antizyme family: polyamines and beyond. IUBMB Life 2005; 57: 671–676
  • Coleman C S, Pegg A E. Proteasomal degradation of spermidine/spermine N1- acetyltransferase requires the carbonyl terminal glutamic acid residues. J Biol Chem 1997; 272: 12164–12169
  • Nilsson J, Grahn B, Heby O. Antizyme inhibitor is rapidly induced in growth- stimulated mouse fibroblasts and releases ornithine decarboxylase from antizyme suppression. Biochem J 2000; 346: 899–704
  • Mitchell J L, Jud G L, Bareyal-Leyser A, Ling S Y. Feedback repression of polyamine transport is mediated by antizyme in mammalian tissue-culture cells. Biochem J 1994; 299: 19–22
  • Bolkenius F N, Seiler N. Developmental aspects of polyamine interconversion in rat brain. Int J Devl Neurosci 1986; 4: 217–224
  • Seiler N, Bolkenius F N, Knödgen B, Mamont P. Polyamine oxidase in rat tissues. Biochim Biophys Acta 1980; 615: 480–488
  • Wang Y, Devereux W, Woster P M, Stewart T M, Hacker A, Casero R A, Jr. Cloning and characterization of a human polyamine oxidase that is inducible by polyamine analogue exposure. Cancer Res 2002; 61: 5270–5373
  • Mackintosh C A, Pegg A E. Effect of spermine synthase deficiency on polyamine biosynthesis and content in mice and embryonic fibroblasts, and the sensitivity of fibroblasts to 1,3-bis-(2-chloroethyl)-N- nitrosourea. Biochem J 2000; 351: 439–447
  • Wang X, Ikeguchi Y, McCloskey D E, Nelson P, Pegg A E. Spermine synthesis is required for normal viability, growth, and fertility in the mouse. J Biol Chem 2004; 279: 51370–51373
  • DeBenedette M, Olson J W, Snow E C. Expression of polyamine transporter activity during B-lymphocyte cell cycle progression. J Immunol 1993; 150: 4218–4228
  • Seiler N, Delcros J G, Moulinoux J P. Polyamine transport in mammalian cells. An update. Int J Biochem Cell Biol 1996; 28: 843–861
  • Soulett D, Gagnon B, Rivest S, Audette M, Poulin R. A fluorescent probe of polyamine transport. Accumulation into intracellular acidic vesicles via a two-step mechanism. J Biol Chem 2004; 279: 49355–49366
  • Byers T L, Wechter R S, Hu R A, Pegg A E. Effects of the S-adenosylmethionine decarboxylase inhibitor 5′-([(Z)-4-amino-2-butenyl]methylamino)-5′-deoxyadenosine, on cell growth and polyamine metabolism and transport in Chinese hamster ovary cell cultures. Biochem J 1994; 303: 89–96
  • Wallace H M, Keir H M. Factors affecting polyamine excretion from mammalian cells in culture. Inhibitors of polyamine biosynthesis. FEBS Lett 1986; 194: 60–63
  • Heljasvaara R, Veress I, Halmekytö M, Alhonen L, Jänne J, Laajala R, Pajunen A. Transgenic micc overexpressing ornithine- and S-adenosylmethionine decarboxylases maintain a physiological polyamine homeostasis in their tissues. Biochem J 1997; 323: 437–462
  • Pietila M, Alhonen L, Hamekytö M, Kanter P, Jänne J, Porter C W. Activation of polyamine catabolism profoundly alters tissue polyamine pools and affects hair growth and female fertility in transgenic mice overexpressing spermidine/spermine N1- acetyltransferase. J Biol Chem 1997; 272: 18746–18751
  • Bachrach U. Naturally occurring polyamines. Interaction with macromolecules. Curr Protein Pept Sci 2005; 6: 559–566
  • Rowlatt C, Smith G J. Ultrastructural studies on chromatin digestion by microsomal nuclease in the presence of polyamines. J Cell Sci 1981; 48: 171–179
  • Kossorotow A, Wolf H U, Seiler N. Regulatory effects of polyamines on membrane- bound acetylcholinesterase. Biochem J 1974; 144: 21–27
  • Feuerstein B G, Marton L J. Specificity and binding in polyamine-nucleic acid interactions. The Physiology of Polyamines, U Bachrach, Y M Heimer. CRC Press, Boca Raton 1988; Vol. 1: 109–124
  • Manning G S, Ray J. Counterion condensation revisited. J. Biomol Struct Dyn 1998; 16: 461–476
  • Mehta K, Pok J Y, Mangala L S. Tissue transglutaminase: from biological glue to cell survival cues. Front Biosci 2006; 11: 173–185
  • Folk J E, Park M H, Chung S I, Lester E P, Cooper H L. Polyamines as physiological substrates for transglutaminases. J Biol Chem 1980; 255: 3695–3700
  • Lentini A, Abbruzzese A, Caraglia M, Marra M, Beninati S. Protein-polyamine conjugation by transglutaminase in cancer cell differentiation: review article. Amino Acids 2004; 26: 331–337
  • Melino G, Piacentini M. Tissue transglutaminase in cell death: a downstream or a multifunctional upstream effector?. FEBS Lett 1998; 430: 59–63
  • Sessa A, Tunici P, Rabelotti E, Bardocz S, Grant G, Pusztai A, Perin A. Response of intestinal transglutaminase activity to dietary phytohaemagglutinin. Biochim Biophys Acta 1996; 1314: 66–70
  • Tunici P, Sessa A, Rabelotti E, Grant G, Bardocz S, Perin A. Polyamine oxidase and tissue transglutaminase activation in rat small intestine by polyamines. Biochim Biophys Acta 1999; 1428: 219–224
  • Park M H, Wolff E C, Folk J E. Is hypusine essential for eukaryotic cell proliferation?. Trends Biochem Sci 1993; 18: 475–479
  • Caraglia M, Marra M, Giuberti G D, Alessandro A M, Budillon A, del Prete S, Lentini A, Beninati S, Abbruzzese A. The role of eukaryotic initiation factor 5A in the control of cell proliferation and apoptosis. Amino Acids 2001; 20: 91–104
  • Byers T L, Lakanen J R, Coward J M, Pegg A E. The role of hypusine depletion in cytostasis induced by S-adenosyl-L-methionine decarboxylase inhibition: new evidence provided by 1-methylspermidine and 1,12-dimethylspermine. Biochem J 1994; 303: 363–368
  • Nishimura K, Murozumi K, Shirahata A, Kashiwagi K, Igarashi K. Independent roles of eIF5A and polyamines in cell proliferation. Biochem J 2005; 385: 779–785
  • Alkens D, Bunce F, Onasch R, Parker R, Hurwitz S, Clemens S. The interactions between nucleic acids and polyamines. II. Protonation constants and 13CNMR chemical shift assignments of spermidine, spermine and homologs. Biophys Chem 1983; 17: 67–74
  • Bey P, Danzin C, Jung M. Inhibition of basic amino acid decarboxylases involved in polyamine biosynthesis. Inhibition of Polyamine Metabolism, P P McCann, A E Pegg, A Sjoerdsma. Academic Press, Orlando 1987; 1–31
  • Poulin R, Lu L, Ackermann B, Bey P, Pegg A E. Mechanism of the irreversible inactivation of mouse ornithine decarboxylase by α -difluoromethylornithine. Characterization of sequences at the inhibitor and coenzyme binding sites. J Biol Chem 1992; 267: 150–158
  • Rudkin B S, Mamont P S, Seiler N. Decreased protein synthetic activity is an early consequence of spermidine depletion in rat hepatoma tissue-culture cell. Biochem J 1984; 217: 731–741
  • Sarhan S, Knödgen B, Seiler N. The gastrointestinal tract as polyamine source for tumour growth. Anticancer Res 1989; 9: 215–224
  • Hölttä E, Hovi T. Polyamine depletion results in impairment of polyribosome formation and protein synthesis before onset of DNA synthesis in mitogen-activated human lymphocytes. Eur J Biochem 1985; 152: 229–237
  • Ray R M, Zimmerman B J, McCormack S A, Patel T B, Johnson L R. Polyamine depletion arrests cell cycle and induces inhibitor p21WAfl/Cipl, p27Kipl, and p53 in IEC-6 cells. Am J Physiol 1999; 276: C684–C691
  • Nemoto T, Kamei S, Seyama Y, Kubota S. p53-independent G(1) arrest induced by DL-α -difluoromethylornithine. Biochem Biophys Res Commun 2001; 289: 848–854
  • Li L, Liu L, Rao J N, Esmaili A, Strauch E D, Bass B L, Wang J Y. JunD stabilization results in inhibition of normal intestinal epithelial cell growth through p21 after polyamine depletion. Gastroenterology 2002; 123: 764–779
  • Ackermann J M, Pegg A E, McCloskey D E. Drugs affecting the cell cycle via actions on the polyamine metabolic pathway. Prog Cell Cycle Res 2003; 5: 461–469
  • Wallick C J, Gamper I, Thorne M, Feith D J, Takasaki K Y, Wilson S M, Seki J A, Pegg A E, Byus C V, Bachmann A S. Key role for p21Kip1, retinoblastoma protein Rb, and MYCN in polyamine inhibitor-induced G1 cell cycle arrest in MYCN-amplified human neuroblastoma cells. Oncogene 2005; 24: 5606–5618
  • Kramer D L, Vujcic S, Diegelman P, Alderfer J, Miller J T, Black J D, Bergeron R J, Porter C W. Polyamine analogue induction of the p-53-p21WAF1/CIP1-Rb pathway and G1 arrest in human melanoma cells. Cancer Res 1999; 59: 1278–1286
  • Celano P, Baylin S B, Casero R A, Jr. Polyamines differentially modulate the transcription of growth-associated genes in human colon carcinoma cells. J Biol Chem 1989; 264: 8922–8927
  • Kaminska B, Kaczmarek L, Grzelakowska-Sztalbert B. Inhibitors of polyamine biosynthesis affect the expression of genes encoding cytoskeletal proteins. FEBS Lett 1992; 304: 198–200
  • Wang J Y, McCormack S A, Viar M J, Wang H, Tzen C Y, Scott R E, Johnson L R. Decreased expression of protooncogenes c-fos, c-myc,and c-jun following polyamine depletion in IEC-6 cells. Am J Physiol 1993; 265: G331–G338
  • Wang J Y, Wang H, Johnson L R. Gastrin stimulates expression of protooncogene c- myc through a process involving polyamines in IEC-6 cells. Am J Physiol 1995; 269: C1474–C1481
  • Wang J Y, Viar M J, Li J, Shi H J, McCormack S A, Johnson L R. Polyamines are necessary for normal expression of the transforming growth factor-β gene during cell migration. Am J Physiol 1997; 272: G713–G720
  • Patel A R, Wang A J. Polyamines modulate transcription but not post-transcription of c- myc and c-jun in IEC-6 cells. Am J Physiol 1997; 273: C1020–C1020
  • McCormack S A, Blanner P M, Zimmerman B J, Ray R, Poppleton H M, Patel T B, Johnson L R. Polyamine deficiency alters EGF receptor distribution and signaling effectiveness in IEC-6 cells. Am J Physiol 1998; 274: C192–C205
  • Wang J Y, Viar M J, Li J, Shi H J, Patel A R, Johnson L R. Difference in transglutaminase mRNA after polyamine depletion in two cell lines. Am J Physiol 1998; 274: C522–C530
  • Patel A R, Wang A J. Polyamine depletion is associated with an increase in Jun/AP-1 activity in small intestinal crypt cells. Am J Physiol 1999; 276: G441–G450
  • Choi S H, Kim S W, Choi D H, Min B H, Chun B G. Polyamine depletion induces p27Kip1 and enhances dexamethasone-induced G1 arrest and apoptosis in human T lymphoblastic leukemia cells. Leuk Res 2000; 24: 119–127
  • Rao J N, Li L, Bass B L, Wang J Y. Expression of the TGF-beta receptor gene and sensitivity to growth inhibition following polyamine depletion. Am J Physiol 2000; 279: C1034–C1044
  • Pfeffer L M, Yang C H, Murti A, McCormack S A, Viar M J, Ray R M, Johnson L R. Polyamine depletion induces rapid NF-kappa B activation in IEC-6 cells. J Biol Chem 2001; 276: 45909–45913
  • Li L, Rao J N, Bass B L, Wang J Y. NF-κB activation and susceptibility to apoptosis after polyamine depletion in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2001; 280: G992–G1004
  • Li L, Rao J N, Guo X, Liu L, Bass B L, Wang J Y. Polyamine depletion stabilizes p53 resulting in inhibition of normal intestinal epithelial cell proliferation. Am J Physiol Cell Physiol 2001; 281: C941–C953
  • Ray R M, McCormack S A, Johnson L R. Polyamine depletion arrests growth of IEC-6 and CaCo-2-cells by different mechanisms. Am J Physiol Gastrointest Liver Physiol 2001; 281: G37–G43
  • Guo H, Ray R M, Johnson L R. RhoA stimulates IEC-6 cell proliferation by increasing polyamine-dependent Cdk2 activity. Am J Physiol Gastrointest Liver Physiol 2003; 285: G704–G713
  • Bhattacharya S, Ray R M, Viar M J, Johnson L R. Polyamines are required for activation of c-Jun NH2-termimnal kinase and apoptosis in response to TNF-α in IEC- 6 cells. Am J Physiol Gastrointest Liver Physiol 2003; 285: G980–G991
  • Liu L, Santora R, Rao J N, Guo X, Zou T, Zhang H M, Turner D J, Wang J Y. Activation of TGF-β -Smad signaling pathway following polyamine depletion in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2003; 285: G1056–G1067
  • Ignatenko N A, Zhang H, Watts G S, Skovan B A, Stringer D E, Gerner E W. The chemopreventive agent α -difluoromethylornithine blocks Ki-ras dependent tumor formation and specific gene expression in CaCo-2 cells. Mol Carcinog 2004; 39: 221–233
  • Zou T, Rao J N, Guo X, Liu L, Zhang H M, Strauch E D, Bass B L, Wang J Y. NF-κ mediated IAP expression induces resistance of intestinal epithelial cells to apoptosis after polyamine depletion. Am J Physiol Cell Physiol 2004; 286: C1009–C1018
  • Stephenson A H, Christian J F, Seidel E R. Polyamines regulate eukaryotic initiation factor 4E-binding protein1 gene transcription. Biochem Biophys Res Commun 2004; 323: 20–212
  • Hu X, Washington S, Verderame M F, Manni A. Interaction between the polyamines and the mitogen-activated protein kinase pathway in the regulation of cell cycle variables in breast cancer cells. Cancer Res 2005; 65: 11026–11033
  • Matters G L, Manni A, Bond J S. Inhibitors of polyamine biosynthesis decrease the expression of the metalloproteases meprin-α and MMP-7 in hormone-independent human breast cancer cells. Clin Exp Metastasis 2005; 22: 331–339
  • Zou T, Rao J N, Liu L, Marasa B S, Kaledjian K M, Zhang A H, Xiao L, Bass B L, Wang J Y. Polyamine depletion induces nucleophosmin modulating stability and transcriptional activity of p53 in intestinal epithelial cells. Am J Physiol Cell Physiol 2005; 289: C686–C696
  • Sunkara P S, Baylin S B, Luk G D. Inhibitors of polyamine biosynthesis: Cellular and in vivo effects on tumor proliferation. Inhibition of Polyamine Metabolism, P P McCann, A E Pegg, A Sjoerdsma. Academic Press, Orlando 1987; 121–140
  • Pohjanpelto P, Hölttä E, Maiche A, Knuutila S. Effect of difluoromethylornithine on chromosomes in living organisms and in tissue culture cells. Hereditas 1988; 108: 85–91
  • White A, Bardocz S. Estimation of the polyamine body pool: contribution by de novo biosynthesis, diet and luminal bacteria. Polyamines in Health and Nutrition, S Bardocz, A White. Kluwer Academic Publishers, Boston 1999; 117–127
  • Desury G, Moulinoux J P, Delcros J G. Alteration of intestinal putrescine uptake in tumor-bearing rats. Int J Oncol 2002; 21: 569–576
  • Bardocz S, Brown D S, Grant G, Pusztai A, Stewart J C, Palmer R M. Effect of the β - adrenoreceptor agonist clenbuterol and phytohaemagglutinin on growth, protein synthesis and polyamine metabolism of tissues of the rat. Br J Pharmacol 1992; 106: 476–482
  • Benamouzig R, Mahe S, Meziani K, Tome D. Uptake of luminal polyamine by the gut: in vivo studies. Polyamines in Health and Nutrition, S Bardocz, A White. Kluwer Academic Publishers, Boston 1999; 233–239
  • Osborne D L, Seidel D R. Gastrointestinal luminal polyamines: cellular accumulation and enterohepatic circulation. Am J Physiol 1990; 258: G576–G584
  • Hinuma K, Maghsoudloo M, Murphy G M, Dowling R H. Dietary and intestinal polyamines in the rat: in vitro transport studies. Polyamines in the Gastrointestinal Tract, R H Dowling, U R Fölsch, C Löser. Kluwer Academic Publishers, Dordrecht 1992; 463–472
  • Uda K, Tsujikawa T, Fujiyama T, Bamba T. Rapid absorption of luminal polyamines in a rat small intestine ex vivo model. J Gastroenterol Hepatol 2003; 18: 554–550
  • Uda K, Tsujikawa T, Thara T, Fujiyama Y, Bamba T. Luminal polyamines upregulate transmural glucose transport in rat small intestine. J Gastroenterol 2002; 37: 434–441
  • Bardocz S, Duguid T J, Brown D S, Grant G, Pusztai A, White A, Ralph A. The importance of dietary polyamines in cell regeneration and growth. Br J Nutr 1995; 73: 819–829
  • Milovic V, Odera G, Murphy G M, Dowling R H. Jejunal putrescine absorption and the “pharmacokinetics”/biotransformation of ingested putrescine in humans. Gut 1997; 41(Suppl 3)A62
  • Dumontier A M, Brachet P. Tomé Putrescine D. transport in the rabbit small intestine mounted in the Ussing chamber. Polyamines in the Gastrointestinal Tract, R H Dowling, U R Fölsch, C Löser. Kluwer Academic Publishers, Dordrecht 1992; 453–461
  • Milovic V, Faust D, Turchanova L, Stein J, Caspary W F. Permeability characteristics of polyamines across intestinal epithelium using the CaCo-2 monolayer system: comparison between transepithelial flux and mitogen-stimulated uptake into epithelial cells. Nutrition 2001; 17: 462–464
  • Kumagai J, Johnson L R. Characteristics of putrescine uptake in isolated enterocytes. Am J Physiol 1988; 254: G81–G86
  • Kumagai J, Jain R, Johnson L R. Characteristics of spermidine uptake by isolated rat enterocytes. Am J Physiol 1989; 256: G905–G910
  • Brachet P, Long J E, Seidel E R. Selective sites for polyamine binding to rabbit intestinal brush-border membranes. Biochem Pharmacol 1998; 56: 517–526
  • Kobayashi M, Iseki K, Sugawara M, Miyazaki K. The diversity of Na-independent uptake systems for polyamines in rat intestinal brush-border membrane vesicles. Biochim Biophys Acta 1993; 1151: 161–167
  • Brachet P, Debbabi H. Tomé Transport D. and steady-state accumulation of putrescine in brush-border membrane vesicles of rabbit small intestine. Am J Physiol 1995; 269: G754–G762
  • Milovic V, Stein J, Piper A, Gerhard R, Zeuzem S, Caspary W F. Characterization of putrescine transport across the intestinal epithelium: study using brush-border and basolateral membrane vesicles of the enterocyte. Eur J Clin Invest 1995; 25: 97–105
  • Adeola O, Ram J I, Maenz D D, Classen H L. Transport of putrescine across duodenal, jejunal and ileal brush-border membrane of chicks (Gallus domesticus). Comp Biochem Physiol C Toxicol Pharmacol 2003; 135C: 235–247
  • Milovic V, Caspary W F, Stein J. Polyamine uptake across the basolateral membrane of the enterocyte is mediated by a high-affinity carrier: a study using isolated basolateral membrane vesicles. Digestion 1998; 59: 60–68
  • Hessels J, Klingma A W, Ferwerda H, Keij J, van den Berg G A, Muskiet F A. Microbial flora in the gastrointestinal tract abolishes cytostatic effects of α - difluoromethylornithine in vivo. Int J Cancer 1989; 43: 1155–1164
  • Smith T K. Effect of dietary putrescine on whole body growth and polyamine metabolism. Proc Soc Exp Biol Med 1990; 194: 332–336
  • Seiler N, Eichentopf B. 4-Aminobutyrate in mammalian putrescine catabolism. Biochem J 1975; 152: 201–210
  • Wollin A, Wang X, Tso P. Nutrients regulate diamine oxidase release from intestinal mucosa. Am J Physiol 1998; 275: R969–R975
  • Sarhan S, Knödgen B, Seiler N. Polyamine deprivation, malnutrition and tumor growth. Anticancer Res 1992; 12: 457–466
  • Houen G. Mammalian Cu-containing amine oxidases (CAOs): new methods of analysis, structural relationships and possible functions. APMIS 1999; 107(Suppl. 96)1–46
  • Hutter E, Schwelberger H G. Characterization of cDNA clones encoding mucosa diamine oxidase. Inflamm Res 2000; 49(Suppl 1)S57–S59
  • Petersen J, Raithel M, Schwelberger H G. Characterization of functional polymorphism of the human diamine oxidase gene. Inflamm Res 2005; 54(Suppl 1)S58–S59
  • Kitanaka J, Kitanaka N, Tsujimura T, Terada N, Takemura M. Expression of diamine oxidase (histaminase) in guinea pig tissues. Eur J Pharmcol 2002; 437: 179–1785
  • Schwelberger H G, Bodner E. Identity of diamine oxidase proteins of porcine kidney and intestines. Inflamm Res 1998; 47(Suppl 1)S58–S59
  • Schwelberger H G, Bodner E. Analysis of the glycosylation of porcine diamine oxidase. Inflamm Res 1999; 48(Suppl 1)S83–S84
  • Schwelberger H G, Bodner E. Purification and characterization of diamine oxidase from porcine kidney and intestine. Biochim Biophys Acta 1997; 1340: 152–164
  • Suzuki O, Matsumoto T, Oya M, Katsunuma Y. Metabolism of acetylpolyamines by monoamine oxidase, diamine oxidase and polyamine oxidase. Biochim Biophys Acta 1981; 677: 190–193
  • Zeller E A. Zur Kenntnis der Diaminoxydase. 3. Mitteilung. Über den enzymatischen Abbau von Polyaminen. Helv Chim Acta 1938; 21: 1645–1665
  • Seiler N, Knödgen B, Gittos M, Chan W Y, Griesmann G, Rennert O M. On the formation of amino acids deriving from spermidine and spermine. Biochem J 1981; 200: 123–132
  • Shaff R E, Beavan M A. Turnover and synthesis of diamine oxidase (DAO) in rat tissues. Studies with heparin and cycloheximide. Biochem Pharmacol 1976; 25: 1057–1062
  • Daniele B, Quaroni A. Effect of epidermal growth factor on diamine oxidase expression and cell growth in CaCo-2-cells. Am J Physiol 1991; 261: G669–G676, 4 Pt1
  • Bieganski T, Ulatowska M A. Diamine oxidase in the hen. Agents Actions 1983; 13: 257–262
  • Bieganski T, Kusche J, Lorent W, Hesterberg R, Stahlknecht C D, Feussner K D. Distribution and properties of human diamine oxidase and its relevance for the histamine catabolism. Biochim Biophys Acta 1983; 756: 196–203
  • Huneau J F, Tome D, Wal J M. Histamine content, diamine oxydase and histidine decarboxylase activities along the intestinal tract of the rat. Agents Actions 1989; 28: 231–234
  • Klocker J, Matzler S A, Huetz G N, Drasche A, Kolbitsch C, Schwelberger H G. Expression of histamine degrading enzymes in porcine tissues. Inflamm Res 2005; 54(Suppl 1)S54–S57
  • Fogel W A. Mucosal mono- and polyamine oxidase activities in digestive tract are complementary to diamine oxidase. J Neural Transm 1990; 32(Suppl)S345–S349
  • Bamba T, Vaja S, Murphy G M, Dowling R H. Effect of fasting and feeding on polyamines and related enzymes along the villus:crypt axis. Digestion 1990; 46(Suppl 2)428–429
  • Brachet P, Quemener V, Havouis R, Tome D, Moulinoux J P. Alterations in intestinal uptake of putrescine and tissue polyamine concentrations in tumor bearing rats. Biochim Biophys Acta 1994; 1227: 161–170
  • Nilsson B O, Kockum I, Rosengren E. Inhibition of diamine oxidase promotes uptake of putrescine from rat small intestine. Inflamm Res 1996; 45: 513–518
  • Rokkas T, Vaja S, Taylor P, Murphy G M, Dowling R H. Effect of intestinal diamine oxidase (DAO) depletion by heparin on mucosal polyamine metabolism. Digestion 1990; 46(Suppl. 2)S278–S382
  • Kallio A, Nikula P, Jänne J. Transfer of intestine-derived diamines into tumour cells during treatment of Ehrlich ascites carcinoma-bearing mice with polyamine anti- metabolites. Biochem J 1984; 218: 641–644
  • Brosnan M E, Ray S, Walters B, Pink D. How does the kidney handle plasma polyamines?. Contrib Nephrol 1997; 121: 129–135
  • Gill J, Christian J F, Seidel E R. Antizyme mRNA distribution and regulation in rat small intestinal enterocytes. Dig Dis Sci 2002; 47: 1458–1464
  • Wang J Y, McCormack S A, Viar M J, Johnson L R. Stimulation of intestinal mucosal growth by luminal polyamines. Am J Physiol 1991; 261: G504–G511
  • Deloyer P, Dandrifosse G, Bartholomeus C, Romain N, Klinek M, Salmon J, Gerard P, Goessens G. Polyamines and intestinal properties in adult rats. Br J Nutr 1996; 76: 627–637
  • Steiner M, Boughes H R, Freeman L S, Gray S J. Effect of starvation on the tissue composition of the small intestine in the rat. J Physiol 1968; 215: 75–77
  • Chance W T, Noguchi Y, Zhang Y, Hasselgren P O, Fischer J E. Differential effects of tumor and parenteral nutrition on jejunal mucosal polyamines. Nutr Cancer 1995; 23: 23–32
  • Löser C, Kisel A, Harms D, Fölsch U R. Dietary polyamines are essential luminal growth factors for small intestinal and colonic mucosal growth and development. Gut 1999; 44: 12–16
  • Firmansyah A, Suwandito L, Penn D, Lebenthal E. Biochemical and morphological changes in the digestive tract of rats after prenatal and postnatal malnutrition. Am J Clin Nutr 1989; 50: 261–268
  • Erdman S H. Effect of starvation and difluoromethylornithine (DFMO) on diamine oxidase activity in rat ileum. Digestion 1990; 46(Suppl 2)S396–S402
  • Bardocz S, Grant G, Brown D S, Ewen S WB, Stewart J C, Pusztai A. Effect of fasting and refeeding on basolateral polyamine uptake and metabolism by the rat small bowel. Digestion 1991; 50: 28–35
  • Brachet P, Prevoteau, Mathe, Tome D. Modulation of putrescine transport in rat intestinal brush-border membrane vesicles by fasting and refeeding. Digestion 1996; 57: 374–381
  • McCormack S A, Johnson L R. Putrescine uptake and release by a normal rat small intestine crypt cell line, IEC-6. Exp Cell Res 1991; 193: 241–252
  • Milovic V, Turchanowa L, Fares F A, Lerner A, Caspary W F, Stein J. S- Adenosylmethionine decarboxylase activity and utilization of exogenous putrescine are enhanced in colon cancer cells stimulated to grow by EGF. Z Gastroenterol 1998; 36: 947–954
  • Bauske R, Milovic V, Turchanowa L, Stein J. Mechanism of EGF-stimulated polyamine accumulation in human colon cancer cells CaCo-2. Digestion 2000; 61: 230–236
  • Buts J P, De Keyser N, Romain N, Dandrifosse G, Sokal E, Naengiyumva T. Response of rat immature enterocytes to insulin: regulation by receptor binding and endoluminal polyamine uptake. Gastroenterology 1994; 106: 49–59
  • Young G P, Taranto T M, Jonas H A, Cox A J, Hogg A, Werther G A. Insulin-like growth factors and the developing and mature rat small intestine. Receptors and biological actions. Digestion 1990; 26(Suppl 2)S240–S252
  • Löser C, Torff L, Fölsch U R. Uptake of extracellular, dietary putrescine is an important regulatory mechanism of intracellular polyamine metabolism during camostate-induced pancreatic growth in rats. Dig Dis Sci 1997; 42: 503–513
  • Bardocz S. Effect of phytohaemagglutinin on intestinal cell proliferation. Role of polyamines. Arch Latinoam Nutr 1996; 44(Suppl 1)16S–20S
  • Pryme I F, Pusztai A, Bardocz S, Ewen S W. A combination of dietary protein depletion and PHA-induced gut growth reduce the mass of murine non-Hodgkin lymphoma. Cancer Lett 1999; 139: 145–152
  • Sessa A, Tunici P, Ewen S W, Grant G, Pusztai A, Bardocz S, Perin A. Diamine and polyamine oxidase activities in phytohaemagglutinin-induced growth of rat small intestine. Biochim Biophys Acta 1995; 1244: 198–202
  • Ovelgonne J H, Koninkx J F, Pusztai A, Bardocz S, Kok W, Ewen S W, Hendriks H G, van Dijk J E. Decreased levels of heat shock proteins in gut epithelial cells after exposure to plant lectins. Gut 2000; 46: 679–687
  • Linsalata M, Russo F, Notarnicola M, Berloco P, Di Leo A. Polyamine profile in human gastric mucosa infected by Helicobacter pylori. Ital J Gastroenterol 1998; 30: 484–489
  • Xu H, Chaturvedi R, Cheng Y, Bussiere F I, Asim M, Yao M D, Potozky D, Meltzer S J, Rhe J G, Kim S S, Moss S F, Hacker A, Wang T, Casero R A, Jr., Wilson K T. Spermine oxidation induced by helicobacter pylori results in apoptosis and DNA damage: implications for gastric genesis. Cancer Res 2004; 64: 8521–8525
  • Etienne-Poncin A, Dandrifosse G, Forget P, Lepoint A. Evaluation of some biochemical characteristics of the intestinal mucosa during the first postnatal weeks in C57 mice. Effects of thyroxine and putrescine. J Pediatr Gastroenterol Nutr 1989; 9: 375–382
  • Zhang H, Malo C, Buddington R K. Suckling induces rapid intestinal growth and changes in brush border digestive functions of newborn pigs. J Nutr 1997; 127: 418–426
  • Herold G, Besemer F, Rogler D, Rogler G, Stange E F. Polyamine deficiency impairs proliferation and differentiation of cultured enterocytes (CaCo-2). Z Gastroenterol 1993; 31: 120–128
  • Duranton B, Keith G, Gosse F, Bergmann C, Schleiffer R, Raul F. Concomitant changes in polyamine pools and DNA methylation during growth inhibition of human colonic cancer cells. Exp Cell Res 1998; 243: 319–325
  • D'Agostino L, Pignata S, Daniele B, Ferraro C, Silvestro G, Tagliaferri P, Contegiacomo A, Gentile R, Tritto G, Bianco A R, Mazzacca G. Polyamine uptake by human colon carcinoma cell line CaCo-2. Digestion 1990; 46(Suppl 2)S362–S359
  • Löser C. Polyamines in human and animal milk. Br J Nutr 2000; 84(Suppl 1)S55–S58
  • Dorhout B, van Beusekom C M, Huisman M, Kingma A W, de Hoog E, Boersma E R, Muskiet F A. Estimation of 24-hour polyamine intake from mature human milk. J Pediatr Gastroenterol Nutr 1996; 23: 298–302
  • Dufour C, Dandrifosse G, Forget P, Vermesse F, Romain N, Lepoint P. Spermine and spermidine induce intestinal maturation in the rat. Gastroenterology 1988; 96: 112–116
  • Dorhout B, van Faasen A, van Beusekom C M, Kingma A W, de Hoog E, Nagel G T, Karrenbeld A, Boersma E R, Muskiet F A. Oral administration of deuterium-labelled polyamines to sucking rat pups: luminal uptake, metabolic fate and effects on gastrointestinal maturation. Br J Nutr 1997; 78: 639–654
  • Jolois O, Peulen O, Collin S, Simons M, Dandrifosse G, Heinen E. Spermine induces precocious development of the spleen in mice. Exp Physiol 2002; 87: 69–75
  • ter Steege J C, Buurman W A, Forget P P. Spermine induces maturation of the immature intestinal immune system in neonatal mice. J Pediatr Gastroenterol Nutr 1997; 25: 332–340
  • Buts J P, De Keyser N, Kolanowski J, Sokal E, Van Hoof F. Maturation of villus and crypt cell function in rat small intestine. Role of dietary polyamines. Dig Dis Sci 1993; 38: 1091–1098
  • Peulen O, Deloyer P, Dandrifosse G. Short-term effects of spermine ingestion on small intestine: a comparison of suckling and weaned rats. Reprod Nutr Dev 2004; 44: 353–364
  • Georges P, Dandrifosse G, Vermesse F, Forget P, Deloyer P, Romain N. Reversibility of spermine-induced intestinal maturation in the rat. Dig Dis Sci 1990; 35: 1528–1536
  • Romain N, Gesell M S, Leroy O, Forget P, Dandrifosse G, Luk G S. Effect of spermine administration on pancreatic maturation in unweaned rats. Comp Biochem Physiol A Mol Integr Physiol 1998; 120: 379–384
  • Peulen O, Dewe W, Dandrifosse G, Henrotay I, Romain N. The relationship between the spermine content of human milk during the first postnatal month and allergy in children. Public Health Nutr 1998; 1: 181–184
  • Dandrifosse G, Peulen O, El Khefif N, Deloyer P, Dandrifosse A C, Grandfils C. Are milk polyamines preventive agents against food allergy?. Proc Nutr Soc 2000; 59: 81–86
  • Wang J Y, Johnson L R. Expression of protooncogenes c-fos and c-myc in healing of gastric mucosal stress ulcers. Am J Physiol 1994; 266: G878–G886
  • Luk G D, Yang P. Distribution of polyamines and their biosynthetic enzymes in intestinal adaptation. Am J Physiol 1988; 254: G194–G200
  • Tsujikawa T, Fukunaga T, Itoh A, Satoh J, Yasuoka T, Sasaki M, Fujiyama Y, Bamba T. Alteration in expression of polyamine and glucose-related enzyme mRNA after small bowel resection in the rat residual ileum. Int J Mol Med 2002; 10: 489–492
  • Han X, Kazarinoff M N, Seiler N, Stanley B A. Rat colon ornithine and arginine metabolism: coordinated effects after proliferative stimuli. Am J Physiol Gastroenterol Liver Physiol 2001; 280: G389–399
  • Rao J N, Li J, Li L, Bass B L, Wang J Y. Differential intestinal epithelial cells exhibit increased migration through polyamines and myosin II. Am J Physiol 1999; 277: G1149–G1158
  • Banan A, McCormack S A, Johnson L R. Polyamines are required for microtubule formation during gastric mucosal healing. Am J Physiol 1998; 274: G879–G885
  • Santos M F, Viar M J, McCormack S A, Johnson L R. Polyamines are important for attachment of IEC-6 cells to extracellular matrix. Am J Physiol 1997; 273: G175–G183
  • Chen C, Young B A, Coleman C S, Pegg A E, Sheppard D. Spermidine/spermine N1- acetyltransferase specifically binds to the integrin α 9 subunit cytoplasmic domain and enhances cell migration. J Cell Biol 2004; 167: 161–170
  • Guo X, Rao J N, Liu L, Rizvi M, Turner D J, Wang J Y. Polyamines regulate β -catenin tyrosine phosphorylation via Ca2 + during intestinal epithelial cell migration. Am J Physiol Cell Physiol 2002; 283: C722–C734
  • Wang J Y, Wang J, Golovina V A, Platoshyn O, Yuan J X. Role of K+ channel suppression in polyamine-dependent intestinal epithelial cell migration. Am J Physiol Cell Physiol 2000; 278: C303–C314
  • Rao J N, Guo X, Liu L, Zou T, Murthy K S, Yuan J Y, Wang J Y. Polyamines regulate Rho kinase and myosin phosphorylation during intestinal epithelial restitution. Am J Physiol Cell Physiol 2003; 284: C848–C859
  • Ray J M, McCormack S A, Covington C, Viar M J, Zhang Y, Johnson L R. The requirement for polyamines for intestinal epithelial cell migration is mediated through Racl. J Biol Chem 2003; 278: 13039–13046
  • Vaidya R J, Ray R M, Johnson L R. MEK1 restores migration of polyamine-depleted cells by retention and activation of Racl in the cytoplasm. Am J Physiol Cell Physiol 2005; 288: C350–C359
  • Rogers K K, Jou T S, Guo W, Lipschutz J H. The Rho family of small GTPases is involved in epithelial cystogenesis and tubulogenesis. Kidney Int 2003; 65: 1632–1644
  • Thompson J S, Saxena S K, Sharp J G. Difluoromethylornithine inhibits crypt fission. J Gastrointest Surg 1999; 3: 662–667
  • Yuan Q, Viar M J, Ray R M, Johnson L R. Putrescine does not support the migration and growth of IEC-6 cells. Am J Physiol Gastrointest Liver Physiol 2000; 278: G49–G56
  • Luk G D, Yang P. Polyamines in intestinal and pancreatic adaptation. Gut 1987; 28(Suppl)S95–S101
  • Jonas A, Diver-Haber A, Yahav J. Adaptive response of ileal mucosa to malnutrition in the rat: role of polyamines. Acta Physiol Scand 1991; 142: 387–395
  • Wang J Y, Johnson L R. Luminal polyamines substitute for tissue polyamines in duodenal mucosal repair after stress in rats. Gastroenterology 1992; 102: 1109–1117
  • Osborne D L, Seidel D R. Microflora-derived polyamines modulate obstruction-induced colonic mucosal hypertrophy. Am J Physiol 1989; 256: G1049–G1057
  • Kummerlen C, Seiler N, Galluser M, Gossë F, Knödgen B, Hasselmann M, Raul F. Polyamines and the recovery of intestinal morphology and function after ischemic damage in rats. Digestion 1994; 55: 18–174
  • Wang J Y, Johnson L R, Tsai Y H, Castro G A. Mucosal ornithine decarboxylase, polyamines, and hyperplasia in infected intestine. Am J Physiol 1991; 260: G45–G51
  • Sakamoto K, Fujiyama Y, Bamba T. Altered polyamine biosynthesis with aging after massive proximal small bowel resection in rat. J Gastroenterol 1996; 31: 338–346
  • Chung D H, Evers B M, Townsend C M, Jr., Huang K F, Herndon D N, Thompson J C. Role of polyamine synthesis during gut mucosal adaptation after burn injury. Am J Surg 1993; 165: 144–149
  • Löser C, Cleffmann U, Alves F, Fölsch U R, Creutzfeldt W. Ornithine decarboxylase and polyamine biosynthesis in pancreatic adaptation. Adv Exp Med Biol 1988; 250: 379–399
  • Jurkowska G, Rydzewska G, Andrzejewska A. The influence of polyamines synthesis inhibition on pancreas regeneration and phospholipase D activity after acute caerulein induced pancreatitis in rats. Biochemical and ultrastructural study. J Physiol Pharmacol 1997; 48: 789–804
  • Dowling R H. Cellular and molecular basis of intestinal and pancreatic adaptation. Scand J Gastroenterol 1992; 193(Suppl)S64–S67
  • Jenkins A P, Thompson R P. Mechanism of intestinal adaptation. Dig Dis 1994; 12: 15–27
  • Thomson A B, Wild G. Adaptation of intestinal nutrient transport in health and disease. Part 1. Dig Dis Sci 1997; 42: 453–469
  • Baksheev L, Fuller P J. Humoral factors in intestinal adaptation. Trends Endocrinol Metab 2000; 11: 401–405
  • Hodin R A, Saldinger P, Meng S. Small bowel adaptation: counterregulatory effects of epidermal growth factor and somatostatin on the program of early gene expression. Surgery 1995; 118: 206–210
  • Swietlitzki E, Iordanov H, Fritsch C, Yi L, Levin M S, Rubin D C. Growth factor regulation of PC4/TIS7, an immediate early gene expressed during gut adaptation after resection. J Parenter Enteral Nutr 2003; 27: 123–131
  • Konturek J W, Brzozowski T, Konturek S J. Epidermal growth factor in protection, repair and healing of gastrointestinal mucosa. J Clin Gastroenterol 1991; 13(Suppl 1)S88–S97
  • Stern L E, Erwin C R, O'Brien D P, Huang F, Warner B W. Epidermal growth factor is critical for intestinal adaptation following small bowel resection. Microsc Res Tech 2000; 51: 138–148
  • Löser C, Fölsch U R. Epidermal growth factor (EGF) fails to stimulate pancreatic growth and pancreatic polyamine metabolism in rats. Z Gastroenterol 1994; 32: 216–220
  • Brzozowski T, Konturek P C, Konturek S J, Brzozowska I, Kwiecien S, Hahn E G. Involvement of ornithine decarboxylase and polyamines in epidermal-growth factor- induced recovery of gastric mucosa from gastric lesions provoked by stress. Regul Pept 1998; 74: 73–84
  • D'Agostino L, Daniele B, Pignata S, Barone M V, D'Argenio G, Mazzacca G. Modifications in ornithine decarboxylase and diamine oxidase in small bowel mucosa of starved and refed rats. Gut 1987; 28(Suppl 1)S135–S138
  • Thompson J S, Petersen P, Nguyen B L, Quigley E M. Serum and intestinal diamine oxidase activity during intestinal adaptation. J Invest Surg 1992; 5: 297–304
  • Rokkas T, Vaja S, Murphy G M, Dowling R H. Aminoguanidine blocks intestinal diamine oxidase (DAO) activity and enhances the intestinal adaptive response to resection in the rat. Digestion 1990; 46(Suppl 2)S447–S457
  • Kusche J, Mennigen R, Erpenbach K. The intestinal diamine oxidase activity under the influence of adaptive proliferation of the intestinal mucosa—a proliferation termination principle?. Agent Actions 1988; 23: 354–356
  • Ko T C, Beauchamp R D, Townsend C M, Thompson J C. Glutamine is essential for epidermal growth factor-stimulated intestinal cell proliferation. Surgery 1993; 114: 147–153
  • Cynober L. Ornithine α -ketoglutarate as a potent precursor of arginine and nitric oxide: a new job for an old friend. J Nutr 2004; 134(Suppl 10)2858S–2862S
  • Raul F, Gossé F, Galluser M, Hasselmann M, Seiler N. Functional and metabolic changes in intestinal mucosa of rats after enteral administration of ornithine α - ketoglutarate salt. J Parent Enteral Nutr 1995; 19: 145–150
  • Czernichow B, Nsi-Emvo E, Galluser M, Gossé F, Raul F. Enteral supplementation with ornithine α -ketoglutarate improves the early adaptive response to resection. Gut 1997; 40: 67–72
  • Dumas F, de Bandt J P, Colomb V, Le Boucher J, Coudray-Lucas C, Lavie S, Brousse N, Ricour C, Cynober L, Gulet O. Enteral ornithine α -ketoglutarate enhances intestinal adaptation to massive resection in rats. Metabolism 1998; 47: 1366–1371
  • Duranton B, Schleiffer R, Gossé F, Raul F. Preventive administration of ornithine α - ketoglutarate improves intestinal mucosal repair after transient ischemia in rats. Crit Care Med 1998; 26: 120–125
  • Raul F, Galluser M, Schleiffer R, Gossé F, Hasselmann M, Seiler N. Beneficial effects of L-arginine on intestinal epithelial restitution after ischemic damage in rats. Digestion 1995; 56: 400–405
  • Martin G R, Wallace J L. Gastrointestinal inflammation: a central component of mucosal defense and repair. Exp Biol Med (Maywood) 2006; 231: 130–137
  • Alhonen L, Parkkinen J J, Sinervirta R, Herzig K H, Jänne J. Activation of polyamine catabolism in transgenic rats induces acute pancreatitis. Proc Natl Acad Sci USA 2000; 97: 8290–8295
  • Oyanagui Y. Anti-inflammatory effects of polyamines in serotonin and carrageenan paw edemata – possible mechanism to increase vascular permeability inhibitory protein level, which is regulated by glucocorticoids and superoxide radical. Agents Actions 1984; 14: 228–237
  • Zhang M, Caragine T, Wang H, Cohen P S, Botchkina G, Soda K, Bianchi M, Ulrich P, Cerami A, Sherry B, Tracey K J. Spermine inhibits proinflammatory cytokine synthesis in human mononuclear cells; a counterregulatory mechanism that restrains the immune response. J Exp Med 1997; 185: 1759–1768
  • Hasko G, Kuhel D G, Marton A, Nemeth Z H, Deitch E A, Szabo C. Spermine differentially regulates the production of interleukin-12 p40 and interleukin 10 and suppresses the release of the T helper 1 cytokine interferon-γ. Shock 2000; 14: 144–149
  • Rachmilewitz D, Stamler J S, Bachwich D, Karmeli F, Ackerman Z, Podolsky D K. Enhanced colonic nitric oxide generation and nitric oxide synthase activity in ulcerative colitis and Crohn's disease. Gut 1995; 36: 718–723
  • Cross R K, Wilson K T. Nitric oxide in inflammatory bowel diseases. Inflamm Bowel Dis 2003; 9: 179–189
  • Ikeda I, Kamajima T, Ishiyama S, Shimojo T, Takeo Y, Nishikawa T, Kameoka S, Hiroe M, Mitsunaga A. Distribution of inducible nitric oxide synthase in ulcerative colitis. Am J Gastroenterol 1997; 92: 1339–1341
  • Steege J C, Forget P P, Buurman W A. Oral spermine administration inhibits nitric oxide-mediated intestinal damage and levels of systemic inflammatory mediators in a mouse endotoxin model. Shock 1999; 11: 115–119
  • Pillai R B, Tolia V, Simpson P M, Vijesurier R, Lin C H. Increased colonic ornithine decarboxylase activity in inflammatory bowel disease in children. Dig Dis Sci 1999; 44: 1565–1570
  • Weiss T S, Herfarth H, Obermeier F, Ouart J, Vogl D, Scholmerich J, Jauch K W, Rogler G. Intracellular polyamine levels of intestinal epithelial cells in inflammatory bowel disease. Inflamm Bowel Dis 2004; 10: 529–535
  • Thompson J S, Burnett D A, Markin R S, Vaughan W P. Intestinal mucosa diamine oxidase reflects intestinal involvement in Crohn's disease. Am J Gastroenterol 1988; 83: 756–760
  • Ricci G, Stabellini G, Bersani G, Marangoni G, Fabbri P, Gentili G, Alvisi V. Ornithine decarboxylase in colonic mucosa from patients with moderate or severe Crohn's disease and ulcerative colitis. Eur J Gastroenterol Hepatol 1999; 11: 903–904
  • Satriano J, Ishizuka S, Archer D C, Blantz R C, Kelly C J. Regulation of intracellular polyamine biosynthesis and transport by NO and cytokines TNF-α and IFN-γ. Am J Physiol 1999; 276: C892–C899
  • Ahern G P, Wang X, Miyares R L. Polyamines are potent ligands for the capsaicin receptor TRPV1. J Biol Chem 2006; 281: 8991–8995
  • Hoffmann P, Mazurkiewicz J, Holtmann O, Gerken G, Eysselein V E, Goebell H. Capsaicin-sensitive nerve fibres induce epithelial cell proliferation, inflammatory cell immigration and transforming growth factor-a expression in the rat colonic mucosa in vivo. Scand J Gastroenterol 2002; 37: 414–422
  • Karakosta A, Golias C H, Charalabopoulos A, Peschos D, Batistatou A, Charalabopoulos K. Genetic models of human cancer as a multistep process. Paradigm models of colorectal cancer, breast cancer, and chronic myelogenous and acute lymphoblastic leukaemia. J Exp Clin Cancer Res 2005; 24: 505–514
  • Rozhin J, Wilson P S, Bull A W, Nigro N D. Ornithine decarboxylase activity in rat and human colon. Cancer Res 1984; 44: 3226–3230
  • Kingsnorth A N, Lumsden A B, Wallace H M. Polyamines in colorectal cancer. Br J Surg 1984; 71: 791–794
  • LaMuraglia G M, Lacaine F, Malt R A. High ornithine decarboxylase activity and polyamine levels in human colorectal neoplasia. Ann Surg 1986; 204: 89–93
  • Naso P, Lanteri R, Acquaviva R, Licata F, Nonanno G, Licata A. Polyamine levels in colorectal cancer: new markers?. Hepatogastroenterology 2005; 52: 433–436
  • Schwelberger H G, Klocker J, Klingler P, Gadenstätter M, Bodner E, Sattler J. Influence of proliferative stimulation on the activity of rat intestinal diamine oxidase. Inflamm Res 1995; 44(Suppl 1)S66–S67
  • Weiss T S, Bernhardt G, Buschauer A, Thasler W E, Dolgner D, Zirngibl H, Jauch K W. Polyamine levels of human colorectal carcinomas are correlated with tumor stage and grade. Int J Colorectal Dis 2002; 17: 381–387
  • McGarrity T J, Pfeiffer L P, Batholomew M J, Pegg A E. Colonic polyamine content and ornithine decarboxylase activity as markers for adenomas. Cancer 1990; 66: 1539–1543
  • Wang W, Liu L Q, Higuchi C M. Mucosal polyamine measurements and colorectal cancer risk. J Cell Biochem 1996; 63: 252–257
  • Auvinen M, Paasinen A, Andersson L C, Hölttä E. Ornithine decarboxylase activity is critical for cell transformation. Nature 1992; 360: 355–358
  • Ravanko K, Jarvinen K, Paasinen-Sohns A. Hölttä Loss E. of p27Kip1 from cyclin E/cyclin-dependent kinase Cdk-2 but not from cyclin D1/Cdk-4 complexes in cells transformed by polyamine biosynthesis enzymes. Cancer Res 2000; 60: 5244–5353
  • Erdman S H, Ignatenko N A, Powell M B, Blohm-Mangone K A, Holubec H, Guillen- Rodriguez J M, Gerner E W. APC dependent changes in expression of genes influencing polyamine metabolism and consequences for gastrointestinal carcinogenesis in the Min mouse. Carcinogenesis 1999; 20: 1709–1713
  • Gerner E W, Ignatenko N A, Lance P, Hurley L N. A comprehensive strategy to combat colon targeting the adenomatous polyposis coli tumor suppressor gene. Ann NY Acad Sci 2005; 1059: 97–105
  • Groblewski G E, Ways D K, Seidel E R. Protein kinase C regulation of IEC-6 cell ornithine decarboxylase. Am J Physiol 1992; 263: G742–G749
  • Linsalata M, Notarnicola M, Caruso M G, Di Leo A, Guerra V, Russo F. Polyamine biosynthesis in relation to K-ras and p53 mutations in colorectal carcinomas. Scand J Gastroenterol 2004; 39: 470–477
  • Ignatenko N A, Babbar N, Mehta D, Casero R A, Jr., Gerner E. Suppression of polyamine catabolism by activated Ki-ras in human colon cancer cells. Mol Carcinog 2004; 39: 91–102
  • Tsunoda A, Shibusawa M, Yoshizawa H, Yasuda N, Tsuno K, Koike T. Increased polyamine levels of normal-appearing mucosa and cancers in DMH-induced cancer- bearing colon in rats. Nippon Shokakibyo Gakkai Zasshi 1991; 88: 1060–1065
  • Shigesawa A, Onoda N, Chung Y S, Yano Y, Otani S, Fukushima S, Sowa M. Elevation in putrescine level and spermidine/spermine N1-acetyltransferase activity coincide with tumor development in 1,2-dimethylhydrazine-induced rat colon. Oncol Rep 1998; 5: 125–128
  • Tucker J M, Murphy J T, Kistel N, Diegelman P, Barbour K W, Davis C, Medda M, Alhonen L, Jänne J, Kramer D L, Porter C W, Berger F G. Potent modulation of intestinal tumorigenesis in ApcMin/+ mice by the polyamine catabolic enzyme spermidine/spermine N1-acetyltransferase. Cancer Res 2005; 65: 5390–5398
  • Linsalata M, Cavallini A, Di Leo A. Polyamine oxidase activity and polyamine levels in human colorectal cancer and in normal surrounding mucosa. Anticancer Res 1997; 17: 3757–3760
  • Baylin S B, Luk G D. Diamine oxidase (histaminase in human disease. Polyamines in Biology and Medicine, D R Morris, L J Marton. Marcel Dekker, New York 1981; 377–388
  • Mennigen R, Kusche J, Krautkamp B, Elbers A, Amoei B, Kessebohm M, Sommer H. Large bowel tumors and diamine oxidase (DAO) activity in patients: a new approach for risk group identifications. Agents Actions 1988; 23: 351–353
  • Perin A, Sessa A, Desiderio M A. Response of tissue diamine oxidase activity to polyamine administration. Biochem J 1986; 234: 119–123
  • D'Agostino L, Pignata S, Daniele B, Ferraro C, D'Adamo G, Tritto G, Mazzacca G. Regulation of diamine oxidase expression by ornithine decarboxylase in isolated rat small bowel enterocytes. Digestion 1990; 46(Suppl 2)S403–S409
  • Kusche J, Mennigen R, Leisten R, Elbers A. Large bowel tumor promotion by inhibition of mucosal diamine oxidase in rats II: biochemical aspects. Biogenic Amines 1989; 6: 27–38
  • Seiler N. Catabolism of polyamines. Amino Acids 2004; 26: 217–233
  • Paulsen J K, Reistad R, Eliassen K A, Sjastaad C V, Alexander J. Dietary polyamines promote the growth of azoxymethane-induced aberrant crypt foci in rat colon. Carcinogenesis 1997; 18: 1871–1875
  • Duranton B, Nsi-Envo E, Schleiffer R, Gossé F, Galluser M, Raul F. Suppression of preneoplastic changes in the intestine of rats fed low levels of polyamines. Cancer Res 1997; 57: 573–575
  • Duranton B, Freund J N, Galluser M, Schleiffer R, Gossé F, Bergmann C, Hasselmann M, Raul F. Promotion of intestinal carcinogenesis by dietary methionine. Carcinogenesis 1999; 20: 493–497
  • Schechter P J, Barlow J LR, Sjoerdsma A. Clinical aspects of inhibition of ornithine decarboxylase with emphasis on therapeutic trials of Eflornithine (DFMO) in cancer and protozoan diseases. Inhibition of Polyamine Metabolism, P P McCann, A E Pegg, A Sjoerdsma. Academic Press, Orlando 1987; 345–364
  • Meyskens F L, Jr., Gerner E W. Development of α -difluorometylornithine (DFMO) as a chemopreventive agent. Clin Cancer Res 1999; 5: 945–951
  • Tao L, Kramer P L, Wang W, Yang S, Lubet R A, Steele V E, Pereira M A. Altered expression of c-myc, p16 and p27 in rat colon tumors and its reversal by short term treatment with chemopreventive agents. Carcinogenesis 2002; 23: 1447–1454
  • Nilsson J A, Keller U B, Baudino T A, Yang C, Norton S, Old J A, Nilsson L M, Neale G, Kramer D L, Porter C W, Cleveland J L. Targeting ornithine decarboxylase in Myc- induced lymphomagenesis prevents tumor formation. Cancer Cell 2005; 7: 433–444
  • Adams J M, Harris A W, Pinkert C A, Corcoran L M, Alexander W S, Cory S, Palmiter R D, Brinster L R. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 1985; 318: 533–538
  • Bello-Fernandez C, Packham G, Cleveland J L. The ornithine decarboxylase gene is a transcriptional target of c-Myc. Proc Natl Acad Sci USA 1993; 90: 7804–7808
  • Jo W S, Chung D C. Genetics of hereditary colorectal cancer. Semin Oncol 2005; 32: 11–23
  • Love R R, Jacoby R, Newton M A, Tutsch K D, Simon K, Pomplun M, Verma A K. A randomized placebo-controlled trial of low-dose α -difluoromethylornithine in individuals at risk for colorectal cancer. Cancer Epidemiol Biomarkers Prev 1998; 7: 989–992
  • Meyskens F L, Jr., Gerner E W, Emerson S, Pelot D, Durbin T, Doyle K, Lagerberg W. Effect of α -difluoromethylornithine on rectal mucosal levels of polyamines in a randomized, double blind trial for colon cancer prevention. J Natl Cancer Inst 1998; 90: 1212–1218
  • Rao C V, Tokumo K, Rigotty J, Zang E, Keloff G, Reddy B S. Chemoprevention of colon carcinogenesis by dietary administration of piroxicam, α - difluoromethylornithine, 16-α -fluoro-5-androsten-17-one, and ellagic acid individually and in combination. Cancer Res 1991; 51: 4528–4534
  • Jacoby R F, Cole C E, Tutsch K, Newton M A, Kelloff G, Hawk E T, Lubet R A. Chemopreventive efficacy of combined piroxicam and difluoromethylornithine treatment of Apc mutant Min mouse adenomas, and selective toxicity against Apc mutant embryos. Cancer Res 2000; 60: 1864–1870
  • Hughes A, Smith N I, Wallace H M. Polyamines reverse non-steroidal anti- inflammatory drug-induced toxicity to human colorectal cancer cells. Biochem J 2003; 374: 481–488
  • Babbar N, Ignatenko N A, Casero R A, Jr., Gerner E W. Cyclooxygenase-independent induction of apoptosis by sulindac sulfone is mediated by polyamines in colon cancer. J Biol Chem 2003; 278: 47762–47775
  • Koeffler H P. Peroxisome proliferators-activated receptor-g and cancers. Clin Cancer Res 2003; 9: 1–9
  • Mitchell J L, Hoff J A, Bareyal-Leyser A. Stable ornithine decarboxylase in a rat hepatoma cell line selected for resistance to α -diluoromethylornithine. Arch Biochem Biophys 1991; 290: 143–152
  • Pendeville H, Carpino N, Mrine J C, Takahashi Y, Muller M, Martial J A, Cleveland I L. The ornithine decarboxylase gene is essential for cell survival during early murine development. Mol Cell Biol 2001; 21: 6549–6558
  • Seiler N, Sarhan S, Mamont P, Casara P, Danzin C. Some biological consequences of S-adenosylmethionine decarboxylase inhibition by MDL 73811. Life Chem Rep 1991; 9: 151–162

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.