1,678
Views
76
CrossRef citations to date
0
Altmetric
Review Article

Biomarkers of diabetic nephropathy: A 2017 update

, , , &
Pages 326-342 | Received 13 Mar 2017, Accepted 05 Sep 2017, Published online: 28 Sep 2017

References

  • American Diabetes Association (ADA). Standard of medical care in diabetes – 2017. Diabetes Care. 2017;40 (supp 1):s4–s128.
  • Sun JK, Keenan HA, Cavallerano JD, et al. Protection from retinopathy and other complications in patients with type 1 diabetes of extreme duration: the joslin 50-year medalist study. Diabetes Care. 2011;34:968–974.
  • Tramonti G, Kanwar YS. Review and discussion of tubular biomarkers in the diagnosis and management of diabetic nephropathy. Endocrine. 2013;43:494–503.
  • Gross JL, De Azevedo MJ, Silveiro SP, et al. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care. 2005;28:176–188.
  • Skupien J, Warram JH, Smiles AM, et al. The early decline in renal function in patients with type 1 diabetes and proteinuria predicts the risk of end-stage renal disease. Kidney Int. 2012;82:589–597.
  • Thorn LM, Gordin D, Harjutsalo V, et al. The presence and consequence of nonalbuminuric chronic kidney disease in patients with type 1 diabetes. Diabetes Care. 2015;38:2128–2133.
  • Mogensen CE, Christensen CK, Vittinghus E. The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy. Diabetes. 1983;32 Suppl 2:64–78.
  • Tervaert TWC, Mooyaart AL, Amann K, et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol: JASN. 2010;21:556–563.
  • Dugbartey GJ. Diabetic nephropathy: a potential savior with “rotten-egg” smell. Pharmacol Rep. 2017;69:331–339.
  • Papadopoulou-Marketou N, Chrousos GP, Kanaka-Gantenbein C. Diabetic nephropathy in type 1 diabetes: a review of early natural history, pathogenesis, and diagnosis. Diabetes Metab Res Rev. 2017;33:e2841.
  • Kanwar YS, Sun L, Xie P, et al. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol Mech Dis. 2011;6:395–423.
  • Mogensen CE, Christensen CK. Predicting diabetic nephropathy in insulin-dependent patients. N Engl J Med. 1984;311:89–93.
  • Williams ME. Diabetic nephropathy: the proteinuria hypothesis. Am J Nephrol. 2005;25:77–94.
  • Perkins BA, Ficociello LH, Roshan B, et al. In patients with type 1 diabetes and new-onset microalbuminuria the development of advanced chronic kidney disease may not require progression to proteinuria. Kidney Int. 2010;77:57–64.
  • Parving HH, Oxenbøll B, Svendsen PA, et al. Early detection of patients at risk of developing diabetic nephropathy. A longitudinal study of urinary albumin excretion. Acta Endocrinol. 1982;100:550–555.
  • Viberti GC, Hill RD, Jarrett RJ, et al. Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetes mellitus. Lancet. 1982;1:1430–1432.
  • Demirel F, Tepe D, Kara O, et al. Microvascular complications in adolescents with type 1 diabetes mellitus. Jcrpe. 2013;5:145–149.
  • Perkins BA, Ficociello LH, Silva KH, et al. Regression of microalbuminuria in type 1 diabetes. N Engl J Med. 2003;348:2285–2293.
  • Drummond K, Mauer M. The early natural history of nephropathy in type 1 diabetes: II. Early renal structural changes in type 1 diabetes. Diabetes. 2002;51:1580–1587.
  • Steinke JM, Sinaiko AR, Kramer MS, et al. The early natural history of nephropathy in type 1 diabetes: III. Predictors of 5-year urinary albumin excretion rate patterns in initially normoalbuminuric patients. Diabetes. 2005;54:2164–2171.
  • Comper WD, Osicka TM, Clark M, et al. Earlier detection of microalbuminuria in diabetic patients using a new urinary albumin assay. Kidney Int. 2004;65:1850–1855.
  • Amin R, Widmer B, Prevost AT, et al. Risk of microalbuminuria and progression to macroalbuminuria in a cohort with childhood onset type 1 diabetes: prospective observational study. BMJ (Clinical Research Ed). 2008;336:697–701.
  • Rosolowsky ET, Niewczas MA, Ficociello LH, et al. Between hyperfiltration and impairment: demystifying early renal functional changes in diabetic nephropathy. Diabetes Res Clin Pract. 2008;82(Suppl 1):S46–S53.
  • Kim SS, Song SH, Kim IJ, et al. Urinary cystatin C and tubular proteinuria predict progression of diabetic nephropathy. Diabetes Care. 2013;36:656–661.
  • Kim JH, Kim SS, Kim IJ, et al. Nonalbumin proteinuria is a simple and practical predictor of the progression of early-stage type 2 diabetic nephropathy. J Diabetes Complications. 2017;31:395–399.
  • Halimi J-M. Low-grade proteinuria and microalbuminuria in renal transplantation. Transplant J. 2013;96:121–130.
  • Dharnidharka VR, Kwon C, Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis: Off J Natl Kidney Foundation. 2002;40:221–226.
  • Finney H, Newman DJ, Thakkar H, et al. Reference ranges for plasma cystatin C and creatinine measurements in premature infants, neonates, and older children. Arch Dis Child. 2000;82:71–75.
  • Garg V, Kumar M, Mahapatra HS, et al. Novel urinary biomarkers in pre-diabetic nephropathy. Clin Exp Nephrol. 2015;19:895–900.
  • Chae H-W, Shin J-I, Kwon A-R, et al. Spot urine albumin to creatinine ratio and serum cystatin C are effective for detection of diabetic nephropathy in childhood diabetic patients. J Korean Med Sci. 2012;27:784–787.
  • Hong C-Y, Hughes K, Chia K-S, et al. Urinary 1-microglobulin as a marker of nephropathy in type 2 diabetic Asian subjects in Singapore. Diabetes Care. 2003;26:338–342.
  • Petrica L, Vlad A, Gluhovschi G, et al. Proximal tubule dysfunction is associated with podocyte damage biomarkers nephrin and vascular endothelial growth factor in type 2 diabetes mellitus patients: a cross-sectional study. PLoS One. 2014;9:e112538.
  • Ito H, Fujita H, Takahashi T. Diagnostic biomarkers of diabetic nephropathy. Expert Opin Med Diagn. 2008;2:161–169.
  • Narita T, Sasaki H, Hosoba M, et al. Parallel increase in urinary excretion rates of immunoglobulin G, ceruloplasmin, transferrin, and orosomucoid in normoalbuminuric type 2 diabetic patients. Diabetes Care. 2004;27:1176–1181.
  • Gerritsen KGF, Leeuwis JW, Koeners MP, et al. Elevated urinary connective tissue growth factor in diabetic nephropathy is caused by local production and tubular dysfunction. J Diabetes Res. 2015;2015:539787.
  • Jung Lee M, Hee Jung C, Mi Kang Y, et al. Serum ceruloplasmin level as a predictor for the progression of diabetic nephropathy in Korean Men with Type 2 diabetes mellitus. Diabetes Metab J. 2015;39:230–239.
  • Gohda T, Walker WH, Wolkow P, et al. Elevated urinary excretion of immunoglobulins in nonproteinuric patients with type 1 diabetes. Am J Physiol Renal Physiol. 2012;303:F157–F162.
  • Bakoush O, Tencer J, Tapia J, et al. Higher urinary IgM excretion in type 2 diabetic nephropathy compared to type 1 diabetic nephropathy. Kidney Int. 2002;61:203–208.
  • Tofik R, Torffvit O, Rippe B, et al. Increased urine IgM excretion predicts cardiovascular events in patients with type 1 diabetes nephropathy. BMC Med. 2009;7:39.
  • Zhuang Z, Bai Q, Lata A, et al. Increased urinary angiotensinogen precedes the onset of albuminuria in normotensive type 2 diabetic patients. Int J Clin Exp Pathol. 2015;8:11464–11469.
  • Shin YS. Glycogen storage disease: clinical, biochemical, and molecular heterogeneity. Semin Pediatr Neurol. 2006;13:115–120.
  • Saito T. Increased urinary angiotensinogen is precedent to increased urinary albumin in patients with type 1 diabetes. Am J Med Sci. 2009;338:478–480.
  • Sawaguchi M, Araki SI, Kobori H, et al. Association between urinary angiotensinogen levels and renal and cardiovascular prognoses in patients with type 2 diabetes mellitus. J Diabetes Investig. 2012;3:318–324.
  • Carranza K, Veron D, Cercado A, et al. Cellular and molecular aspects of diabetic nephropathy; the role of VEGF-A. Nefrologi´a: Publicacio´n Oficial De La Sociedad Española Nefrologia. 2015;35:131–138.
  • Liu E, Morimoto M, Kitajima S, et al. Increased expression of vascular endothelial growth factor in kidney leads to progressive impairment of glomerular functions. J Am Soc Nephrol: JASN. 2007;18:2094–2104.
  • Kim H, Ko G, Kang Y, et al. Role of the VEGF 936 C/T polymorphism in diabetic microvascular complications in type 2 diabetic patients. Nephrology. 2009;14:681–688.
  • Vaidya VS, Niewczas MA, Ficociello LH, et al. Regression of microalbuminuria in type 1 diabetes is associated with lower levels of urinary tubular injury biomarkers, kidney injury molecule-1, and N-acetyl-β-d-glucosaminidase. Kidney Int. 2011;79:464–470.
  • van Timmeren M, van den Heuvel M, Bailly V, et al. Tubular kidney injury molecule-1 (KIM-1) in human renal disease. J Pathol. 2007;212:209–217.
  • Nielsen SE, Andersen S, Zdunek D, et al. Tubular markers do not predict the decline in glomerular filtration rate in type 1 diabetic patients with overt nephropathy. Kidney Int. 2011;79:1113–1118.
  • de Carvalho JAM, Tatsch E, Hausen BS, et al. Urinary kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin as indicators of tubular damage in normoalbuminuric patients with type 2 diabetes. Clin Biochem. 2016;49:232–236.
  • Bhensdadia NM, Hunt KJ, Lopes-Virella MF, et al. Urine haptoglobin levels predict early renal functional decline in patients with type 2 diabetes. Kidney Int. 2013;83:1136–1143.
  • Orchard TJ, Sun W, Cleary PA, et al. Haptoglobin genotype and the rate of renal function decline in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes. 2013;62:3218–3223.
  • Setty S, Michael AA, Fish AJ, et al. Differential expression of laminin isoforms in diabetic nephropathy and other renal diseases. Mod Pathol. 2012;25:859–868.
  • Banu N, Hara H, Okamura M, et al. Urinary excretion of type IV collagen and laminin in the evaluation of nephropathy in NIDDM: comparison with urinary albumin and markers of tubular dysfunction and/or damage. Diabetes Res Clin Pract. 1995;29:57–67.
  • El-Beblawy NMS, Andrawes NG, Ismail EAR, et al. Serum and urinary orosomucoid in young patients with type 1 diabetes. Clin Appl Thromb Hemost. 2016;22:718–726.
  • Jiang H, Guan G, Zhang R, et al. Increased urinary excretion of orosomucoid is a risk predictor of diabetic nephropathy. Nephrology. 2009;14:332–337.
  • Cao Y-L, Duan Y, Zhu L-X, et al. TGF-β1, in association with the increased expression of connective tissue growth factor, induce the hypertrophy of the ligamentum flavum through the p38 MAPK pathway. Int J Mol Med. 2016;38:391–398.
  • Tam FWK, Riser BL, Meeran K, et al. Urinary monocyte chemoattractant protein-1 (MCP-1) and connective tissue growth factor (CCN2) as prognostic markers for progression of diabetic nephropathy. Cytokine. 2009;47:37–42.
  • Twigg SM, Cao Z, MCLennan SV, et al. Renal connective tissue growth factor induction in experimental diabetes is prevented by aminoguanidine. Endocrinology. 2002;143:4907–4915.
  • Fagerudd JA, Groop PH, Honkanen E, et al. Urinary excretion of TGF-beta 1, PDGF-BB and fibronectin in insulin-dependent diabetes mellitus patients. Kidney Int Suppl. 1997;63:S195–S197.
  • Kanauchi M, Nishioka H, Dohi K. Diagnostic significance of urinary fibronectin in diabetic nephropathy. Nihon Jinzo Gakkai Shi. 1995;37:127–133.
  • Araki S, Haneda M, Koya D, et al. Association between urinary type IV collagen level and deterioration of renal function in type 2 diabetic patients without overt proteinuria. Diabetes Care. 2010;33:1805–1810.
  • Adler AI, Stevens RJ, Manley SE, et al. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int. 2003;63:225–232.
  • Adler SG, Feld S, Striker L, et al. Glomerular type IV collagen in patients with diabetic nephropathy with and without additional glomerular disease. Kidney Int. 2000;57:2084–2092.
  • Iida M, Yamamoto M, Ishiguro YS, et al. Urinary type IV collagen is related to left ventricular diastolic function and brain natriuretic peptide in hypertensive patients with prediabetes. J Diabetes Complications. 2014;28:824–830.
  • Tomino Y, Suzuki S, Azushima C, et al. Asian multicenter trials on urinary type IV collagen in patients with diabetic nephropathy. J Clin Lab Anal. 2001;15:188–192.
  • Iijima T, Suzuki S, Sekizuka K, et al. Follow-up study on urinary type IV collagen in patients with early stage diabetic nephropathy. J Clin Lab Anal. 1998;12:378–382.
  • Ueta I, Takamatsu K, Hashimoto K. Urinary glycosaminoglycans in patients with non-insulin-dependent diabetes mellitus, collagen diseases and IgA nephropathy. Nihon Jinzo Gakkai Shi. 1994;36:138–145.
  • Cohen-Bucay A, Viswanathan G. Urinary markers of glomerular injury in diabetic nephropathy. Int J Nephrol. 2012;2012:1–11.
  • Mou X, Zhou D-Y, Zhou D-Y, et al. Serum TGF-β1 as a biomarker for type 2 diabetic nephropathy: a meta-analysis of randomized controlled trials. PLoS One. 2016;11:e0149513.
  • Letterio JJ, Roberts AB. Regulation of immune responses by TGF-beta. Annu Rev Immunol. 1998;16:137–161.
  • Meng X-M, Nikolic-Paterson DJ, Lan HY. TGF-β: the master regulator of fibrosis. Nat Rev Nephrol. 2016;12:325–338.
  • Fufaa GD, Weil EJ, Nelson RG, et al. Urinary monocyte chemoattractant protein-1 and hepcidin and early diabetic nephropathy lesions in type 1 diabetes mellitus. Nephrol Dial Transplant: Off Publication Eur Dial Transplant Assoc – Eur Renal Assoc. 2015;30:599–606.
  • Wada T, Furuichi K, Sakai N, et al. Up-regulation of monocyte chemoattractant protein-1 in tubulointerstitial lesions of human diabetic nephropathy. Kidney Int. 2000;58:1492–1499.
  • Kalantarinia K, Awad AS, Siragy HM. Urinary and renal interstitial concentrations of TNF-alpha increase prior to the rise in albuminuria in diabetic rats. Kidney Int. 2003;64:1208–1213.
  • Navarro JF, Mora C, Gómez M, et al. Influence of renal involvement on peripheral blood mononuclear cell expression behaviour of tumour necrosis factor-α and interleukin-6 in type 2 diabetic patients. Nephrol Dial Transplant. 2008;23:919–926.
  • Cherney DZI, Scholey JW, Daneman D, et al. Urinary markers of renal inflammation in adolescents with Type1 diabetes mellitus and normoalbuminuria. Diabet Med. 2012;29:1297–1302.
  • Har R, Scholey JW, Daneman D, et al. The effect of renal hyperfiltration on urinary inflammatory cytokines/chemokines in patients with uncomplicated type 1 diabetes mellitus. Diabetologia. 2013;56:1166–1173.
  • Navarro-González JF, Mora-Fernández C. The role of inflammatory cytokines in diabetic nephropathy. J Am Soc Nephrol. 2008;19:433–442.
  • Nauta FL, Boertien WE, Bakker SJL, et al. Glomerular and tubular damage markers are elevated in patients with diabetes. Diabetes Care. 2011;34:975–981.
  • Lacquaniti A, Donato V, Pintaudi B, et al. "Normoalbuminuric" diabetic nephropathy: tubular damage and NGAL . Acta Diabetol. 2013;50:935–942.
  • Thrailkill KM, Moreau CS, Cockrell GE, et al. Disease and gender-specific dysregulation of NGAL and MMP-9 in type 1 diabetes mellitus. Endocrine. 2010;37:336–343.
  • Schmidt-Ott KM, Mori K, Li JY, et al. Dual action of neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol. 2007;18:407–413.
  • Devarajan P. Neutrophil gelatinase-associated lipocalin: a promising biomarker for human acute kidney injury. Biomarkers Med. 2010;4:265–280.
  • Singer E, Elger A, Elitok S, et al. Urinary neutrophil gelatinase-associated lipocalin distinguishes pre-renal from intrinsic renal failure and predicts outcomes. Kidney Int. 2011;80:405–414.
  • Maisel AS, Mueller C, Fitzgerald R, et al. Prognostic utility of plasma neutrophil gelatinase-associated lipocalin in patients with acute heart failure: the NGAL evaluation along with B-type NaTriuretic Peptide in acutely decompensated heart failure (GALLANT) trial. Eur J Heart Fail. 2011;13:846–851.
  • Haase-Fielitz A, Haase M, Devarajan P. Neutrophil gelatinase-associated lipocalin as a biomarker of acute kidney injury: a critical evaluation of current status. Ann Clin Biochem. 2014;51:335–351.
  • Davani D, Kumar S, Palaia T, et al. Lipocalin-type prostaglandin D2 synthase reduces glucagon secretion in alpha TC-1 clone 6 cells via the DP1 receptor. Biochem Biophys Rep. 2015;4:224–227.
  • Uehara Y, Makino H, Seiki K, et al. Urinary excretions of lipocalin-type prostaglandin D synthase predict renal injury in type-2 diabetes: a cross-sectional and prospective multicentre study. Nephrol Dial Transplant. 2008;24:475–482.
  • Chen HH. β-Trace protein versus cystatin C: which is a better surrogate marker of renal function versus prognostic indicator in cardiovascular diseases? J Am Coll Cardiol. 2011;57:859–860.
  • Spanaus KS, Kollerits B, Ritz E, et al. Serum creatinine, cystatin C, and -trace protein in diagnostic staging and predicting progression of primary nondiabetic chronic kidney disease. Clin Chem. 2010;56:740–749.
  • Mahfouz MH, Assiri AM, Mukhtar MH. Assessment of Neutrophil Gelatinase-Associated Lipocalin (NGAL) and Retinol-Binding Protein 4 (RBP4) in type 2 diabetic patients with nephropathy. Biomarker Insights. 2016;11:31–40.
  • Salem MAK, el-Habashy SA, Saeid OM, et al. Urinary excretion of n-acetyl-beta-d-glucosaminidase and retinol binding protein as alternative indicators of nephropathy in patients with type 1 diabetes mellitus. Pediatr Diabetes. 2002;3:37–41.
  • Takebayashi K, Suetsugu M, Wakabayashi S, et al. Retinol binding protein-4 levels and clinical features of type 2 diabetes patients. J Clin Endocrinol Metab. 2007;92:2712–2719.
  • Lever E, Sheer D. The role of nuclear organization in cancer. J Pathol. 2010;220:114–125.
  • Kandasamy Y, Smith R, Lumbers ER, et al. Nephrin – a biomarker of early glomerular injury. Biomark Res. 2014;2:21.
  • Pätäri A, Forsblom C, Havana M, et al. Nephrinuria in Diabetic nephropathy of type 1 diabetes. Diabetes. 2003;52:2969–2974.
  • Jim B, Ghanta M, Qipo A, et al. Dysregulated nephrin in diabetic nephropathy of type 2 diabetes: a cross sectional study. PLoS One. 2012;7: e36041.
  • Hara M, Yamagata K, Tomino Y, et al. Urinary podocalyxin is an early marker for podocyte injury in patients with diabetes: establishment of a highly sensitive ELISA to detect urinary podocalyxin. Diabetologia. 2012;55:2913–2919.
  • Zheng M, Lv L-L, Ni J, et al. Urinary podocyte-associated mRNA profile in various stages of diabetic nephropathy. PLoS One. 2011;6:e20431.
  • Kamijo-Ikemori A, Sugaya T, Yasuda T, et al. Clinical significance of Urinary Liver-Type Fatty Acid-Binding Protein in diabetic nephropathy of type 2 diabetic patients. Diabetes Care. 2011;34:691–696.
  • Kamijo-Ikemori A, Sugaya T, Ichikawa D, et al. Urinary liver type fatty acid binding protein in diabetic nephropathy. Clin Chim Acta. 2013;424:104–108.
  • Panduru NM, Forsblom C, Saraheimo M, et al. Urinary liver-type fatty acid-binding protein and progression of diabetic nephropathy in type 1 diabetes. Diabetes Care. 2013;36:2077–2083.
  • Viswanathan V, Sivakumar S, Sekar V, et al. Clinical significance of urinary liver-type fatty acid binding protein at various stages of nephropathy. Indian J Nephrol. 2015;25:269–273.
  • Chou KM, Lee CC, Chen CH, et al. Clinical value of NGAL, L-FABP and albuminuria in predicting GFR decline in Type 2 diabetes mellitus patients. PLoS One. 2013;8:e54863.
  • Rathcke CN, Vestergaard H. YKL-40 – an emerging biomarker in cardiovascular disease and diabetes. Cardiovasc Diabetol. 2009;8:61.
  • Wu LL, Chiou CC, Chang PY, et al. Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta. 2004;339:1–9.
  • Hinokio Y, Suzuki S, Hirai M, et al. Urinary excretion of 8-oxo-7, 8-dihydro-2'-deoxyguanosine as a predictor of the development of diabetic nephropathy . Diabetologia. 2002;45:877–882.
  • Leinonen J, Lehtimäki T, Toyokuni S, et al. New biomarker evidence of oxidative DNA damage in patients with non-insulin-dependent diabetes mellitus. FEBS Lett. 1997;417:150–152.
  • Broedbaek K, Weimann A, Stovgaard ES, et al. Urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine as a biomarker in type 2 diabetes. Free Radic Biol Med. 2011;51:1473–1479.
  • Kim SR, Lee Y-H, Lee S-G, et al. Urinary N-acetyl-β-d-glucosaminidase, an early marker of diabetic kidney disease, might reflect glucose excursion in patients with type 2 diabetes. Medicine (Baltimore). 2016;95:e4114.
  • Ambade V, Sing P, Somani BL, et al. Urinary N-acetyl beta glucosaminidase and gamma glutamyl transferase as early markers of diabetic nephropathy. Indian J Clin Biochem. 2006;21:142–148.
  • Rossi L, Nicoletti MC, Carmosino M, et al. Urinary excretion of kidney aquaporins as possible diagnostic biomarker of diabetic nephropathy. J Diabetes Res. 2017;2017:1–13.
  • Wu H, Chen L, Zhang X, et al. Aqp5 is a new transcriptional target of Dot1a and a regulator of Aqp2. PLoS One. 2013;8:e53342.
  • Turk N, Mornar a, Mrzljak V, et al. Urinary excretion of advanced glycation endproducts in patients with type 2 diabetes and various stages of proteinuria. Diabetes Metab. 2004;30:187–192.
  • Petrica L, Vlad A, Gluhovschi G, et al. Glycated peptides are associated with proximal tubule dysfunction in type 2 diabetes mellitus. Int J Clin Exp Med. 2015;8:2516–2525.
  • Ghanem AA, Elewa A, Arafa LF. Pentosidine and N-carboxymethyl-lysine: biomarkers for type 2 diabetic retinopathy. Eur J Ophthalmol. 2011;21:48–54.
  • Piarulli F, Sartore G, Ceriello A, et al. Relationship between glyco-oxidation, antioxidant status and microalbuminuria in type 2 diabetic patients. Diabetologia. 2009;52:1419–1425.
  • Maahs DM, Ogden LG, Kretowski A, et al. Serum cystatin C predicts progression of subclinical coronary atherosclerosis in individuals with type 1 diabetes. Diabetes. 2007;56:2774–2779.
  • Schwartz GJ, Schneider MF, Maier PS, et al. Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C. Kidney Int. 2012;82:445–453.
  • Papadopoulou-Marketou N, Skevaki C, Kosteria I, et al. NGAL and cystatin C: two possible early markers of diabetic nephropathy in young patients with type 1 diabetes mellitus: one year follow up. Hormones. 2014;14:232–240.
  • Schwartz GJ, Muñoz A, Schneider MF, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20:629–637.
  • Papadopoulou-Marketou N, Margeli A, Papassotiriou I, et al. NGAL as an early predictive marker of diabetic nephropathy in children and young adults with type 1 diabetes mellitus. J Diabetes Res. 2017;2017:1–7.
  • Gilet A, Zou F, Boumenir M, et al. Aldosterone up-regulates MMP-9 and MMP-9/NGAL expression in human neutrophils through p38, ERK1/2 and PI3K pathways. Exp Cell Res. 2015;331:152–163.
  • Woitas RP, Scharnagl H, Kleber ME, et al. Neutrophil gelatinase-associated lipocalin levels are U-shaped in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study – impact for mortality. PLos One. 2017;12:e0171574.
  • Kim HM, Lee B-W, Song Y-M, et al. Potential association between coronary artery disease and the inflammatory biomarker YKL-40 in asymptomatic patients with type 2 diabetes mellitus. Cardiovasc Diabetol. 2012;11:84.
  • Rathcke CN, Persson F, Tarnow L, et al. YKL-40, a marker of inflammation and endothelial dysfunction, is elevated in patients with type 1 diabetes and increases with levels of albuminuria. Diabetes Care. 2009;32:323–328.
  • Sakamoto F, Katakami N, Kaneto H, et al. Association of serum YKL-40 levels with urinary albumin excretion rate in young Japanese patients with type 1 diabetes mellitus. Endocr J. 2013;60:73–79.
  • Zimmers TA, Jin X, Hsiao EC, et al. Growth differentiation factor-15/macrophage inhibitory cytokine-1 induction after kidney and lung injury. Shock (Augusta, Ga). 2005;23:543–548.
  • Lajer M, Jorsal A, Tarnow L, et al. Plasma growth differentiation factor-15 independently predicts all-cause and cardiovascular mortality as well as deterioration of kidney function in type 1 diabetic patients with nephropathy. Diabetes Care. 2010;33:1567–1572.
  • Hellemons ME, Mazagova M, Gansevoort RT, et al. Growth-differentiation factor 15 predicts worsening of albuminuria in patients with type 2 diabetes. Diabetes Care. 2012;35:2340–2346.
  • Li L, Jiang X, Hu J-Y, et al. The association between interleukin-19 concentration and diabetic nephropathy. BMC Nephrol. 2017;18:65.
  • Khan SQ, Dhillon OS, O’Brien RJ, et al. C-terminal provasopressin (copeptin) as a novel and prognostic marker in acute myocardial infarction: Leicester Acute Myocardial Infarction Peptide (LAMP) study. Circulation. 2007;115:2103–2110.
  • Schiel R, Perenthaler TJ, Steveling A, et al. Plasma copeptin in children and adolescents with type 1 diabetes mellitus in comparison to healthy controls. Diabetes Res Clin Pract. 2016;118:156–161.
  • Zhang P, Gao J, Pu C, et al. ApoM/HDL-C and apoM/apoA-I ratios are indicators of diabetic nephropathy in healthy controls and type 2 diabetes mellitus. Clin Chim Acta. 2017;466:31–37.
  • Bus P, Pierneef L, Bor R, et al. Apolipoprotein C-I plays a role in the pathogenesis of glomerulosclerosis. J Pathol. 2017;241:589–599.
  • Xu X, Zhu X, Ma M, et al. p66Shc: a novel biomarker of tubular oxidative injury in patients with diabetic nephropathy. Sci Rep. 2016;6:29302.
  • Bock F, Shahzad K, Wang H, et al. Activated protein C ameliorates diabetic nephropathy by epigenetically inhibiting the redox enzyme p66Shc. Proc Natl Acad Sci. 2013;110:648–653.
  • Boon A-C, Bulmer AC, Coombes JS, et al. Circulating bilirubin and defense against kidney disease and cardiovascular mortality: mechanisms contributing to protection in clinical investigations. AJP: Renal Physiol. 2014;307:F123–F136.
  • Riphagen IJ, Deetman PE, Bakker SJL, et al. Bilirubin and progression of nephropathy in type 2 diabetes: a post hoc analysis of RENAAL with independent replication in IDNT. Diabetes. 2014;63:2845–2853.
  • Zhang D, Zhu B, Zhang W, et al. Total bilirubin level may be a biomarker of nephropathy in type 2 diabetes mellitus. Medicine. 2017;96:e5765.
  • Perkins BA, Krolewski AS. Early nephropathy in type 1 diabetes: the importance of early renal function decline. Curr Opin Nephrol Hypertens. 2009;18:233–240.
  • Kang D-H, Nakagawa T, Feng L, et al. A role for uric acid in the progression of renal disease. J Am Soc Nephrol. 2002;13:2888–2897.
  • Fassett RG, Venuthurupalli SK, Gobe GC, et al. Biomarkers in chronic kidney disease: a review. Kidney Int. 2011;80:806–821.
  • Rosolowsky ET, Ficociello LH, Maselli NJ, et al. High-normal serum uric acid is associated with impaired glomerular filtration rate in nonproteinuric patients with type 1 diabetes. Clin J Am Soc Nephrol: CJASN. 2008;3:706–713.
  • Jalal DI, Rivard CJ, Johnson RJ, et al. Serum uric acid levels predict the development of albuminuria over 6 years in patients with type 1 diabetes: findings from the coronary artery calcification in type 1 diabetes study. Nephrol Dial Transplant: Off Publication Eur Dial Transplant Assoc – Eur Renal Assoc. 2010;25:1865–1869.
  • Jalal DI, Maahs DM, Hovind P, et al. Uric acid as a mediator of diabetic nephropathy. Semin Nephrol. 2011;31:459–465.
  • Bjornstad P, Snell-Bergeon JK, McFann K, et al. Serum uric acid and insulin sensitivity in adolescents and adults with and without type 1 diabetes. J Diabetes Complications. 2013;28:298–304.
  • Hovind P, Rossing P, Tarnow L, et al. Serum uric acid as a predictor for development of diabetic nephropathy in type 1 diabetes: an inception cohort study. Diabetes. 2009;58:1668–1671.
  • Wei T, Zhao L, Jia J, et al. Metabonomic analysis of potential biomarkers and drug targets involved in diabetic nephropathy mice. Sci Rep. 2015;5:11998.
  • Zürbig P, Jerums G, Hovind P, et al. Urinary proteomics for early diagnosis in diabetic nephropathy. Diabetes. 2012;61:3304–3313.
  • Inoue K, Wada J, Eguchi J, et al. Urinary fetuin – a is a novel marker for diabetic nephropathy in type 2 diabetes identified by lectin microarray. PLoS One. 2013;8:e77118.
  • Mehta S, Cabrera VJ, Upputalla R. Urinary biomarkers of diabetic nephropathy. Curr Biomark Find. 2013;3:67–78.
  • Lee SY, Choi1 ME. Urinary biomarkers for early diabetic nephropathy: beyond albuminuria. Pediatr Nephrol. 2015;30:1063–1075.
  • Simpson K, Wonnacott A, Fraser DJ, et al. MicroRNAs in diabetic nephropathy: from biomarkers to therapy. Curr Diab Rep. 2016;16:35.
  • Campion CG, Sanchez-Ferras O, Batchu SN. Potential role of serum and urinary biomarkers in diagnosis and prognosis of diabetic nephropathy. Can J Kidney Health Dis. 2017;4:205435811770537.
  • Kato M, Castro NE, Natarajan R. MicroRNAs: potential mediators and biomarkers of diabetic complications. Free Radic Biol Med. 2013;64:85–94.
  • Kato M, Natarajan R. MicroRNAs in diabetic nephropathy: functions, biomarkers, and therapeutic targets. Ann N Y Acad Sci. 2015;1353:72–88.
  • Pezzolesi MG, Satake E, McDonnell KP, et al. Circulating TGF-β1-regulated miRNAs and the risk of rapid progression to ESRD in Type 1 diabetes. Diabetes. 2015;64:3285–3293.
  • Conserva F, Gesualdo L, Papale M. A systems biology overview on human diabetic nephropathy: from genetic susceptibility to post-transcriptional and post-translational modifications. J Diabetes Res. 2016;2016:7934504.
  • Kurashige M, Imamura M, Araki S, et al. The influence of a single nucleotide polymorphism within CNDP1 on susceptibility to diabetic nephropathy in Japanese women with type 2 diabetes. PLoS One. 2013;8:e54064.
  • Niewczas MA, Sirich TL, Mathew AV, et al. Uremic solutes and risk of end-stage renal disease in type 2 diabetes: metabolomic study. Kidney Int. 2014;85:1214–1224.
  • Kimura T, Yasuda K, Yamamoto R, et al. Identification of biomarkers for development of end-stage kidney disease in chronic kidney disease by metabolomic profiling. Sci Rep. 2016;6:26138. doi:10.1038/srep26138.
  • Zhang Y, Zhang S, Wang G. Metabolomic biomarkers in diabetic kidney diseases – A systematic review. J Diabetes Complicat. 2015;29:1345–1351.
  • Filla LA, Edwards JL. Metabolomics in diabetic complications. Mol Biosyst. 2016;12:1090–1105.
  • Chiu C-A, Lu L-F, Yu T-H, et al. Increased levels of total P-cresylsulphate and indoxyl sulphate are associated with coronary artery disease in patients with diabetic nephropathy. Rev Diabet Stud. 2010;7:275–284.
  • Fineberg D, Jandeleit-Dahm KAM, Cooper ME. Diabetic nephropathy: diagnosis and treatment. Nat Rev Endocrinol. 2013;9:713–723.
  • Ellis EN, Warady BA, Wood EG, et al. Renal structural-functional relationships in early diabetes mellitus. Pediatr Nephrol (Berlin, Germany). 1997;11:584–591.
  • Ioannidis JPA, Bossuyt PMM. Waste, leaks, and failures in the biomarker pipeline. Clin Chem. 2017;63:963–972.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.