25,556
Views
166
CrossRef citations to date
0
Altmetric
Review Article

The Canadian laboratory initiative on pediatric reference intervals: A CALIPER white paper

, , &
Pages 358-413 | Received 26 Jul 2017, Accepted 12 Sep 2017, Published online: 11 Oct 2017

References

  • CLSI. Defining, establishing, and verifying reference intervals in the clinical laboratory; Approved Guideline -– Third Edition. CLSI document C28-A3. Wayne (PA): Clinical and Laboratory Standards Institute; 2008.
  • Horn PS, Pesce AJ. Reference intervals: an update. Clin Chim Acta. 2003;334:5–23.
  • Jones GR, Koetsier SD. RCPAQAP first combined measurement and reference interval survey. Clin Biochem Rev. 2014;35:243–250.
  • Chan MK, Seiden-Long I, Aytekin M, et al. Canadian Laboratory Initiative on Pediatric Reference Interval Database (CALIPER): pediatric reference intervals for an integrated clinical chemistry and immunoassay analyzer, Abbott ARCHITECT ci8200. Clin Biochem. 2009;42:885–891.
  • Blasutig IM, Jung B, Kulasingam V, et al. Analytical evaluation of the VITROS 5600 Integrated System in a pediatric setting and determination of pediatric reference intervals. Clin Biochem. 2010;43:1039–1044.
  • Kulasingam V, Jung BP, Blasutig IM, et al. Pediatric reference intervals for 28 chemistries and immunoassays on the Roche cobas 6000 analyzer – a CALIPER Pilot Study. Clin Biochem. 2010;43:1045–1050.
  • Henderson MPA, Grey V. Establishing and evaluating pediatric thyroid reference intervals on the Roche Modular Analytics E 170 using computational statistics and data-mining techniques. Clin Biochem. 2011;44:767–770.
  • Huang Y, Eapen E, Steele S, et al. Establishment of reference intervals for bone markers in children and adolescents. Clin Biochem. 2011;44:771–778.
  • Colantonio DA, Kyriakopoulou L, Chan MK, et al. Closing the gaps in pediatric laboratory reference intervals: a CALIPER database of 40 biochemical markers in a healthy and multiethnic population of children. Clin Chem. 2012;58:854–868.
  • Bailey D, Colantonio D, Kyriakopoulou L, et al. Marked biological variance in endocrine and biochemical markers in childhood: establishment of pediatric reference intervals using healthy community children from the CALIPER cohort. Clin Chem. 2013;59:1393–1405.
  • Karbasy K, Lin DCC, Stoianov A, et al. Pediatric reference value distributions and covariate-stratified reference intervals for 29 endocrine and special chemistry biomarkers on the Beckman Coulter Immunoassay Systems: a CALIPER study of healthy community children. Clin Chem Lab Med. 2016;54:643–657.
  • Konforte D, Shea JL, Kyriakopoulou L, et al. Complex biological pattern of fertility hormones in children and adolescents: a study of healthy children from the CALIPER cohort and establishment of pediatric reference intervals. Clin Chem. 2013;59:1215–1227.
  • Kyriakopoulou L, Yazdanpanah M, Colantonio DA, et al. A sensitive and rapid mass spectrometric method for the simultaneous measurement of eight steroid hormones and CALIPER pediatric reference intervals. Clin Biochem. 2013;46:642–651.
  • Bevilacqua V, Chan MK, Chen Y, et al. Pediatric population reference value distributions for cancer biomarkers and covariate-stratified reference intervals in the CALIPER cohort. Clin Chem. 2014;60:1532–1542.
  • Raizman JE, Cohen AH, Teodoro-Morrison T, et al. Pediatric reference value distributions for vitamins A and E in the CALIPER cohort and establishment of age-stratified reference intervals. Clin Biochem. 2014;47:812–815.
  • Teodoro-Morrison T, Kyriakopoulou L, Chen YK, et al. Dynamic biological changes in metabolic disease biomarkers in childhood and adolescence: a CALIPER study of healthy community children. Clin Biochem. 2015;48:828–836.
  • Raizman JE, Quinn F, Armbruster DA, et al. Pediatric reference intervals for calculated free testosterone, bioavailable testosterone and free androgen index in the CALIPER cohort. Clin Chem Lab Med. 2015;53:e239–e243.
  • Higgins V, Fung AWS, Chan MK, et al. Pediatric reference intervals for 29 Ortho VITROS 5600 immunoassays using the CALIPER cohort of healthy children and adolescents. Clin Chem Lab Med. 2017.
  • Vermeulen A, Verdonck L, Kaufman JM. A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab. 1999;84:3666–3672.
  • Kelly J, Raizman JE, Bevilacqua V, et al. Complex reference value distributions and partitioned reference intervals across the pediatric age range for 14 specialized biochemical markers in the CALIPER cohort of healthy community children and adolescents. Clin Chim Acta. 2015;450:196–202.
  • Boyd JC. Defining laboratory reference values and decision limits: populations, intervals, and interpretations. Asian J Androl. 2010;12:83–90.
  • Marshall WA, Tanner JM. Variations in pattern of pubertal changes in girls. Arch Dis Child. 1969;44:291–303.
  • Marshall WA, Tanner JM. Variations in the pattern of pubertal changes in boys. Arch Dis Child. 1970;45:13–23.
  • Statistics Canada. Ethnic origins, 2006 counts, for Canada, provinces and territories – 20% sample data [cited 2017 Sep 12]. [Table]. Available from: http://www12.statcan.ca/census-recensement/2006/dp-pd/hlt/97-562/pages/page.cfm?Lang=E&Geo=PR&Code=01&Table=2&Data=Count&StartRec=1&Sort=3&Display=All.
  • Harris EK, Boyd JC. On dividing reference data into subgroups to produce separate reference ranges. Clin Chem. 1990;36:265–270.
  • Tukey J. Exploratory data analysis. Boston (MA): Addison-Wesley; 1977. p. 1–688.
  • Hubert M, Van der Veeken S. Outlier detection for skewed data. J Chemometrics. 2008;22:235–246.
  • Horn PS, Pesce AJ, Copeland BE. A robust approach to reference interval estimation and evaluation. Clin Chem. 1998;44:622–631.
  • Estey MP, Cohen AH, Colantonio DA, et al. CLSI-based transference of the CALIPER database of pediatric reference intervals from Abbott to Beckman, Ortho, Roche and Siemens Clinical Chemistry Assays: direct validation using reference samples from the CALIPER cohort. Clin Biochem. 2013;46:1197–1219.
  • Araújo PAT, Thomas D, Sadeghieh T, et al. CLSI-based transference of the CALIPER database of pediatric reference intervals to Beckman Coulter DxC biochemical assays. Clin Biochem. 2015;48:870–880.
  • Abou El Hassan M, Stoianov A, Araújo PAT, et al. CLSI-based transference of CALIPER pediatric reference intervals to Beckman Coulter AU biochemical assays. Clin Biochem. 2015;48:1151–1159.
  • Higgins V, Chan MK, Nieuwesteeg M, et al. Transference of CALIPER pediatric reference intervals to biochemical assays on the Roche cobas 6000 and the Roche Modular P. Clin Biochem. 2016;49:139–149.
  • CLSI. Method comparison and bias estimation using patient samples; Approved Guideline – Second Edition. CLSI document EP9-A2. Wayne (PA): Clinical and Laboratory Standards Institute; 2002.
  • Brinc D, Chan MK, Venner AA, et al. Long-term stability of biochemical markers in pediatric serum specimens stored at −80 °C: a CALIPER Substudy. Clin Biochem. 2012;45:816–826.
  • Pasic MD, Colantonio DA, Chan MK, et al. Influence of fasting and sample collection time on 38 biochemical markers in healthy children: a CALIPER substudy. Clin Biochem. 2012;45:1125–1130.
  • Bailey D, Bevilacqua V, Colantonio DA, et al. Pediatric within-day biological variation and quality specifications for 38 biochemical markers in the CALIPER cohort. Clin Chem. 2014;60:518–529.
  • Shaw JLV, Cohen A, Konforte D, et al. Validity of establishing pediatric reference intervals based on hospital patient data: a comparison of the modified Hoffmann approach to CALIPER reference intervals obtained in healthy children. Clin Biochem. 2014;47:166–172.
  • Hoffmann RG. Statistics in the practice of medicine. JAMA. 1963;185:864–873.
  • Kavsak PA, Rezanpour A, Chen Y, et al. Assessment of the 99th or 97.5th percentile for cardiac troponin I in a healthy pediatric cohort. Clin Chem. 2014;60:1574–1576.
  • Devgun MS, Chan MK, El-Nujumi AM, et al. Clinical decision limits for interpretation of direct bilirubin–a CALIPER study of healthy multiethnic children and case report reviews. Clin Biochem. 2015;48:93–96.
  • Kimenai DM, Henry RMA, van der Kallen CJH, et al. Direct comparison of clinical decision limits for cardiac troponin T and I. Heart Br Card Soc. 2016;102:610–616.
  • Tremblay M, Wolfson M, Connor Gorber S. Canadian Health Measures Survey: rationale, background and overview. Health Rep. 2007;18(Suppl):7–20.
  • Adeli K, Higgins V, Nieuwesteeg M, et al. Biochemical marker reference values across pediatric, adult, and geriatric ages: establishment of robust pediatric and adult reference intervals on the basis of the Canadian Health Measures Survey. Clin Chem. 2015;61:1049–1062.
  • Adeli K, Higgins V, Nieuwesteeg M, et al. Complex reference values for endocrine and special chemistry biomarkers across pediatric, adult, and geriatric ages: establishment of robust pediatric and adult reference intervals on the basis of the Canadian Health Measures Survey. Clin Chem. 2015;61:1063–1074.
  • Adeli K, Raizman JE, Chen Y, et al. Complex biological profile of hematologic markers across pediatric, adult, and geriatric ages: establishment of robust pediatric and adult reference intervals on the basis of the Canadian Health Measures Survey. Clin Chem. 2015;61:1075–1086.
  • Lim E, Miyamura J, Chen JJ. Racial/ethnic-specific reference intervals for common laboratory tests: a comparison among Asians, Blacks, Hispanics, and White. Hawaii J Med Public Health J Asia Pac Med Public Health. 2015;74:302–310.
  • Boucai L, Surks MI. Reference limits of serum TSH and free T4 are significantly influenced by race and age in an urban outpatient medical practice. Clin Endocrinol (Oxf). 2009;70:788–793.
  • Boucai L, Hollowell JG, Surks MI. An approach for development of age-, gender-, and ethnicity-specific thyrotropin reference limits. Thyroid. 2011;21:5–11.
  • Brewster LM, Mairuhu G, Sturk A, et al. Distribution of creatine kinase in the general population: implications for statin therapy. Am Heart J. 2007;154:655–661.
  • Groesbeck D, Köttgen A, Parekh R, et al. Age, gender, and race effects on cystatin C levels in US adolescents. Clin J Am Soc Nephrol. 2008;3:1777–1785.
  • Bansal S, Buring JE, Rifai N, et al. Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA. 2007;298:309–316.
  • Masuda D, Yamashita S. Postprandial hyperlipidemia and remnant lipoproteins. J Atheroscler Thromb. 2017;24:95–109.
  • Xiao C, Dash S, Morgantini C, et al. Gut peptides are novel regulators of intestinal lipoprotein secretion: experimental and pharmacological manipulation of lipoprotein metabolism. Diabetes. 2015;64:2310–2318.
  • Farr S, Taher J, Adeli K. Glucagon-like peptide-1 as a key regulator of lipid and lipoprotein metabolism in fasting and postprandial states. Chddt. 2014;14:126–136.