1,051
Views
21
CrossRef citations to date
0
Altmetric
Review Article

Insights into the human brain proteome: Disclosing the biological meaning of protein networks in cerebrospinal fluid

, , , &
Pages 185-204 | Received 10 Nov 2016, Accepted 22 Feb 2017, Published online: 10 Apr 2017

References

  • Abad MA, Enguita M, DeGregorio-Rocasolano N, Ferrer I, Trullas R. 2006. Neuronal pentraxin 1 contributes to the neuronal damage evoked by amyloid-beta and is overexpressed in dystrophic neurites in Alzheimer’s brain. J Neurosci. 26:12735–12747.
  • Abdi F, Quinn JF, Jankovic J, McIntosh M, Leverenz JB, Peskind E, Nixon R, Nutt J, Chung K, Zabetian C, et al. 2006. Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders. J Alzheimers Dis. 9:293–348.
  • Angel TE, Jacobs JM, Smith RP, Pasternack MS, Elias S, Gritsenko MA, Shukla A, Gilmore EC, McCarthy C, Camp DG, et al. 2012. Cerebrospinal fluid proteome of patients with acute Lyme disease. J Proteome Res. 11:4814–4822.
  • Araki Y, Yoshikawa K, Okamoto S, Sumitomo M, Maruwaka M, Wakabayashi T. 2010. Identification of novel biomarker candidates by proteomic analysis of cerebrospinal fluid from patients with moyamoya disease using SELDI-TOF-MS. BMC Neurol. 10:112.
  • Asano T, Koizumi S, Takagi A, Hatori T, Kuwabara K, Fujino O, Fukunaga Y. 2011. Identification of a novel biomarker candidate, a 4.8-kDa peptide fragment from a neurosecretory protein VGF precursor, by proteomic analysis of cerebrospinal fluid from children with acute encephalopathy using SELDI-TOF-MS. BMC Neurol. 11:101.
  • Baer AS, Syed YA, Kang SU, Mitteregger D, Vig R, Ffrench-Constant C, Franklin RJM, Altmann F, Lubec G, Kotter MR. 2009. Myelin-mediated inhibition of oligodendrocyte precursor differentiation can be overcome by pharmacological modulation of Fyn-RhoA and protein kinase C signaling. Brain. 132:465–481.
  • Bai S, Liu S, Guo X, Qin Z, Wang B, Li X, Qin Y, Liu Y-H. 2009. Proteome analysis of biomarkers in the cerebrospinal fluid of neuromyelitis optica patients. Mol Vis. 15:1638–1648.
  • Ballard C, Jones EL, Londos E, Minthon L, Francis P, Aarsland D. 2010. alpha-Synuclein antibodies recognize a protein present at lower levels in the CSF of patients with dementia with Lewy bodies. Int Psychogeriatr. 22:321–327.
  • Barucker C, Sommer A, Beckmann G, Eravci M, Harmeier A, Schipke CG, Brockschnieder D, Dyrks T, Althoff V, Fraser PE, et al. 2014. Alzheimer amyloid peptide aβ42 regulates gene expression of transcription and growth factors. J Alzheimers Dis. 44:613–624.
  • Belkina NV, Liu Y, Hao J-J, Karasuyama H, Shaw S. 2009. LOK is a major ERM kinase in resting lymphocytes and regulates cytoskeletal rearrangement through ERM phosphorylation. Proc Natl Acad Sci USA. 106:4707–4712.
  • Bertinato J, L’Abbe MR. 2004. Maintaining copper homeostasis: regulation of copper-trafficking proteins in response to copper deficiency or overload. J Nutr Biochem. 15:316–322.
  • Bora A, Mohien CU, Chaerkady R, Chang L, Moxley R, Sacktor N, Haughey N, McArthur JC, Cotter R, Nath A, Graham DR. 2014. Identification of putative biomarkers for HIV-associated neurocognitive impairment in the CSF of HIV-infected patients under cART therapy determined by mass spectrometry. J Neurovirol. 20:457–465.
  • Bradaric BD, Patel A, Schneider JA, Carvey PM, Hendey B. 2012. Evidence for angiogenesis in Parkinson’s disease, incidental Lewy body disease, and progressive supranuclear palsy. J Neural Transm. 119:59–71.
  • Brechlin P, Jahn O, Steinacker P, Cepek L, Kratzin H, Lehnert S, Jesse S, Mollenhauer B, Kretzschmar HA, Wiltfang J, Otto M. 2008. Cerebrospinal fluid-optimized two-dimensional difference gel electrophoresis (2-D DIGE) facilitates the differential diagnosis of Creutzfeldt-Jakob disease. Proteomics. 8:4357–4366.
  • Brettschneider J, Hartmann N, Lehmensiek V, Mogel H, Ludolph AC, Tumani H. 2011. Cerebrospinal fluid markers of idiopathic intracranial hypertension: is the renin-angiotensinogen system involved? Cephalalgia. 31:116–121.
  • Brettschneider J, Lehmensiek V, Mogel H, Pfeifle M, Dorst J, Hendrich C, Ludolph AC, Tumani H. 2010. Proteome analysis reveals candidate markers of disease progression in amyotrophic lateral sclerosis (ALS). Neurosci Lett. 468:23–27.
  • Brettschneider J, Mogel H, Lehmensiek V, Ahlert T, Süssmuth S, Ludolph AC, Tumani H. 2008. Proteome analysis of cerebrospinal fluid in amyotrophic lateral sclerosis (ALS). Neurochem Res. 33:2358–2363.
  • Brinkmalm A, Brinkmalm G, Honer WG, Frölich L, Hausner L, Minthon L, Hansson O, Wallin A, Zetterberg H, Blennow K, Öhrfelt A. 2014. SNAP-25 is a promising novel cerebrospinal fluid biomarker for synapse degeneration in Alzheimer’s disease. Mol Neurodegener. 9:53.
  • Buchman VL, Adu J, Pinõn LG, Ninkina NN, Davies AM. 1998. Persyn, a member of the synuclein family, influences neurofilament network integrity. Nat Neurosci. 1:101–103.
  • Carrette O, Demalte I, Scherl A, Yalkinoglu O, Corthals G, Burkhard P, Hochstrasser DF, Sanchez J-C. 2003. A panel of cerebrospinal fluid potential biomarkers for the diagnosis of Alzheimer’s disease. Proteomics. 3:1486–1494.
  • Chan SO, Chiu FC. 1995. Cloning and developmental expression of human 66 kd neurofilament protein. Brain Res Mol Brain Res. 29:177–184.
  • Chen C, Xiao D, Zhou W, Zhang Y-C, Shi Q, Tian C, Zhang J, Zhou C-X, Zhang J-Z, Dong X-P. 2012a. Comparative peptidome analyses of the profiles of the peptides ranging from 1-10 KD in CSF samples pooled from probable sporadic CJD and non-CJD patients. Prion. 6:46–51.
  • Chen S, Lu FF, Seeman P, Liu F. 2012b. Quantitative proteomic analysis of human substantia nigra in Alzheimer’s disease, Huntington’s disease and multiple sclerosis. Neurochem Res. 37:2805–2813.
  • Chiu C, Miller MC, Caralopoulos IN, Worden MS, Brinker T, Gordon ZN, Johanson CE, Silverberg GD. 2012. Temporal course of cerebrospinal fluid dynamics and amyloid accumulation in the aging rat brain from three to thirty months. Fluids Barriers CNS. 9:3.
  • Collins MA, An J, Hood BL, Conrads TP, Bowser RP. 2015. Label-free LC-MS/MS proteomic analysis of cerebrospinal fluid identifies protein/pathway alterations and candidate biomarkers for amyotrophic lateral sclerosis. J Proteome Res. 14:4486–4501.
  • Constantinescu R, Andreasson U, Li S, Podust VN, Mattsson N, Anckarsäter R, Anckarsäter H, Rosengren L, Holmberg B, Blennow K, et al. 2010. Proteomic profiling of cerebrospinal fluid in Parkinsonian disorders. Park Relat Disord. 16:545–549.
  • Conti A, Sanchez-Ruiz Y, Bachi A, Beretta L, Grandi E, Beltramo M, Alessio M. 2004. Proteome study of human cerebrospinal fluid following traumatic brain injury indicates fibrin(ogen) degradation products as trauma-associated markers. J Neurotrauma. 21:854–863.
  • Cordeiro A, Pereira R, Chapeaurouge A, Coimbra C, Perales J, Oliveira G, Candiani T, Coimbra R. 2015. Comparative proteomics of cerebrospinal fluid reveals a predictive model for differential diagnosis of pneumococcal, meningococcal, and enteroviral meningitis, and novel putative therapeutic targets. BMC Genomics. 16:S11.
  • D’Aguanno S, Barassi A, Lupisella S, D’Eril GM, Del Boccio P, Pieragostino D, Pallotti F, Carelli V, Valentino ML, Liguori R, et al. 2008. Differential cerebro spinal fluid proteome investigation of Leber hereditary optic neuropathy (LHON) and multiple sclerosis. J Neuroimmunol. 193:156–160.
  • D’Aguanno S, Franciotta D, Lupisella S, Barassi A, Pieragostino D, Lugaresi A, Centonze D, D’Eril GM, Bernardini S, Federici G, Urbani A. 2010. Protein profiling of Guillain-Barrè syndrome cerebrospinal fluid by two-dimensional electrophoresis and mass spectrometry. Neurosci Lett. 485:49–54.
  • da Costa CA, Masliah E, Checler F. 2003. β-synuclein displays an antiapoptotic p53-dependent phenotype and protects neurons from 6-hydroxydopamine-induced caspase 3 activation: cross-talk with α-synuclein and implication for Parkinson’s disease. J Biol Chem. 278:37330–37335.
  • Davidsson P, Sjögren M, Andreasen N, Lindbjer M, Nilsson CL, Westman-Brinkmalm A, Blennow K. 2002a. Studies of the pathophysiological mechanisms in frontotemporal dementia by proteome analysis of CSF proteins. Mol Brain Res. 109:128–133.
  • Davidsson P, Westman-Brinkmalm A, Nilsson CL, Lindbjer M, Paulson L, Andreasen N, Sjögren M, Blennow K. 2002b. Proteome analysis of cerebrospinal fluid proteins in Alzheimer patients. Neuroreport. 13:611–615.
  • de Bont JM, den Boer ML, Reddingius RE, Jansen J, Passier M, van Schaik RHN, Kros JM, Sillevis Smitt PAE, Luider TH, Pieters R. 2006. Identification of apolipoprotein A-II in cerebrospinal fluid of pediatric brain tumor patients by protein expression profiling. Clin Chem. 52:1501–1509.
  • Dhaunchak AS, Becker C, Schulman H, De Faria O, Rajasekharan S, Banwell B, Colman DR, Bar-Or A. 2012. Implication of perturbed axoglial apparatus in early pediatric multiple sclerosis. Ann Neurol. 71:601–613.
  • Dieks JK, Gawinecka J, Asif AR, Varges D, Gmitterova K, Streich JH, Dihazi H, Heinemann U, Zerr I. 2013. Low-abundant cerebrospinal fluid proteome alterations in dementia with Lewy bodies. J Alzheimer’s Dis. 34:387–397.
  • Ditzen C, Tang N, Jastorff AM, Teplytska L, Yassouridis A, Maccarrone G, Uhr M, Bronisch T, Miller CA, Holsboer F, Turck CW. 2012. Cerebrospinal fluid biomarkers for major depression confirm relevance of associated pathophysiology. Neuropsychopharmacology. 37:1013–1025.
  • Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD, Ntzouni M, Margaritis LH, Stefanis L, Vekrellis K. 2010. Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci. 30:6838–6851.
  • Esko JD, Linhardt RJ. 2009. Proteins that bind sulfated glycosaminoglycans. In: Varki A, Cummings RD, Esko JD, editors. Essentials of Glycobiology. 2nd ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press.
  • Fauré J, Lachenal G, Court M, Hirrlinger J, Chatellard-Causse C, Blot B, Grange J, Schoehn G, Goldberg Y, Boyer V, et al. 2006. Exosomes are released by cultured cortical neurons. Mol Cell Neurosci. 31:642–648.
  • Finoulst I, Pinkse M, Van Dongen W, Verhaert P. 2011. Sample preparation techniques for the untargeted LC-MS-based discovery of peptides in complex biological matrices. J Biomed Biotechnol. 2011:245291.
  • Fu W-Y, Chen Y, Sahin M, Zhao X-S, Shi L, Bikoff JB, Lai K-O, Yung W-H, Fu AKY, Greenberg ME, Ip NY. 2007. Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism. Nat Neurosci. 10:67–76.
  • Fukumura K, Yamashita Y, Kawazu M, Sai E, Fujiwara SI, Nakamura N, Takeuchi K, Ando M, Miyazono K, Ueno T, et al. 2013. STK10 missense mutations associated with anti-apoptotic function. Oncol Rep. 30:1542–1548.
  • Füvesi J, Hanrieder J, Bencsik K, Rajda C, Kovács SK, Kaizer L, Beniczky S, Vécsei L, Bergquist J. 2012. Proteomic analysis of cerebrospinal fluid in a fulminant case of multiple sclerosis. Int J Mol Sci. 13:7676–7693.
  • Gao W-M, Chadha MS, Berger RP, Omenn GS, Allen DL, Pisano MR, Adelson PD, Clark RSB, Jenkins LW, Kochanek PM. 2007. A gel-based proteomic comparison of human cerebrospinal fluid between inflicted and non-inflicted pediatric traumatic brain injury. J Neurotrauma. 24:43–53.
  • Gene Ontology Consortium. 2015. Gene Ontology Consortium: going forward. Nucleic Acids Res. 43:D1049–D1056.
  • Gitau EN, Kokwaro GO, Karanja H, Newton CRJC, Ward SA. 2013. Plasma and cerebrospinal proteomes from children with cerebral malaria differ from those of children with other encephalopathies. J Infect Dis. 208:1494–1503.
  • Goicoechea de Jorge E, Caesar JJE, Malik TH, Patel M, Colledge M, Johnson S, Hakobyan S, Morgan BP, Harris CL, Pickering MC, Lea SM. 2013. Dimerization of complement factor H-related proteins modulates complement activation in vivo. Proc Natl Acad Sci USA. 110:4685–4690.
  • Goldstein DS, Holmes C, Sharabi Y. 2012. Cerebrospinal fluid biomarkers of central catecholamine deficiency in Parkinson’s disease and other synucleinopathies. Brain. 135:1900–1913.
  • Gunnersen JM, Kim MH, Fuller SJ, de Silva M, Britto JM, Hammond VE, Davies PJ, Petrou S, Faber ESL, Sah P, Tan SS. 2007. Sez-6 proteins affect dendritic arborization patterns and excitability of cortical pyramidal neurons. Neuron. 56:621–639.
  • Guo S-L, Han C-T, Jung J-L, Chen W-J, Mei JJ-F, Lee H-C, Cheng Y-C. 2014. Cystatin C in cerebrospinal fluid is upregulated in elderly patients with chronic osteoarthritis pain and modulated through matrix metalloproteinase 9-specific pathway. Clin J Pain. 30:331–339.
  • Hale JE, Gelfanova V, You J-S, Knierman MD, Dean RA. 2008. Proteomics of cerebrospinal fluid: methods for sample processing. Methods Mol Biol. 425:53–66.
  • Halperin JJ. 2015. Nervous system Lyme disease. Infect Dis Clin North Am. 29:241–253.
  • Hansson SF, Puchades M, Blennow K, Sjögren M, Davidsson P. 2004. Validation of a prefractionation method followed by two-dimensional electrophoresis – applied to cerebrospinal fluid proteins from frontotemporal dementia patients, Proteome Sci. 2:1–11.
  • Hasegawa H, Liu L, Tooyama I, Murayama S, Nishimura M. 2014. The FAM3 superfamily member ILEI ameliorates Alzheimer’s disease-like pathology by destabilizing the penultimate amyloid-β precursor. Nat Commun. 5:3917.
  • Hendrickson RC, Lee AYH, Song Q, Liaw A, Wiener M, Paweletz CP, Seeburger JL, Li J, Meng F, Deyanova EG, et al. 2015. High resolution discovery proteomics reveals candidate disease progression markers of Alzheimer’s disease in human cerebrospinal fluid. PLoS One. 10:e0135365.
  • Henriques ST, Tan CC, Craik DJ, Clark RJ. 2010. Structural and functional analysis of human liver-expressed antimicrobial peptide 2. Chembiochem. 11:2148–2157.
  • Hertze J, Nägga K, Minthon L, Hansson O. 2014. Changes in cerebrospinal fluid and blood plasma levels of IGF-II and its binding proteins in Alzheimer’s disease: an observational study. BMC Neurol. 14:64.
  • Ho A, Südhof TC. 2004. Binding of F-spondin to amyloid-beta precursor protein: a candidate amyloid-beta precursor protein ligand that modulates amyloid-beta precursor protein cleavage. Proc Natl Acad Sci USA. 101:2548–2553.
  • Hong Z, Shi M, Chung KA, Quinn JF, Peskind ER, Galasko D, Jankovic J, Zabetian CP, Leverenz JB, Baird G, et al. 2010. DJ-1 and α-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain J Neurol. 133:713–726.
  • Hou P, Liu G, Zhao Y, Shi Z, Zheng Q, Bu G, Xu H, Zhang YW. 2015. The role of copper and the copper-related protein CUTA in mediating APP processing and Aβ generation. Neurobiol Aging. 36:1310–1315.
  • Hsieh HL, Schäfer BW, Weigle B, Heizmann CW. 2004. S100 protein translocation in response to extracellular S100 is mediated by receptor for advanced glycation endproducts in human endothelial cells. Biochem Biophys Res Commun. 316:949–959.
  • Hsu SY, Hsueh AJ. 2001. Human stresscopin and stresscopin-related peptide are selective ligands for the type 2 corticotropin-releasing hormone receptor. Nat Med. 7:605–611.
  • Hu Y, Malone JP, Fagan AM, Townsend RR, Holtzman DM. 2005. Comparative proteomic analysis of intra- and interindividual variation in human cerebrospinal fluid. Mol Cell Proteomics. 4:2000–2009.
  • Huang JTJ, Leweke FM, Oxley D, Wang L, Harris N, Koethe D, Gerth CW, Nolden BM, Gross S, et al. 2006. Disease biomarkers in cerebrospinal fluid of patients with first-onset psychosis. PLoS Med. 3:2145–2158.
  • Huang JT-J, Wang L, Prabakaran S, Wengenroth M, Lockstone HE, Koethe D, Gerth CW, Gross S, Schreiber D, Lilley K, et al. 2008. Independent protein-profiling studies show a decrease in apolipoprotein A1 levels in schizophrenia CSF, brain and peripheral tissues. Mol Psychiatry. 13:1118–1128.
  • Huang Y-C, Wu Y-R, Tseng M-Y, Chen Y-C, Hsieh S-Y, Chen C-M. 2011. Increased prothrombin, apolipoprotein A-IV, and haptoglobin in the cerebrospinal fluid of patients with Huntington’s disease. PLoS One. 6:e15809.
  • Jahn H, Wittke S, Zürbig P, Raedler TJ, Arlt S, Kellmann M, Mullen W, Eichenlaub M, Mischak H, Wiedemann K. 2011. Peptide fingerprinting of Alzheimer’s disease in cerebrospinal fluid: identification and prospective evaluation of new synaptic biomarkers. PLoS One. 6:e26540.
  • Jerrard DA, Hanna JR, Schindelheim GL. 2001. Cerebrospinal fluid. J Emerg Med. 21:171–178.
  • Jiang L, Lindpaintner K, Li HF, Gu NF, Langen H, He L, Fountoulakis M. 2003. Proteomic analysis of the cerebrospinal fluid of patients with schizophrenia. Amino Acids. 25:49–57.
  • Jiang S, Wu J, Yang Y, Liu J, Ding Y, Ding M. 2012. Proteomic analysis of the cerebrospinal fluid in multiple sclerosis and neuromyelitis optica patients. Mol Med Rep. 6:1081–1086.
  • Jin T, Hu LS, Chang M, Wu J, Winblad B, Zhu J. 2007. Proteomic identification of potential protein markers in cerebrospinal fluid of GBS patients. Eur J Neurol. 14:563–568.
  • Kataria J, Rukmangadachar LA, Hariprasad G, Tripathi JO, Srinivasan A. 2011. Two dimensional difference gel electrophoresis analysis of cerebrospinal fluid in tuberculous meningitis patients. J Proteomics. 74:2194–2203.
  • Khwaja FW, Nolen JDL, Mendrinos SE, Lewis MM, Olson JJ, Pohl J, Van Meir EG, Ritchie JC, Brat DJ. 2006. Proteomic analysis of cerebrospinal fluid discriminates malignant and nonmalignant disease of the central nervous system and identifies specific protein markers. Proteomics. 6:6277–6287.
  • Kim JH, Lee SK, Yoo YC, Park NH, Park DB, Yoo JS, An HJ, Park YM, Cho KG. 2012. Proteome analysis of human cerebrospinal fluid as a diagnostic biomarker in patients with meningioma. Med Sci Monit. 18:BR450–BR460.
  • Kim MH, Gunnersen JM, Tan SS. 2002. Localized expression of the seizure-related gene SEZ-6 in developing and adult forebrains. Mech Dev. 118:171–174.
  • Kroksveen AC, Aasebø E, Vethe H, Van Pesch V, Franciotta D, Teunissen CE, Ulvik RJ, Vedeler C, Myhr KM, Barsnes H, Berven FS. 2013. Discovery and initial verification of differentially abundant proteins between multiple sclerosis patients and controls using iTRAQ and SID-SRM. J Proteomics. 78:312–325.
  • Kroksveen AC, Guldbrandsen A, Vedeler C, Myhr KM, Opsahl JA, Berven FS. 2012. Cerebrospinal fluid proteome comparison between multiple sclerosis patients and controls. Acta Neurol Scand. 195:90–96.
  • Kroksveen AC, Opsahl JA, Aye TT, Ulvik RJ, Berven FS. 2011. Proteomics of human cerebrospinal fluid: discovery and verification of biomarker candidates in neurodegenerative diseases using quantitative proteomics. J Proteomics. 74:371–388.
  • Kuruppu S, Chou SH-Y, Feske SK, Suh S, Hanchapola I, Lo EH, Ning M, Smith AI. 2014. Soluble and catalytically active endothelin converting enzyme-1 is present in cerebrospinal fluid of subarachnoid hemorrhage patients. Mol Cell Proteomics. 13:1091–1094.
  • Kvartsberg H, Duits FH, Ingelsson M, Andreasen N, Öhrfelt A, Andersson K, Brinkmalm G, Lannfelt L, Minthon L, Hansson O, et al. 2015. Cerebrospinal fluid levels of the synaptic protein neurogranin correlates with cognitive decline in prodromal Alzheimer’s disease. Alzheimer’s Dement. 11:1180–1190.
  • Laspiur JP, Anderson ER, Ciborowski P, Wojna V, Rozek W, Duan F, Mayo R, Rodríguez E, Plaud-Valentín M, Rodríguez-Orengo J, et al. 2007. CSF proteomic fingerprints for HIV-associated cognitive impairment. J Neuroimmunol. 192:157–170.
  • Lecube A, Poca MA, Colomé N, Bech-Serra JJ, Hernández C, García-Ramírez M, Gándara D, Canals F, Simó R. 2012. Proteomic analysis of cerebrospinal fluid from obese women with idiopathic intracranial hypertension: a new approach for identifying new candidates in the pathogenesis of obesity. J Neuroendocrinol. 24:944–952.
  • Lee SY, Kim JM, Cho SY, Kim HS, Shin HS, Jeon JY, Kausar R, Jeong SY, Lee YS, Lee MA. 2014. TIMP-1 modulates chemotaxis of human neural stem cells through CD63 and integrin signalling. Biochem J. 459:565–576.
  • Lehmensiek V, Süssmuth SD, Brettschneider J, Tauscher G, Felk S, Gillardon F, Tumani H. 2007. Proteome analysis of cerebrospinal fluid in Guillain-Barré syndrome (GBS). J Neuroimmunol. 185:190–194.
  • Li A, Dubey S, Varney ML, Dave BJ, Singh RK. 2003. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol. 170:3369–3376.
  • Liguori M, Qualtieri A, Tortorella C, Direnzo V, Bagalà A, Mastrapasqua M, Spadafora P, Trojano M. 2014. Proteomic profiling in multiple sclerosis clinical courses reveals potential biomarkers of neurodegeneration. PLoS One. 9:e103984.
  • Lin C, Smith ER, Takahashi H, Lai KC, Martin-Brown S, Florens L, Washburn MP, Conaway JW, Conaway RC, Shilatifard A. 2010. AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia. Mol Cell. 37:429–437.
  • Linert W, Kozlowski H. 2012. Metal ions in neurological systems. Springer-Verlag Wien: Springer Science & Business Media.
  • Liu S, Bai S, Qin Z, Yang Y, Cui Y, Qin Y. 2009. Quantitative proteomic analysis of the cerebrospinal fluid of patients with multiple sclerosis. J Cell Mol Med. 13:1586–1603.
  • Liu X-D, Zeng B-F, Xu J-G, Zhu H-B, Xia Q-C. 2006. Proteomic analysis of the cerebrospinal fluid of patients with lumbar disk herniation. Proteomics. 6:1019–1028.
  • Luhtala N, Parker R. 2010. T2 Family ribonucleases: ancient enzymes with diverse roles. Trends Biochem Sci. 35:253–259.
  • Maarouf CL, Andacht TM, Kokjohn TA, Castaño EM, Sue LI, Beach TG, Roher AE. 2009. Proteomic analysis of Alzheimer’s disease cerebrospinal fluid from neuropathologically diagnosed subjects. Curr Alzheimer Res. 6:399–406.
  • Mahley RW, Rall SC. 2000. Apolipoprotein E: far more than a lipid transport protein. Annu Rev Genomics Hum Genet. 1:507–537.
  • Manto M. 2014. Abnormal copper homeostasis: mechanisms and roles in neurodegeneration. Toxics. 2:327–345.
  • Martínez-Morillo E, García Hernández P, Begcevic I, Kosanam H, Prieto García B, Alvarez Menéndez FV, Diamandis EP. 2014. Identification of novel biomarkers of brain damage in patients with hemorrhagic stroke by integrating bioinformatics and mass spectrometry-based proteomics. J Proteome Res. 13:969–981.
  • Martins-de-Souza D, Maccarrone G, Wobrock T, Zerr I, Gormanns P, Reckow S, Falkai P, Schmitt A, Turck CW. 2010. Proteome analysis of the thalamus and cerebrospinal fluid reveals glycolysis dysfunction and potential biomarkers candidates for schizophrenia. J Psychiatr Res. 44:1176–1189.
  • Martins-de-Souza D, Wobrock T, Zerr I, Schmitt A, Gawinecka J, Schneider-Axmann T, Falkai P, Turck CW. 2010. Different apolipoprotein E, apolipoprotein A1 and prostaglandin-H2 D-isomerase levels in cerebrospinal fluid of schizophrenia patients and healthy controls. World J Biol Psychiatry. 11:719–728.
  • Mauch DH, Nägler K, Schumacher S, Göritz C, Müller EC, Otto A, Pfrieger FW. 2001. CNS synaptogenesis promoted by glia-derived cholesterol. Science. 294:1354–1357.
  • McAvoy T, Lassman ME, Spellman DS, Ke Z, Howell BJ, Wong O, Zhu L, Tanen M, Struyk A, Laterza OF. 2014. Quantification of tau in cerebrospinal fluid by immunoaffinity enrichment and tandem mass spectrometry. Clin Chem. 60:683–689.
  • Mendonça DMF, Pizzati L, Mostacada K, de S Martins SC, Higashi R, Ayres Sá L, Moura Neto V, Chimelli L, Martinez AMB. 2012. Neuroproteomics: an insight into ALS. Neurol Res. 34:937–943.
  • Menon KN, Steer DL, Short M, Petratos S, Smith I, Bernard CC. 2011. A novel unbiased proteomic approach to detect the reactivity of cerebrospinal fluid in neurological diseases. Mol Cell Proteomics. 10:M110.000042.
  • Meyer RC, Giddens MM, Schaefer SA, Hall RA. 2013. GPR37 and GPR37L1 are receptors for the neuroprotective and glioprotective factors prosaptide and prosaposin. Proc Natl Acad Sci USA. 110:9529–9534.
  • Montes S, Rivera-Mancia S, Diaz-Ruiz A, Tristan-Lopez L, Rios C. 2014. Copper and copper proteins in Parkinson’s disease. Oxid Med Cell Longev. 2014:147251.
  • Moody DB, Ulrichs T, Mühlecker W, Young DC, Gurcha SS, Grant E, Rosat J-P, Brenner MB, Costello CE, Besra GS, Porcelli SA. 2000. CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature. 404:884–888.
  • Moon RT, McMahon AP. 1990. Generation of diversity in nonerythroid spectrins: multiple polypeptides are predicted by sequence analysis of cDNAs encompassing the coding region of human nonerythroid α-spectrin. J Biol Chem. 265:4427–33.
  • Morris JC, Roe CM, Xiong C, Fagan AM, Goate AM, Holtzman DM, Mintun MA. 2010. APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging. Ann Neurol. 67:122–131.
  • Mu J, Yang Y, Chen J, Cheng K, Li Q, Wei Y, Zhu D, Shao W, Zheng P, Xie P. 2015. Elevated host lipid metabolism revealed by iTRAQ-based quantitative proteomic analysis of cerebrospinal fluid of tuberculous meningitis patients. Biochem Biophys Res Commun. 466:689–695.
  • Nakada M, Miyamori H, Yamashita J, Sato H. 2003. Testican 2 abrogates inhibition of membrane-type matrix metalloproteinases by other testican family proteins. Cancer Res. 63:3364–3369.
  • Nakagawa Y, Takamatsu H, Okuno T, Kang S, Nojima S, Kimura T, Kataoka TR, Ikawa M, Toyofuku T, Katayama I, Kumanogoh A. 2011. Identification of semaphorin 4B as a negative regulator of basophil-mediated immune responses. J Immunol. 186:2881–2888.
  • Ngure RM, Eckersall PD, Mungatana NK, Mburu JN, Jennings FW, Burke J, Murray M. 2009. Lipopolysaccharide binding protein in the acute phase response of experimental murine Trypanosoma brucei infection. Res Vet Sci. 86:394–398.
  • Nilsson C, Ståhlberg F, Thomsen C, Henriksen O, Herning M, Owman C. 1992. Circadian variation in human cerebrospinal fluid production measured by magnetic resonance imaging. Am J Physiol. 262:R20–R24.
  • Oeckl P, Steinacker P, von Arnim CAF, Straub S, Nagl M, Feneberg E, Weishaupt JH, Ludolph AC, Otto M. 2014. Intact protein analysis of ubiquitin in cerebrospinal fluid by multiple reaction monitoring reveals differences in Alzheimer’s disease and frontotemporal lobar degeneration. J Proteome Res. 13:4518–4525.
  • Opipari AW, Hu HM, Yabkowitz R, Dixit VM. 1992. The A20 zinc finger protein protects cells from tumor necrosis factor cytotoxicity. J Biol Chem. 267:12424–12427.
  • Oshio K, Watanabe H, Song Y, Verkman AS, Manley GT. 2005. Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel Aquaporin-1. FASEB J. 19:76–78.
  • Ou Q, Liu X, Cheng X. 2013. An iTRAQ approach to quantitative proteome analysis of cerebrospinal fluid from patients with tuberculous meningitis. Biosci Trends. 7:186–192.
  • Pal A, Kumar A, Prasad R. 2014. Predictive association of copper metabolism proteins with Alzheimer’s disease and Parkinson’s disease: a preliminary perspective. BioMetals. 27:25–31.
  • Parandoosh Z, Johanson CE. 1982. Ontogeny of blood-brain barrier permeability to, and cerebrospinal fluid sink action on, [14C]urea. Am J Physiol. 243:R400–R407.
  • Pasinetti GM, Ungar LH, Lange DJ, Yemul S, Deng H, Yuan X, Brown RH, Cudkowicz ME, Newhall K, Peskind E, et al. 2006. Identification of potential CSF biomarkers in ALS. Neurology. 66:1218–1222.
  • Patil AA, Cai Y, Sang Y, Blecha F, Zhang G. 2005. Cross-species analysis of the mammalian beta-defensin gene family: presence of syntenic gene clusters and preferential expression in the male reproductive tract. Physiol Genomics. 23:5–17.
  • Perez-Gonzalez R, Gauthier SA, Kumar A, Levy E. 2012. The exosome secretory pathway transports amyloid precursor protein carboxyl-terminal fragments from the cell into the brain extracellular space. J Biol Chem. 287:43108–43115.
  • Perga S, Giuliano Albo A, Lis K, Minari N, Falvo S, Marnetto F, Caldano M, Reviglione R, Berchialla P, Capobianco MA, et al. 2015. Vitamin D binding protein isoforms and apolipoprotein e in cerebrospinal fluid as prognostic biomarkers of multiple sclerosis. PLoS One. 10:e0129291.
  • Perrin RJ, Craig-Schapiro R, Malone JP, Shah AR, Gilmore P, Davis AE, Roe CM, Peskind ER, Li G, Galasko DR, et al. 2011. Identification and validation of novel cerebrospinal fluid biomarkers for staging early Alzheimer’s disease. PLoS One. 6:e16032.
  • Petzold A, Sharpe LT, Keir G. 2006. Spectrophotometry for cerebrospinal fluid pigment analysis. Neurocrit Care. 4:153–162.
  • Pichler P, Köcher T, Holzmann J, Mazanek M, Taus T, Ammerer G, Mechtler K. 2010. Peptide labeling with isobaric tags yields higher identification rates using iTRAQ 4-plex compared to TMT 6-plex and iTRAQ 8-plex on LTQ orbitrap. Anal Chem. 82:6549–6558.
  • Pimenta AF, Fischer I, Levitt P. 1996. cDNA cloning and structural analysis of the human limbic-system-associated membrane protein (LAMP). Gene. 170:189–195.
  • Poljak A, Hill M, Hall RJ, MacLullich AM, Raftery MJ, Tai J, Yan S, Caplan GA. 2014. Quantitative proteomics of delirium cerebrospinal fluid. Transl Psychiatry. 4:e477.
  • Portelius E, Hansson SF, Tran AJ, Zetterberg H, Grognet P, Vanmechelen E, Höglund K, Brinkmalm G, Westman-Brinkmalm A, Nordhoff E. et al. 2008. Characterization of tau in cerebrospinal fluid using mass spectrometry. J Proteome Res. 7:2114–2120.
  • Portelius E, Zetterberg H, Skillbäck T, Törnqvist U, Andreasson U, Trojanowski JQ, Weiner MW, Shaw LM, Mattsson N, Blennow K. 2015. Cerebrospinal fluid neurogranin: relation to cognition and neurodegeneration in Alzheimer’s disease. Brain. 138:3373–3385.
  • Prange CK, Pennacchio LA, Lieuallen K, Fan W, Lennon GG. 1998. Characterization of the human neurocan gene, CSPG3. Gene. 221:199–205.
  • Puchades M, Hansson SF, Nilsson CL, Andreasen N, Blennow K, Davidsson P. 2003. Proteomic studies of potential cerebrospinal fluid protein markers for Alzheimer’s disease. Brain Res Mol Brain Res. 118:140–146.
  • Qin Z, Qin Y, Liu S. 2009. Alteration of DBP levels in CSF of patients with MS by proteomics analysis. Cell Mol Neurobiol. 29:203–210.
  • Rajagopal MU, Hathout Y, MacDonald TJ, Kieran MW, Gururangan S, Blaney SM, Phillips P, Packer R, Gordish-Dressman H, Rood BR. 2011. Proteomic profiling of cerebrospinal fluid identifies prostaglandin D2 synthase as a putative biomarker for pediatric medulloblastoma: a pediatric brain tumor consortium study. Proteomics. 11:935–943.
  • Ranganathan S, Williams E, Ganchev P, Gopalakrishnan V, Lacomis D, Urbinelli L, Newhall K, Cudkowicz ME, Brown RH, Bowser R. 2005. Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis. J Neurochem. 95:1461–1471.
  • Reeves RH, Yao J, Crowley MR, Buck S, Zhang X, Yarowsky P, Gearhart JD, Hilt DC. 1994. Astrocytosis and axonal proliferation in the hippocampus of S100b transgenic mice. Proc Natl Acad Sci USA. 91:5359–5363.
  • Regeniter A, Kuhle J, Mehling M, Möller H, Wurster U, Freidank H, Siede WH. 2009. A modern approach to CSF analysis: pathophysiology, clinical application, proof of concept and laboratory reporting. Clin Neurol Neurosurg. 111:313–318.
  • Ringman JM, Schulman H, Becker C, Jones T, Bai Y, Immermann F, Cole G, Sokolow S, Gylys K, Geschwind DH, et al. 2012. Proteomic changes in cerebrospinal fluid of presymptomatic and affected persons carrying familial alzheimer disease mutations. Arch Neurol. 69:96–104.
  • Römpp A, Dekker L, Taban I, Jenster G, Boogerd W, Bonfrer H, Spengler B, Heeren R, Smitt PS, Luider TM. 2007. Identification of leptomeningeal metastasis-related proteins in cerebrospinal fluid of patients with breast cancer by a combination of MALDI-TOF, MALDI-FTICR and nanoLC-FTICR MS. Proteomics. 7:474–481.
  • Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, et al. 2004. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics. 3:1154–1169.
  • Roy S, Josephson SA, Fridlyand J, Karch J, Kadoch C, Karrim J, Damon L, Treseler P, Kunwar S, Shuman MA, et al. 2008. Protein biomarker identification in the CSF of patients with CNS lymphoma. J Clin Oncol. 26:96–105.
  • Rozek W, Ricardo-Dukelow M, Holloway S, Gendelman HE, Wojna V, Melendez LM, Ciborowski P. 2007. Cerebrospinal fluid proteomic profiling of HIV-1-infected patients with cognitive impairment. J Proteome Res. 6:4189–4199.
  • Sanjurjo L, Amézaga N, Aran G, Naranjo-Gómez M, Arias L, Armengol C, Borràs FE, Sarrias M-R. 2015. The human CD5L/AIM-CD36 axis: a novel autophagy inducer in macrophages that modulates inflammatory responses. Autophagy. 11:487–502.
  • Saratsis AM, Yadavilli S, Magge S, Rood BR, Perez J, Hill DA, Hwang E, Kilburn L, Packer RJ, Nazarian J. 2012. Insights into pediatric diffuse intrinsic pontine glioma through proteomic analysis of cerebrospinal fluid. Neuro Oncol. 14:547–560.
  • Sasaki S, Iwata M. 1996. Dendritic synapses of anterior horn neurons in amyotrophic lateral sclerosis: an ultrastructural study. Acta Neuropathol. 91:278–283.
  • Sasaki S, Maruyama S. 1994. Synapse loss in anterior horn neurons in amyotrophic lateral sclerosis. Acta Neuropathol. 88:222–227.
  • Satoh K, Yanai H, Senda T, Kohu K, Nakamura T, Okumura N, Matsumine A, Kobayashi S, Toyoshima K, Akiyama T. 1997. DAP-1, a novel protein that interacts with the guanylate kinase-like domains of hDLG and PSD-95. Genes Cells. 2:415–424.
  • Sävman K, Heyes MP, Svedin P, Karlsson A. 2013. Microglia/macrophage-derived inflammatory mediators galectin-3 and quinolinic acid are elevated in cerebrospinal fluid from newborn infants after birth asphyxia. Transl Stroke Res. 4:228–235.
  • Scherp P, Ku G, Coleman L, Kheterpal I. 2011. Gel-based and gel-free proteomic technologies. Methods Mol Biol. 702:163–190.
  • Schuhmann MU, Zucht HD, Nassimi R, Heine G, Schneekloth CG, Stuerenburg HJ, Selle H. 2010. Peptide screening of cerebrospinal fluid in patients with glioblastoma multiforme. Eur J Surg Oncol. 36:201–207.
  • Segal MB. 1993. Extracellular and cerebrospinal fluids. J Inherit Metab Dis. 16:617–638.
  • Sengupta N, Mukherjee S, Tripathi P, Kumar R, Suryavanshi A, Basu A. 2015. Cerebrospinal fluid biomarkers of Japanese encephalitis. F1000Research. 4:334.
  • Shi L, Fu W-Y, Hung K-W, Porchetta C, Hall C, Fu AKY, Ip NY. 2007. Alpha2-chimaerin interacts with EphA4 and regulates EphA4-dependent growth cone collapse. Proc Natl Acad Sci USA. 104:16347–16352.
  • Shi M, Movius J, Dator R, Aro P, Zhao Y, Pan C, Lin X, Bammler TK, Stewart T, Zabetian CP, et al. 2015. Cerebrospinal fluid peptides as potential Parkinson disease biomarkers: a staged pipeline for discovery and validation. Mol Cell Proteomics. 14:544–555.
  • Sihlbom C, Davidsson P, Sjögren M, Wahlund L-O, Nilsson CL. 2008. Structural and quantitative comparison of cerebrospinal fluid glycoproteins in Alzheimer’s disease patients and healthy individuals. Neurochem Res. 33:1332–1340.
  • Simonsen AH, McGuire J, Hansson O, Zetterberg H, Podust VN, Davies HA, Waldemar G, Minthon L, Blennow K. 2007. Novel panel of cerebrospinal fluid biomarkers for the prediction of progression to Alzheimer dementia in patients with mild cognitive impairment. Arch Neurol. 64:366–370.
  • Simonsen AH, McGuire J, Podust VN, Davies H, Minthon L, Skoog I, Andreasen N, Wallin A, Waldemar G, Blennow K. 2008. Identification of a novel panel of cerebrospinal fluid biomarkers for Alzheimer’s disease. Neurobiol Aging. 29:961–968.
  • Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT, Carter BS, Krichevsky AM, Breakefield XO. 2008. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 10:1470–1476.
  • Smith CD, Chebrolu H, Wekstein DR, Schmitt FA, Jicha GA, Cooper G, Markesbery WR. 2007. Brain structural alterations before mild cognitive impairment. Neurology. 68:1268–1273.
  • Song HY, Rothe M, Goeddel DV. 1996. The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-kappaB activation. Proc Natl Acad Sci USA. 93:6721–6725.
  • Stoop MP, Coulier L, Rosenling T, Shi S, Smolinska AM, Buydens L, Ampt K, Stingl C, Dane A, Muilwijk B, et al. 2010. Quantitative proteomics and metabolomics analysis of normal human cerebrospinal fluid samples. Mol Cell Proteomics. 9:2063–2075.
  • Stoop MP, Dekker LJ, Titulaer MK, Burgers PC, Sillevis Smitt PAE, Luider TM, Hintzen RQ. 2008. Multiple sclerosis-related proteins identified in cerebrospinal fluid by advanced mass spectrometry. Proteomics. 8:1576–1585.
  • Stoop MP, Dekker LJ, Titulaer MK, Lamers R-JAN, Burgers PC, Sillevis Smitt PAE, van Gool AJ, Luider TM, Hintzen RQ. 2009. Quantitative matrix-assisted laser desorption ionization-fourier transform ion cyclotron resonance (MALDI-FT-ICR) peptide profiling and identification of multiple-sclerosis-related proteins. J Proteome Res. 8:1404–1414.
  • Stoop MP, Singh V, Dekker LJ, Titulaer MK, Stingl C, Burgers PC, Sillevis Smitt PAE, Hintzen RQ, Luider TM. 2010. Proteomics comparison of cerebrospinal fluid of relapsing remitting and primary progressive multiple sclerosis. PLoS One. 5:e12442.
  • Stopa EG, Berzin TM, Kim S, Song P, Kuo-LeBlanc V, Rodriguez-Wolf M, Baird A, Johanson CE. 2001. Human choroid plexus growth factors: what are the implications for CSF dynamics in Alzheimer’s disease? Exp Neurol. 167:40–47.
  • Struyk AF, Canoll PD, Wolfgang MJ, Rosen CL, D’Eustachio P, Salzer JL. 1995. Cloning of neurotrimin defines a new subfamily of differentially expressed neural cell adhesion molecules. J Neurosci. 15:2141–2156.
  • Tarawneh R, D’Angelo G, Crimmins D, Herries E, Griest T, Fagan AM, Zipfel GJ, Ladenson JH, Morris JC, Holtzman DM. 2016. Diagnostic and prognostic utility of the synaptic marker neurogranin in alzheimer disease. JAMA Neurol. 73:561–571.
  • Tavares-Valente D, Baltazar F, Moreira R, Queirós O. 2013. Cancer cell bioenergetics and pH regulation influence breast cancer cell resistance to paclitaxel and doxorubicin. J Bioenerg Biomembr. 45:467–475.
  • Taylor DD, Gercel-Taylor C. 2011. Exosomes/microvesicles: mediators of cancer-associated immunosuppressive microenvironments. Semin Immunopathol. 33:441–454.
  • Teunissen CE, Koel-Simmelink MJA, Pham TV, Knol JC, Khalil M, Trentini A, Killestein J, Nielsen J, Vrenken H, Popescu V, et al. 2011. Identification of biomarkers for diagnosis and progression of MS by MALDI-TOF mass spectrometry. Mult Scler. 17:838–850.
  • Teunissen CE, Petzold A, Bennett JL, Berven FS, Brundin L, Comabella M, Franciotta D, Frederiksen JL, Fleming JO, Furlan R, et al. 2009. A consensus protocol for the standardization of cerebrospinal fluid collection and biobanking. Neurology. 73:1914–1922.
  • Théry C, Ostrowski M, Segura E. 2009. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 9:581–593.
  • Thompson A, Schäfer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Hamon C. 2003. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem. 75:1895–1904.
  • Tiberti N, Hainard A, Lejon V, Robin X, Ngoyi DM, Turck N, Matovu E, Enyaru J, Ndung’u JM, Scherl A, et al. 2010. Discovery and verification of osteopontin and beta-2-microglobulin as promising markers for staging human African trypanosomiasis. Mol Cell Proteomics. 9:2783–2795.
  • Tiberti N, Sanchez J-C. 2015. Comparative analysis of cerebrospinal fluid from the meningo-encephalitic stage of T. b. gambiense and rhodesiense sleeping sickness patients using TMT quantitative proteomics. Data Br. 4:400–405.
  • Trupp M, Jonsson P, Ohrfelt A, Zetterberg H, Obudulu O, Malm L, Wuolikainen A, Linder J, Moritz T, Blennow K, et al. 2014. Metabolite and peptide levels in plasma and CSF differentiating healthy controls from patients with newly diagnosed Parkinson’s disease. J Parkinsons Dis. 4:549–560.
  • Tsoi H, Yu ACS, Chen ZS, Ng NKN, Chan AYY, Yuen LYP, Abrigo JM, Tsang SY, Tsui SKW, Tong TMF, et al. 2014. A novel missense mutation in CCDC88C activates the JNK pathway and causes a dominant form of spinocerebellar ataxia. J Med Genet. 51:590–595.
  • Tumani H, Lehmensiek V, Rau D, Guttmann I, Tauscher G, Mogel H, Palm C, Hirt V, Suessmuth SD, Sapunova-Meier I, et al. 2009. CSF proteome analysis in clinically isolated syndrome (CIS): candidate markers for conversion to definite multiple sclerosis. Neurosci Lett. 452:214–217.
  • Tumani H, Pfeifle M, Lehmensiek V, Rau D, Mogel H, Ludolph AC, Brettschneider J. 2009. Candidate biomarkers of chronic inflammatory demyelinating polyneuropathy (CIDP): proteome analysis of cerebrospinal fluid. J Neuroimmunol. 214:109–112.
  • Ushkaryov YA, Petrenko AG, Geppert M, Südhof TC. 1992. Neurexins: synaptic cell surface proteins related to the alpha-latrotoxin receptor and laminin. Science. 257:50–56.
  • Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. 2007. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 9:654–659.
  • Vanderstichele H, Bibl M, Engelborghs S, Le Bastard N, Lewczuk P, Molinuevo JL, Parnetti L, Perret-Liaudet A, Shaw LM, et al. 2012. Standardization of preanalytical aspects of cerebrospinal fluid biomarker testing for Alzheimer’s disease diagnosis: a consensus paper from the Alzheimer’s Biomarkers Standardization Initiative. Alzheimer’s Dement. 8:65–73.
  • Vanderver A, Schiffmann R, Timmons M, Kellersberger KA, Fabris D, Hoffman EP, Maletkovic J, Hathout Y. 2005. Decreased asialotransferrin in cerebrospinal fluid of patients with childhood-onset ataxia and central nervous system hypomyelination/vanishing white matter disease. Clin Chem. 51:2031–2042.
  • Vlahopoulos S, Boldogh I, Casola A, Brasier AR. 1999. Nuclear factor-kappaB-dependent induction of interleukin-8 gene expression by tumor necrosis factor alpha: evidence for an antioxidant sensitive activating pathway distinct from nuclear translocation. Blood. 94:1878–1889.
  • Walker LC, LeVine H. 2000. The cerebral proteopathies: neurodegenerative disorders of protein conformation and assembly. Mol Neurobiol. 21:83–95.
  • Wang ES, Sun Y, Guo JG, Gao X, Hu JW, Zhou L, Hu J, Jiang CC. 2010. Tetranectin and apolipoprotein A-I in cerebrospinal fluid as potential biomarkers for Parkinson’s disease. Acta Neurol Scand. 122:350–359.
  • Wang E-S, Yao H-B, Chen Y-H, Wang G, Gao W-W, Sun Y-R, Guo J-G, Hu J-W, Jiang C-C, Hu J. 2013. Proteomic analysis of the cerebrospinal fluid of Parkinson’s disease patients pre- and post-deep brain stimulation. Cell Physiol Biochem. 31:625–637.
  • Wang S, Cesca F, Loers G, Schweizer M, Buck F, Benfenati F, Schachner M, Kleene R. 2011. Synapsin I is an oligomannose-carrying glycoprotein, acts as an oligomannose-binding lectin, and promotes neurite outgrowth and neuronal survival when released via glia-derived exosomes. J Neurosci. 31:7275–7290.
  • Wijte D, McDonnell LA, Balog CIA, Bossers K, Deelder AM, Swaab DF, Verhaagen J, Mayboroda OA. 2012. A novel peptidomics approach to detect markers of Alzheimer’s disease in cerebrospinal fluid. Methods. 56:500–507.
  • Wolburg H, Wolburg-Buchholz K, Engelhardt B. 2005. Diapedesis of mononuclear cells across cerebral venules during experimental autoimmune encephalomyelitis leaves tight junctions intact. Acta Neuropathol. 109:181–190.
  • Woolsey RM. 2005. Fundamentals of neurologic disease. J Spinal Cord Med. 28:348.
  • Xiao F, Chen D, Lu Y, Xiao Z, Guan LF, Yuan J, Wang L, Xi ZQ, Wang XF. 2009. Proteomic analysis of cerebrospinal fluid from patients with idiopathic temporal lobe epilepsy. Brain Res. 1255:180–189.
  • Xie Z, Harris-White ME, Wals PA, Frautschy SA, Finch CE, Morgan TE. 2005. Apolipoprotein J (clusterin) activates rodent microglia in vivo and in vitro. J Neurochem. 93:1038–1046.
  • Xin H, Li Y, Buller B, Katakowski M, Zhang Y, Wang X, Shang X, Zhang ZG, Chopp M. 2012. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells. 30:1556–1564.
  • Xiong H, Wang D, Chen L, Choo YS, Ma H, Tang C, Xia K, Jiang W, Ronai Z, Zhuang X, Zhang Z. 2009. Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. J Clin Invest. 119:650–660.
  • Yang M, Qin Z, Zhu Y, Li Y, Qin Y, Jing Y, Liu S. 2013. Vitamin D-binding protein in cerebrospinal fluid is associated with multiple sclerosis progression. Mol Neurobiol. 47:946–956.
  • Yang Y-R, Liu S-L, Qin Z-Y, Liu F-J, Qin Y-J, Bai S-M, Chen Z-Y. 2008. Comparative proteomics analysis of cerebrospinal fluid of patients with Guillain-Barré syndrome. Cell Mol Neurobiol. 28:737–744.
  • Yi H, Bai Y, Zhu X, Lin L, Zhao L, Wu X, Buch S, Wang L, Chao J, Yao H. 2014. IL-17A induces MIP-1alpha expression in primary astrocytes via Src/MAPK/PI3K/NF-kB pathways: implications for multiple sclerosis. J Neuroimmune Pharmacol. 9:629–641.
  • Yin Y-W, Li J-C, Wang J-Z, Li B-H, Pi Y, Yang Q-W, Fang C-Q, Gao C-Y, Zhang L-L. 2012. Association between apolipoprotein E gene polymorphism and the risk of vascular dementia: a meta-analysis. Neurosci Lett. 514:6–11.
  • Yoon HS, Adachi N, Kunugi H. 2014. Microinjection of cocaine- and amphetamine-regulated transcript 55-102 peptide into the nucleus accumbens could modulate anxiety-related behavior in rats. Neuropeptides. 48:319–325.
  • Zhang J, Goodlett DR, Peskind ER, Quinn JF, Zhou Y, Wang Q, Pan C, Yi E, Eng J, Aebersold RH, et al. 2005. Quantitative proteomic analysis of age-related changes in human cerebrospinal fluid. Neurobiol Aging. 26:207–227.
  • Zhang JZ, Chen C, Xiao D, Zhou W, Shi Q, Zhang HF, Zhang J, Tian C, Dong XP. 2014. Global protein differential expression profiling of cerebrospinal fluid samples pooled from Chinese sporadic CJD and non-CJD patients. Mol Neurobiol. 49:290–302.
  • Zhang Y, Guo Z, Zou L, Yang Y, Zhang L, Ji N, Shao C, Wang Y, Sun W. 2015. Data for a comprehensive map and functional annotation of the human cerebrospinal fluid proteome. Data Br. 3:103–107.
  • Zheng P-P, Luider TM, Pieters R, Avezaat CJJ, van den Bent MJ, Sillevis Smitt PAE, Kros JM. 2003. Identification of tumor-related proteins by proteomic analysis of cerebrospinal fluid from patients with primary brain tumors. J Neuropathol Exp Neurol. 62:855–862.
  • Zlokovic BV. 2013. Cerebrovascular effects of apolipoprotein E: implications for Alzheimer disease. JAMA Neurol. 70:440–444.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.